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13
Nonlinear Programming

The fundamental role of linear programming in OR is accurately reflected by the fact that
it is the focus of a third of this book. A key assumption of linear programming is that all
its functions (objective function and constraint functions) are linear. Although this as-
sumption essentially holds for numerous practical problems, it frequently does not hold. In
fact, many economists have found that some degree of nonlinearity is the rule and not the
exception in economic planning problems.1 Therefore, it often is necessary to deal directly
with nonlinear programming problems, so we turn our attention to this important area.

In one general form,2 the nonlinear programming problem is to find x � (x1, x2, . . . ,
xn) so as to

Maximize f(x),

subject to

gi(x) � bi, for i � 1, 2, . . . , m,

and

x � 0,

where f(x) and the gi(x) are given functions of the n decision variables.3

No algorithm that will solve every specific problem fitting this format is available.
However, substantial progress has been made for some important special cases of this
problem by making various assumptions about these functions, and research is continu-
ing very actively. This area is a large one, and we do not have the space to survey it com-
pletely. However, we do present a few sample applications and then introduce some of
the basic ideas for solving certain important types of nonlinear programming problems.

Both Appendixes 2 and 3 provide useful background for this chapter, and we rec-
ommend that you review these appendixes as you study the next few sections.

1For example, see W. J. Baumol and R. C. Bushnell, “Error Produced by Linearization in Mathematical Pro-
gramming,” Econometrica, 35: 447–471, 1967.
2The other legitimate forms correspond to those for linear programming listed in Sec. 3.2. Section 4.6 describes
how to convert these other forms to the form given here.
3For simplicity, we assume throughout the chapter that all these functions either are differentiable everywhere
or are piecewise linear functions (discussed in Secs. 13.1 and 13.8).
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The following examples illustrate a few of the many important types of problems to which
nonlinear programming has been applied.

The Product-Mix Problem with Price Elasticity

In product-mix problems, such as the Wyndor Glass Co. problem of Sec. 3.1, the goal is
to determine the optimal mix of production levels for a firm’s products, given limitations
on the resources needed to produce those products, in order to maximize the firm’s total
profit. In some cases, there is a fixed unit profit associated with each product, so the re-
sulting objective function will be linear. However, in many product-mix problems, certain
factors introduce nonlinearities into the objective function.

For example, a large manufacturer may encounter price elasticity, whereby the amount
of a product that can be sold has an inverse relationship to the price charged. Thus, the
price-demand curve for a typical product might look like the one shown in Fig. 13.1,
where p(x) is the price required in order to be able to sell x units. The firm’s profit from
producing and selling x units of the product then would be the sales revenue, xp(x), mi-
nus the production and distribution costs. Therefore, if the unit cost for producing and dis-
tributing the product is fixed at c (see the dashed line in Fig. 13.1), the firm’s profit from
producing and selling x units is given by the nonlinear function

P(x) � xp(x) � cx,

as plotted in Fig. 13.2. If each of the firm’s n products has a similar profit function, say,
Pj(xj) for producing and selling xj units of product j ( j � 1, 2, . . . , n), then the overall
objective function is

f(x) � �
n

j�1
Pj(xj),

a sum of nonlinear functions.
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Another reason that nonlinearities can arise in the objective function is the fact that
the marginal cost of producing another unit of a given product varies with the production
level. For example, the marginal cost may decrease when the production level is increased
because of a learning-curve effect (more efficient production with more experience). On
the other hand, it may increase instead, because special measures such as overtime or more
expensive production facilities may be needed to increase production further.

Nonlinearities also may arise in the gi(x) constraint functions in a similar fashion. For
example, if there is a budget constraint on total production cost, the cost function will be
nonlinear if the marginal cost of production varies as just described. For constraints on the
other kinds of resources, gi(x) will be nonlinear whenever the use of the corresponding re-
source is not strictly proportional to the production levels of the respective products.

The Transportation Problem with Volume Discounts 
on Shipping Costs

As illustrated by the P & T Company example in Sec. 8.1, a typical application of the
transportation problem is to determine an optimal plan for shipping goods from various
sources to various destinations, given supply and demand constraints, in order to mini-
mize total shipping cost. It was assumed in Chap. 8 that the cost per unit shipped from a
given source to a given destination is fixed, regardless of the amount shipped. In actual-
ity, this cost may not be fixed. Volume discounts sometimes are available for large ship-
ments, so that the marginal cost of shipping one more unit might follow a pattern like the
one shown in Fig. 13.3. The resulting cost of shipping x units then is given by a nonlin-
ear function C(x), which is a piecewise linear function with slope equal to the marginal
cost, like the one shown in Fig. 13.4. [The function in Fig. 13.4 consists of a line seg-
ment with slope 6.5 from (0, 0) to (0.6, 3.9), a second line segment with slope 5 from
(0.6, 3.9) to (1.5, 8.4), a third line segment with slope 4 from (1.5, 8.4) to (2.7, 13.2), and
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a fourth line segment with slope 3 from (2.7, 13.2) to (4.5, 18.6).] Consequently, if each
combination of source and destination has a similar shipping cost function, so that the
cost of shipping xij units from source i (i � 1, 2, . . . , m) to destination j ( j � 1, 2, . . . ,
n) is given by a nonlinear function Cij(xij), then the overall objective function to be min-
imized is

f(x) � �
m

i�1
�
n

j�1
Cij(xij).

Even with this nonlinear objective function, the constraints normally are still the special
linear constraints that fit the transportation problem model in Sec. 8.1.

Portfolio Selection with Risky Securities

It now is common practice for professional managers of large stock portfolios to use com-
puter models based partially on nonlinear programming to guide them. Because investors
are concerned about both the expected return (gain) and the risk associated with their in-
vestments, nonlinear programming is used to determine a portfolio that, under certain as-
sumptions, provides an optimal trade-off between these two factors. This approach is based
largely on path-breaking research done by Harry Markowitz and William Sharpe that
helped them win the 1990 Nobel Prize in Economics.

A nonlinear programming model can be formulated for this problem as follows. Sup-
pose that n stocks (securities) are being considered for inclusion in the portfolio, and let
the decision variables xj ( j � 1, 2, . . . , n) be the number of shares of stock j to be in-
cluded. Let �j and �jj be the (estimated) mean and variance, respectively, of the return
on each share of stock j, where �jj measures the risk of this stock. For i � 1, 2, . . . , n
(i � j), let �ij be the covariance of the return on one share each of stock i and stock j.
(Because it would be difficult to estimate all the �ij values, the usual approach is to make
certain assumptions about market behavior that enable us to calculate �ij directly from �ii

and �jj .) Then the expected value R(x) and the variance V(x) of the total return from the
entire portfolio are

R(x) � �
n

j�1
�jxj

and

V(x) � �
n

i�1
�
n

j�1
�ij xixj,

where V(x) measures the risk associated with the portfolio. One way to consider the trade-
off between these two factors is to use V(x) as the objective function to be minimized and
then impose the constraint that R(x) must be no smaller than the minimum acceptable ex-
pected return. The complete nonlinear programming model then would be

Minimize V(x) � �
n

i�1
�
n

j�1
�ij xixj,
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subject to

�
n

j�1
�j xj � L

�
n

j�1
Pjxj � B

and

xj � 0, for j � 1, 2, . . . , n,

where L is the minimum acceptable expected return, Pj is the price for each share of stock
j, and B is the amount of money budgeted for the portfolio.

One drawback of this formulation is that it is relatively difficult to choose an appro-
priate value for L for obtaining the best trade-off between R(x) and V(x). Therefore, rather
than stopping with one choice of L, it is common to use a parametric (nonlinear) pro-
gramming approach to generate the optimal solution as a function of L over a wide range
of values of L. The next step is to examine the values of R(x) and V(x) for these solutions
that are optimal for some value of L and then to choose the solution that seems to give
the best trade-off between these two quantities. This procedure often is referred to as gen-
erating the solutions on the efficient frontier of the two-dimensional graph of (R(x), V(x))
points for feasible x. The reason is that the (R(x), V(x)) point for an optimal x (for some
L) lies on the frontier (boundary) of the feasible points. Furthermore, each optimal x is
efficient in the sense that no other feasible solution is at least equally good with one mea-
sure (R or V) and strictly better with the other measure (smaller V or larger R).

13.2 GRAPHICAL ILLUSTRATION OF NONLINEAR PROGRAMMING PROBLEMS 659

When a nonlinear programming problem has just one or two variables, it can be repre-
sented graphically much like the Wyndor Glass Co. example for linear programming in
Sec. 3.1. Because such a graphical representation gives considerable insight into the prop-
erties of optimal solutions for linear and nonlinear programming, let us look at a few ex-
amples. To highlight the difference between linear and nonlinear programming, we shall
use some nonlinear variations of the Wyndor Glass Co. problem.

Figure 13.5 shows what happens to this problem if the only changes in the model
shown in Sec. 3.1 are that both the second and the third functional constraints are replaced
by the single nonlinear constraint 9x2

1 	 5x2
2 � 216. Compare Fig. 13.5 with Fig. 3.3. The

optimal solution still happens to be (x1, x2) � (2, 6). Furthermore, it still lies on the bound-
ary of the feasible region. However, it is not a corner-point feasible (CPF) solution. The
optimal solution could have been a CPF solution with a different objective function (check
Z � 3x1 	 x2), but the fact that it need not be one means that we no longer have the
tremendous simplification used in linear programming of limiting the search for an opti-
mal solution to just the CPF solutions.

Now suppose that the linear constraints of Sec. 3.1 are kept unchanged, but the ob-
jective function is made nonlinear. For example, if

Z � 126x1 � 9x2
1 	 182x2 � 13x2

2,

13.2 GRAPHICAL ILLUSTRATION OF 
NONLINEAR PROGRAMMING PROBLEMS
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then the graphical representation in Fig. 13.6 indicates that the optimal solution is x1 � 

8
3


,
x2 � 5, which again lies on the boundary of the feasible region. (The value of Z for this
optimal solution is Z � 857, so Fig. 13.6 depicts the fact that the locus of all points with
Z � 857 intersects the feasible region at just this one point, whereas the locus of points
with any larger Z does not intersect the feasible region at all.) On the other hand, if

Z � 54x1 � 9x2
1 	 78x2 � 13x2

2,

then Fig. 13.7 illustrates that the optimal solution turns out to be (x1, x2) � (3, 3), which
lies inside the boundary of the feasible region. (You can check that this solution is opti-
mal by using calculus to derive it as the unconstrained global maximum; because it also
satisfies the constraints, it must be optimal for the constrained problem.) Therefore, a gen-

FIGURE 13.7
The Wyndor Glass Co.
example with the original
feasible region but with
another nonlinear objective
function, Z � 54x1 � 9x2

1 	
78x2 � 13x2

2, replacing the
original objective function.



eral algorithm for solving similar problems needs to consider all solutions in the feasible
region, not just those on the boundary.

Another complication that arises in nonlinear programming is that a local maximum
need not be a global maximum (the overall optimal solution). For example, consider the
function of a single variable plotted in Fig. 13.8. Over the interval 0 � x � 5, this func-
tion has three local maxima—x � 0, x � 2, and x � 4—but only one of these—x � 4—
is a global maximum. (Similarly, there are local minima at x � 1, 3, and 5, but only x � 5
is a global minimum.)

Nonlinear programming algorithms generally are unable to distinguish between a lo-
cal maximum and a global maximum (except by finding another better local maximum).
Therefore, it becomes crucial to know the conditions under which any local maximum is
guaranteed to be a global maximum over the feasible region. You may recall from cal-
culus that when we maximize an ordinary (doubly differentiable) function of a single vari-
able f(x) without any constraints, this guarantee can be given when

� 0 for all x.

Such a function that is always “curving downward” (or not curving at all) is called a con-
cave function.1 Similarly, if � is replaced by �, so that the function is always “curving
upward” (or not curving at all), it is called a convex function.2 (Thus, a linear function
is both concave and convex.) See Fig. 13.9 for examples. Then note that Fig. 13.8 illus-
trates a function that is neither concave nor convex because it alternates between curving
upward and curving downward.

Functions of multiple variables also can be characterized as concave or convex if they
always curve downward or curve upward. These intuitive definitions are restated in pre-
cise terms, along with further elaboration on these concepts, in Appendix 2. Appendix 2
also provides a convenient test for checking whether a function of two variables is con-
cave, convex, or neither.

Here is a convenient way of checking this for a function of more than two variables
when the function consists of a sum of smaller functions of just one or two variables each.

d2f


dx2
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1Concave functions sometimes are referred to as concave downward.
2Convex functions sometimes are referred to as concave upward.



If each smaller function is concave, then the overall function is concave. Similarly, the
overall function is convex if each smaller function is convex.

To illustrate, consider the function

f(x1, x2, x3) � 4x1 � x2
1 � (x2 � x3)2

� [4x1 � x2
1] 	 [�(x2 � x3)2],

which is the sum of the two smaller functions given in square brackets. The first smaller
function 4x1 � x2

1 is a function of the single variable x1, so it can be found to be concave
by noting that its second derivative is negative. The second smaller function �(x2 � x3)2

is a function of just x2 and x3, so the test for functions of two variables given in Appen-
dix 2 is applicable. In fact, Appendix 2 uses this particular function to illustrate the test
and finds that the function is concave. Because both smaller functions are concave, the
overall function f(x1, x2, x3) must be concave.

If a nonlinear programming problem has no constraints, the objective function being
concave guarantees that a local maximum is a global maximum. (Similarly, the objective
function being convex ensures that a local minimum is a global minimum.) If there are
constraints, then one more condition will provide this guarantee, namely, that the feasi-
ble region is a convex set. As discussed in Appendix 2, a convex set is simply a set of
points such that, for each pair of points in the collection, the entire line segment joining
these two points is also in the collection. Thus, the feasible region for the original Wyn-
dor Glass Co. problem (see Fig. 13.6 or 13.7) is a convex set. In fact, the feasible region
for any linear programming problem is a convex set. Similarly, the feasible region in Fig.
13.5 is a convex set.

In general, the feasible region for a nonlinear programming problem is a convex set
whenever all the gi(x) [for the constraints gi(x) � bi] are convex functions. For the ex-
ample of Fig. 13.5, both of its gi(x) are convex functions, since g1(x) � x1 (a linear func-
tion is automatically both concave and convex) and g2(x) � 9x1

2 	 5x2
2 (both 9x1

2 and 5x2
2

are convex functions so their sum is a convex function). These two convex gi(x) lead to
the feasible region of Fig. 13.5 being a convex set.

Now let’s see what happens when just one of these gi(x) is a concave function in-
stead. In particular, suppose that the only change made in the example of Fig. 13.5 is that
its nonlinear constraint is replaced by 8x1 � x2

1 	 14x2 � x2
2 � 49. Therefore, the new
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g2(x) � 8x1 � x2
1 	 14x2 � x2

2, which is a concave function since both 8x1 � x2
1 and 

14x2 � x2
2 are concave functions. The new feasible region shown in Fig. 13.10 is not a

convex set. Why? Because this feasible region contains pairs of points, for example,
(0, 7) and (4, 3), such that part of the line segment joining these two points is not in the
feasible region. Consequently, we cannot guarantee that a local maximum is a global max-
imum. In fact, this example has two local maxima, (0, 7) and (4, 3), but only (0, 7) is a
global maximum.

Therefore, to guarantee that a local maximum is a global maximum for a nonlinear
programming problem with constraints gi(x) � bi (i � 1, 2, . . . , m) and x � 0, the ob-
jective function f(x) must be a concave function and each gi(x) must be a convex func-
tion. Such a problem is called a convex programming problem, which is one of the key
types of nonlinear programming problems discussed in the next section.
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and third functional
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Nonlinear programming problems come in many different shapes and forms. Unlike the
simplex method for linear programming, no single algorithm can solve all these different
types of problems. Instead, algorithms have been developed for various individual classes
(special types) of nonlinear programming problems. The most important classes are in-
troduced briefly in this section. The subsequent sections then describe how some prob-
lems of these types can be solved.

13.3 TYPES OF NONLINEAR PROGRAMMING PROBLEMS



Unconstrained Optimization

Unconstrained optimization problems have no constraints, so the objective is simply to

Maximize f(x)

over all values of x � (x1, x2, . . . , xn). As reviewed in Appendix 3, the necessary condi-
tion that a particular solution x � x* be optimal when f(x) is a differentiable function is

� 0 at x � x*, for j � 1, 2, . . . , n.

When f(x) is a concave function, this condition also is sufficient, so then solving for x* re-
duces to solving the system of n equations obtained by setting the n partial derivatives equal
to zero. Unfortunately, for nonlinear functions f(x), these equations often are going to be non-
linear as well, in which case you are unlikely to be able to solve analytically for their si-
multaneous solution. What then? Sections 13.4 and 13.5 describe algorithmic search proce-
dures for finding x*, first for n � 1 and then for n � 1. These procedures also play an important
role in solving many of the problem types described next, where there are constraints. The
reason is that many algorithms for constrained problems are designed so that they can focus
on an unconstrained version of the problem during a portion of each iteration.

When a variable xj does have a nonnegativity constraint xj � 0, the preceding neces-
sary and (perhaps) sufficient condition changes slightly to

�
for each such j. This condition is illustrated in Fig. 13.11, where the optimal solution for
a problem with a single variable is at x � 0 even though the derivative there is negative
rather than zero. Because this example has a concave function to be maximized subject
to a nonnegativity constraint, having the derivative less than or equal to 0 at x � 0 is both
a necessary and sufficient condition for x � 0 to be optimal.

A problem that has some nonnegativity constraints but no functional constraints is
one special case (m � 0) of the next class of problems.

