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Eigenvalues and Eigenvectors

6.1 Definitions

Consider the matrix A and the vectors x1, x2, x3 given by

A =
⎡
⎣1 4 −1

0 2 1
0 0 3

⎤
⎦, x1 =

⎡
⎣4

1
0

⎤
⎦, x2 =

⎡
⎣3

2
2

⎤
⎦, x3 =

⎡
⎣3

0
0

⎤
⎦.

Forming the products Ax1, Ax2, and Ax3, we obtain

Ax1 =
⎡
⎣8

2
0

⎤
⎦, Ax2 =

⎡
⎣9

6
6

⎤
⎦, Ax3 =

⎡
⎣3

0
0

⎤
⎦.

But ⎡
⎣8

2
0

⎤
⎦ = 2x1,

⎡
⎣9

6
6

⎤
⎦ = 3x2, and

⎡
⎣3

0
0

⎤
⎦ = 1x3;

hence,

Ax1 = 2x1,

Ax2 = 3x2,

Ax3 = 1x3.

That is, multiplying A by any one of the vectors x1, x2, or x3 is equivalent to simply
multiplying the vector by a suitable scalar.

Definition 1 A nonzero vector x is an eigenvector (or characteristic vector) of a
square matrix A if there exists a scalar λ such that Ax = λx. Then λ is an eigenvalue
(or characteristic value) of A.

Thus, in the above example, x1, x2, and x3 are eigenvectors of A and 2, 3, 1 are
eigenvalues of A.
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178 Chapter 6 Eigenvalues and Eigenvectors

Note that eigenvectors and eigenvalues are only defined for square matrices.
Furthermore, note that the zero vector can not be an eigenvector even though
A· 0 = λ· 0 for every scalar λ. An eigenvalue, however, can be zero.

Example 1 Show that

x =
⎡
⎣5

0
0

⎤
⎦

is an eigenvector of

A =
⎡
⎣0 5 7

0 −1 2
0 3 1

⎤
⎦.

Solution

Ax =
⎡
⎣0 5 7

0 −1 2
0 3 1

⎤
⎦
⎡
⎣5

0
0

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦ = 0

⎡
⎣5

0
0

⎤
⎦.

Thus, x is an eigenvector of A and λ = 0 is an eigenvalue. �

Example 2 Is

x =
[

1
1

]

an eigenvector of

A =
[

1 2
3 4

]
?

Solution

Ax =
[

1 2
3 4

] [
1
1

]
=
[

3
7

]
.

Thus, if x is to be an eigenvector of A, there must exist a scalar λ such that Ax = λx,
or such that [

3
7

]
= λ

[
1
1

]
=
[
λ

λ

]
.

It is quickly verified that no such λ exists, hence x is not an eigenvector of A. �
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Problems 6.1

1. Determine which of the following vectors are eigenvectors for

A =
[

1 2
−4 7

]
.

(a)
[

1
1

]
, (b)

[
1

−1

]
, (c)

[
2
1

]
, (d)

[
1
2

]
,

(e)
[

2
2

]
, (f)

[−4
−4

]
, (g)

[
4

−4

]
, (h)

[
2
4

]
.

2. What are the eigenvalues that correspond to the eigenvectors found in
Problem 1?

3. Determine which of the following vectors are eigenvectors for

B =
[

2 −4
3 −6

]
.

(a)
[

1
1

]
, (b)

[
1

−1

]
, (c)

[
2
1

]
, (d)

[
0
0

]
,

(e)
[

6
3

]
, (f)

[
2
3

]
, (g)

[−4
−6

]
, (h)

[
1
0

]
.

4. What are the eigenvalues that correspond to the eigenvectors found in
Problem 3?

5. Determine which of the following vectors are eigenvectors for

A =
⎡
⎣ 2 0 −1

1 2 1
−1 0 2

⎤
⎦.

(a)

⎡
⎣1

0
0

⎤
⎦, (b)

⎡
⎣0

1
0

⎤
⎦, (c)

⎡
⎣ 1

−2
1

⎤
⎦, (d)

⎡
⎣−3

6
−3

⎤
⎦,

(e)

⎡
⎣−1

0
1

⎤
⎦, (f)

⎡
⎣1

0
1

⎤
⎦, (g)

⎡
⎣ 2

0
−2

⎤
⎦, (h)

⎡
⎣1

1
1

⎤
⎦.

6. What are the eigenvalues that correspond to the eigenvectors found in
Problem 5?

7. Determine which of the following vectors are eigenvectors for

A =

⎡
⎢⎢⎣

1 3 0 0
1 −1 0 0
0 0 1 2
0 0 4 3

⎤
⎥⎥⎦.
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(a)

⎡
⎢⎢⎣

1
−1

0
0

⎤
⎥⎥⎦, (b)

⎡
⎢⎢⎣

0
0
1

−1

⎤
⎥⎥⎦, (c)

⎡
⎢⎢⎣

1
0
0

−1

⎤
⎥⎥⎦,

(d)

⎡
⎢⎢⎣

3
1
0
0

⎤
⎥⎥⎦, (e)

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦, (f)

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦.

8. What are the eigenvalues that correspond to the eigenvectors found in
Problem 7?

6.2 Eigenvalues

Let x be an eigenvector of the matrix A. Then there must exist an eigenvalue λ

such that

Ax = λx (1)

or, equivalently,

Ax − λx = 0

or

(A − λI)x = 0. (2)

CAUTION. We could not have written (2) as (A − λ)x = 0 since the term A − λ

would require subtracting a scalar from a matrix, an operation which is not defined.
The quantity A − λI, however, is defined since we are now subtracting one matrix
from another.

Define a new matrix

B = A − λI. (3)

Then (2) may be rewritten as

Bx = 0, (4)

is a linear homogeneous system of equations for the unknown x. If B has an
inverse, then we can solve Eq. (4) for x, obtaining x = B−10, or x = 0. This result,
however, is absurd since x is an eigenvector and cannot be zero. Thus, it follows
that x will be an eigenvector of A if and only if B does not have an inverse. But
if a square matrix does not have an inverse, then its determinant must be zero
(Theorem 1 of Section 5.5). Therefore, x will be an eigenvector of A if and only if

det (A − λI) = 0. (5)

Equation (5) is called the characteristic equation of A. The roots of (5) determine
the eigenvalues of A.



6.2 Eigenvalues 181

Example 1 Find the eigenvalues of

A =
[

1 2
4 3

]
.

Solution

A − λI =
[

1 2
4 3

]
− λ

[
1 0
0 1

]
=
[

1 2
4 3

]
−
[
λ 0
0 λ

]

=
[

1 − λ 2
4 3 − λ

]
.

det (A − λI) = (1 − λ)(3 − λ) − 8 = λ2 − 4λ − 5. The characteristic equation
of A is det (A − λI) = 0, or λ2 − 4λ − 5 = 0. Solving for λ, we have that λ = −1, 5;
hence the eigenvalues of A are λ1 = −1, λ2 = 5. �

Example 2 Find the eigenvalues of

A =
[

1 −2
1 1

]
.

Solution

A − λI =
[

1 −2
1 1

]
− λ

[
1 0
0 1

]
=
[

1 − λ −2
1 1 − λ

]
,

det (A − λI) = (1 − λ)(1 − λ) + 2 = λ2 − 2λ + 3.

The characteristic equation is λ2 − 2λ + 3 = 0; hence, solving for λ by the quadratic
formula, we have that λ1 = 1 + √

2 i, λ2 = 1 − √
2 i which are eigenvalues of A.

�

Note: Even if the elements of a matrix are real, the eigenvalues may be complex.

Example 3 Find the eigenvalues of

A =
[

t 2t

2t −t

]
.

Solution

A − λI =
[

t 2t

2t −t

]
− λ

[
1 0
0 1

]
=
[
t − λ 2t

2t −t − λ

]

det (A − λI) = (t − λ)(−t − λ) − 4t2 = λ2 − 5t2.
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The characteristic equation is λ2 − 5t2 = 0, hence, the eigenvalues are λ1 = √
5t,

λ2 = −√
5t.