Linearly Constrained Optimization

Linearly constrained optimization problems are characterized by constraints that com-
pletely fit linear programming, so that all the gi(x) constraint functions are linear, but the
objective function f(x) is nonlinear. The problem is considerably simplified by having just
one nonlinear function to take into account, along with a linear programming feasible re-
gion. A number of special algorithms based upon extending the simplex method to con-
sider the nonlinear objective function have been developed.

One important special case, which we consider next, is quadratic programming.

Quadratic Programming

Quadratic programming problems again have linear constraints, but now the objective
function f(x) must be quadratic. Thus, the only difference between such a problem and a
linear programming problem is that some of the terms in the objective function involve
the square of a variable or the product of two variables.

if xj* � 0
if xj* � 0

at x � x*,
at x � x*,

� 0
� 0

�f


�xj

�f


�xj
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Many algorithms have been developed for this case under the additional assumption
that f(x) is a concave function. Section 13.7 presents an algorithm that involves a direct
extension of the simplex method.

Quadratic programming is very important, partially because such formulations arise
naturally in many applications. For example, the problem of portfolio selection with
risky securities described in Sec. 13.1 fits into this format. However, another major
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reason for its importance is that a common approach to solving general linearly 
constrained optimization problems is to solve a sequence of quadratic programming
approximations.

Convex Programming

Convex programming covers a broad class of problems that actually encompasses as spe-
cial cases all the preceding types when f(x) is a concave function. The assumptions are that

1. f(x) is a concave function.
2. Each gi(x) is a convex function.

As discussed at the end of Sec. 13.2, these assumptions are enough to ensure that a local
maximum is a global maximum. You will see in Sec. 13.6 that the necessary and suffi-
cient conditions for such an optimal solution are a natural generalization of the conditions
just given for unconstrained optimization and its extension to include nonnegativity con-
straints. Section 13.9 then describes algorithmic approaches to solving convex program-
ming problems.

Separable Programming

Separable programming is a special case of convex programming, where the one addi-
tional assumption is that

3. All the f(x) and gi(x) functions are separable functions.

A separable function is a function where each term involves just a single variable, so
that the function is separable into a sum of functions of individual variables. For exam-
ple, if f(x) is a separable function, it can be expressed as

f(x) � �
n

j�1
fj(xj),

where each fj(xj) function includes only the terms involving just xj. In the terminology of
linear programming (see Sec. 3.3), separable programming problems satisfy the assump-
tion of additivity but not the assumption of proportionality (for nonlinear functions).

To illustrate, the objective function considered in Fig. 13.6,

f(x1, x2) � 126x1 � 9x1
2 	 182x2 � 13x2

2

is a separable function because it can be expressed as

f(x1, x2) � f1(x1) 	 f2(x2)

where f1(x1) � 126x1 � 9x1
2 and f2(x2) � 182x2 � 13x2

2 are each a function of a single vari-
able—x1 and x2, respectively. By the same reasoning, you can verify that the objective
function considered in Fig. 13.7 also is a separable function.

It is important to distinguish separable programming problems from other convex pro-
gramming problems, because any such problem can be closely approximated by a linear
programming problem so that the extremely efficient simplex method can be used. This
approach is described in Sec. 13.8. (For simplicity, we focus there on the linearly con-
strained case where the special approach is needed only on the objective function.)
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Nonconvex Programming

Nonconvex programming encompasses all nonlinear programming problems that do not
satisfy the assumptions of convex programming. Now, even if you are successful in find-
ing a local maximum, there is no assurance that it also will be a global maximum. There-
fore, there is no algorithm that will guarantee finding an optimal solution for all such
problems. However, there do exist some algorithms that are relatively well suited for find-
ing local maxima, especially when the forms of the nonlinear functions do not deviate too
strongly from those assumed for convex programming. One such algorithm is presented
in Sec. 13.10.

However, certain specific types of nonconvex programming problems can be solved
without great difficulty by special methods. Two especially important such types are dis-
cussed briefly next.

Geometric Programming

When we apply nonlinear programming to engineering design problems, the objective
function and the constraint functions frequently take the form

g(x) � �
N

i�1
ciPi(x),

where

Pi(x) � x1
ai1x2

ai2  xn
ain, for i � 1, 2, . . . , N.

In such cases, the ci and aij typically represent physical constants, and the xj are design vari-
ables. These functions generally are neither convex nor concave, so the techniques of convex
programming cannot be applied directly to these geometric programming problems. How-
ever, there is one important case where the problem can be transformed to an equivalent con-
vex programming problem. This case is where all the ci coefficients in each function are
strictly positive, so that the functions are generalized positive polynomials—(now called
posynomials)—and the objective function is to be minimized. The equivalent convex pro-
gramming problem with decision variables y1, y2, . . . , yn is then obtained by setting

xj � eyj, for j � 1, 2, . . . , n

throughout the original model, so now a convex programming algorithm can be applied.
Alternative solution procedures also have been developed for solving these posynomial
programming problems, as well as for geometric programming problems of other types.1

Fractional Programming

Suppose that the objective function is in the form of a fraction, i.e., the ratio of two
functions,

Maximize f(x) � .
f1(x)


f2(x)
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1R. J. Duffin, E. L. Peterson, and C. M. Zehner, Geometric Programming, Wiley, New York, 1967; C. Beightler
and D. T. Phillips, Applied Geometric Programming, Wiley, New York, 1976.



Such fractional programming problems arise, e.g., when one is maximizing the ratio of
output to person-hours expended (productivity), or profit to capital expended (rate of re-
turn), or expected value to standard deviation of some measure of performance for an in-
vestment portfolio (return/risk). Some special solution procedures1 have been developed
for certain forms of f1(x) and f2(x).

When it can be done, the most straightforward approach to solving a fractional pro-
gramming problem is to transform it to an equivalent problem of a standard type for which
effective solution procedures already are available. To illustrate, suppose that f(x) is of
the linear fractional programming form

f(x) � ,

where c and d are row vectors, x is a column vector, and c0 and d0 are scalars. Also as-
sume that the constraint functions gi(x) are linear, so that the constraints in matrix form
are Ax � b and x � 0.

Under mild additional assumptions, we can transform the problem to an equivalent
linear programming problem by letting

y � and t � ,

so that x � y/t. This result yields

Maximize Z � cy 	 c0t,

subject to

Ay � bt � 0,
dy 	 d0t � 1,

and

y � 0, t � 0,

which can be solved by the simplex method. More generally, the same kind of transfor-
mation can be used to convert a fractional programming problem with concave f1(x), con-
vex f2(x), and convex gi(x) to an equivalent convex programming problem.

The Complementarity Problem

When we deal with quadratic programming in Sec. 13.7, you will see one example of how
solving certain nonlinear programming problems can be reduced to solving the comple-
mentarity problem. Given variables w1, w2, . . . , wp and z1, z2, . . . , zp, the complemen-
tarity problem is to find a feasible solution for the set of constraints

w � F(z), w � 0, z � 0

1


dx 	 d0

x


dx 	 d0

cx 	 c0


dx 	 d0
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1The pioneering work on fractional programming was done by A. Charnes and W. W. Cooper, “‘Programming
with Linear Fractional Functionals,” Naval Research Logistics Quarterly, 9: 181–186, 1962. Also see S. Schaible,
“A Survey of Fractional Programming,” in S. Schaible and W. T. Ziemba (eds.), Generalized Concavity in Op-
timization and Economics, Academic Press, New York, 1981, pp. 417–440.



that also satisfies the complementarity constraint

wTz � 0.

Here, w and z are column vectors, F is a given vector-valued function, and the superscript
T denotes the transpose (see Appendix 4). The problem has no objective function, so tech-
nically it is not a full-fledged nonlinear programming problem. It is called the comple-
mentarity problem because of the complementary relationships that either

wi � 0 or zi � 0 (or both) for each i � 1, 2, . . . , p.

An important special case is the linear complementarity problem, where

F(z) � q 	 Mz,

where q is a given column vector and M is a given p � p matrix. Efficient algorithms
have been developed for solving this problem under suitable assumptions1 about the prop-
erties of the matrix M. One type involves pivoting from one basic feasible (BF) solution
to the next, much like the simplex method for linear programming.

In addition to having applications in nonlinear programming, complementarity prob-
lems have applications in game theory, economic equilibrium problems, and engineering
equilibrium problems.

670 13 NONLINEAR PROGRAMMING

1See R. W. Cottle and G. B. Dantzig, “Complementary Pivot Theory of Mathematical Programming,” Linear
Algebra and Its Applications, 1: 103–125, 1966; and R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Com-
plementarity Problem, Academic Press, Boston, 1992.
2See the beginning of Appendix 3 for a review of the corresponding case when f(x) is not concave.

We now begin discussing how to solve some of the types of problems just described by
considering the simplest case—unconstrained optimization with just a single variable x
(n � 1), where the differentiable function f(x) to be maximized is concave.2 Thus, the nec-
essary and sufficient condition for a particular solution x � x* to be optimal (a global
maximum) is



d

d

x

f

 � 0 at x � x*,

as depicted in Fig. 13.12. If this equation can be solved directly for x*, you are done.
However, if f(x) is not a particularly simple function, so the derivative is not just a linear
or quadratic function, you may not be able to solve the equation analytically. If not, the
one-dimensional search procedure provides a straightforward way of solving the problem
numerically.

The One-Dimensional Search Procedure

Like other search procedures in nonlinear programming, the one-dimensional search pro-
cedure finds a sequence of trial solutions that leads toward an optimal solution. At each
iteration, you begin at the current trial solution to conduct a systematic search that cul-
minates by identifying a new improved trial solution.
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The idea behind the one-dimensional search procedure is a very intuitive one, namely,
that whether the slope (derivative) is positive or negative at a trial solution definitely indicates
whether improvement lies immediately to the right or left, respectively. Thus, if the deriva-
tive evaluated at a particular value of x is positive, then x* must be larger than this x (see Fig.
13.12), so this x becomes a lower bound on the trial solutions that need to be considered
thereafter. Conversely, if the derivative is negative, then x* must be smaller than this x, so x
would become an upper bound. Therefore, after both types of bounds have been identified,
each new trial solution selected between the current bounds provides a new tighter bound of
one type, thereby narrowing the search further. As long as a reasonable rule is used to select
each trial solution in this way, the resulting sequence of trial solutions must converge to x*.
In practice, this means continuing the sequence until the distance between the bounds is suf-
ficiently small that the next trial solution must be within a prespecified error tolerance of x*.

This entire process is summarized next, given the notation

x� � current trial solution,

x



� current lower bound on x*,

x� � current upper bound on x*,

� � error tolerance for x*.

Although there are several reasonable rules for selecting each new trial solution, the one
used in the following procedure is the midpoint rule (traditionally called the Bolzano
search plan), which says simply to select the midpoint between the two current bounds.

Summary of the One-Dimensional Search Procedure.

Initialization: Select �. Find an initial x



and x� by inspection (or by respectively finding
any value of x at which the derivative is positive and then negative). Select
an initial trial solution

x� � 

x



	
2

x�
.
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x
x*

f (x)

df (x)
dx � 0

FIGURE 13.12
The one-variable unconstrained 
programming problem when
the function is concave.



Iteration:

1. Evaluate 

df

d

(

x

x)

 at x � x�.

2. If 

df

d

(

x

x)

 � 0, reset x



� x�.

3. If 

df

d

(

x

x)

 � 0, reset x� � x�.

4. Select a new x� � 

x



	
2

x�
.

Stopping rule: If x� � x



� 2�, so that the new x� must be within � of x*, stop. Otherwise,
perform another iteration.

We shall now illustrate this procedure by applying it to the following example.

Example. Suppose that the function to be maximized is

f(x) � 12x � 3x4 � 2x6,

as plotted in Fig. 13.13. Its first two derivatives are



df

d
(
x
x)

 � 12(1 � x3 � x5),



d

d

2f
x
(
2
x)


 � �12(3x2 	 5x4).
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f (x)

x
�0.2 0.2

f(x) � 12 � 3x4 � 2x6

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

�2

2

4

6

8

10

FIGURE 13.13
Example for the one-
dimensional search
procedure.
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TABLE 13.1 Application of the one-dimensional search procedure to the example

Iteration 

df
d
(
x
x)

 x



x� New x� f(x�)

0 0. 2. 1. 7.0000
1 �12. 0. 1. 0.5 5.7812
2 	10.12 0.5 1. 0.75 7.6948
3 	4.09 0.75 1. 0.875 7.8439
4 �2.19 0.75 0.875 0.8125 7.8672
5 	1.31 0.8125 0.875 0.84375 7.8829
6 �0.34 0.8125 0.84375 0.828125 7.8815
7 	0.51 0.828125 0.84375 0.8359375 7.8839

Stop

Now consider the problem of maximizing a concave function f(x) of multiple variables 
x � (x1, x2, . . . , xn ) when there are no constraints on the feasible values. Suppose again
that the necessary and sufficient condition for optimality, given by the system of equa-
tions obtained by setting the respective partial derivatives equal to zero (see Sec. 13.3),
cannot be solved analytically, so that a numerical search procedure must be used. How
can the preceding one-dimensional search procedure be extended to this multidimensional
problem?

In Sec. 13.4, the value of the ordinary derivative was used to select one of just two
possible directions (increase x or decrease x) in which to move from the current trial so-
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Because the second derivative is nonpositive everywhere, f(x) is a concave function, so
the one-dimensional search procedure can be applied safely to find its global maximum
(assuming a global maximum exists).

A quick inspection of this function (without even constructing its graph as shown in
Fig. 13.13) indicates that f(x) is positive for small positive values of x, but it is negative
for x � 0 or x � 2. Therefore, x



� 0 and x� � 2 can be used as the initial bounds, with

their midpoint, x� � 1, as the initial trial solution. Let � � 0.01 be the error tolerance for
x* in the stopping rule, so the final (x� � x



) � 0.02 with the final x� at the midpoint.

Applying the one-dimensional search procedure then yields the sequence of results
shown in Table 13.1. [This table includes both the function and derivative values for your
information, where the derivative is evaluated at the trial solution generated at the pre-
ceding iteration. However, note that the algorithm actually doesn’t need to calculate f(x�)
at all and that it only needs to calculate the derivative far enough to determine its sign.]
The conclusion is that

x* � 0.836,
0.828125 � x* � 0.84375.

Your OR Courseware includes an interactive routine for executing the one-dimen-
sional search procedure.



lution to the next one. The goal was to reach a point eventually where this derivative is
(essentially) 0. Now, there are innumerable possible directions in which to move; they
correspond to the possible proportional rates at which the respective variables can be
changed. The goal is to reach a point eventually where all the partial derivatives are (es-
sentially) 0. Therefore, extending the one-dimensional search procedure requires using the
values of the partial derivatives to select the specific direction in which to move. This se-
lection involves using the gradient of the objective function, as described next.

Because the objective function f(x) is assumed to be differentiable, it possesses a gra-
dient, denoted by �f(x), at each point x. In particular, the gradient at a specific point 
x � x� is the vector whose elements are the respective partial derivatives evaluated at 
x � x�, so that

�f(x�) � �

�

�

x
f

1

, 


�

�

x
f

2

,, 


�

�

x
f

n

� at x � x�.

The significance of the gradient is that the (infinitesimal) change in x that maximizes the
rate at which f(x) increases is the change that is proportional to �f(x). To express this
idea geometrically, the “direction” of the gradient �f(x�) is interpreted as the direction of
the directed line segment (arrow) from the origin (0, 0, . . . , 0) to the point (�f/�x1, �f/�x2,
. . . , �f/�xn), where �f/�xj is evaluated at xj � x�j. Therefore, it may be said that the rate
at which f(x) increases is maximized if (infinitesimal) changes in x are in the direction
of the gradient �f(x). Because the objective is to find the feasible solution maximizing
f(x), it would seem expedient to attempt to move in the direction of the gradient as much
as possible.

The Gradient Search Procedure

Because the current problem has no constraints, this interpretation of the gradient sug-
gests that an efficient search procedure should keep moving in the direction of the gradi-
ent until it (essentially) reaches an optimal solution x*, where �f(x*) � 0. However, nor-
mally it would not be practical to change x continuously in the direction of �f(x), because
this series of changes would require continuously reevaluating the �f/�xj and changing
the direction of the path. Therefore, a better approach is to keep moving in a fixed direc-
tion from the current trial solution, not stopping until f(x) stops increasing. This stopping
point would be the next trial solution, so the gradient then would be recalculated to de-
termine the new direction in which to move. With this approach, each iteration involves
changing the current trial solution x� as follows:

Reset x� � x� 	 t* �f(x�),

where t* is the positive value of t that maximizes f(x� 	 t �f(x�)); that is,

f(x� 	 t* �f(x�)) � max f(x� 	 t �f(x�)).
t�0

[Note that f(x� 	 t �f(x�)) is simply f(x) where

xj � x�j 	 t �

�

�

x
f

j

�x�x�

, for j � 1, 2, . . . , n,
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and that these expressions for the xj involve only constants and t, so f(x) becomes a func-
tion of just the single variable t.] The iterations of this gradient search procedure continue
until �f(x) � 0 within a small tolerance �, that is, until

�
�
�

x

f

j


� � � for j � 1, 2, . . . , n.1

An analogy may help to clarify this procedure. Suppose that you need to climb to the
top of a hill. You are nearsighted, so you cannot see the top of the hill in order to walk
directly in that direction. However, when you stand still, you can see the ground around
your feet well enough to determine the direction in which the hill is sloping upward most
sharply. You are able to walk in a straight line. While walking, you also are able to tell
when you stop climbing (zero slope in your direction). Assuming that the hill is concave,
you now can use the gradient search procedure for climbing to the top efficiently. This
problem is a two-variable problem, where (x1, x2) represents the coordinates (ignoring
height) of your current location. The function f(x1, x2) gives the height of the hill at 
(x1, x2). You start each iteration at your current location (current trial solution) by deter-
mining the direction [in the (x1, x2) coordinate system] in which the hill is sloping up-
ward most sharply (the direction of the gradient) at this point. You then begin walking in
this fixed direction and continue as long as you still are climbing. You eventually stop at
a new trial location (solution) when the hill becomes level in your direction, at which
point you prepare to do another iteration in another direction. You continue these itera-
tions, following a zigzag path up the hill, until you reach a trial location where the slope
is essentially zero in all directions. Under the assumption that the hill [ f(x1, x2)] is con-
cave, you must then be essentially at the top of the hill.

The most difficult part of the gradient search procedure usually is to find t*, the value
of t that maximizes f in the direction of the gradient, at each iteration. Because x and �f(x)
have fixed values for the maximization, and because f(x) is concave, this problem should
be viewed as maximizing a concave function of a single variable t. Therefore, it can be
solved by the one-dimensional search procedure of Sec. 13.4 (where the initial lower bound
on t must be nonnegative because of the t � 0 constraint). Alternatively, if f is a simple
function, it may be possible to obtain an analytical solution by setting the derivative with
respect to t equal to zero and solving.

Summary of the Gradient Search Procedure.
Initialization: Select � and any initial trial solution x�. Go first to the stopping rule.
Iteration:

1. Express f(x� 	 t �f(x�)) as a function of t by setting

xj � x�j 	 t �

�

�

x
f

j

�x�x�

, for j � 1, 2, . . . , n,

and then substituting these expressions into f(x).
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1This stopping rule generally will provide a solution x that is close to an optimal solution x*, with a value of
f(x) that is very close to f(x*). However, this cannot be guaranteed, since it is possible that the function main-
tains a very small positive slope (� �) over a great distance from x to x*.



2. Use the one-dimensional search procedure (or calculus) to find t � t* that maximizes
f(x� 	 t �f(x�)) over t � 0.

3. Reset x� � x� 	 t* �f(x�). Then go to the stopping rule.

Stopping rule: Evaluate �f(x�) at x � x�. Check if

�
�
�

x
f

j

� � � for all j � 1, 2, . . . , n.

If so, stop with the current x� as the desired approximation of an optimal
solution x*. Otherwise, perform another iteration.

Now let us illustrate this procedure.

Example. Consider the following two-variable problem:

Maximize f(x) � 2x1x2 	 2x2 � x2
1 � 2x2

2.

Thus,



�

�

x
f

1

 � 2x2 � 2x1,



�

�

x
f

2

 � 2x1 	 2 � 4x2.

We also can verify (see Appendix 2) that f(x) is concave. To begin the gradient search
procedure, suppose that x � (0, 0) is selected as the initial trial solution. Because the re-
spective partial derivatives are 0 and 2 at this point, the gradient is

�f(0, 0) � (0, 2).

Therefore, to begin the first iteration, set

x1 � 0 	 t(0) � 0,
x2 � 0 	 t(2) � 2t,

and then substitute these expressions into f(x) to obtain

f(x� 	 t �f(x�)) � f(0, 2t)
� 2(0)(2t) 	 2(2t) � 02 � 2(2t)2

� 4t � 8t2.

Because

f(0, 2t*) � max f(0, 2t) � max {4t � 8t2}
t�0 t�0

and



d
d
t

 (4t � 8t2) � 4 � 16t � 0,

it follows that

t* � 

1
4


,
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so

Reset x� � (0, 0) 	 

1
4


(0, 2) � �0, 

1
2


�.

For this new trial solution, the gradient is

�f �0, 

1
2


� � (1, 0).

Thus, for the second iteration, set

x � �0, 

1
2


� 	 t(1, 0) � �t, 

1
2


�,

so

f(x� 	 t �f(x�)) � f �0 	 t, 

1
2


 	 0t� � f�t, 

1
2


�
� (2t)�


1
2


� 	 2�

1
2


� � t2 � 2�

1
2


�
2

� t � t2 	 

1
2


.

Because

f �t*, 

1
2


� � max f �t, 

1
2


� � max �t � t2 	 

1
2


	t�0 t�0

and



d
d
t

 �t � t2 	 


1
2


� � 1 � 2t � 0,

then

t* � 

1
2


,

so

Reset x� � �0, 

1
2


� 	 

1
2


(1, 0) � �

1
2


, 

1
2


�.

A nice way of organizing this work is to write out a table such as Table 13.2 which sum-
marizes the preceding two iterations. At each iteration, the second column shows the current
trial solution, and the rightmost column shows the eventual new trial solution, which then is
carried down into the second column for the next iteration. The fourth column gives the ex-
pressions for the xj in terms of t that need to be substituted into f(x) to give the fifth column.

By continuing in this fashion, the subsequent trial solutions would be (

1
2


, 

3
4


), (

3
4


, 

3
4


),
(


3
4


, 

7
8


), (

7
8


, 

7
8


), . . . , as shown in Fig. 13.14. Because these points are converging to x* �
(1, 1), this solution is the optimal solution, as verified by the fact that

�f(1, 1) � (0, 0).
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However, because this converging sequence of trial solutions never reaches its limit, the
procedure actually will stop somewhere (depending on �) slightly below (1, 1) as its fi-
nal approximation of x*.

As Fig. 13.14 suggests, the gradient search procedure zigzags to the optimal solution
rather than moving in a straight line. Some modifications of the procedure have been de-
veloped that accelerate movement toward the optimal solution by taking this zigzag be-
havior into account.

If f(x) were not a concave function, the gradient search procedure still would con-
verge to a local maximum. The only change in the description of the procedure for this
case is that t* now would correspond to the first local maximum of f(x� 	 t �f(x�)) as t
is increased from 0.

If the objective were to minimize f (x) instead, one change in the procedure would be
to move in the opposite direction of the gradient at each iteration. In other words, the rule
for obtaining the next point would be

Reset x� � x� � t* �f(x�).

The only other change is that t* now would be the nonnegative value of t that minimizes
f(x� � t �f(x�)); that is,

f(x� � t* �f(x�)) � min f(x� � t �f(x�)).
t�0

678 13 NONLINEAR PROGRAMMING

1
2(   0, )

x1

x2

(0, 0)

1
2

1
2( ),

3
4

1
2( ), 3

4
3
4( ),

7
8

3
4( ), 7

8
7
8( ),

x* � (1, 1)..
FIGURE 13.14
Illustration of the gradient
search procedure when 
f(x1, x2) � 2x1x2 	 2x2 �
x1

2 � 2x2
2.

TABLE 13.2 Application of the gradient search procedure to the example

Iteration x� �f(x�) x� 	 t �f(x�) f(x� 	 t �f(x�)) t* x� 	 t* �f(x�)

1 (0, 0) (0, 2) (0, 2t) 4t � 8t2 

1
4


 �0, 

1
2


�
2 �0, 


1
2


� (1, 0) �t, 

1
2


� t � t2 	 

1
2


 

1
2


 �

1
2


, 

1
2


�



Another example of an application of the gradient search procedure is included in
your OR Tutor. The OR Courseware includes both an interactive routine and an automatic
routine for applying this algorithm.
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We now focus on the question of how to recognize an optimal solution for a nonlinear
programming problem (with differentiable functions). What are the necessary and (per-
haps) sufficient conditions that such a solution must satisfy?

In the preceding sections we already noted these conditions for unconstrained opti-
mization, as summarized in the first two rows of Table 13.3. Early in Sec. 13.3 we also
gave these conditions for the slight extension of unconstrained optimization where the
only constraints are nonnegativity constraints. These conditions are shown in the third row
of Table 13.3. As indicated in the last row of the table, the conditions for the general case
are called the Karush-Kuhn-Tucker conditions (or KKT conditions), because they were
derived independently by Karush1 and by Kuhn and Tucker.2 Their basic result is em-
bodied in the following theorem.

Theorem. Assume that f(x), g1(x), g2(x), . . . , gm(x) are differentiable functions satis-
fying certain regularity conditions.3 Then

x* � (x1*, x2*, . . . , x*n)

13.6 THE KARUSH-KUHN-TUCKER (KKT) CONDITIONS FOR
CONSTRAINED OPTIMIZATION

TABLE 13.3 Necessary and sufficient conditions for optimality

Problem Necessary Conditions for Optimality Also Sufficient if:

One-variable unconstrained 

d
d
x
f

 � 0 f(x) concave

Multivariable unconstrained 

�
�
x
f
j


 � 0 ( j � 1, 2, . . . , n) f(x) concave

Constrained, nonnegativity 

�
�
x
f
j


 � 0 ( j � 1, 2, . . . , n) f(x) concave
constraints only

(or � 0 if xj � 0)

General constrained problem Karush-Kuhn-Tucker conditions f(x) concave and gi (x) convex
(i � 1, 2, . . . , m)

1W. Karush, “Minima of Functions of Several Variables with Inequalities as Side Conditions,” M.S. thesis, De-
partment of Mathematics, University of Chicago, 1939.
2H. W. Kuhn and A. W. Tucker, “Nonlinear Programming,” in Jerzy Neyman (ed.), Proceedings of the Second
Berkeley Symposium, University of California Press, Berkeley, 1951, pp. 481–492.
3Ibid., p. 483.



can be an optimal solution for the nonlinear programming problem only if there exist m
numbers u1, u2, . . . , um such that all the following KKT conditions are satisfied:

1. 

�

�

x
f

j

 � �

m

i�1
ui 


�

�

g
xj

i

 � 0

at x � x*, for j � 1, 2, . . . , n.

2. xj* �

�

�

x
f

j

 � �

m

i�1
ui 


�

�

g
xj

i

� � 0

3. gi(x*) � bi � 0
for i � 1, 2, . . . , m.

4. ui[gi(x*) � bi] � 0	
5. xj* � 0, for j � 1, 2, . . . , n.
6. ui � 0, for i � 1, 2, . . . , m.

Note that both conditions 2 and 4 require that the product of two quantities be zero.
Therefore, each of these conditions really is saying that at least one of the two quantities
must be zero. Consequently, condition 4 can be combined with condition 3 to express
them in another equivalent form as

(3, 4) gi(x*) � bi � 0
(or � 0 if ui � 0), for i � 1, 2, . . . , m.

Similarly, condition 2 can be combined with condition 1 as

(1, 2) 

�

�

x
f

j

 � �

m

i�1
ui 


�

�

g
xj

i

 � 0

(or � 0 if xj* � 0), for j � 1, 2, . . . , n.

When m � 0 (no functional constraints), this summation drops out and the combined con-
dition (1, 2) reduces to the condition given in the third row of Table 13.3. Thus, for 
m � 0, each term in the summation modifies the m � 0 condition to incorporate the ef-
fect of the corresponding functional constraint.

In conditions 1, 2, 4, and 6, the ui correspond to the dual variables of linear pro-
gramming (we expand on this correspondence at the end of the section), and they have a
comparable economic interpretation. However, the ui actually arose in the mathematical
derivation as Lagrange multipliers (discussed in Appendix 3). Conditions 3 and 5 do noth-
ing more than ensure the feasibility of the solution. The other conditions eliminate most
of the feasible solutions as possible candidates for an optimal solution.

However, note that satisfying these conditions does not guarantee that the solution is
optimal. As summarized in the rightmost column of Table 13.3, certain additional con-
vexity assumptions are needed to obtain this guarantee. These assumptions are spelled out
in the following extension of the theorem.

Corollary. Assume that f(x) is a concave function and that g1(x), g2(x), . . . , gm(x) are
convex functions (i.e., this problem is a convex programming problem), where all these
functions satisfy the regularity conditions. Then x* � (x1*, x2*, . . . , xn*) is an optimal so-
lution if and only if all the conditions of the theorem are satisfied.
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Example. To illustrate the formulation and application of the KKT conditions, we con-
sider the following two-variable nonlinear programming problem:

Maximize f(x) � ln(x1 	 1) 	 x2,

subject to

2x1 	 x2 � 3

and

x1 � 0, x2 � 0,

where ln denotes the natural logarithm. Thus, m � 1 (one functional constraint) and 
g1(x) � 2x1 	 x2, so g1(x) is convex. Furthermore, it can be easily verified (see Appen-
dix 2) that f(x) is concave. Hence, the corollary applies, so any solution that satisfies the
KKT conditions will definitely be an optimal solution. Applying the formulas given in the
theorem yields the following KKT conditions for this example:

1( j � 1). 

x1 	

1
1


 � 2u1 � 0.

2( j � 1). x1�
x1

1
	 1

 � 2u1� � 0.

1( j � 2). 1 � u1 � 0.
2( j � 2). x2(1 � u1) � 0.
3. 2x1 	 x2 � 3 � 0.
4. u1(2x1 	 x2 � 3) � 0.
5. x1 � 0, x2 � 0.
6. u1 � 0.

The steps in solving the KKT conditions for this particular example are outlined below.

1. u1 � 1, from condition 1( j � 2).
x1 � 0, from condition 5.

2. Therefore, 

x1 	

1
1


 � 2u1 � 0.

3. Therefore, x1 � 0, from condition 2( j � 1).
4. u1 � 0 implies that 2x1 	 x2 � 3 � 0, from condition 4.
5. Steps 3 and 4 imply that x2 � 3.
6. x2 � 0 implies that u1 � 1, from condition 2( j � 2).
7. No conditions are violated by x1 � 0, x2 � 3, u1 � 1.

Therefore, there exists a number u1 � 1 such that x1 � 0, x2 � 3, and u1 � 1 satisfy all
the conditions. Consequently, x* � (0, 3) is an optimal solution for this problem.

The particular progression of steps needed to solve the KKT conditions will differ
from one problem to the next. When the logic is not apparent, it is sometimes helpful to
consider separately the different cases where each xj and ui are specified to be either equal
to or greater than 0 and then trying each case until one leads to a solution. In the exam-
ple, there are eight such cases corresponding to the eight combinations of x1 � 0 versus
x1 � 0, x2 � 0 versus x2 � 0, and u1 � 0 versus u1 � 0. Each case leads to a simpler state-
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ment and analysis of the conditions. To illustrate, consider first the case shown next, where
x1 � 0, x2 � 0, and u1 � 0.

KKT Conditions for the Case x1 � 0, x2 � 0, u1 � 0

1( j � 1). 

0 	

1
1


 � 0. Contradiction.

1( j � 2). 1 � 0 � 0. Contradiction.
3. 0 	 0 � 3.
(All the other conditions are redundant.)

As listed below, the other three cases where u1 � 0 also give immediate contradic-
tions in a similar way, so no solution is available.

Case x1 � 0, x2 � 0, u1 � 0 contradicts conditions 1( j � 1), 1( j � 2), and 2( j � 2).
Case x1 � 0, x2 � 0, u1 � 0 contradicts conditions 1( j � 1), 2( j � 1), and 1( j � 2).
Case x1 � 0, x2 � 0, u1 � 0 contradicts conditions 1( j � 1), 2( j � 1), 1( j � 2), and 

2( j � 2).

The case x1 � 0, x2 � 0, u1 � 0 enables one to delete these nonzero multipliers from con-
ditions 2( j � 1), 2( j � 2), and 4, which then enables deletion of conditions 1( j � 1),
1( j � 2), and 3 as redundant, as summarized next.

KKT Conditions for the Case x1 � 0, x2 � 0, u1 � 0

1( j � 1). 

x1 	

1
1


 � 2u1 � 0.

2( j � 2). 1 � u1 � 0.
4. 2x1 	 x2 � 3 � 0.
(All the other conditions are redundant.)

Therefore, u1 � 1, so x1 � �

1
2


, which contradicts x1 � 0.
Now suppose that the case x1 � 0, x2 � 0, u1 � 0 is tried next.

KKT Conditions for the Case x1 � 0, x2 � 0, u1 � 0

1( j � 1). 

0 	

1
1


 � 2u1 � 0.

2( j � 2). 1 � u1 � 0.
4. 0 	 x2 � 3 � 0.
(All the other conditions are redundant.)

Therefore, x1 � 0, x2 � 3, u1 � 1. Having found a solution, we know that no additional
cases need be considered.

For problems more complicated than this example, it may be difficult, if not essen-
tially impossible, to derive an optimal solution directly from the KKT conditions. Never-
theless, these conditions still provide valuable clues as to the identity of an optimal solu-
tion, and they also permit us to check whether a proposed solution may be optimal.

There also are many valuable indirect applications of the KKT conditions. One of these
applications arises in the duality theory that has been developed for nonlinear programming
to parallel the duality theory for linear programming presented in Chap. 6. In particular, for
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any given constrained maximization problem (call it the primal problem), the KKT condi-
tions can be used to define a closely associated dual problem that is a constrained mini-
mization problem. The variables in the dual problem1 consist of both the Lagrange multi-
pliers ui (i � 1, 2, . . . , m) and the primal variables xj ( j � 1, 2, . . . , n). In the special case
where the primal problem is a linear programming problem, the xj variables drop out of the
dual problem and it becomes the familiar dual problem of linear programming (where the
ui variables here correspond to the yi variables in Chap. 6). When the primal problem is a
convex programming problem, it is possible to establish relationships between the primal
problem and the dual problem that are similar to those for linear programming. For exam-
ple, the strong duality property of Sec. 6.1, which states that the optimal objective function
values of the two problems are equal, also holds here. Furthermore, the values of the ui vari-
ables in an optimal solution for the dual problem can again be interpreted as shadow prices
(see Secs. 4.7 and 6.2); i.e., they give the rate at which the optimal objective function value
for the primal problem could be increased by (slightly) increasing the right-hand side of the
corresponding constraint. Because duality theory for nonlinear programming is a relatively
advanced topic, the interested reader is referred elsewhere for further information.2

You will see another indirect application of the KKT conditions in the next section.
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1For details on this formulation, see O. T. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969,
chap 8. For a unified survey of various approaches to duality in nonlinear programming, see A. M. Geoffrion, “Du-
ality in Nonlinear Programming: A Simplified Applications-Oriented Development,” SIAM Review, 13: 1–37, 1971.
2Ibid.