Note: If the matrix A depends on a parameter (in this case the parameter is t),
then the eigenvalues may also depend on the parameter. �

Example 4 Find the eigenvalues for

A =
⎡
⎣2 −1 1

3 −2 1
0 0 1

⎤
⎦.

Solution

A − λI =
⎡
⎣2 −1 1

3 −2 1
0 0 1

⎤
⎦− λ

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ =

⎡
⎣2 − λ −1 1

3 −2 − λ 1
0 0 1 − λ

⎤
⎦.

det (A − λI) = (1 − λ)[(2 − λ)(−2 − λ) + 3] = (1 − λ)(λ2 − 1).

The characteristic equation is (1 − λ)(λ2 − 1) = 0; hence, the eigenvalues are
λ1 = λ2 = 1, λ3 = −1. �

Note: The roots of the characteristic equation can be repeated. That is, λ1 = λ2 =
λ3 = · · · = λk. When this happens, the eigenvalue is said to be of multiplicity k.
Thus, in Example 4, λ = 1 is an eigenvalue of multiplicity 2 while, λ = −1 is an
eigenvalue of multiplicity 1.

From the definition of the characteristic Equation (5), it can be shown that
if A is an n × n matrix then the characteristic equation of A is an nth degree
polynomial in λ. It follows from the Fundamental Theorem of Algebra, that the
characteristic equation has n roots, counting multiplicity. Hence, A has exactly n
eigenvalues, counting multiplicity. (See Examples 1 and 4).

In general, it is very difficult to find the eigenvalues of a matrix. First the
characteristic equation must be obtained, and for matrices of high order this is a
lengthy task. Then the characteristic equation must be solved for its roots. If the
equation is of high order, this can be an impossibility in practice. For example, the
reader is invited to find the eigenvalues of

A =

⎡
⎢⎢⎣

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

⎤
⎥⎥⎦.

For these reasons, eigenvalues are rarely found by the method just given, and
numerical techniques are used to obtain approximate values (see Sections 6.6
and 10.4).
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Problems 6.2

In Problems 1 through 35, find the eigenvalues of the given matrices.

1.
[

1 2
−1 4

]
, 2.

[
2 1
2 3

]
, 3.

[
2 3
4 6

]
,

4.
[

3 6
9 6

]
, 5.

[
2 −1
1 4

]
, 6.

[
1 2
4 −1

]
,

7.
[

3 5
5 −3

]
, 8.

[
3 5

−5 −3

]
, 9.

[
2 5

−1 −2

]
,

10.
[

1 0
0 1

]
, 11.

[
0 1
0 0

]
, 12.

[
0 0
0 0

]
,

13.
[

2 2
−1 −2

]
, 14.

[
4 10
9 −5

]
, 15.

[
5 10
9 −4

]
,

16.
[

0 t

2t −t

]
, 17.

[
0 2t

−2t 4t

]
, 18.

[
4θ 2θ

−θ θ

]
,

19.

⎡
⎣1 0 3

1 2 1
3 0 1

⎤
⎦, 20.

⎡
⎣ 2 0 −1

2 2 2
−1 0 2

⎤
⎦, 21.

⎡
⎣ 2 0 −1

2 1 2
−1 0 2

⎤
⎦,

22.

⎡
⎣1 1 −1

0 0 0
1 2 3

⎤
⎦, 23.

⎡
⎣3 0 0

2 6 4
2 3 5

⎤
⎦, 24.

⎡
⎣5 −7 7

4 −3 4
4 −1 2

⎤
⎦,

25.

⎡
⎣ 3 1 −1

1 3 −1
−1 −1 5

⎤
⎦, 26.

⎡
⎣1 2 3

2 4 6
3 6 9

⎤
⎦, 27.

⎡
⎣10 2 0

2 4 6
0 6 10

⎤
⎦,

28.

⎡
⎣ 3 −1 1

−1 3 −1
1 −1 3

⎤
⎦, 29.

⎡
⎣1 2 1

2 4 2
1 2 1

⎤
⎦, 30.

⎡
⎣4 2 1

2 7 2
1 2 4

⎤
⎦,

31.

⎡
⎣ 1 5 1

−1 −1 1
0 0 3

⎤
⎦, 32.

⎡
⎣0 1 0

0 0 1
0 −1 0

⎤
⎦, 33.

⎡
⎣ 0 1 0

0 0 1
27 −27 9

⎤
⎦,

34.

⎡
⎢⎢⎣

1 −1 0 0
3 5 0 0
0 0 1 5
0 0 −1 1

⎤
⎥⎥⎦, 35.

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

−4 12 −13 6

⎤
⎥⎥⎦.
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36. Consider the matrix

C =

⎡
⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1

⎤
⎥⎥⎥⎥⎦.

Use mathematical induction to prove that

det (C − λI) = (−1)n(λn + an−1λ
n−1 + · · · + a2λ

2 + a1λ + a0).

Deduce that the characteristic equation for this matrix is

λn + an−1λ
n−1 + · · · + a2λ

2 + a1λ + a0 = 0.

The matrix C is called the companion matrix for this characteristic equation.

37. Show that if λ is an eigenvalue of A, then kλ is an eigenvalue of kA, where k

denotes an arbitrary scalar.

38. Show that if λ �= 0 is an eigenvalue of A, then 1/λ is an eigenvalue of A−1,
providing the inverse exists.

39. Show that if λ is an eigenvalue of A, then it is also an eigenvalue of AT.

6.3 Eigenvectors

To each distinct eigenvalue of a matrix A there will correspond at least one
eigenvector which can be found by solving the appropriate set of homogeneous
equations. If an eigenvalue λi is substituted into (2), the corresponding eigenvector
xi is the solution of

(A − λiI)xi = 0. (6)

Example 1 Find the eigenvectors of

A =
[

1 2
4 3

]
.

Solution The eigenvalues of A have already been found to be λ1 = −1, λ2 = 5
(see Example 1 of Section 6.2). We first calculate the eigenvectors corresponding
to λ1. From (6),

(A − (−1)I)x1 = 0. (7)
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If we designate the unknown vector x1 by[
x1
y1

]
,

Eq. (7) becomes {[
1 2
4 3

]
+
[

1 0
0 1

]}[
x1
y1

]
=
[

0
0

]
or [

2 2
4 4

] [
x1
y1

]
=
[

0
0

]
.

or, equivalently,

2x1 + 2y1 = 0,

4x1 + 4y1 = 0.

A nontrivial solution to this set of equations is x1 = −y1, y1 arbitrary; hence, the
eigenvector is

x1 =
[
x1
y1

]
=
[−y1

y1

]
= y1

[−1
1

]
, y1 arbitrary.

By choosing different values of y1, different eigenvectors for λ1 = −1 can be
obtained. Note, however, that any two such eigenvectors would be scalar mul-
tiples of each other, hence linearly dependent. Thus, there is only one linearly
independent eigenvector corresponding to λ1 = −1. For convenience we choose
y1 = 1, which gives us the eigenvector

x1 =
[−1

1

]
.

Many times, however, the scalar y1 is chosen in such a manner that the resulting
eigenvector becomes a unit vector. If we wished to achieve this result for the above
vector, we would have to choose y1 = 1/

√
2.

Having found an eigenvector corresponding to λ1 = −1, we proceed to find an
eigenvector x2 corresponding to λ2 = 5. Designating the unknown vector x2 by[

x2
y2

]

and substituting it with λ2 into (6), we obtain{[
1 2
4 3

]
− 5

[
1 0
0 1

]}[
x2
y2

]
=
[

0
0

]
,

or [− 4 2
4 −2

] [
x2
y2

]
=
[

0
0

]
,
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or, equivalently,

−4x2 + 2y2 = 0,

4x2 − 2y2 = 0.

A nontrivial solution to this set of equations is x2 = 1
2y2, where y2 is arbitrary;

hence

x2 =
[
x2
y2

]
=
[
y2/2
y2

]
= y2

[
1
2

1

]
.