As indicated in Sec. 13.3, the quadratic programming problem differs from the linear pro-
gramming problem only in that the objective function also includes xj

2 and xixj (i � j)
terms. Thus, if we use matrix notation like that introduced at the beginning of Sec. 5.2,
the problem is to find x so as to

Maximize f(x) � cx � 

1
2


xTQx,

subject to

Ax � b and x � 0,

where c is a row vector, x and b are column vectors, Q and A are matrices, and the su-
perscript T denotes the transpose (see Appendix 4). The qij (elements of Q) are given con-
stants such that qij � qji (which is the reason for the factor of 


1
2


 in the objective function).
By performing the indicated vector and matrix multiplications, the objective function then
is expressed in terms of these qij, the cj (elements of c), and the variables as follows:

f(x) � cx � 

1
2


xTQx � �
n

j�1
cjxj � 


1
2


 �
n

i�1
�
n

j�1
qijxixj.

For each term where i � j in this double summation, xixj � xj
2, so �


1
2


qjj is the coefficient
of xj

2. When i � j, then �

1
2


(qijxixj 	 qjixjxi) � �qijxixj, so �qij is the total coefficient for
the product of xi and xj.
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To illustrate this notation, consider the following example of a quadratic program-
ming problem.

Maximize f(x1, x2) � 15x1 	 30x2 	 4x1x2 � 2x1
2 � 4x2

2,

subject to

x1 	 2x2 � 30

and

x1 � 0, x2 � 0.

In this case,

c � [15 30], x � 
 �, Q � 
 �,

A � [1 2], b � [30].

Note that

xTQx � [x1 x2] 
 �
 �
� [(4x1 � 4x2) (�4x1 	 8x2)]
 �
� 4x1

2 � 4x2x1 � 4x1x2 	 8x2
2

� q11x1
2 	 q21x2x1 	 q12x1x2 	 q22x2

2.

Multiplying through by �

1
2


 gives

�

1
2


xTQx � �2x1
2 	 4x1x2 � 4x2

2,

which is the nonlinear portion of the objective function for this example. Since q11 � 4
and q22 � 8, the example illustrates that �


1
2


qjj is the coefficient of xj
2 in the objective func-

tion. The fact that q12 � q21 � �4 illustrates that both �qij and �qji give the total coef-
ficient of the product of xi and xj.

Several algorithms have been developed for the special case of the quadratic pro-
gramming problem where the objective function is a concave function. (A way to verify
that the objective function is concave is to verify the equivalent condition that

xTQx � 0

for all x, that is, Q is a positive semidefinite matrix.) We shall describe one1 of these al-
gorithms, the modified simplex method, that has been quite popular because it requires us-
ing only the simplex method with a slight modification. The key to this approach is to
construct the KKT conditions from the preceding section and then to reexpress these con-
ditions in a convenient form that closely resembles linear programming. Therefore, be-
fore describing the algorithm, we shall develop this convenient form.

x1

x2

x1

x2

�4

8

4

�4

�4

8

4

�4

x1

x2
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The KKT Conditions for Quadratic Programming

For concreteness, let us first consider the above example. Starting with the form given in
the preceding section, its KKT conditions are the following.

1( j � 1). 15 	 4x2 � 4x1 � u1 � 0.
2( j � 1). x1(15 	 4x2 � 4x1 � u1) � 0.
1( j � 2). 30 	 4x1 � 8x2 � 2u1 � 0.
2( j � 2). x2(30 	 4x1 � 8x2 � 2u1) � 0.
3. x1 	 2x2 � 30 � 0.
4. u1(x1 	 2x2 � 30) � 0.
5. x1 � 0, x2 � 0.
6. u1 � 0.

To begin reexpressing these conditions in a more convenient form, we move the con-
stants in conditions 1( j � 1), 1( j � 2), and 3 to the right-hand side and then introduce
nonnegative slack variables (denoted by y1, y2, and v1, respectively) to convert these in-
equalities to equations.

1( j � 1). �4x1 	 4x2 � u1 	 y1 � �15
1( j � 2). 4x1 � 8x2 � 2u1 	 y2 � �30
3. x1 	 2x2 	 v1 � �30

Note that condition 2( j � 1) can now be reexpressed as simply requiring that either 
x1 � 0 or y1 � 0; that is,

2( j � 1). x1y1 � 0.

In just the same way, conditions 2( j � 2) and 4 can be replaced by

2( j � 2). x2y2 � 0,
4. u1v1 � 0.

For each of these three pairs—(x1, y1), (x2, y2), (u1, v1)—the two variables are called com-
plementary variables, because only one of the two variables can be nonzero. These new
forms of conditions 2( j � 1), 2( j � 2), and 4 can be combined into one constraint,

x1y1 	 x2y2 	 u1v1 � 0,

called the complementarity constraint.
After multiplying through the equations for conditions 1( j � 1) and 1( j � 2) by �1

to obtain nonnegative right-hand sides, we now have the desired convenient form for the
entire set of conditions shown here:

�4x1 � 4x2 	 u1 � y1 � 15
�4x1 	 8x2 	 2u1 � y2 � 30
�4x1 	 2x2 	 v1 � 30
x1 � 0, x2 � 0, u1 � 0, y1 � 0, y2 � 0, v1 � 0
x1y1 	 x2y2 	 u1v1 � 0

This form is particularly convenient because, except for the complementarity constraint,
these conditions are linear programming constraints.
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For any quadratic programming problem, its KKT conditions can be reduced to this
same convenient form containing just linear programming constraints plus one comple-
mentarity constraint. In matrix notation again, this general form is

Qx 	 ATu � y � cT,
Ax 	 v � b,

x � 0, u � 0, y � 0, v � 0,
xTy 	 uTv � 0,

where the elements of the column vector u are the ui of the preceding section and the el-
ements of the column vectors y and v are slack variables.

Because the objective function of the original problem is assumed to be concave
and because the constraint functions are linear and therefore convex, the corollary to
the theorem of Sec. 13.6 applies. Thus, x is optimal if and only if there exist values of
y, u, and v such that all four vectors together satisfy all these conditions. The original
problem is thereby reduced to the equivalent problem of finding a feasible solution to
these constraints.

It is of interest to note that this equivalent problem is one example of the linear com-
plementarity problem introduced in Sec. 13.3 (see Prob. 13.3-6), and that a key constraint
for the linear complementarity problem is its complementarity constraint.

The Modified Simplex Method

The modified simplex method exploits the key fact that, with the exception of the com-
plementarity constraint, the KKT conditions in the convenient form obtained above are
nothing more than linear programming constraints. Furthermore, the complementarity con-
straint simply implies that it is not permissible for both complementary variables of any
pair to be (nondegenerate) basic variables (the only variables � 0) when (nondegenerate)
BF solutions are considered. Therefore, the problem reduces to finding an initial BF so-
lution to any linear programming problem that has these constraints, subject to this addi-
tional restriction on the identity of the basic variables. (This initial BF solution may be
the only feasible solution in this case.)

As we discussed in Sec. 4.6, finding such an initial BF solution is relatively straight-
forward. In the simple case where cT � 0 (unlikely) and b � 0, the initial basic variables
are the elements of y and v (multiply through the first set of equations by �1), so that
the desired solution is x � 0, u � 0, y � �cT, v � b. Otherwise, you need to revise the
problem by introducing an artificial variable into each of the equations where cj � 0 (add
the variable on the left) or bi � 0 (subtract the variable on the left and then multiply
through by �1) in order to use these artificial variables (call them z1, z2, and so on) as
initial basic variables for the revised problem. (Note that this choice of initial basic vari-
ables satisfies the complementarity constraint, because as nonbasic variables x � 0 and 
u � 0 automatically.)

Next, use phase 1 of the two-phase method (see Sec. 4.6) to find a BF solution for
the real problem; i.e., apply the simplex method (with one modification) to the following
linear programming problem

Minimize Z � �
j

zj,
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subject to the linear programming constraints obtained from the KKT conditions, but with
these artificial variables included.

The one modification in the simplex method is the following change in the procedure
for selecting an entering basic variable.

Restricted-Entry Rule: When you are choosing an entering basic variable, ex-
clude from consideration any nonbasic variable whose complementary variable
already is a basic variable; the choice should be made from the other nonbasic
variables according to the usual criterion for the simplex method.

This rule keeps the complementarity constraint satisfied throughout the course of the
algorithm. When an optimal solution

x*, u*, y*, v*, z1 � 0, . . . , zn � 0

is obtained for the phase 1 problem, x* is the desired optimal solution for the original
quadratic programming problem. Phase 2 of the two-phase method is not needed.

Example. We shall now illustrate this approach on the example given at the beginning
of the section. As can be verified from the results in Appendix 2 (see Prob. 13.7-1a), f(x1,
x2) is strictly concave; i.e.,

Q � 
 �
is positive definite, so the algorithm can be applied.

The starting point for solving this example is its KKT conditions in the convenient
form obtained earlier in the section. After the needed artificial variables are introduced,
the linear programming problem to be addressed explicitly by the modified simplex method
then is

Minimize Z � z1 	 z2,

subject to

4x1 � 4x2 	 u1 � y1 	 z1 � 15
�4x1 	 8x2 	 2u1 � y2 	 z2 � 30

x1 	 2x2 	 v1 � 30

and

x1 � 0, x2 � 0, u1 � 0, y1 � 0, y2 � 0, v1 � 0,
z1 � 0, z2 � 0.

The additional complementarity constraint

x1y1 	 x2y2 	 u1v1 � 0,

is not included explicitly, because the algorithm automatically enforces this constraint be-
cause of the restricted-entry rule. In particular, for each of the three pairs of comple-
mentary variables—(x1, y1), (x2, y2), (u1,v1)—whenever one of the two variables already
is a basic variable, the other variable is excluded as a candidate for the entering basic vari-

�4

8

4

�4
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able. Remember that the only nonzero variables are basic variables. Because the initial set
of basic variables for the linear programming problem—z1, z2, v1—gives an initial BF so-
lution that satisfies the complementarity constraint, there is no way that this constraint can
be violated by any subsequent BF solution.

Table 13.4 shows the results of applying the modified simplex method to this prob-
lem. The first simplex tableau exhibits the initial system of equations after converting
from minimizing Z to maximizing �Z and algebraically eliminating the initial basic vari-
ables from Eq. (0), just as was done for the radiation therapy example in Sec. 4.6. The
three iterations proceed just as for the regular simplex method, except for eliminating cer-
tain candidates for the entering basic variable because of the restricted-entry rule. In the
first tableau, u1 is eliminated as a candidate because its complementary variable (v1) al-
ready is a basic variable (but x2 would have been chosen anyway because �4 � �3). In
the second tableau, both u1 and y2 are eliminated as candidates (because v1 and x2 are ba-
sic variables), so x1 automatically is chosen as the only candidate with a negative coeffi-
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TABLE 13.4 Application of the modified simplex method to the quadratic
programming example

Basic Right
Iteration Variable Eq. Z x1 x2 u1 y1 y2 v1 z1 z2 Side

Z (0) �1 0 �4 �3 1 1 0 0 0 �45

1
4




z1 (1) 0 4 �4 1 �1 0 0 1 0 15

1
4



0

z2 (2) 0 �4 8 2 0 �1 0 0 1 30

1
4




v1 (3) 0 1 2 0 0 0 1 0 0 30

1
4




Z (0) �1 �2 0 �2 1 

1
2


 0 0 

1
2


 �30

1
4




z1 (1) 0 2 0 2 �1 �

1
2


 0 1 

1
2


 30

1
4




1
x2 (2) 0 �


1
2


 1 

1
4


 0 �

1
8


 0 0 

1
8


 3

3
4




v1 (3) 0 2 0 �

1
2


 0 

1
4


 1 0 �

1
4


 22

1
2




Z (0) �1 0 0 �

5
2


 1 

3
4


 1 0 

1
4


 �7

1
2




z1 (1) 0 0 0 

5
2


 �1 �

3
4


 �1 1 

3
4


 7

1
2




2
x2 (2) 0 0 1 


1
8


 0 �

1
1
6

 


1
4


 0 

1
1
6

 9


3
8




x1 (3) 0 1 0 �

1
4


 0 

1
8


 

1
2


 0 �

1
8


 11

1
4




Z (0) �1 0 0 0 0 0 0 1 1 0

1
4




u1 (1) 0 0 0 1 �

2
5


 �

1
3
0

 �


2
5


 

2
5


 

1
3
0

 3


1
4




3
x2 (2) 0 0 1 0 


2
1
0

 �


4
1
0

 


1
3
0

 �


2
1
0

 


4
1
0

 9


1
4




x1 (3) 0 1 0 0 �

1
1
0

 


2
1
0

 


2
5


 

1
1
0

 �


2
1
0

 12


1
4






cient in row 0 (whereas the regular simplex method would have permitted choosing ei-
ther x1 or u1 because they are tied for having the largest negative coefficient). In the third
tableau, both y1 and y2 are eliminated (because x1 and x2 are basic variables). However,
u1 is not eliminated because 
v1 no longer is a basic variable, so u1 is chosen as the en-
tering basic variable in the usual way.

The resulting optimal solution for this phase 1 problem is x1 � 12, x2 � 9, u1 � 3,
with the rest of the variables zero. (Problem 13.7-1c asks you to verify that this solution
is optimal by showing that x1 � 12, x2 � 9, u1 � 3 satisfy the KKT conditions for the
original problem when they are written in the form given in Sec. 13.6.) Therefore, the op-
timal solution for the quadratic programming problem (which includes only the x1 and x2

variables) is (x1, x2) � (12, 9).

Some Software Options

Your OR Tutor includes an interactive routine for the modified simplex method to help
you learn this algorithm efficiently. In addition, Excel, LINGO, LINDO, and MPL/CPLEX
all can solve quadratic programming problems.

The procedure for using Excel is almost the same as with linear programming. The
one crucial difference is that the equation entered for the cell that contains the value of
the objective function now needs to be a quadratic equation. To illustrate, consider again
the example introduced at the beginning of the section, which has the objective function

f(x1, x2) � 15x1 	 30x2 	 4x1x2 � 2x1
2 � 4x2

2.

Suppose that the values of x1 and x2 are in cells B4 and C4 of the Excel spreadsheet,
and that the value of the objective function is in cell F4. Then the equation for cell F4
needs to be

F4 � 15*B4 	 30*C4 	 4*B4*C4 � 2*(B4^2) � 4*(C4^2),

where the symbol ^2 indicates an exponent of 2. Before solving the model, you should
click on the Option button and make sure that the Assume Linear Model option is not se-
lected (since this is not a linear programming model).

When using MPL/CPLEX, you should select the Quadratic Models option from the
MPL Language option dialogue box and the Barrier method from the CPLEX Simplex
options dialogue box. Otherwise, the procedure is the same as with linear programming
except that the expression for the objective function now is a quadratic function. Thus,
for the example, the objective function would be expressed as

15x1 	 30x2 	 4x1*x2 � 2(x1^2) � 4(x2^2).

Nothing more needs to be done when calling CPLEX, since it will automatically recog-
nize the model as being a quadratic programming problem.

This objective function would be expressed in this same way for a LINGO model.
LINGO then will automatically call its nonlinear solver to solve the model. When using
LINDO instead, the procedure is somewhat more involved, since it requires converting
the model to an equivalent linear form in terms of the KKT conditions. The LINDO file
for this chapter illustrates how this is done for the example.
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In fact, the Excel, MPL/CPLEX, and LINGO/LINDO files for this chapter in your
OR Courseware all demonstrate their procedures by showing the details for how these
software packages set up and solve this example.

Some of these software packages also can be applied to more complicated kinds of
nonlinear programming problems than quadratic programming. Although CPLEX cannot,
the professional version of MPL does support some other solvers that can. The student
version of MPL on the CD-ROM includes one such solver called CONOPT (a product of
ARKI Consulting) that should be used instead of CPLEX after selecting Nonlinear Mod-
els for the Default Model Type entry in the MPL Language option dialogue box. Both
Excel and LINGO include versatile nonlinear solvers. However, be aware that these solvers
are not guaranteed to find an optimal solution for complicated problems, especially non-
convex programming problems.
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The preceding section showed how one class of nonlinear programming problems can be
solved by an extension of the simplex method. We now consider another class, called sep-
arable programming, that actually can be solved by the simplex method itself, because
any such problem can be approximated as closely as desired by a linear programming
problem with a larger number of variables.

As indicated in Sec. 13.3, in separable programming it is assumed that the objective
function f(x) is concave, that each of the constraint functions gi(x) is convex, and that all
these functions are separable functions (functions where each term involves just a single
variable). However, to simplify the discussion, we focus here on the special case where
the convex and separable gi(x) are, in fact, linear functions, just as for linear program-
ming. Thus, only the objective function requires special treatment.

Under the preceding assumptions, the objective function can be expressed as a sum
of concave functions of individual variables

f(x) � �
n

j�1
fj(xj),

so that each fj(xj) has a shape1 such as the one shown in Fig. 13.15 (either case) over the
feasible range of values of xj. Because f(x) represents the measure of performance (say,
profit) for all the activities together, fj(xj) represents the contribution to profit from activ-
ity j when it is conducted at level xj. The condition of f(x) being separable simply implies
additivity (see Sec. 3.3); i.e., there are no interactions between the activities (no cross-
product terms) that affect total profit beyond their independent contributions. The as-
sumption that each fj(xj) is concave says that the marginal profitability (slope of the profit
curve) either stays the same or decreases (never increases) as xj is increased.