For convenience, we choose y2 = 2, thus

x2 =
[

1
2

]
.

In order to check whether or not x2 is an eigenvector corresponding to λ2 = 5,
we need only check if Ax2 = λ2x2:

Ax2 =
[

1 2
4 3

] [
1
2

]
=
[

5
10

]
= 5

[
1
2

]
= λ2x2.

Again note that x2 is not unique! Any scalar multiple of x2 is also an eigenvector
corresponding to λ2. However, in this case, there is just one linearly independent
eigenvector corresponding to λ2. �

Example 2 Find the eigenvectors of

A =
⎡
⎣2 0 0

0 2 5
0 −1 −2

⎤
⎦.

Solution By using the method of the previous section, we find the eigenvalues
to be λ1 = 2, λ2 = i, λ3 = −i. We first calculate the eigenvectors corresponding to
λ1 = 2. Designate x1 by ⎡

⎣x1
y1
z1

⎤
⎦.

Then (6) becomes

⎧⎨
⎩
⎡
⎣2 0 0

0 2 5
0 −1 −2

⎤
⎦− 2

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦
⎫⎬
⎭
⎡
⎣x1

y1
z1

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦,
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or ⎡
⎣0 0 0

0 0 5
0 −1 −4

⎤
⎦
⎡
⎣x1

y1
z1

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦,

or, equivalently,

0 = 0,

5z1 = 0,

−y1 − 4z1 = 0.

A nontrivial solution to this set of equations is y1 = z1 = 0, x1 arbitrary; hence

x1 =
⎡
⎣x1

y1
z1

⎤
⎦ =

⎡
⎣x1

0
0

⎤
⎦ = x1

⎡
⎣1

0
0

⎤
⎦.

We now find the eigenvectors corresponding to λ2 = i. If we designate x2 by⎡
⎣x2

y2
z2

⎤
⎦,

Eq. (6) becomes ⎡
⎣2 − i 0 0

0 2 − i 5
0 −1 −2 − i

⎤
⎦
⎡
⎣x2

y2
z2

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦

or

(2 − i)x2 = 0,

(2 − i)y2 + 5z2 = 0,

−y2 + (−2 − i)z2 = 0.

A nontrivial solution to this set of equations is x2 = 0, y2 = (−2 − i)z2, z2 arbitrary;
hence,

x2 =
⎡
⎣x2

y2
z2

⎤
⎦ =

⎡
⎣ 0

(−2 − i)z2
z2

⎤
⎦ = z2

⎡
⎣ 0

−2 − i

1

⎤
⎦.

The eigenvectors corresponding to λ3 = −i are found in a similar manner to be

x3 = z3

⎡
⎣ 0

−2 − i

1

⎤
⎦, z3 arbitrary. �
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It should be noted that even if a mistake is made in finding the eigenvalues of
a matrix, the error will become apparent when the eigenvectors corresponding to
the incorrect eigenvalue are found. For instance, suppose that λ1 in Example 2 was
calculated erroneously to be 3. If we now try to find x1 we obtain the equations.

−x1 = 0,

−y1 + 5z1 = 0,

−y1 − 5z1 = 0.

The only solution to this set of equations is x1 = y1 = z1 = 0, hence

x1 =
⎡
⎣0

0
0

⎤
⎦.

However, by definition, an eigenvector cannot be the zero vector. Since every
eigenvalue must have a corresponding eigenvector, there is a mistake. A quick
check shows that all the calculations above are valid, hence the error must lie in
the value of the eigenvalue.

Problems 6.3

In Problems 1 through 23, find an eigenvector corresponding to each eigenvalue
of the given matrix.

1.
[

1 2
−1 4

]
, 2.

[
2 1
2 3

]
, 3.

[
2 3
4 6

]
,

4.
[

3 6
9 6

]
, 5.

[
1 2
4 −1

]
, 6.

[
3 5
5 −3

]
,

7.
[

3 5
−5 −3

]
, 8.

[
2 5

−1 −2

]
, 9.

[
2 2

−1 −2

]
,

10.
[

4 10
9 −5

]
, 11.

[
0 t

2t −t

]
, 12.

[
4θ 2θ

−θ θ

]
,

13.

⎡
⎣1 0 3

1 2 1
3 0 1

⎤
⎦, 14.

⎡
⎣ 2 0 −1

2 2 2
−1 0 2

⎤
⎦, 15.

⎡
⎣ 3 0 −1

2 3 2
−1 0 3

⎤
⎦,

16.

⎡
⎣3 0 0

2 6 4
2 3 5

⎤
⎦, 17.

⎡
⎣5 −7 7

4 −3 4
4 −1 2

⎤
⎦, 18.

⎡
⎣ 3 1 −1

1 3 −1
−1 −1 5

⎤
⎦,
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19.

⎡
⎣ 1 5 1

−1 −1 1
0 0 3

⎤
⎦, 20.

⎡
⎣0 1 0

0 0 1
0 −1 0

⎤
⎦, 21.

⎡
⎣3 2 1

0 4 0
0 1 5

⎤
⎦,

22.

⎡
⎢⎢⎣

1 −1 0 0
3 5 0 0
0 0 1 4
0 0 1 1

⎤
⎥⎥⎦, 23.

⎡
⎢⎢⎣

2 4 2 −2
0 1 0 0
0 3 3 −1
0 2 0 4

⎤
⎥⎥⎦.

24. Find unit eigenvectors (i.e., eigenvectors whose magnitudes equal unity) for
the matrix in Problem 1.

25. Find unit eigenvectors for the matrix in Problem 2.

26. Find unit eigenvectors for the matrix in Problem 3.

27. Find unit eigenvectors for the matrix in Problem 13.

28. Find unit eigenvectors for the matrix in Problem 14.

29. Find unit eigenvectors for the matrix in Problem 16.

30. A nonzero vector x is a left eigenvector for a matrix A if there exists a scalar λ

such that xA = λx. Find a set of left eigenvectors for the matrix in Problem 1.

31. Find a set of left eigenvectors for the matrix in Problem 2.

32. Find a set of left eigenvectors for the matrix in Problem 3.

33. Find a set of left eigenvectors for the matrix in Problem 4.

34. Find a set of left eigenvectors for the matrix in Problem 13.

35. Find a set of left eigenvectors for the matrix in Problem 14.

36. Find a set of left eigenvectors for the matrix in Problem 16.

37. Find a set of left eigenvectors for the matrix in Problem 18.

38. Prove that if x is a right eigenvector of a symmetric matrix A, then xT is a left
eigenvector of A.

39. A left eigenvector for a given matrix is known to be [1 1]. Find another left
eigenvector for the same matrix satisfying the property that the sum of the
vector components must equal unity.

40. A left eigenvector for a given matrix is known to be [2 3]. Find another left
eigenvector for the same matrix satisfying the property that the sum of the
vector components must equal unity.

41. A left eigenvector for a given matrix is known to be [1 2 5]. Find another
left eigenvector for the same matrix satisfying the property that the sum of
the vector components must equal unity.

42. A Markov chain (see Problem 16 of Section 1.1 and Problem 16 of Section 1.6)
is regular if some power of the transition matrix contains only positive ele-
ments. If the matrix itself contains only positive elements then the power
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is one, and the matrix is automatically regular. Transition matrices that are
regular always have an eigenvalue of unity. They also have limiting distribu-
tion vectors denoted by x(∞), where the ith component of x(∞) represents the
probability of an object being in state i after a large number of time periods
have elapsed. The limiting distribution x(∞) is a left eigenvector of the tran-
sition matrix corresponding to the eigenvalue of unity, and having the sum of
its components equal to one.

(a) Find the limiting distribution vector for the Markov chain described in
Problem 16 of Section 1.1.

(b) Ultimately, what is the probability that a family will reside in the city?

43. Find the limiting distribution vector for the Markov chain described in Prob-
lem 17 of Section 1.1. What is the probability of having a Republican mayor
over the long run?