Concave profit curves occur quite frequently. For example, it may be possible to sell
a limited amount of some product at a certain price, then a further amount at a lower price,
and perhaps finally a further amount at a still lower price. Similarly, it may be necessary
to purchase raw materials from increasingly expensive sources. In another common situ-
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13.8 SEPARABLE PROGRAMMING 691

Case 1
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separable programming.



ation, a more expensive production process must be used (e.g., overtime rather than reg-
ular-time work) to increase the production rate beyond a certain point.

These kinds of situations can lead to either type of profit curve shown in Fig. 13.15.
In case 1, the slope decreases only at certain breakpoints, so that fj(xj) is a piecewise lin-
ear function (a sequence of connected line segments). For case 2, the slope may decrease
continuously as xj increases, so that fj(xj) is a general concave function. Any such func-
tion can be approximated as closely as desired by a piecewise linear function, and this
kind of approximation is used as needed for separable programming problems. (Figure
13.15 shows an approximating function that consists of just three line segments, but the
approximation can be made even better just by introducing additional breakpoints.) This
approximation is very convenient because a piecewise linear function of a single variable
can be rewritten as a linear function of several variables, with one special restriction on
the values of these variables, as described next.

Reformulation as a Linear Programming Problem

The key to rewriting a piecewise linear function as a linear function is to use a separate
variable for each line segment. To illustrate, consider the piecewise linear function fj(xj)
shown in Fig. 13.15, case 1 (or the approximating piecewise linear function for case 2),
which has three line segments over the feasible range of values of xj. Introduce the three
new variables xj1, xj2, and xj3 and set

xj � xj1 	 xj2 	 xj3,

where

0 � xj1 � uj1, 0 � xj2 � uj2, 0 � xj3 � uj3.

Then use the slopes sj1, sj2, and sj3 to rewrite fj(xj) as

fj(xj) � sj1xj1 	 sj2xj2 	 sj3xj3,

with the special restriction that

xj2 � 0 whenever xj1 � uj1,
xj3 � 0 whenever xj2 � uj2.

To see why this special restriction is required, suppose that xj � 1, where ujk � 1 (k � 1,
2, 3), so that fj(1) � sj1. Note that

xj1 	 xj2 	 xj3 � 1

permits

xj1 � 1, xj2 � 0, xj3 � 0 ⇒ fj(1) � sj1,
xj1 � 0, xj2 � 1, xj3 � 0 ⇒ fj(1) � sj2,
xj1 � 0, xj2 � 0, xj3 � 1 ⇒ fj(1) � sj3,

and so on, where

sj1 � sj2 � sj3.

However, the special restriction permits only the first possibility, which is the only one
giving the correct value for fj(1).
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Unfortunately, the special restriction does not fit into the required format for linear
programming constraints, so some piecewise linear functions cannot be rewritten in a lin-
ear programming format. However, our fj(xj) are assumed to be concave, so sj1 � sj2 � ,
so that an algorithm for maximizing f(x) automatically gives the highest priority to using
xj1 when (in effect) increasing xj from zero, the next highest priority to using xj2, and so
on, without even including the special restriction explicitly in the model. This observa-
tion leads to the following key property.

Key Property of Separable Programming. When f(x) and the gi(x) satisfy the as-
sumptions of separable programming, and when the resulting piecewise linear functions
are rewritten as linear functions, deleting the special restriction gives a linear program-
ming model whose optimal solution automatically satisfies the special restriction.

We shall elaborate further on the logic behind this key property later in this section
in the context of a specific example. (Also see Prob. 13.8-8a).

To write down the complete linear programming model in the above notation, let nj

be the number of line segments in fj(xj) (or the piecewise linear function approximating
it), so that

xj � �
nj

k�1
xjk

would be substituted throughout the original model and

fj(xj) � �
nj

k�1
sjkxjk

would be substituted1 into the objective function for j � 1, 2, . . . , n. The resulting
model is

Maximize Z � �
n

j�1
��

nj

k�1
sjkxjk�,

subject to

�
n

j�1
aij��

nj

k�1
xjk� � bi , for i � 1, 2, . . . , m

xjk � ujk, for k � 1, 2, . . . , nj; j � 1, 2, . . . , n

and

xjk � 0, for k � 1, 2, . . . , nj; j � 1, 2, . . . , n.

(The �nj
k�1 xjk � 0 constraints are deleted because they are ensured by the xjk � 0 con-

straints.) If some original variable xj has no upper bound, then ujnj
� �, so the constraint

involving this quantity will be deleted.
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An efficient way of solving this model1 is to use the streamlined version of the sim-
plex method for dealing with upper bound constraints (described in Sec. 7.3). After ob-
taining an optimal solution for this model, you then would calculate

xj � �
nj

k�1
xjk,

for j � 1, 2, . . . , n in order to identify an optimal solution for the original separable pro-
gramming program (or its piecewise linear approximation).

Example. The Wyndor Glass Co. (see Sec. 3.1) has received a special order for hand-
crafted goods to be made in Plants 1 and 2 throughout the next 4 months. Filling this or-
der will require borrowing certain employees from the work crews for the regular prod-
ucts, so the remaining workers will need to work overtime to utilize the full production
capacity of the plant’s machinery and equipment for these regular products. In particular,
for the two new regular products discussed in Sec. 3.1, overtime will be required to uti-
lize the last 25 percent of the production capacity available in Plant 1 for product 1 and
for the last 50 percent of the capacity available in Plant 2 for product 2. The additional
cost of using overtime work will reduce the profit for each unit involved from $3 to $2
for product 1 and from $5 to $1 for product 2, giving the profit curves of Fig. 13.16, both
of which fit the form for case 1 of Fig. 13.15.
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1For a specialized algorithm for solving this model very efficiently, see R. Fourer, “A Specialized Algorithm for
Piecewise-Linear Programming III: Computational Analysis and Applications,” Mathematical Programming,
53: 213–235, 1992. Also see A. M. Geoffrion, “Objective Function Approximations in Mathematical Program-
ming,” Mathematical Programming, 13: 23–37, 1977.



Management has decided to go ahead and use overtime work rather than hire addi-
tional workers during this temporary situation. However, it does insist that the work crew
for each product be fully utilized on regular time before any overtime is used. Further-
more, it feels that the current production rates (x1 � 2 for product 1 and x2 � 6 for prod-
uct 2) should be changed temporarily if this would improve overall profitability. There-
fore, it has instructed the OR team to review products 1 and 2 again to determine the most
profitable product mix during the next 4 months.

Formulation. To refresh your memory, the linear programming model for the original
Wyndor Glass Co. problem in Sec. 3.1 is

Maximize Z � 3x1 	 5x2,

subject to

x1 � 4
2x2 � 12

3x1 	 2x2 � 18

and

x1 � 0, x2 � 0.

We now need to modify this model to fit the new situation described above. For this pur-
pose, let the production rate for product 1 be x1 � x1R 	 x1O, where x1R is the production
rate achieved on regular time and x1O is the incremental production rate from using over-
time. Define x2 � x2R 	 x2O in the same way for product 2. Thus, in the notation of the
general linear programming model for separable programming given just before this ex-
ample, n � 2, n1 � 2, and n2 � 2. Plugging the data given in Fig. 13.16 (including max-
imum rates of production on regular time and on overtime) into this general model gives
the specific model for this application. In particular, the new linear programming prob-
lem is to determine the values of x1R, x1O, x2R, and x2O so as to

Maximize Z � 3x1R 	 2x1O 	 5x2R 	 x2O,

subject to

x1R 	 x1O � 4
2(x2R 	 x2O) � 12

3(x1R 	 x1O) 	 2(x2R 	 x2O) � 18
x1R � 3, x1O � 1, x2R � 3, x2O � 3

and

x1R � 0, x1O � 0, x2R � 0, x2O � 0.

(Note that the upper bound constraints in the next-to-last row of the model make the first
two functional constraints redundant, so these two functional constraints can be deleted.)

However, there is one important factor that is not taken into account explicitly in this
formulation. Specifically, there is nothing in the model that requires all available regular
time for a product to be fully utilized before any overtime is used for that product. In
other words, it may be feasible to have x1O � 0 even when x1R � 3 and to have x2O � 0
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even when x2R � 3. Such solutions would not, however, be acceptable to management.
(Prohibiting such solutions is the special restriction discussed earlier in this section.)

Now we come to the key property of separable programming. Even though the model
does not take this factor into account explicitly, the model does take it into account im-
plicitly! Despite the model’s having excess “feasible” solutions that actually are unac-
ceptable, any optimal solution for the model is guaranteed to be a legitimate one that does
not replace any available regular-time work with overtime work. (The reasoning here is
analogous to that for the Big M method discussed in Sec. 4.6, where excess feasible but
nonoptimal solutions also were allowed in the model as a matter of convenience.) There-
fore, the simplex method can be safely applied to this model to find the most profitable
acceptable product mix. The reasons are twofold. First, the two decision variables for each
product always appear together as a sum, x1R 	 x1O or x2R 	 x2O, in each functional con-
straint other than the upper bound constraints on individual variables. Therefore, it always
is possible to convert an unacceptable feasible solution to an acceptable one having the
same total production rates, x1 � x1R 	 x1O and x2 � x2R 	 x2O, merely by replacing over-
time production by regular-time production as much as possible. Second, overtime pro-
duction is less profitable than regular-time production (i.e., the slope of each profit curve
in Fig. 13.16 is a monotonic decreasing function of the rate of production), so converting
an unacceptable feasible solution to an acceptable one in this way must increase the total
rate of profit Z. Consequently, any feasible solution that uses overtime production for a
product when regular-time production is still available cannot be optimal with respect to
the model.

For example, consider the unacceptable feasible solution x1R � 1, x1O � 1, x2R � 1,
x2O � 3, which yields a total rate of profit Z � 13. The acceptable way of achieving the
same total production rates x1 � 2 and x2 � 4 is x1R � 2, x1O � 0, x2R � 3, x2O � 1. This
latter solution is still feasible, but it also increases Z by (3 � 2)(1) 	 (5 � 1)(2) � 9 to a
total rate of profit Z � 22.

Similarly, the optimal solution for this model turns out to be x1R � 3, x1O � 1,
x2R � 3, x2O � 0, which is an acceptable feasible solution.

Extensions

Thus far we have focused on the special case of separable programming where the only
nonlinear function is the objective function f(x). Now consider briefly the general case
where the constraint functions gi(x) need not be linear but are convex and separable, so
that each gi(x) can be expressed as a sum of functions of individual variables

gi(x) � �
n

j�1
gij(xj),

where each gij(xj) is a convex function. Once again, each of these new functions may be
approximated as closely as desired by a piecewise linear function (if it is not already in
that form). The one new restriction is that for each variable xj ( j � 1, 2, . . . , n), all the
piecewise linear approximations of the functions of this variable [ fj(xj), g1j(xj), . . . , gmj(xj)]
must have the same breakpoints so that the same new variables (xj1, xj2, . . . , xjnj

) can be
used for all these piecewise linear functions. This formulation leads to a linear program-
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ming model just like the one given for the special case except that for each i and j, the
xjk variables now have different coefficients in constraint i [where these coefficients are
the corresponding slopes of the piecewise linear function approximating gij(xj)]. Because
the gij(xj) are required to be convex, essentially the same logic as before implies that the
key property of separable programming still must hold. (See Prob. 13.8-8b.)

One drawback of approximating functions by piecewise linear functions as described
in this section is that achieving a close approximation requires a large number of line seg-
ments (variables), whereas such a fine grid for the breakpoints is needed only in the im-
mediate neighborhood of an optimal solution. Therefore, more sophisticated approaches
that use a succession of two-segment piecewise linear functions have been developed1 to
obtain successively closer approximations within this immediate neighborhood. This kind
of approach tends to be both faster and more accurate in closely approximating an opti-
mal solution.
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We already have discussed some special cases of convex programming in Secs. 13.4 and
13.5 (unconstrained problems), 13.7 (quadratic objective function with linear constraints),
and 13.8 (separable functions). You also have seen some theory for the general case (nec-
essary and sufficient conditions for optimality) in Sec. 13.6. In this section, we briefly
discuss some types of approaches used to solve the general convex programming prob-
lem [where the objective function f(x) to be maximized is concave and the gi(x) constraint
functions are convex], and then we present one example of an algorithm for convex pro-
gramming.

There is no single standard algorithm that always is used to solve convex program-
ming problems. Many different algorithms have been developed, each with its own ad-
vantages and disadvantages, and research continues to be active in this area. Roughly
speaking, most of these algorithms fall into one of the following three categories.

The first category is gradient algorithms, where the gradient search procedure of
Sec. 13.5 is modified in some way to keep the search path from penetrating any constraint
boundary. For example, one popular gradient method is the generalized reduced gradient
(GRG) method.

The second category—sequential unconstrained algorithms—includes penalty
function and barrier function methods. These algorithms convert the original constrained
optimization problem to a sequence of unconstrained optimization problems whose opti-
mal solutions converge to the optimal solution for the original problem. Each of these un-
constrained optimization problems can be solved by the gradient search procedure of Sec.
13.5. This conversion is accomplished by incorporating the constraints into a penalty func-
tion (or barrier function) that is subtracted from the objective function in order to impose
large penalties for violating constraints (or even being near constraint boundaries). You
will see one example of this category of algorithms in the next section.

The third category—sequential-approximation algorithms—includes linear ap-
proximation and quadratic approximation methods. These algorithms replace the nonlin-
ear objective function by a succession of linear or quadratic approximations. For linearly
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constrained optimization problems, these approximations allow repeated application of
linear or quadratic programming algorithms. This work is accompanied by other analysis
that yields a sequence of solutions that converges to an optimal solution for the original
problem. Although these algorithms are particularly suitable for linearly constrained op-
timization problems, some also can be extended to problems with nonlinear constraint
functions by the use of appropriate linear approximations.

As one example of a sequential-approximation algorithm, we present here the Frank-
Wolfe algorithm1 for the case of linearly constrained convex programming (so the con-
straints are Ax � b and x � 0 in matrix form). This procedure is particularly straightfor-
ward; it combines linear approximations of the objective function (enabling us to use the
simplex method) with the one-dimensional search procedure of Sec. 13.4.

A Sequential Linear Approximation Algorithm (Frank-Wolfe)

Given a feasible trial solution x�, the linear approximation used for the objective function
f(x) is the first-order Taylor series expansion of f(x) around x � x�, namely,

f(x�) � f(x�) 	 �
n

j�1
(xj � x�j) � f(x�) 	 �f(x�)(x � x�),

where these partial derivatives are evaluated at x � x�. Because f(x�) and �f(x�)x� have
fixed values, they can be dropped to give an equivalent linear objective function

g(x) � �f(x�)x � �
n

j�1
cjxj, where cj � at x � x�.

The simplex method (or the graphical procedure if n � 2) then is applied to the re-
sulting linear programming problem [maximize g(x) subject to the original constraints,
Ax � b and x � 0] to find its optimal solution xLP. Note that the linear objective func-
tion necessarily increases steadily as one moves along the line segment from x� to xLP

(which is on the boundary of the feasible region). However, the linear approximation
may not be a particularly close one for x far from x�, so the nonlinear objective func-
tion may not continue to increase all the way from x� to xLP. Therefore, rather than
just accepting xLP as the next trial solution, we choose the point that maximizes the
nonlinear objective function along this line segment. This point may be found by con-
ducting the one-dimensional search procedure of Sec. 13.4, where the one variable for
purposes of this search is the fraction t of the total distance from x� to xLP. This point
then becomes the new trial solution for initiating the next iteration of the algorithm,
as just described. The sequence of trial solutions generated by repeated iterations con-
verges to an optimal solution for the original problem, so the algorithm stops as soon
as the successive trial solutions are close enough together to have essentially reached
this optimal solution.

�f(x)



�xj

�f(x�)



�xj
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Summary of the Frank-Wolfe Algorithm.

Initialization: Find a feasible initial trial solution x(0), for example, by applying linear
programming procedures to find an initial BF solution. Set k � 1.

Iteration:

1. For j � 1, 2, . . . , n, evaluate

at x � x(k�1)

and set cj equal to this value.
2. Find an optimal solution x(k)

LP for the following linear programming problem.

Maximize g(x) � �
n

j�1
cjxj,

subject to

Ax � b and x � 0.

3. For the variable t (0 � t � 1), set

h(t) � f(x) for x � x(k�1) 	 t(x
LP

(k) � x(k�1)),

so that h(t) gives the value of f(x) on the line segment between x(k�1) (where t � 0)
and x(k)

LP (where t � 1). Use some procedure such as the one-dimensional search pro-
cedure (see Sec. 13.4) to maximize h(t) over 0 � t � 1, and set x(k) equal to the cor-
responding x. Go to the stopping rule.

Stopping rule: If x(k�1) and x(k) are sufficiently close, stop and use x(k) (or some extrap-
olation of x(0), x(1), . . . , x(k�1), x(k)) as your estimate of an optimal solu-
tion. Otherwise, reset k � k 	 1 and perform another iteration.

Now let us illustrate this procedure.

Example. Consider the following linearly constrained convex programming problem:

Maximize f(x) � 5x1 � x2
1 	 8x2 � 2x2

2,

subject to

3x1 	 2x2 � 6

and

x1 � 0, x2 � 0.

Note that

� 5 � 2x1, � 8 � 4x2,
�f



�x2

�f


�x1

�f(x)



�xj
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so that the unconstrained maximum x � (

5
2


, 2) violates the functional constraint. Thus,
more work is needed to find the constrained maximum.