44. Find the limiting distribution vector for the Markov chain described in Prob-
lem 18 of Section 1.1. What is the probability of having a good harvest over
the long run?

45. Find the limiting distribution vector for the Markov chain described in Prob-
lem 19 of Section 1.1. Ultimately, what is the probability that a person will use
Brand Y?

6.4 Properties of Eigenvalues and Eigenvectors

Definition 1 The trace of a matrix A, designated by tr(A), is the sum of the
elements on the main diagonal.

Example 1 Find the tr(A) if

A =
⎡
⎣3 −1 2

0 4 1
1 −1 −5

⎤
⎦.

Solution tr(A) = 3 + 4 + (−5) = 2. �

Property 1 The sum of the eigenvalues of a matrix equals the trace of the matrix.

Proof. See Problem 20.

Property 1 provides us with a quick and useful procedure for checking
eigenvalues.

Example 2 Verify Property 1 for

A =
[

11 3
−5 −5

]
.
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Solution The eigenvalues of A are λ1 = 10, λ2 = −4.

tr(A) = 11 + (−5) = 6 = λ1 + λ2. �

Property 2 A matrix is singular if and only if it has a zero eigenvalue.

Proof. A matrix A has a zero eigenvalue if and only if det(A − 0I) = 0, or (since
0I = 0) if and only if det(A) = 0. But det(A) = 0 if and only if A is singular, thus,
the result is immediate.

Property 3 The eigenvalues of an upper (or lower) triangular matrix are the
elements on the main diagonal.

Proof. See Problem 15.

Example 3 Find the eigenvalues of

A =
⎡
⎣1 0 0

2 1 0
3 4 −1

⎤
⎦.

Solution Since A is lower triangular, the eigenvalues must be λ1 = λ2 = 1,
λ3 = −1. �

Property 4 If λ is an eigenvalue of A and if A is invertible, then 1/λ is an
eigenvalue of A−1.

Proof. Since A is invertible, Property 2 implies that λ �= 0; hence 1/λ exists.
Since λ is an eigenvalue of A there must exist an eigenvector x such that Ax = λx.
Premultiplying both sides of this equation by A−1, we obtain

x = λA−1x

or, equivalently, A−1x = (1/λ)x. Thus, 1/λ is an eigenvalue of A−1.

OBSERVATION 1 If x is an eigenvector of A corresponding to the eigenvalue λ

and if A is invertible, then x is an eigenvector of A−1 corresponding to the
eigenvalue 1/λ.

Property 5 If λ is an eigenvalue of A, then αλ is an eigenvalue of αA where α is
any arbitrary scalar.

Proof. If λ is an eigenvalue of A, then there must exist an eigenvector x such that
Ax = λx. Multiplying both sides of this equation by α, we obtain (αA)x = (αλ)x
which implies Property 5.
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OBSERVATION 2 If x is an eigenvector of A corresponding to the eigenvalue λ,
then x is an eigenvector of αA corresponding to eigenvalue αλ.

Property 6 If λ is an eigenvalue of A, then λk is an eigenvalue of Ak, for any
positive integer k.

Proof. We prove the result for the special cases k = 2 and k equals 3. Other cases
are handled by mathematical induction. (See Problem 16.) If λ is an eigenvalue
of A, there must exist an eigenvector x such that Ax = λx. Then,

A2x = A(Ax) = A(λx) = λ(Ax) = λ(λx) = λ2x,

which implies that λ2 is an eigenvalue of A2. As a result, we also have that

A3x = A(A2x) = A(λ2x) = λ2(Ax) = λ2(λx) = λ3x,

which implies that λ3 is an eigenvalue of A3.

OBSERVATION 3 If x is an eigenvector of A corresponding to the eigenvalue λ,
then x is an eigenvector Ak corresponding to the eigenvalue λk, for any positive
integer k.

Property 7 If λ is an eigenvalue of A, then for any scalar c, λ − c is an eigenvalue
of A − cI.

Proof. If λ is an eigenvalue of A, then there exists an eigenvector x such that
Ax = λx. Consequently,

Ax − cx = λx − cx,

or

(A − cI)x = (λ − c)x.

Thus, λ − c is an eigenvalue of A − cI.

OBSERVATION 4 If x is an eigenvector of A corresponding to the eigenvalue λ,
then x is an eigenvector A − cI corresponding to the eigenvalue λ − c.

Property 8 If λ is an eigenvalue of A, then λ is an eigenvalue of AT.

Proof. Since λ is an eigenvalue of A, det(A − λI) = 0. Hence

0 = ∣∣A − λI
∣∣ = ∣∣(AT)T − λIT

∣∣ {
Property 1 (Section 1.4)

= ∣∣(AT − λI
)T∣∣ {

Property 3 (Section 1.4)

= ∣∣AT − λI
∣∣ {

Property 7 (Section 5.3)

Thus, det
(
AT − λI

) = 0, which implies that λ is an eigenvalue of AT.
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Property 9 The product of the eigenvalues (counting multiplicity) of a matrix
equals the determinant of the matrix.

Proof. See Problem 21.

Example 4 Verify Property 9 for the matrix A given in Example 2:

Solution For this A, λ1 = 10, λ2 = −4, det(A) = −55 + 15 = −40 = λ1λ2. �

Problems 6.4

1. One eigenvalue of the matrix

A =
[

8 2
3 3

]

is known to be 2. Determine the second eigenvalue by inspection.

2. One eigenvalue of the matrix

A =
[

8 3
3 2

]

is known to be 0.7574, rounded to four decimal places. Determine the second
eigenvalue by inspection.

3. Two eigenvalues of a 3 × 3 matrix are known to be 5 and 8. What can be said
about the remaining eigenvalue if the trace of the matrix is −4?

4. Redo Problem 3 if the determinant of the matrix is −4 instead of its trace.

5. The determination of a 4 × 4 matrix A is 144 and two of its eigenvalues are
known to be −3 and 2. What can be said about the remaining eigenvalues?

6. A 2 × 2 matrix A is known to have the eigenvalues−3 and 4. What are the eigen-
values of (a) 2A, (b) 5A, (c) A − 3I, and (d) A + 4I?

7. A 3 × 3 matrix A is known to have the eigenvalues −2, 2, and 4. What are the
eigenvalues of (a) A2, (b) A3, (c) −3A, and (d) A + 3I?

8. A 2 × 2 matrix A is known to have the eigenvalues −1 and 1. Find a matrix in
terms of A that has for its eigenvalues:

(a) −2 and 2, (b) −5 and 5,
(c) 1 and 1, (d) 2 and 4.

9. A 3 × 3 matrix A is known to have the eigenvalues 2, 3, and 4. Find a matrix
in terms of A that has for its eigenvalues:

(a) 4, 6, and 8, (b) 4, 9, and 16,
(c) 8, 27, and 64, (d) 0, 1, and 2.
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10. Verify Property 1 for

A =
[

12 16
−3 −7

]
.

11. Verify Property 2 for

A =
⎡
⎣ 1 3 6

−1 2 −1
2 1 7

⎤
⎦.

12. Show that if λ is an eigenvalue of A, then it is also an eigenvalue for S−1AS
for any nonsingular matrix S.

13. Show by example that, in general, an eigenvalue of A + B is not the sum of
an eigenvalue of A with an eigenvalue of B.

14. Show by example that, in general, an eigenvalue of AB is not the product of
an eigenvalue of A with an eigenvalue of B.

15. Prove Property 3.

16. Use mathematical induction to complete the proof of Property 6.

17. The determinant of A − λI is known as the characteristic polynomial of A.
For an n × n matrix A, it has the form

det (A − λI) = (−1)n(λn + an−1λ
n−1 + an−2λ

n−2 + · · · + a2λ
2 + a1λ + a0),

where an−1, an−2, . . . , a2, a1, a0 are constants that depend on the elements of
A. Show that (−1)na0 = det (A).

18. (Problem 17 continued) Convince yourself by considering arbitrary 3 × 3 and
4 × 4 matrices that an−1 = tr(A).