Because x � (0, 0) is clearly feasible (and corresponds to the initial BF solution for
the linear programming constraints), let us choose it as the initial trial solution x(0) for the
Frank-Wolfe algorithm. Plugging x1 � 0 and x2 � 0 into the expressions for the partial
derivatives gives c1 � 5 and c2 � 8, so that g(x) � 5x1 	 8x2 is the initial linear approx-
imation of the objective function. Graphically, solving this linear programming problem
(see Fig. 13.17a) yields x(1)

LP � (0, 3). For step 3 of the first iteration, the points on the
line segment between (0, 0) and (0, 3) shown in Fig. 13.17a are expressed by

(x1, x2) � (0, 0) 	 t[(0, 3) � (0, 0)] for 0 � t � 1
� (0, 3t)

as shown in the sixth column of Table 13.5. This expression then gives

h(t) � f(0, 3t) � 8(3t) � 2(3t)2

� 24t � 18t2,

so that the value t � t* that maximizes h(t) over 0 � t � 1 may be obtained in this case
by setting

� 24 � 36t � 0,

so that t* � 

2
3


. This result yields the next trial solution

x(1) � (0, 0) 	 

2
3


[(0, 3) � (0, 0)]

� (0, 2),

which completes the first iteration.

dh(t)



dt
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To sketch the calculations that lead to the results in the second row of Table 13.5,
note that x(1) � (0, 2) gives

c1 � 5 � 2(0) � 5,
c2 � 8 � 4(2) � 0.

For the objective function g(x) � 5x1, graphically solving the problem over the feasible
region in Fig. 13.17a gives x(2)

LP � (2, 0). Therefore, the expression for the line segment
between x(1) and x(2)

LP (see Fig. 13.17a) is

x � (0, 2) 	 t[(2, 0) � (0, 2)]
� (2t, 2 � 2t),

so that

h(t) � f(2t, 2 � 2t)
� 5(2t) � (2t)2 	 8(2 � 2t) � 2(2 � 2t)2

� 8 	 10t � 12t2.

Setting

� 10 � 24t � 0

yields t* � 

1
5
2

. Hence,

x(2) � (0, 2) 	 

1
5
2

[(2, 0) � (0, 2)]

� �

5
6


, 

7
6


�.

You can see in Fig. 13.17b how the trial solutions keep alternating between two tra-
jectories that appear to intersect at approximately the point x � (1, 


3
2


). This point is, in fact,
the optimal solution, as can be verified by applying the KKT conditions from Sec. 13.6.

This example illustrates a common feature of the Frank-Wolfe algorithm, namely, that
the trial solutions alternate between two (or more) trajectories. When they alternate in this
way, we can extrapolate the trajectories to their approximate point of intersection to esti-
mate an optimal solution. This estimate tends to be better than using the last trial solu-
tion generated. The reason is that the trial solutions tend to converge rather slowly toward
an optimal solution, so the last trial solution may still be quite far from optimal.

dh(t)



dt
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TABLE 13.5 Application of the Frank-Wolfe algorithm to the example

k x(k�1) c1 c2 xLP
(k) x for h(t) h(t) t* x(k)

1 (0, 0) 5 8 (0, 3) (0, 3t) 24t � 18t2 

2
3


 (0, 2)

2 (0, 2) 5 0 (2, 0) (2t, 2 � 2t) 8 	 10t � 12t2 

1
5
2

 �


5
6


, 

7
6


�



In conclusion, we emphasize that the Frank-Wolfe algorithm is just one example of
sequential-approximation algorithms. Many of these algorithms use quadratic instead of
linear approximations at each iteration because quadratic approximations provide a con-
siderably closer fit to the original problem and thus enable the sequence of solutions to
converge considerably more rapidly toward an optimal solution than was the case in Fig.
13.17b. For this reason, even though sequential linear approximation methods such as the
Frank-Wolfe algorithm are relatively straightforward to use, sequential quadratic ap-
proximation methods1 now are generally preferred in actual applications. Popular among
these are the quasi-Newton (or variable metric) methods, which compute a quadratic ap-
proximation to the curvature of a nonlinear function without explicitly calculating second
(partial) derivatives. (For linearly constrained optimization problems, this nonlinear func-
tion is just the objective function; whereas with nonlinear constraints, it is the Lagrangian
function described in Appendix 3.) Some quasi-Newton algorithms do not even explicitly
form and solve an approximating quadratic programming problem at each iteration, but
instead incorporate some of the basic ingredients of gradient algorithms.

For further information about convex programming algorithms, see Selected Refer-
ences 4 and 6.

Some Software Options

Another example illustrating the application of the Frank-Wolfe algorithm is provided in
your OR Tutor. The OR Courseware also includes an interactive routine for this algorithm.

As indicated at the end of Sec. 13.7, both Excel and LINGO can solve convex pro-
gramming problems, but LINDO and CPLEX cannot except for the special case of qua-
dratic programming (which includes the example in this section). Details for this exam-
ple are given in the Excel and LINGO/LINDO files for this chapter in your OR Courseware.
The professional version of MPL supports a large number of solvers, including some that
can handle convex programming. One of these, called CONOPT, is included with the stu-
dent version of MPL that is on the CD-ROM. The convex programming examples that are
formulated in this chapter’s MPL file have been solved with this solver after selecting
Nonlinear Models for the Default Model Type entry in the MPL Language option dia-
logue box.
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1For a survey of these methods, see M. J. D. Powell, “Variable Metric Methods for Constrained Optimization,”
in A. Bachem, M. Grotschel, and B. Korte (eds.), Mathematical Programming: The State of the Art, Springer-
Verlag, Berlin, 1983, pp. 288–311.

The assumptions of convex programming are very convenient ones, because they ensure
that any local maximum also is a global maximum. Unfortunately, the nonlinear pro-
gramming problems that arise in practice frequently only come fairly close to satisfying
these assumptions, but they have some relatively minor disparities. What kind of approach
can be used to deal with such nonconvex programming problems?

A common approach is to apply an algorithmic search procedure that will stop when
it finds a local maximum and then to restart it a number of times from a variety of initial
trial solutions in order to find as many distinct local maxima as possible. The best of these
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local maxima is then chosen for implementation. Normally, the search procedure is one
that has been designed to find a global maximum when all the assumptions of convex pro-
gramming hold, but it also can operate to find a local maximum when they do not.

One such search procedure that has been widely used since its development in the
1960s is the sequential unconstrained minimization technique (or SUMT for short).1 There
actually are two main versions of SUMT, one of which is an exterior-point algorithm that
deals with infeasible solutions while using a penalty function to force convergence to the
feasible region. We shall describe the other version, which is an interior-point algorithm
that deals directly with feasible solutions while using a barrier function to force staying
inside the feasible region. Although SUMT was originally presented as a minimization
technique, we shall convert it to a maximization technique in order to be consistent with
the rest of the chapter. Therefore, we continue to assume that the problem is in the form
given at the beginning of the chapter and that all the functions are differentiable.

Sequential Unconstrained Minimization Technique (SUMT)

As the name implies, SUMT replaces the original problem by a sequence of unconstrained
optimization problems whose solutions converge to a solution (local maximum) of the
original problem. This approach is very attractive because unconstrained optimization
problems are much easier to solve (see the gradient search procedure in Sec. 13.5) than
those with constraints. Each of the unconstrained problems in this sequence involves choos-
ing a (successively smaller) strictly positive value of a scalar r and then solving for x so
as to

Maximize P(x; r) � f(x) � rB(x).

Here B(x) is a barrier function that has the following properties (for x that are feasible
for the original problem):

1. B(x) is small when x is far from the boundary of the feasible region.
2. B(x) is large when x is close to the boundary of the feasible region.
3. B(x) � � as the distance from the (nearest) boundary of the feasible region � 0.

Thus, by starting the search procedure with a feasible initial trial solution and then at-
tempting to increase P(x; r), B(x) provides a barrier that prevents the search from ever
crossing (or even reaching) the boundary of the feasible region for the original problem.

The most common choice of B(x) is

B(x) � �
m

i�1
	 �

n

j�1
.

For feasible values of x, note that the denominator of each term is proportional to the dis-
tance of x from the constraint boundary for the corresponding functional or nonnegativ-
ity constraint. Consequently, each term is a boundary repulsion term that has all the pre-
ceding three properties with respect to this particular constraint boundary. Another
attractive feature of this B(x) is that when all the assumptions of convex programming are
satisfied, P(x; r) is a concave function.

1


xj

1



bi � gi(x)
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Because B(x) keeps the search away from the boundary of the feasible region, you
probably are asking the very legitimate question: What happens if the desired solution lies
there? This concern is the reason that SUMT involves solving a sequence of these uncon-
strained optimization problems for successively smaller values of r approaching zero (where
the final trial solution from each one becomes the initial trial solution for the next). For
example, each new r might be obtained from the preceding one by multiplying by a con-
stant � (0 � � � 1), where a typical value is � � 0.01. As r approaches 0, P(x; r) approaches
f(x), so the corresponding local maximum of P(x; r) converges to a local maximum of the
original problem. Therefore, it is necessary to solve only enough unconstrained optimiza-
tion problems to permit extrapolating their solutions to this limiting solution.

How many are enough to permit this extrapolation? When the original problem sat-
isfies the assumptions of convex programming, useful information is available to guide
us in this decision. In particular, if x� is a global maximizer of P(x; r), then

f(x�) � f(x*) � f(x�) 	 rB(x�),

where x* is the (unknown) optimal solution for the original problem. Thus, rB(x�) is the
maximum error (in the value of the objective function) that can result by using x� to ap-
proximate x*, and extrapolating beyond x� to increase f(x) further decreases this error. If
an error tolerance is established in advance, then you can stop as soon as rB(x�) is less
than this quantity.

Unfortunately, no such guarantee for the maximum error can be given for noncon-
vex programming problems. However, rB(x�) still is likely to exceed the actual error
when x� and x* now are corresponding local maxima of P(x; r) and the original prob-
lem, respectively.

Summary of SUMT.

Initialization: Identify a feasible initial trial solution x(0) that is not on the boundary of
the feasible region. Set k � 1 and choose appropriate strictly positive val-
ues for the initial r and for � � 1 (say, r � 1 and � � 0.01).1

Iteration: Starting from x(k�1), apply the gradient search procedure described in Sec. 13.5
(or some similar method) to find a local maximum x(k) of

P(x; r) � f(x) � r 
�
m

i�1
	 �

n

j�1
�.

Stopping rule: If the change from x(k�1) to x(k) is negligible, stop and use x(k) (or an ex-
trapolation of x(0), x(1), . . . , x(k�1), x(k)) as your estimate of a local max-
imum of the original problem. Otherwise, reset k � k 	 1 and r � �r and
perform another iteration.

When the assumptions of convex programming are not satisfied, this algorithm should
be repeated a number of times by starting from a variety of feasible initial trial solutions.
The best of the local maxima thereby obtained for the original problem should be used
as the best available approximation of a global maximum.

1


xj

1



bi � gi(x)
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Finally, note that SUMT also can be extended to accommodate equality constraints
gi(x) � bi. One standard way is as follows. For each equality constraint,

replaces

in the expression for P(x; r) given under “Summary of SUMT,” and then the same pro-
cedure is used. The numerator �[bi � gi(x)]2 imposes a large penalty for deviating sub-
stantially from satisfying the equality constraint, and then the denominator tremendously
increases this penalty as r is decreased to a tiny amount, thereby forcing the sequence of
trial solutions to converge toward a point that satisfies the constraint.

SUMT has been widely used because of its simplicity and versatility. However, nu-
merical analysts have found that it is relatively prone to numerical instability, so consid-
erable caution is advised. For further information on this issue as well as similar analy-
ses for alternative algorithms, see Selected Reference 4.

Example. To illustrate SUMT, consider the following two-variable problem:

Maximize f(x) � x1x2,

subject to

x2
1 	 x2 � 3

and

x1 � 0, x2 � 0.

Even though g1(x) � x2
1 	 x2 is convex (because each term is convex), this problem is a

nonconvex programming problem because f(x) � x1x2 is not concave (see Appendix 2).
For the initialization, (x1, x2) � (1, 1) is one obvious feasible solution that is not on

the boundary of the feasible region, so we can set x(0) � (1, 1). Reasonable choices for r
and � are r � 1 and � � 0.01.

For each iteration,

P(x; r) � x1x2 � r � 	 	 �.

With r � 1, applying the gradient search procedure starting from (1, 1) to maximize this
expression eventually leads to x(1) � (0.90, 1.36). Resetting r � 0.01 and restarting the
gradient search procedure from (0.90, 1.36) then lead to x(2) � (0.983, 1.933). One more
iteration with r � 0.01(0.01) � 0.0001 leads from x(2) to x(3) � (0.998, 1.994). This se-
quence of points, summarized in Table 13.6, quite clearly is converging to (1, 2). Apply-
ing the KKT conditions to this solution verifies that it does indeed satisfy the necessary
condition for optimality. Graphical analysis demonstrates that (x1, x2) � (1, 2) is, in fact,
a global maximum (see Prob. 13.10-4b).

For this problem, there are no local maxima other than (x1, x2) � (1, 2), so reapply-
ing SUMT from various feasible initial trial solutions always leads to this same solution.1

1


x2

1


x1

1



3 � x2

1 � x2

�r



bi � gi(x)

�[bi � gi(x)]2




�r�
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1The technical reason is that f(x) is a (strictly) quasiconcave function that shares the property of concave func-
tions that a local maximum always is a global maximum. For further information, see M. Avriel, W. E. 
Diewert, S. Schaible, and I. Zang, Generalized Concavity, Plenum, New York, 1985.



Your OR Tutor includes another example illustrating the application of SUMT. The
OR Courseware includes an automatic routine for executing SUMT.
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TABLE 13.6 Illustration of SUMT

k r x1
(k) x2

(k)

0 1 1
1 1 0.90 1.36
2 10�2 0.983 1.933
3 10�4 0.998 1.994

 
↓ ↓
1. 2

Practical optimization problems frequently involve nonlinear behavior that must be taken
into account. It is sometimes possible to reformulate these nonlinearities to fit into a lin-
ear programming format, as can be done for separable programming problems. However,
it is frequently necessary to use a nonlinear programming formulation.

In contrast to the case of the simplex method for linear programming, there is no ef-
ficient all-purpose algorithm that can be used to solve all nonlinear programming prob-
lems. In fact, some of these problems cannot be solved in a very satisfactory manner by
any method. However, considerable progress has been made for some important classes
of problems, including quadratic programming, convex programming, and certain special
types of nonconvex programming. A variety of algorithms that frequently perform well
are available for these cases. Some of these algorithms incorporate highly efficient pro-
cedures for unconstrained optimization for a portion of each iteration, and some use a
succession of linear or quadratic approximations to the original problem.

There has been a strong emphasis in recent years on developing high-quality, reliable
software packages for general use in applying the best of these algorithms. (See Selected
Reference 7 for a comprehensive survey of the available software packages for nonlinear
programming.) For example, several powerful software packages such as MINOS have
been developed in the Systems Optimization Laboratory at Stanford University. These
packages are widely used elsewhere for solving many of the types of problems discussed
in this chapter (as well as linear programming problems). The steady improvements be-
ing made in both algorithmic techniques and software now are bringing some rather large
problems into the range of computational feasibility.

Research in nonlinear programming remains very active.
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Demonstration Examples in OR Tutor:

Gradient Search Procedure
Frank-Wolfe Algorithm
Sequential Unconstrained Minimization Technique—SUMT

Interactive Routines:

Interactive One-Dimensional Search Procedure
Interactive Gradient Search Procedure
Interactive Modified Simplex Method
Interactive Frank-Wolfe Algorithm

Automatic Routines:

Automatic Gradient Search Procedure
Sequential Unconstrained Minimization Technique—SUMT

An Excel Add-in:

Premium Solver

“Ch. 13—Nonlinear Programming” Files for Solving the Examples:

Excel File
LINGO/LINDO File
MPL/CPLEX/CONOPT File

See Appendix 1 for documentation of the software.
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The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The corresponding demonstration example listed above may be
helpful.

I: We suggest that you use the corresponding interactive routine
listed above (the printout records your work).

C: Use the computer with any of the software options available to
you (or as instructed by your instructor) to solve the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

13.1-1. Consider the product mix problem described in Prob. 
3.1-11. Suppose that this manufacturing firm actually encounters
price elasticity in selling the three products, so that the profits
would be different from those stated in Chap. 3. In particular, sup-
pose that the unit costs for producing products 1, 2, and 3 are $25,
$10, and $15, respectively, and that the prices required (in dollars)
in order to be able to sell x1, x2, and x3 units are (35 	 100x1

�

1
3




),
(15 	 40x2

�

1
4




), and (20 	 50x3
�


1
2




), respectively.
Formulate a nonlinear programming model for the problem

of determining how many units of each product the firm should
produce to maximize profit.

13.1-2. For the P & T Co. problem described in Sec. 8.1, suppose
that there is a 10 percent discount in the shipping cost for all truck-
loads beyond the first 40 for each combination of cannery and ware-
house. Draw figures like Figs. 13.3 and 13.4, showing the marginal
cost and total cost for shipments of truckloads of peas from can-
nery 1 to warehouse 1. Then describe the overall nonlinear pro-
gramming model for this problem.

13.1-3. A stockbroker, Richard Smith, has just received a call from
his most important client, Ann Hardy. Ann has $50,000 to invest,
and wants to use it to purchase two stocks. Stock 1 is a solid blue-
chip security with a respectable growth potential and little risk in-
volved. Stock 2 is much more speculative. It is being touted in two
investment newsletters as having outstanding growth potential, but
also is considered very risky. Ann would like a large return on her
investment, but also has considerable aversion to risk. Therefore,
she has instructed Richard to analyze what mix of investments in
the two stocks would be appropriate for her.

Ann is used to talking in units of thousands of dollars and
1,000-share blocks of stocks. Using these units, the price per block
is 20 for stock 1 and 30 for stock 2. After doing some research,
Richard has made the following estimates. The expected return per
block is 5 for stock 1 and 10 for stock 2. The variance of the re-
turn on each block is 4 for stock 1 and 100 for stock 2. The co-
variance of the return on one block each of the two stocks is 5.

Without yet assigning a specific numerical value to the min-
imum acceptable expected return, formulate a nonlinear program-
ming model for this problem.