19. Assume that A is an n × n matrix with eigenvalues λ1, λ2, . . . , λn, where
some or all of the eigenvalues may be equal. Since each eigenvalue
λi(i = 1, 2, . . . , n) is a root of the characteristic polynomial, (λ − λi) must
be a factor of that polynomial. Deduce that

det (A − λI) = (−1)n(λ − λ1)(λ − λ2) · · · (λ − λn).

20. Use the results of Problems 18 and 19 to prove Property 1.

21. Use the results of Problems 17 and 19 to prove Property 9.

22. Show, by example, that an eigenvector of A need not be an eigenvector of AT.

23. Prove that an eigenvector of A is a left eigenvector of AT.

6.5 Linearly Independent Eigenvectors

Since every eigenvalue has an infinite number of eigenvectors associated with
it (recall that if x is an eigenvector, then any scalar multiple of x is also an
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eigenvector), it becomes academic to ask how many different eigenvectors can
a matrix have? The answer is clearly an infinite number. A more revealing ques-
tion is how many linearly independent eigenvectors can a matrix have? Theorem
4 of Section 2.6 provides us with a partial answer.

Theorem 1 In an n-dimensional vector space, every set of n + 1 vectors is
linearly dependent.

Therefore, since all of the eigenvectors of an n × n matrix must be n-
dimensional (why?), it follows from Theorem 1 that an n × n matrix can have
at most n linearly independent eigenvectors. The following three examples shed
more light on the subject.

Example 1 Find the eigenvectors of

A =
⎡
⎣2 1 0

0 2 1
0 0 2

⎤
⎦.

Solution The eigenvalues of A are λ1 = λ2 = λ3 = 2, therefore λ = 2 is an
eigenvalue of multiplicity 3. If we designate the unknown eigenvector x by

⎡
⎣x

y

z

⎤
⎦,

then Eq. (6) gives rise to the three equations

y = 0,

z = 0,

0 = 0.

Thus, y = z = 0 and x is arbitrary; hence

x =
⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣x

0
0

⎤
⎦ = x

⎡
⎣1

0
0

⎤
⎦.

Setting x = 1, we see that λ = 2 generates only one linearly independent eigen-
vector,

x =
⎡
⎣1

0
0

⎤
⎦. �
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Example 2 Find the eigenvectors of

A =
⎡
⎣2 1 0

0 2 0
0 0 2

⎤
⎦.

Solution Again, the eigenvalues are λ1 = λ2 = λ3 = 2, therefore λ = 2 is an
eigenvalue of multiplicity 3. Designate the unknown eigenvector x by

⎡
⎣x

y

z

⎤
⎦.

Equation (6) now gives rise to the equations

y = 0,

0 = 0,

0 = 0.

Thus, y = 0 and both x and z are arbitrary; hence

x =
⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣x

0
z

⎤
⎦ =

⎡
⎣x

0
0

⎤
⎦+

⎡
⎣0

0
z

⎤
⎦ = x

⎡
⎣1

0
0

⎤
⎦+ z

⎡
⎣0

0
1

⎤
⎦.

Since x and z can be chosen arbitrarily, we can first choose x = 1 and z = 0 to
obtain

x1 =
⎡
⎣1

0
0

⎤
⎦

and then choose x = 0 and z = 1 to obtain

x2 =
⎡
⎣0

0
1

⎤
⎦.

x1 and x2 can easily be shown to be linearly independent vectors, hence we see
that λ = 2 generates the two linearly independent eigenvectors

⎡
⎣1

0
0

⎤
⎦ and

⎡
⎣0

0
1

⎤
⎦. �
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Example 3 Find the eigenvectors of

A =
⎡
⎣2 0 0

0 2 0
0 0 2

⎤
⎦.

Solution Again the eigenvalues are λ1 = λ2 = λ3 = 2 so again λ = 2 is an
eigenvalue of multiplicity three. Designate the unknown eigenvector x by

⎡
⎣x

y

z

⎤
⎦.

Equation (6) gives rise to the equations

0 = 0,

0 = 0,

0 = 0,

Thus, x, y, and z are all arbitrary; hence

x =
⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣x

0
0

⎤
⎦+

⎡
⎣0

y

0

⎤
⎦+

⎡
⎣0

0
z

⎤
⎦ = x

⎡
⎣1

0
0

⎤
⎦+ y

⎡
⎣0

1
0

⎤
⎦+ z

⎡
⎣0

0
1

⎤
⎦.

Since x, y, and z can be chosen arbitrarily, we can first choose x = 1, y = z = 0,
then choose x = z = 0, y = 1 and finally choose y = x = 0, z = 1 to generate the
three linearly independent eigenvectors

⎡
⎣1

0
0

⎤
⎦,

⎡
⎣0

1
0

⎤
⎦,

⎡
⎣0

0
1

⎤
⎦.

In this case we see that three linearly independent eigenvectors are generated
by λ = 2. (Note that, from Theorem 1, this is the maximal number that could be
generated.) �

The preceding examples are illustrations of

Theorem 2 If λ is an eigenvalue of multiplicity k of an n × n matrix A, then
the number of linearly independent eigenvectors of A associated with λ is given by
ρ = n − r(A − λI). Furthermore, 1 ≤ ρ ≤ k.
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Proof. Let x be an n-dimensional vector. If x is an eigenvector, then it must
satisfy the vector equation Ax = λx or, equivalently, (A − λI)x = 0. This system is
homogeneous, hence consistent, so by Theorem 2 of Section 2.7, we have that the
solution vector x will be in terms of n − r(A − λI) arbitrary unknowns. Since these
unknowns can be picked independently of each other, it follows that the number of
linearly independent eigenvectors of A associated with λ is also ρ = n − r(A − λI).
We defer a proof that 1 ≤ ρ ≤ k until Chapter 9.

In Example 1, A is 3 × 3; hence n = 3, and r(A − 2I) = 2. Thus, there should be
3 − 2 = 1 linearly independent eigenvector associated with λ = 2 which is indeed
the case. In Example 2, once again n = 3 but r(A − 2I) = 1. Thus, there should
be 3 − 1 = 2 linearly independent eigenvectors associated with λ = 2 which also
is the case.

The next theorem gives the relationship between eigenvectors that correspond
to different eigenvalues.

Theorem Eigenvectors corresponding to distinct (that is, different) eigenvalues
are linearly independent.

Proof. For the sake of clarity, we consider the case of three distinct eigenvectors
and leave the more general proof as an exercise (see Problem 17). Therefore,
let λ1, λ2, λ3, be distinct eigenvalues of the matrix A and let x1, x2, x3 be the
associated eigenvectors. That is

Ax1 = λ1x1,

Ax2 = λ2x2,

Ax3 = λ3x3,

(8)

and λ1 �= λ2 �= λ3 �= λ1.
Since we want to show that x1, x2, x3 are linearly independent, we must show

that the only solution to

c1x1 + c2x2 + c3x3 = 0 (9)

is c1 = c2 = c3 = 0. By premultiplying (9) by A, we obtain

c1Ax1 + c2Ax2 + c3Ax3 = A • 0 = 0.

It follows from (8), therefore, that

c1λ1x1 + c2λ2x2 + c3λ3x3 = 0. (10)

By premultiplying (10) by A and again using (8), we obtain

c1λ
2
1x1 + c2λ

2
2x2 + c3λ

2
3x3 = 0. (11)

Equations (9)–(11) can be written in the matrix form⎡
⎢⎣1 1 1

λ1 λ2 λ3

λ2
1 λ2

2 λ2
3

⎤
⎥⎦
⎡
⎢⎣c1x1

c2x2

c3x3

⎤
⎥⎦ =

⎡
⎢⎣0

0

0

⎤
⎥⎦.
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Define

B =
⎡
⎢⎣

1 1 1
λ1 λ2 λ3

λ2
1 λ2

2 λ2
3

⎤
⎥⎦.