13.2-1. Reconsider Prob. 13.1-1. Verify that this problem is a con-
vex programming problem.

13.2-2. Reconsider Prob. 13.1-3. Show that the model formulated
is a convex programming problem by using the test in Appendix 2
to show that the objective function being minimized is convex.

13.2-3. Consider the variation of the Wyndor Glass Co. example
represented in Fig. 13.5, where the second and third functional con-
straints of the original problem (see Sec. 3.1) have been replaced
by 9x1

2 	 5x2
2 � 216. Demonstrate that (x1, x2) � (2, 6) with 

Z � 36 is indeed optimal by showing that the objective function
line 36 � 3x1 	 5x2 is tangent to this constraint boundary at 
(2, 6). (Hint: Express x2 in terms of x1 on this boundary, and then
differentiate this expression with respect to x1 to find the slope of
the boundary.)

13.2-4. Consider the variation of the Wyndor Glass Co. problem
represented in Fig. 13.6, where the original objective function (see
Sec. 3.1) has been replaced by Z � 126x1 � 9x1

2 	 182x2 �
13x2

2. Demonstrate that (x1, x2) � (

8
3


, 5) with Z � 857 is indeed op-
timal by showing that the ellipse 857 � 126x1 � 9x1

2 	
182x2 � 13x2

2 is tangent to the constraint boundary 3x1 	
2x2 � 18 at (


8
3


, 5). (Hint: Solve for x2 in terms of x1 for the ellipse,
and then differentiate this expression with respect to x1 to find the
slope of the ellipse.)

13.2-5. Consider the following function:

f(x) � 48x � 60x2 	 x3.

(a) Use the first and second derivatives to find the local maxima
and local minima of f(x).

(b) Use the first and second derivatives to show that f(x) has nei-
ther a global maximum nor a global minimum because it is
unbounded in both directions.

13.2-6. For each of the following functions, show whether it is
convex, concave, or neither.
(a) f(x) � 10x � x2

(b) f(x) � x4 	 6x2 	 12x
(c) f(x) � 2x3 � 3x2

(d) f(x) � x4 	 x2

(e) f(x) � x3 	 x4

13.2-7.* For each of the following functions, use the test given in
Appendix 2 to determine whether it is convex, concave, or neither.
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subject to

2x1 	 x2 � 10
x1 	 2x2 � 10

and

x1 � 0, x2 � 0.

(a) Of the special types of nonlinear programming problems de-
scribed in Sec. 13.3, to which type or types can this particular
problem be fitted? Justify your answer.

(b) Now suppose that the problem is changed slightly by replac-
ing the nonnegativity constraints by x1 � 1 and x2 � 1. Con-
vert this new problem to an equivalent problem that has just
two functional constraints, two variables, and two nonnegativ-
ity constraints.

13.3-4. Consider the following geometric programming problem:

Minimize f(x) � 2x1
�2x2

�1 	 x2
�2,

subject to

4x1x2 	 x1
2x2

2 � 12

and

x1 � 0, x2 � 0.

(a) Transform this problem to an equivalent convex programming
problem.

(b) Use the test given in Appendix 2 to verify that the model for-
mulated in part (a) is indeed a convex programming problem.

13.3-5. Consider the following linear fractional programming
problem:

Maximize f(x) �

10
3
x
x

1

1

	

	

2
4
0
x2

x2

	

	

2
1
0
0


,

subject to

x1 	 3x2 � 50
3x1 	 2x2 � 80

and

x1 � 0, x2 � 0.

(a) Transform this problem to an equivalent linear programming
problem.

C (b) Use the computer to solve the model formulated in part
(a). What is the resulting optimal solution for the original
problem?

13.3-6. Consider the expressions in matrix notation given in Sec.
13.7 for the general form of the KKT conditions for the quadratic
programming problem. Show that the problem of finding a feasi-

(a) f(x) � x1x2 � x2
1 � x2

2

(b) f(x) � 3x1 	 2x2
1 	 4x2 	 x2

2 � 2x1x2

(c) f(x) � x2
1 	 3x1x2 	 2x2

2

(d) f(x) � 20x1 	 10x2

(e) f(x) � x1x2

13.2-8. Consider the following function:

f(x) � 5x1 	 2x2
2 	 x2

3 � 3x3x4 	 4x2
4 	 2x4

5 	 x2
5

	 3x5x6 	 6x2
6 	 3x6x7 	 x2

7.

Show that f(x) is convex by expressing it as a sum of functions of
one or two variables and then showing (see Appendix 2) that all
these functions are convex.

13.2-9. Consider the following nonlinear programming problem:

Maximize f(x) � x1 	 x2,

subject to

x2
1 	 x2

2 � 1

and

x1 � 0, x2 � 0.

(a) Verify that this is a convex programming problem.
(b) Solve this problem graphically.

13.2-10. Consider the following nonlinear programming problem:

Minimize Z � x4
1 	 2x2

2,

subject to

x2
1 	 x2

2 � 2.
(No nonnegativity constraints.)

(a) Use geometric analysis to determine whether the feasible re-
gion is a convex set.

(b) Now use algebra and calculus to determine whether the feasi-
ble region is a convex set.

13.3-1. Reconsider Prob. 13.1-2. Show that this problem is a non-
convex programming problem.

13.3-2. Consider the following constrained optimization problem:

Maximize f(x) � �6x 	 3x2 � 2x3,

subject to

x � 0.

Use just the first and second derivatives of f(x) to derive an opti-
mal solution.

13.3-3. Consider the following nonlinear programming problem:

Minimize Z � x1
4 	 2x1

2 	 2x1x2 	 4x2
2,
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(a) Given x

0, x�0, and � � 0, the sequence of trial solutions selected

by the midpoint rule must converge to a limiting solution.
[Hint: First show that limn��(x�n � x


n) � 0, where x�n and x

n

are the upper and lower bounds identified at iteration n.]
(b) If f(x) is concave [so that df(x)/dx is a monotone decreasing

function of x], then the limiting solution in part (a) must be a
global maximum.

(c) If f(x) is not concave everywhere, but would be concave if its
domain were restricted to the interval between x


0 and x�0, then
the limiting solution in part (a) must be a global maximum.

(d) If f(x) is not concave even over the interval between x

0 and x�0,

then the limiting solution in part (a) need not be a global max-
imum. (Prove this by graphically constructing a counterexam-
ple.)

(e) If df(x)/dx � 0 for all x, then no x

0 exists. If df(x)/dx � 0 for

all x, then no x�0 exists. In either case, f(x) does not possess a
global maximum.

(f) If f(x) is concave and lim
x���

f(x)/dx � 0, then no x

0 exists. If

f(x) is concave and lim
x��

df(x)/dx � 0, then no x�0 exists. In ei-
ther case, f(x) does not possess a global maximum.

I 13.4-7. Consider the following linearly constrained convex pro-
gramming problem:

Maximize f(x) � 32x1 	 50x2 � 10x2
2 	 x2

3 � x1
4 � x2

4,

subject to

3x1 	 x2 � 11
2x1 	 5x2 � 16

and

x1 � 0, x2 � 0.

Ignore the constraints and solve the resulting two one-variable un-
constrained optimization problems. Use calculus to solve the prob-
lem involving x1 and use the one-dimensional search procedure with
� � 0.001 and initial bounds 0 and 4 to solve the problem involv-
ing x2. Show that the resulting solution for (x1, x2) satisfies all of
the constraints, so it is actually optimal for the original problem.

13.5-1. Consider the following unconstrained optimization prob-
lem:

Maximize f(x) � 2x1x2 	 x2 � x1
2 � 2x2

2.

D,I (a) Starting from the initial trial solution (x1, x2) � (1, 1),
interactively apply the gradient search procedure with 
� � 0.25 to obtain an approximate solution.

(b) Solve the system of linear equations obtained by setting 
�f(x) � 0 to obtain the exact solution.

(c) Referring to Fig 13.14 as a sample for a similar problem, draw
the path of trial solutions you obtained in part (a). Then show

ble solution for these conditions is a linear complementarity prob-
lem, as introduced in Sec. 13.3, by identifying w, z, q, and M in
terms of the vectors and matrices in Sec. 13.7.

I 13.4-1.* Use the one-dimensional search procedure to interac-
tively solve (approximately) the following problem:

Maximize f(x) � x3 	 2x � 2x2 � 0.25x4.

Use an error tolerance � � 0.04 and initial bounds x



� 0, x� � 2.4.

I 13.4-2. Use the one-dimensional search procedure with an error
tolerance � � 0.04 and with the following initial bounds to inter-
actively solve (approximately) each of the following problems.
(a) Maximize f(x) � 6x � x2, with x



� 0, x� � 4.8.

(b) Minimize f(x) � 6x 	 7x2 	 4x3 	 x4, with x



� �4,
x� � 1.

I 13.4-3. Use the one-dimensional search procedure to interac-
tively solve (approximately) the following problem:

Maximize f(x) � 48x5 	 42x3 	 3.5x � 16x6

� 61x4 � 16.5x2.

Use an error tolerance � � 0.08 and initial bounds x



� �1, x� � 4.

I 13.4-4. Use the one-dimensional search procedure to interac-
tively solve (approximately) the following problem:

Maximize f(x) � x3 	 30x � x6 � 2x4 � 3x2.

Use an error tolerance � � 0.07 and find appropriate initial bounds
by inspection.

13.4-5. Consider the following convex programming problem:

Minimize Z � x4 	 x2 � 4x,

subject to

x � 2 and x � 0.

(a) Use one simple calculation just to check whether the optimal
solution lies in the interval 0 � x � 1 or the interval 1 � x �
2. (Do not actually solve for the optimal solution in order to
determine in which interval it must lie.) Explain your logic.

I (b) Use the one-dimensional search procedure with initial
bounds x



� 0, x� � 2 and with an error tolerance � � 0.02 to

interactively solve (approximately) this problem.

13.4-6. Consider the problem of maximizing a differentiable func-
tion f(x) of a single unconstrained variable x. Let x


0 and x�0, re-
spectively, be a valid lower bound and upper bound on the same
global maximum (if one exists). Prove the following general prop-
erties of the one-dimensional search procedure (as presented in Sec.
13.4) for attempting to solve such a problem.
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� � 0.05 to solve (approximately) the two-variable problem
identified in part (a).

C (c) Repeat part (b) with the automatic routine for this procedure
(with � � 0.005).

D,I,C 13.5-8.* Starting from the initial trial solution (x1, x2) � (0, 0),
interactively apply the gradient search procedure with � � 1 to solve
(approximately) each of the following problems, and then apply the
automatic routine for this procedure (with � � 0.01).
(a) Maximize f(x) � x1x2 	 3x2 � x1

2 � x2
2.

(b) Minimize f(x) � x1
2x2

2 	 2x1
2 	 2x2

2 � 4x1 	 4x2.

13.6-1. Reconsider the one-variable convex programming model
given in Prob. 13.4-5. Use the KKT conditions to derive an opti-
mal solution for this model.

13.6-2. Reconsider Prob. 13.2-9. Use the KKT conditions to check
whether (x1, x2) � (1/�2�, 1/�2�) is optimal.

13.6-3.* Reconsider the model given in Prob. 13.3-3. What are the
KKT conditions for this model? Use these conditions to determine
whether (x1, x2) � (0, 10) can be optimal.

13.6-4. Consider the following convex programming problem:

Maximize f(x) � 24x1 � x1
2 	 10x2 � x2

2,

subject to

x1 � 8,
x2 � 7,

and

x1 � 0, x2 � 0.

(a) Use the KKT conditions for this problem to derive an optimal
solution.

(b) Decompose this problem into two separate constrained opti-
mization problems involving just x1 and just x2, respectively.
For each of these two problems, plot the objective function
over the feasible region in order to demonstrate that the value
of x1 or x2 derived in part (a) is indeed optimal. Then prove
that this value is optimal by using just the first and second de-
rivatives of the objective function and the constraints for the
respective problems.

13.6-5. Consider the following linearly constrained optimization
problem:

Maximize f(x) � ln(1 	 x1 	 x2),

subject to

x1 	 2x2 � 5

the apparent continuation of this path with your best guess for
the next three trial solutions [based on the pattern in part 
(a) and in Fig. 13.14]. Also show the exact solution from part
(b) toward which this sequence of trial solutions is converging.

C (d) Apply the automatic routine for the gradient search procedure
(with � � 0.01) in your OR Courseware to this problem.

13.5-2. Repeat the four parts of Prob. 13.5-1 (except with � � 0.5)
for the following unconstrained optimization problem:

Maximize f(x) � 2x1x2 � 2x1
2 � x2

2.

D,I,C 13.5-3. Starting from the initial trial solution (x1, x2) � (1, 1),
interactively apply two iterations of the gradient search procedure
to begin solving the following problem, and then apply the auto-
matic routine for this procedure (with � � 0.01).

Maximize f(x) � 4x1x2 � 2x1
2 � 3x2

2.

Then solve �f(x) � 0 directly to obtain the exact solution.

D,I,C 13.5-4.* Starting from the initial trial solution (x1, x2) � (0, 0),
interactively apply the gradient search procedure with � � 0.3 to ob-
tain an approximate solution for the following problem, and then ap-
ply the automatic routine for this procedure (with � � 0.01).

Maximize f(x) � 8x1 � x1
2 � 12x2 � 2x2

2 	 2x1x2.

Then solve �f(x) � 0 directly to obtain the exact solution.

D,I,C 13.5-5. Starting from the initial trial solution (x1, x2) � (0, 0),
interactively apply two iterations of the gradient search procedure
to begin solving the following problem, and then apply the auto-
matic routine for this procedure (with � � 0.01).

Maximize f(x) � 6x1 	 2x1x2 � 2x2 � 2x1
2 � x2

2.

Then solve �f(x) � 0 directly to obtain the exact solution.

13.5-6. Starting from the initial trial solution (x1, x2) � (0, 0), ap-
ply one iteration of the gradient search procedure to the following
problem by hand:

Maximize f(x) � 4x1 	 2x2 	 x1
2 � x1

4 � 2x1x2 � x2
2.

To complete this iteration, approximately solve for t* by manually
applying two iterations of the one-dimensional search procedure
with initial bounds t



� 0, t� � 1.

13.5-7. Consider the following unconstrained optimization problem:

Maximize f(x) � 3x1x2 	 3x2x3 � x1
2 � 6x2

2 � x3
2.

(a) Describe how solving this problem can be reduced to solving
a two-variable unconstrained optimization problem.

D,I (b) Starting from the initial trial solution (x1, x2, x3) � (1, 1, 1),
interactively apply the gradient search procedure with 
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and

x1 � 0, x2 � 0.

(a) Use the KKT conditions to demonstrate that (x1, x2) � (4, 2)
is not optimal.

(b) Derive a solution that does satisfy the KKT conditions.
(c) Show that this problem is not a convex programming problem.
(d) Despite the conclusion in part (c), use intuitive reasoning to

show that the solution obtained in part (b) is, in fact, optimal.
[The theoretical reason is that f(x) is pseudo-concave.]

(e) Use the fact that this problem is a linear fractional program-
ming problem to transform it into an equivalent linear pro-
gramming problem. Solve the latter problem and thereby iden-
tify the optimal solution for the original problem. (Hint: Use
the equality constraint in the linear programming problem to
substitute one of the variables out of the model, and then solve
the model graphically.)

13.6-10.* Use the KKT conditions to derive an optimal solution
for each of the following problems.

(a) Maximize f(x) � x1 	 2x2 � x2
3,

subject to

x1 	 x2 � 1

and

x1 � 0, x2 � 0.

(b) Maximize f(x) � 20x1 	 10x2,

subject to

x1
2 	 x2

2 � 1
x1 	 2x2 � 2

and

x1 � 0, x2 � 0.

13.6-11. Reconsider the nonlinear programming model given in
Prob. 11.3-16.
(a) Use the KKT conditions to determine whether (x1, x2, x3) �

(1, 1, 1) can be optimal.
(b) If a specific solution satisfies the KKT conditions for this prob-

lem, can you draw the definite conclusion that this solution is
optimal? Why?

13.6-12. What are the KKT conditions for nonlinear programming
problems of the following form?

Minimize f(x),

subject to

gi(x) � bi, for i � 1, 2, . . . , m

and

x1 � 0, x2 � 0,

where ln denotes the natural logarithm.
(a) Verify that this problem is a convex programming problem.
(b) Use the KKT conditions to derive an optimal solution.
(c) Use intuitive reasoning to demonstrate that the solution 

obtained in part (b) is indeed optimal. [Hint: Note that 
ln(1 	 x1 	 x2) is a monotonic strictly increasing function of
1 	 x1 	 x2.]

13.6-6. Consider the following linearly constrained optimization
problem:

Maximize f(x) � ln(x1 	 1) � x2
2,

subject to

x1 	 2x2 � 3

and

x1 � 0, x2 � 0,

where ln denotes the natural logarithm,
(a) Verify that this problem is a convex programming problem.
(b) Use the KKT conditions to derive an optimal solution.
(c) Use intuitive reasoning to demonstrate that the solution ob-

tained in part (b) is indeed optimal.

13.6-7. Consider the following convex programming problem:

Maximize f(x) � 10x1 � 2x1
2 � x1

3 	 8x2 � x2
2,

subject to

x1 	 x2 � 2

and

x1 � 0, x2 � 0.

(a) Use the KKT conditions to demonstrate that (x1, x2) � (1, 1)
is not an optimal solution.

(b) Use the KKT conditions to derive an optimal solution.

13.6-8.* Consider the nonlinear programming problem given in
Prob. 11.3-14. Determine whether (x1, x2) � (1, 2) can be optimal
by applying the KKT conditions.

13.6-9. Consider the following nonlinear programming problem:

Maximize f(x) � 

x2

x
	
1

1

,

subject to

x1 � x2 � 2
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and

x1 � 0, x2 � 0.

(a) Obtain the KKT conditions for this problem.
(b) Use the KKT conditions to check whether (x1, x2) � (


1
2


, 

1
2


) is
an optimal solution.

(c) Use the KKT conditions to derive an optimal solution.

13.6-16. Consider the following linearly constrained convex pro-
gramming problem:

Maximize f(x) � 8x1 � x1
2 	 2x2 	 x3,

subject to

x1 	 3x2 	 2x3 � 12

and

x1 � 0, x2 � 0, x3 � 0.

(a) Use the KKT conditions to demonstrate that (x1, x2, x3) �
(2, 2, 2) is not an optimal solution.

(b) Use the KKT conditions to derive an optimal solution. (Hint:
Do some preliminary intuitive analysis to determine the most
promising case regarding which variables are nonzero and
which are zero.)

13.6-17. Use the KKT conditions to determine whether (x1, x2,
x3) � (1, 1, 1) can be optimal for the following problem:

Minimize Z � 2x1 	 x2
3 	 x3

2,

subject to

x1
2 	 2x2

2 	 x3
2 � 4

and

x1 � 0, x2 � 0, x3 � 0.

13.6-18. Reconsider the model given in Prob. 13.2-10. What are
the KKT conditions for this problem? Use these conditions to de-
termine whether (x1, x2) � (1, 1) can be optimal.

13.6-19. Reconsider the linearly constrained convex programming
model given in Prob. 13.4-7. Use the KKT conditions to determine
whether (x1, x2) � (2, 2) can be optimal.

13.7-1. Consider the quadratic programming example presented in
Sec. 13.7.
(a) Use the test given in Appendix 2 to show that the objective

function is strictly concave.
(b) Verify that the objective function is strictly concave by demon-

strating that Q is a positive definite matrix; that is, xTQx � 0
for all x � 0. (Hint: Reduce xTQx to a sum of squares.)

(c) Show that x1 � 12, x2 � 9, and u1 � 3 satisfy the KKT con-
ditions when they are written in the form given in Sec. 13.6.

and

x � 0.

(Hint: Convert this form to our standard form assumed in this chap-
ter by using the techniques presented in Sec. 4.6 and then apply-
ing the KKT conditions as given in Sec. 13.6.)

13.6-13. Consider the following nonlinear programming problem:

Minimize Z � 2x1
2 	 x2

2,

subject to

x1 	 x2 � 10

and

x1 � 0, x2 � 0.

(a) Of the special types of nonlinear programming problems de-
scribed in Sec. 13.3, to which type or types can this particular
problem be fitted? Justify your answer. (Hint: First convert this
problem to an equivalent nonlinear programming problem that
fits the form given in the second paragraph of the chapter, with
m � 2 and n � 2.)

(b) Obtain the KKT conditions for this problem.
(c) Use the KKT conditions to derive an optimal solution.

13.6-14. Consider the following linearly constrained programming
problem:

Minimize f(x) � x1
3 	 4x2

2 	 16x3,

subject to

x1 	 x2 	 x3 � 5

and

x1 � 1, x2 � 1, x3 � 1.

(a) Convert this problem to an equivalent nonlinear programming
problem that fits the form given at the beginning of the chap-
ter (second paragraph), with m � 2 and n � 3.

(b) Use the form obtained in part (a) to construct the KKT con-
ditions for this problem.

(c) Use the KKT conditions to check whether (x1, x2, x3) � (2, 1, 2)
is optimal.

13.6-15. Consider the following linearly constrained convex pro-
gramming problem:

Minimize Z � x1
2 � 6x1 	 x2

3 � 3x2,

subject to

x1 	 x2 � 1

CHAPTER 13 PROBLEMS 713



lem that is to be addressed explicitly, and then identify the ad-
ditional complementarity constraint that is enforced automat-
ically by the algorithm.

(c) Without applying the modified simplex method, show that the
solution derived in part (a) is indeed optimal (Z � 0) for the
equivalent problem formulated in part (b).

I (d) Apply the modified simplex method to the problem as for-
mulated in part (b).

C (e) Use the computer to solve the quadratic programming prob-
lem directly.

13.7-5. Reconsider the first quadratic programming variation of
the Wyndor Glass Co. problem presented in Sec. 13.2 (see Fig.
13.6). Analyze this problem by following the instructions of parts
(a), (b), and (c) of Prob. 13.7-4.

C 13.7-6. Reconsider Prob. 13.1-3 and its quadratic programming
model.
(a) Display this model [including the values of R(x) and V(x)] on

an Excel spreadsheet.
(b) Solve this model for four cases: minimum acceptable expected

return � 13, 14, 15, 16.
(c) For typical probability distributions (with mean � and variance

�2) of the total return from the entire portfolio, the probabil-
ity is fairly high (about 0.8 or 0.9) that the return will exceed
� � �, and the probability is extremely high (often close to
0.999) that the return will exceed � � 3�. Calculate � � �
and � � 3� for the four portfolios obtained in part (b). Which
portfolio will give the highest � among those that also give 
� � � � 0?

13.7-7. Jim Matthews, Vice President for Marketing of the J. R.
Nickel Company, is planning advertising campaigns for two unre-
lated products. These two campaigns need to use some of the same
resources. Therefore, Jim knows that his decisions on the levels of
the two campaigns need to be made jointly after considering these
resource constraints. In particular, letting x1 and x2 denote the lev-
els of campaigns 1 and 2, respectively, these constraints are 4x1 	
x2 � 20 and x1 	 4x2 � 20.

In facing these decisions, Jim is well aware that there is a point
of diminishing returns when raising the level of an advertising cam-
paign too far. At that point, the cost of additional advertising be-
comes larger than the increase in net revenue (excluding advertis-
ing costs) generated by the advertising. After careful analysis, he
and his staff estimate that the net profit from the first product (in-
cluding advertising costs) when conducting the first campaign at
level x1 would be 3x1 � (x1 � 1)2 in millions of dollars. The cor-
responding estimate for the second product is 3x2 � (x2 � 2)2.

This analysis led to the following quadratic programming
model for determining the levels of the two advertising campaigns:

Maximize Z � 3x1 � (x1 � 1)2 	 3x2 � (x2 � 2)2,

13.7-2.* Consider the following quadratic programming problem:

Maximize f(x) � 8x1 � x1
2 	 4x2 � x2

2,

subject to

x1 	 x2 � 2

and

x1 � 0, x2 � 0.

(a) Use the KKT conditions to derive an optimal solution.
(b) Now suppose that this problem is to be solved by the modi-

fied simplex method. Formulate the linear programming prob-
lem that is to be addressed explicitly, and then identify the 
additional complementarity constraint that is enforced auto-
matically by the algorithm.

I (c) Apply the modified simplex method to the problem as for-
mulated in part (b).

C (d) Use the computer to solve the quadratic programming prob-
lem directly.

13.7-3. Consider the following quadratic programming problem:

Maximize f(x) � 20x1 � 20x1
2 	 50x2 � 5x2

2 	 18x1x2,

subject to

x1 	 x2 � 6
x1 	 4x2 � 18

and

x1 � 0, x2 � 0.

Suppose that this problem is to be solved by the modified simplex
method.
(a) Formulate the linear programming problem that is to be ad-

dressed explicitly, and then identify the additional comple-
mentarity constraint that is enforced automatically by the 
algorithm.

I (b) Apply the modified simplex method to the problem as for-
mulated in part (a).

13.7-4. Consider the following quadratic programming problem.

Maximize f(x) � 2x1 	 3x2 � x1
2 � x2

2,

subject to

x1 	 x2 � 2

and

x1 � 0, x2 � 0.

(a) Use the KKT conditions to derive an optimal solution directly.
(b) Now suppose that this problem is to be solved by the modi-

fied simplex method. Formulate the linear programming prob-
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Management wants to know what values of x1, x2 and x3 should
be chosen to maximize the total profit.
(a) Plot the profit graph for each of the three products.
(b) Use separable programming to formulate a linear programming

model for this problem.
C (c) Solve the model. What is the resulting recommendation to

management about the values of x1, x2, and x3 to use?
(d) Now suppose that there is an additional constraint that the profit

from products 1 and 2 must total at least $9,000. Use the tech-
nique presented in the “Extensions” subsection of Sec. 13.8 to
add this constraint to the model formulated in part (b).

C (e) Repeat part (c) for the model formulated in part (d ).

13.8-3.* The Dorwyn Company has two new products that will
compete with the two new products for the Wyndor Glass Co. (de-
scribed in Sec. 3.1). Using units of hundreds of dollars for the ob-
jective function, the linear programming model shown below has
been formulated to determine the most profitable product mix.

Maximize Z � 4x1 	 6x2,

subject to

x1 	 3x2 � 8
5x1 	 2x2 � 14

and

x1 � 0, x2 � 0.

However, because of the strong competition from Wyndor, Dor-
wyn management now realizes that the company will need to make
a strong marketing effort to generate substantial sales of these prod-
ucts. In particular, it is estimated that achieving a production and
sales rate of x1 units of Product 1 per week will require weekly
marketing costs of x1

3 hundred dollars. The corresponding market-
ing costs for Product 2 are estimated to be 2x2

2 hundred dollars.
Thus, the objective function in the model should be Z � 4x1 	
6x2 � x1

3 � 2x2
2.

Dorwyn management now would like to use the revised model
to determine the most profitable product mix.
(a) Verify that (x1, x2) � (2/�3�, 


3
2


) is an optimal solution by ap-
plying the KKT conditions.

(b) Construct tables to show the profit data for each product when
the production rate is 0, 1, 2, 3.

(c) Draw a figure like Fig. 13.15b that plots the weekly profit
points for each product when the production rate is 0, 1, 2, 3.
Connect the pairs of consecutive points with (dashed) line seg-
ments.

(d) Use separable programming based on this figure to formulate
an approximate linear programming model for this problem.

C (e) Solve the model. What does this say to Dorwyn manage-
ment about which product mix to use?

subject to

4x1 	 x2 � 20
x1 	 4x2 � 20

and

x1 � 0, x2 � 0.

(a) Obtain the KKT conditions for this problem in the form given
in Sec. 13.6.

(b) You are given the information that the optimal solution does
not lie on the boundary of the feasible region. Use this infor-
mation to derive the optimal solution from the KKT conditions.

(c) Now suppose that this problem is to be solved by the modi-
fied simplex method. Formulate the linear programming prob-
lem that is to be addressed explicitly, and then identify the 
additional complementarity constraint that is enforced auto-
matically by the algorithm.

(d) Apply the modified simplex method to the problem as formu-
lated in part (c).

C (e) Use the computer to solve the quadratic programming prob-
lem directly.

13.8-1. Reconsider the quadratic programming model given in
Prob. 13.7-7.
(a) Use the separable programming formulation presented in Sec.

13.8 to formulate an approximate linear programming model
for this problem. Use x1, x2 � 0, 2.5, 5 as the breakpoints of
the piecewise linear functions.

C (b) Use the computer to solve the model formulated in part (a).
Then reexpress this solution in terms of the original vari-
ables of the problem.

C (c) To improve the approximation, now use x1, x2 � 0, 1, 2, 3,
4, 5 as the breakpoints of the piecewise linear functions and
repeat parts (a) and (b).

13.8-2. The MFG Corporation is planning to produce and market
three different products. Let x1, x2, and x3 denote the number of
units of the three respective products to be produced. The prelim-
inary estimates of their potential profitability are as follows.

For the first 15 units produced of Product 1, the unit profit
would be approximately $360. The unit profit would be only $30
for any additional units of Product 1. For the first 20 units pro-
duced of Product 2, the unit profit is estimated at $240. The unit
profit would be $120 for each of the next 20 units and $90 for any
additional units. For the first 10 units of Product 3, the unit profit
would be $450. The unit profit would be $300 for each of the next
5 units and $180 for any additional units.

Certain limitations on the use of needed resources impose the
following constraints on the production of the three products:

x1 	 x2 	 x3 � 60
3x1 	 2x2 � 200
x1 	 x2 	 2x3 � 70.
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13.8-6. Reconsider the linearly constrained convex programming
model given in Prob. 13.4-7.
(a) Use the separable programming technique presented in Sec.

13.8 to formulate an approximate linear programming model
for this problem. Use x1 � 0, 1, 2, 3 and x2 � 0, 1, 2, 3 as the
breakpoints of the piecewise linear functions.

C (b) Use the simplex method to solve the model formulated in
part (a). Then reexpress this solution in terms of the origi-
nal variables of the problem.

13.8-7. Suppose that the separable programming technique has
been applied to a certain problem (the “original problem”) to con-
vert it to the following equivalent linear programming problem:

Maximize Z � 5x11 	 4x12 	 2x13 	 4x21 	 x22,

subject to

3x11 	 3x12 	 3x13 	 2x21 	 2x22 � 25
2x11 	 2x12 	 2x13 � x21 � x22 � 10

and

0 � x11 � 2 0 � x21 � 3
0 � x12 � 3 0 � x22 � 1.
0 � x13

What was the mathematical model for the original problem?
(You may define the objective function either algebraically or
graphically, but express the constraints algebraically.)

13.8-8. For each of the following cases, prove that the key prop-
erty of separable programming given in Sec. 13.8 must hold. (Hint:
Assume that there exists an optimal solution that violates this prop-
erty, and then contradict this assumption by showing that there ex-
ists a better feasible solution.)
(a) The special case of separable programming where all the gi(x)

are linear functions.
(b) The general case of separable programming where all the func-

tions are nonlinear functions of the designated form. [Hint:
Think of the functional constraints as constraints on resources,
where gij(xj) represents the amount of resource i used by run-
ning activity j at level xj, and then use what the convexity as-
sumption implies about the slopes of the approximating piece-
wise linear function.]

13.8-9. The MFG Company produces a certain subassembly in
each of two separate plants. These subassemblies are then brought
to a third nearby plant where they are used in the production of a
certain product. The peak season of demand for this product is ap-
proaching, so to maintain the production rate within a desired
range, it is necessary to use temporarily some overtime in making
the subassemblies. The cost per subassembly on regular time (RT)
and on overtime (OT) is shown in the following table for both

13.8-4. Reconsider the production scheduling problem of the
Build-Em-Fast Company described in Prob. 8.1-9. The special re-
striction for such a situation is that overtime should not be used in
any particular period unless regular time in that period is com-
pletely used up. Explain why the logic of separable programming
implies that this restriction will be satisfied automatically by any
optimal solution for the transportation problem formulation of the
problem.

13.8-5. The B. J. Jensen Company specializes in the production
of power saws and power drills for home use. Sales are relatively
stable throughout the year except for a jump upward during the
Christmas season. Since the production work requires considerable
work and experience, the company maintains a stable employment
level and then uses overtime to increase production in November.
The workers also welcome this opportunity to earn extra money
for the holidays.

B. J. Jensen, Jr., the current president of the company, is over-
seeing the production plans being made for the upcoming No-
vember. He has obtained the following data.
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However, Mr. Jensen now has learned that, in addition to the
limited number of labor hours available, two other factors will limit
the production levels that can be achieved this November. One is
that the company’s vendor for power supply units will only be able
to provide 10,000 of these units for November (2,000 more than
his usual monthly shipment). Each power saw and each power drill
requires one of these units. Second, the vendor who supplies a key
part for the gear assemblies will only be able to provide 15,000 for
November (4,000 more than for other months). Each power saw
requires two of these parts and each power drill requires one.

Mr. Jensen now wants to determine how many power saws
and how many power drills to produce in November to maximize
the company’s total profit.
(a) Draw the profit graph for each of these two products.
(b) Use separable programming to formulate a linear programming

model for this problem.
C (c) Solve the model. What does this say about how many power

saws and how many power drills to produce in November?

Maximum Monthly Profit per 
Production* Unit Produced

Regular Regular
Time Overtime Time Overtime

Power saws 3,000 2,000 $150 $50
Power drills 5,000 3,000 $100 $75

*Assuming adequate supplies of materials from the company’s
vendors.



subject to

x1
2 	 x2

2 � 9

and

x1 � 0, x2 � 0.

(a) Apply the separable programming technique discussed at the
end of Sec. 13.8, with x1 � 0, 1, 2, 3 and x2 � 0, 1, 2, 3 as the
breakpoint of the piecewise linear functions, to formulate an
approximate linear programming model for this problem.

C (b) Use the computer to solve the model formulated in part (a).
Then reexpress this solution in terms of the original vari-
ables of the problem.

(c) Use the KKT conditions to determine whether the solution for
the original variables obtained in part (b) actually is optimal
for the original problem (not the approximate model).

13.8-12. Reconsider the integer nonlinear programming model
given in Prob. 11.3-11.
(a) Show that the objective function is not concave.
(b) Formulate an equivalent pure binary integer linear program-

ming model for this problem as follows. Apply the separable
programming technique with the feasible integers as the break-
points of the piecewise linear functions, so that the auxiliary
variables are binary variables. Then add some linear program-
ming constraints on these binary variables to enforce the spe-
cial restriction of separable programming. (Note that the key
property of separable programming does not hold for this prob-
lem because the objective function is not concave.)

C (c) Use the computer to solve this problem as formulated in part
(b). Then reexpress this solution in terms of the original vari-
ables of the problem.

D,I 13.9-1.* Reconsider the linearly constrained convex program-
ming model given in Prob. 13.6-5. Starting from the initial trial so-
lution (x1, x2) � (1, 1), use one iteration of the Frank-Wolfe algo-
rithm to obtain exactly the same solution you found in part (b) of
Prob. 13.6-5, and then use a second iteration to verify that it is an
optimal solution (because it is replicated exactly). Explain why ex-
actly the same results would be obtained on these two iterations
with any other initial trial solution.

D,I 13.9-2. Reconsider the linearly constrained convex program-
ming model given in