It can be shown that det(B) = (λ2 − λ1)(λ3 − λ2)(λ3 − λ1). Thus, since all the
eigenvalues are distinct, det (B) �= 0 and B is invertible. Therefore,

⎡
⎣c1x1

c2x2
c3x3

⎤
⎦ = B−1

⎡
⎣0

0
0

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦

or ⎡
⎢⎣c1x1 = 0

c2x2 = 0
c3x3 = 0

⎤
⎥⎦ (12)

But since x1, x2, x3 are eigenvectors, they are nonzero, therefore, it follows from
(12) that c1 = c2 = c3 = 0. This result together with (9) implies Theorem 3.

Theorems 2 and 3 together completely determine the number of linearly
independent eigenvectors of a matrix.

Example 4 Find a set of linearly independent eigenvectors for

A =
⎡
⎣1 0 0

4 3 2
4 2 3

⎤
⎦.

Solution The eigenvalues of A are λ1 = λ2 = 1, and λ3 = 5. For this matrix,
n = 3 and r(A − 1I) = 1, hencen − r(A − 1I) = 2. Thus, fromTheorem 2, we know
that A has two linearly independent eigenvectors corresponding to λ = 1 and one
linearly independent eigenvector corresponding to λ = 5 (why?). Furthermore,
Theorem 3 guarantees that the two eigenvectors corresponding to λ = 1 will be
linearly independent of the eigenvector corresponding to λ = 5 and vice versa. It
only remains to produce these vectors.

For λ = 1, the unknown vector

x1 =

⎡
⎢⎢⎣

x1

y1

z1

⎤
⎥⎥⎦



200 Chapter 6 Eigenvalues and Eigenvectors

must satisfy the vector equation (A − 1I)x1 = 0, or equivalently, the set of
equations

0 = 0,

4x1 + 2y1 + 2z1 = 0,

4x1 + 2y1 + 2z1 = 0.

A solution to this equation is z1 = −2x1 − y1, x1, and y1 arbitrary. Thus,

x1 =
⎡
⎢⎣x1

y1

z1

⎤
⎥⎦ =

⎡
⎢⎣ x1

y1

−2x1 − y1

⎤
⎥⎦ = x1

⎡
⎢⎣ 1

0

−2

⎤
⎥⎦+ y1

⎡
⎢⎣ 0

1

−1

⎤
⎥⎦.

By first choosing x1 = 1, y1 = 0 and then x1 = 0, y1 = 1, we see that λ = 1
generates the two linearly independent eigenvectors

⎡
⎢⎣ 1

0

−2

⎤
⎥⎦,

⎡
⎢⎣ 0

1

−1

⎤
⎥⎦.

An eigenvector corresponding to λ3 = 5 is found to be

⎡
⎢⎣0

1

1

⎤
⎥⎦.

Therefore, A possesses the three linearly independent eigenvectors,

⎡
⎢⎣ 1

0

−2

⎤
⎥⎦,

⎡
⎢⎣ 0

1

−1

⎤
⎥⎦,

⎡
⎢⎣0

1

1

⎤
⎥⎦. �

Problems 6.5

In Problems 1–16 find a set of linearly independent eigenvectors for the given
matrices.

1.
[

2 −1
1 4

]
, 2.

[
3 1
0 3

]
, 3.

[
3 0
0 3

]
,
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4.

⎡
⎣2 1 1

0 1 0
1 1 2

⎤
⎦, 5.

⎡
⎣2 1 1

0 1 0
1 2 2

⎤
⎦, 6.

⎡
⎣ 2 0 −1

2 1 −2
−1 0 2

⎤
⎦,

7.

⎡
⎣1 1 −1

0 0 0
1 2 3

⎤
⎦, 8.

⎡
⎣1 2 3

2 4 6
3 6 9

⎤
⎦, 9.

⎡
⎣ 3 −1 1

−1 3 −1
1 −1 3

⎤
⎦,

10.

⎡
⎣ 0 1 0

0 0 1
27 −27 9

⎤
⎦, 11.

⎡
⎣0 1 0

0 0 1
1 −3 3

⎤
⎦, 12.

⎡
⎣4 2 1

2 7 2
1 2 4

⎤
⎦,

13.

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

−1 4 −6 4

⎤
⎥⎥⎦, 14.

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 0 0 1
0 1 −3 3

⎤
⎥⎥⎦,

15.

⎡
⎢⎢⎣

1 0 0 0
1 2 1 1
1 1 2 1
1 1 1 2

⎤
⎥⎥⎦, 16.

⎡
⎢⎢⎣

3 1 1 2
0 3 1 1
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦.

17. The Vandermonde determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

...
...

...

xn−1
1 xn−1

2 . . . xn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is known to equal the product

(x2 − x1)(x3 − x2)(x3 − x1)(x4 − x3)(x4 − x2) · · · (xn − x1).

Using this result, prove Theorem 3 for n distinct eigenvalues.

6.6 Power Methods

The analytic methods described in Sections 6.2 and 6.3 are impractical for calculat-
ing the eigenvalues and eigenvectors of matrices of large order. Determining the
characteristic equations for such matrices involves enormous effort, while finding
its roots algebraically is usually impossible. Instead, iterative methods which lend
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themselves to computer implementation are used. Ideally, each iteration yields
a new approximation, which converges to an eigenvalue and the corresponding
eigenvetor.

The dominant eigenvalue of a matrix is the one having largest absolute val-
ues. Thus, if the eigenvalues of a matrix are 2, 5, and −13, then −13 is the
dominant eigenvalue because it is the largest in absolute value. The power
method is an algorithm for locating the dominant eigenvalue and a correspond-
ing eigenvector for a matrix of real numbers when the following two conditions
exist:

Condition 1. The dominant eigenvalue of a matrix is real (not complex) and is
strictly greater in absolute values than all other eigenvalues.

Condition 2. If the matrix has order n × n, then it possesses n linearly
independent eigenvectors.

Denote the eigenvalues of a given square matrix A satisfying Conditions 1
and 2 by λ1, λ2, . . . , λn, and a set of corresponding eigenvectors by v1, v2, . . . , vn,
respectively. Assume the indexing is such that

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|.

Any vector x0 can be expressed as a linear combination of the eigenvectors of A,
so we may write

x0 = c1v1 + c2v2 + · · · + cnvn.

Multiplying this equation by Ak, for some large, positive integer k, we get

Akx0 = Ak(c1v1 + c2v2 + · · · + cnvn)

= c1Akv1 + c2Akv2 + · · · + cnAkvn.

It follows from Property 6 and Observation 3 of Section 6.4 that

Akx0 = c1λ
k
1
v1 + c2λ

k
2
v2 + · · · + cnλ

k
nvn

= λk
1

[
c1v1 + c2

(
λ2

λ1

)k

v2 + · · · + cn

(
λn

λ1

)k

vn

]

≈ λk
1c1v1 for large k.
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This last pseudo-equality follows from noting that each quotient of eigenvalues is
less than unity in absolute value, as a result of indexing the first eigenvalue as the
dominant one, and therefore tends to zero as that quotient is raised to successively
higher powers.

Thus, Akx0 approaches a scalar multiple of v1. But any nonzero scalar multiple
of an eigenvector is itself an eigenvector, so Akx0 approaches an eigenvector of A
corresponding to the dominant eigenvalue, providing c1 is not zero. The scalar c1
will be zero only if x0 is a linear combination of {v2, v3, . . . , vn}.

The power method begins with an initial vector x0, usually the vector having
all ones for its components, and then iteratively calculates the vectors

x1 = Ax0,

x2 = Ax1 = A2x0,

x3 = Ax2 = A3x0,

...

xk = Axk−1 = Akx0.

As k gets larger, xk approaches an eigenvector of A corresponding to its dominant
eigenvalue.

We can even determine the dominant eigenvalue by scaling appropriately. If k

is large enough so that xk is a good approximation to the eigenvector, say to within
acceptable roundoff error, then it follows from Eq. (1) that

Axk = λ1xk.

If xk is scaled so that its largest component is unity, then the component of xk+1 =
Axk = λ1xk having the largest absolute value must be λ1.

We can now formalize the power method. Begin with an initial guess x0 for
the eigenvector, having the property that its largest component in absolute value
is unity. Iteratively, calculate x1, x2, x3, . . . by multiplying each successive iterate
by A, the matrix of interest. Each time xk(k = 1, 2, 3, . . .) is computed, identify
its dominant component and divide each component by it. Redefine this scaled
vector as the new xk. Each xk is an estimate of an eigenvector for A and each
dominant component is an estimate for the associated eigenvalue.

Example 1 Find the dominant eigenvalue, and a corresponding eigenvector for

A =
[

1 2
4 3

]
.

Solution We initialize x0 = [1 1
]T. Then
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First Iteration

x1 = Ax0 =
[

1 2
4 3

] [
1
1

]
=
[

3
7

]
,

λ ≈ 7,

x1 ← 1
7

[
3 7

]T = [0.428571 1
]T

.

Second Iteration

x2 = Ax1 =
[

1 2
4 3

] [
0.428571

1

]
=
[

2.428571
4.714286

]
,

λ ≈ 4.714286,

x2 ← 1
4.714286

[
2.428571 4.714286

]T = [0.515152 1
]T

.

Third Iteration

x3 = Ax2 =
[

1 2
4 3

] [
0.515152

1

]
=
[

2.515152
5.060606

]
,

λ = 5.060606,

x3 ← 1
5.060606

[2.515152 5.060606]T = [0.497006 1]T .

Fourth Iteration

x4 = Ax3 =
[

1 2
4 3

] [
0.497006

1

]
=
[

2.497006
4.988024

]
,

λ ≈ 4.988024,

x4 ← 1
4.988024

[
2.497006 4.988024

]T = [0.500600 1
]T

.

The method is converging to the eigenvalue 5 and its corresponding eigenvector[
0.5 1

]T. �

Example 2 Find the dominant eigenvalue and a corresponding eigenvector for

A =
⎡
⎣ 0 1 0

0 0 1
18 −1 −7

⎤
⎦.
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Solution We initialize x0 = [1 1 1
]T. Then

First Iteration

x1 = Ax0 = [1 1 10
]T

,

λ ≈ 10,

x1 ← 1
10

[
1 1 10

]T = [0.1 0.1 1
]T

.

Second Iteration

x2 = Ax1 =
⎡
⎣ 0 1 0

0 0 1
18 −1 −7

⎤
⎦
⎡
⎣0.1

0.1
1

⎤
⎦ =

⎡
⎣ 0.1

1
−5.3

⎤
⎦,

λ ≈ −5.3,

x2 ← 1
−5.3

[
0.1 1 −5.3

]T
= [−0.018868 −0.188679 1

]T
.

Third Iteration

x3 = Ax2 =
⎡
⎣ 0 1 0

0 0 1
18 −1 −7

⎤
⎦
⎡
⎣−0.018868

−0.188679
1

⎤
⎦ =

⎡
⎣−0.188679

1
−7.150943

⎤
⎦,

λ ≈ −7.150943,

x3 ← 1
−7.150943

[−0.188679 1 −7.150943
]T

= [
0.026385 −0.139842 1

]T
.

Continuing in this manner, we generateTable 6.1, where all entries are rounded
to four decimal places. The algorithm is converging to the eigenvalue −6.405125
and its corresponding eigenvector

[
0.024376 −0.1561240 1

]T
. �

Although effective when it converges, the power method has deficiencies. It
does not converge to the dominant eigenvalue when that eigenvalue is complex,
and it may not converge when there are more than one equally dominant eigen-
values (See Problem 12). Furthermore, the method, in general, cannot be used to
locate all the eigenvalues.

A more powerful numerical method is the inverse power method, which is the
power method applied to the inverse of a matrix. This, of course, adds another
assumption: the inverse must exist, or equivalently, the matrix must not have
any zero eigenvalues. Since a nonsingular matrix and its inverse share identical
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Table 6.1
Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000 1.0000
1 0.1000 0.1000 1.0000 10.0000
2 −0.0189 −0.1887 1.0000 −5.3000
3 0.0264 −0.1398 1.0000 −7.1509
4 0.0219 −0.1566 1.0000 −6.3852
5 0.0243 −0.1551 1.0000 −6.4492
6 0.0242 −0.1561 1.0000 −6.4078
7 0.0244 −0.1560 1.0000 −6.4084
8 0.0244 −0.1561 1.0000 −6.4056

eigenvectors and reciprocal eigen- values (see Property 4 and Observation 1 of
Section 6.4), once we know the eigenvalues and eigenvectors of the inverse of a
matrix, we have the analogous information about the matrix itself.

The power method applied to the inverse of a matrix A will generally converge
to the dominant eigenvalue of A−1. Its reciprocal will be the eigenvalue of A
having the smallest absolute value. The advantages of the inverse power method
are that it converges more rapidly than the power method, and if often can be used
to find all real eigenvalues of A; a disadvantage is that it deals with A−1, which
is laborious to calculate for matrices of large order. Such a calculation, however,
can be avoided using LU decomposition.

The power method generates the sequence of vectors

xk = Axk−1.

The inverse power method will generate the sequence

xk = A−1xk−1,

which may be written as

Axk = xk−1.

We solve for the unknown vector xk using LU-decomposition (see Section 3.5).

Example 3 Use the inverse power method to find an eigenvalue for

A =
[

2 1
2 3

]
.

Solution We initialize x0 = [1 1]T. The LU decomposition for A has A = LU
with

L =
[

1 0
1 1

]
and U =

[
2 1
0 2

]
.

First Iteration. We solve the system LUx1 = x0 by first solving the system
Ly = x0 for y, and then solving the system Ux1 = y for x1. Set y = [y1 y2]T and
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x1 = [a b]T. The first system is

y1 + 0y2 = 1,

y1 + y2 = 1,

which has as its solution y1 = 1 and y2 = 0. The system Ux1 = y becomes

2a + b = 1,

2b = 0,

which admits the solution a = 0.5 and b = 0. Thus,

x1 = A−1x0 = [0.5 0]T ,

λ ≈ 0.5 (an approximation to an eigenvalue for A−1),

x1 ← 1
0.5

[0.5 0]T = [1 0]T .

Second Iteration. We solve the system LUx2 = x1 by first solving the system
Ly = x1 for y, and then solving the system Ux2 = y for x2. Set y = [y1 y2]T and
x2 = [a b]T. The first system is

y1 + 0y2 = 1,

y1 + y2 = 0,

which has as its solution y1 = 1 and y2 = −1. The system Ux2 = y becomes

2a + b = 1,

2b = −1,

which admits the solution a = 0.75 and b = −0.5. Thus,

x2 = A−1x1 = [0.75 −0.5]T,

λ ≈ 0.75,

x2 ← 1
0.75

[
0.75 −0.5

]T = [1 −0.666667
]T

.

Third Iteration. We first solve Ly = x2 to obtain y = [1 −1.666667
]T, and then

Ux3 = y to obtain x3 = [0.916667 −0.833333
]T. Then,

λ ≈ 0.916667

x3 ← 1
0.916667

[
0.916667 −0.833333

]T = [1 −0.909091
]T

.

Continuing, we converge to the eigenvalue 1 for A−1 and its reciprocal 1/1 = 1 for
A. The vector approximations are converging to

[
1 −1

]T, which is an eigenvector
for both A−1 and A. �
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Example 4 Use the inverse power method to find an eigenvalue for

A =
⎡
⎣7 2 0

2 1 6
0 6 7

⎤
⎦.

Solution We initialize x0 = [1 1 1
]T. The LU decomposition for A has

A = LU with

L =
⎡
⎣ 1 0 0

0.285714 1 0
0 14 1

⎤
⎦ and U =

⎡
⎣7 2 0

0 0.428571 6
0 0 −77

⎤
⎦ .

First Iteration

Set y = [y1 y2 y3
]T and x1 = [a b c

]T. The first system is

y1 + 0y2 + 0y3 = 1,

0.285714y1 + y2 + 0y3 = 1,

0y1 + 14y2 + y3 = 1,

which has as its solution y1 = 1, and y2 = 0.714286, and y3 = −9. The system
Ux1 = y becomes

7a + 2b = 1,

0.428571b + 6c = 0.714286,

−77c = −9,

which admits the solution a = 0.134199, b = 0.030303, and c = 0.116883. Thus,

x1 = A−1x0 = [0.134199 0.030303 0.116833
]T

,

λ ≈ 0.134199 (an approximation to an eigenvalue for A−1),

x1 ← 1
0.134199

[
0.134199 0.030303 0.116833

]T
= [1 0.225806 0.870968

]T
.
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Second Iteration

Solving the system Ly = x1 for y, we obtain

y = [1 −0.059908 1.709677
]T

.

Then, solving the system Ux2 = y for x2, we get

x2 = [0.093981 0.171065 −0.022204
]T

.

Therefore,

λ ≈ 0.171065,

x2 ← 1
0.171065

[
0.093981 0.171065 −0.022204

]T
,

= [0.549388 1 −0.129796
]T

.

Third Iteration

Solving the system Ly = x2 for y, we obtain

y = [0.549388 0.843032 −11.932245
]T

.

Then, solving the system Ux3 = y for x3, we get

x3 = [0.136319 −0.202424 0.154964
]T

.

Table 6.2
Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000 1.0000
1 1.0000 0.2258 0.8710 0.1342
2 0.5494 1.0000 −0.1298 0.1711
3 −0.6734 1.0000 −0.7655 −0.2024
4 −0.0404 1.0000 −0.5782 −0.3921
5 −0.2677 1.0000 −0.5988 −0.3197
6 −0.1723 1.0000 −0.6035 −0.3372
7 −0.2116 1.0000 −0.5977 −0.3323
8 −0.1951 1.0000 −0.6012 −0.3336
9 −0.2021 1.0000 −0.5994 −0.3333

10 −0.1991 1.0000 −0.6003 −0.3334
11 −0.2004 1.0000 −0.5999 −0.3333
12 −0.1998 1.0000 −0.6001 −0.3333
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Therefore,

λ ≈ −0.202424,

x3 ← 1
−0.202424

[
0.136319 −0.202424 0.154964

]T
= [−0.673434 1 −0.765542

]T
.

Continuing in this manner, we generateTable 6.2, where all entries are rounded
to four decimal places. The algorithm is converging to the eigenvalue −1/3 for
A−1 and its reciprocal −3 for A. The vector approximations are converging to
[−0.2 1 − 0.6]T, which is an eigenvector for both A−1 and A. �

We can use Property 7 and Observation 4 of Section 6.4 in conjunction with
the inverse power method to develop a procedure for finding all eigenvalues and
a set of corresponding eigenvectors for a matrix, providing that the eigenvalues
are real and distinct, and estimates of their locations are known. The algorithm is
known as the shifted inverse power method.

If c is an estimate for an eigenvalue of A, then A − cI will have an eigenvalue
near zero, and its reciprocal will be the dominant eigenvalue of (A − cI)−1. We
use the inverse power method with an LU decomposition of A − cI to calculate
the dominant eigenvalue λ and its corresponding eigenvector x for (A − cI)−1.
Then 1/λ and x are an eigenvalue and eigenvector for A − cI while 1/λ + c and x
are an eigenvalue and eigenvector for A.

Example 5 Find a second eigenvalue for the matrix given in Example 4.

Table 6.3
Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000 1.0000
1 0.6190 0.7619 1.0000 −0.2917
2 0.4687 0.7018 1.0000 −0.2639
3 0.3995 0.6816 1.0000 −0.2557
4 0.3661 0.6736 1.0000 −0.2526
5 0.3496 0.6700 1.0000 −0.2513
6 0.3415 0.6683 1.0000 −0.2506
7 0.3374 0.6675 1.0000 −0.2503
8 0.3354 0.6671 1.0000 −0.2502
9 0.3343 0.6669 1.0000 −0.2501

10 0.3338 0.6668 1.0000 −0.2500
11 0.3336 0.6667 1.0000 −0.2500
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Solution Since we do not have an estimate for any of the eigenvalues, we
arbitrarily choose c = 15. Then

A − cI =
⎡
⎣−8 2 0

2 −14 6
0 6 −8

⎤
⎦,

which has an LU decomposition with

L =
⎡
⎣ 1 0 0

0.25 1 0
0 −0.444444 1

⎤
⎦ and U =

⎡
⎣−8 2 0

0 −13.5 6
0 0 −5.333333

⎤
⎦.

Applying the inverse power method to A − 15I, we generate Table 6.3, which
is converging to λ = −0.25 and x = [ 1

3
2
3 1

]T
. The corresponding eigenvalue

of A is 1/ − 0.25 + 15 = 11, with the same eigenvector.
Using the results of Examples 4 and 5, we have two eigenvalues, λ1 = −3

and λ2 = 11, of the 3 × 3 matrix defined in Example 4. Since the trace of a
matrix equals the sum of the eigenvalues (Property 1 of Section 6.4), we know
7 + 1 + 7 = −3 + 11 + λ3, so the last eigenvalue is λ3 = 7. �

Problems 6.6

In Problems 1 through 10, use the power method to locate the dominant eigenvalue
and a corresponding eigenvector for the given matrices. Stop after five iterations.

1.
[

2 1
2 3

]
, 2.

[
2 3
4 6

]
, 3.

[
3 6
9 6

]
,

4.
[

0 1
−4 6

]
, 5.

[
8 2
3 3

]
, 6.

[
8 3
3 2

]
,

7.

⎡
⎣3 0 0

2 6 4
2 3 5

⎤
⎦, 8.

⎡
⎣7 2 0

2 1 6
0 6 7

⎤
⎦, 9.

⎡
⎣3 2 3

2 6 6
3 6 11

⎤
⎦,

10.

⎡
⎣ 2 −17 7

−17 −4 1
7 1 −14

⎤
⎦.

11. Use the power method on

A =
⎡
⎣ 2 0 −1

2 2 2
−1 0 2

⎤
⎦,

and explain why it does not converge to the dominant eigenvalue λ = 3.
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12. Use the power method on

A =
[

3 5
5 −3

]
,

and explain why it does not converge.

13. Shifting can also be used with the power method to locate the next most
dominant eigenvalue, if it is real and distinct, once the dominant eigenvalue
has been determined. Construct A − λI, where λ is the dominant eigenvalue
of A, and apply the power method to the shifted matrix. If the algorithm
converges to μ and x, then μ + λ is an eigenvalue of A with the corresponding
eigenvector x. Apply this shifted power method algorithm to the matrix in
Problem 1. Use the results of Problem 1 to determine the appropriate shift.

14. Use the shifted power method as described in Problem 13 to the matrix in
Problem 9. Use the results of Problem 9 to determine the appropriate shift.

15. Use the inverse power method on the matrix defined in Example 1. Stop after
five iterations.

16. Use the inverse power method on the matrix defined in Problem 3. Take
x0 = [1 −0.5

]T and stop after five iterations.

17. Use the inverse power method on the matrix defined in Problem 5. Stop after
five iterations.

18. Use the inverse power method on the matrix defined in Problem 6. Stop after
five iterations.

19. Use the inverse power method on the matrix defined in Problem 9. Stop after
five iterations.

20. Use the inverse power method on the matrix defined in Problem 10. Stop
after five iterations.

21. Use the inverse power method on the matrix defined in Problem 11. Stop
after five iterations.

22. Use the inverse power method on the matrix defined in Problem 4. Explain
the difficulty, and suggest a way to avoid it.

23. Use the inverse power method on the matrix defined in Problem 2. Explain
the difficulty, and suggest a way to avoid it.

24. Can the power method converge to a dominant eigenvalue it that eigenvalue
is not distinct?

25. Apply the shifted inverse power method to the matrix defined in Problem 9,
with a shift constant of 10.

26. Apply the shifted inverse power method to the matrix defined in Problem 10,
with a shift constant of −25.


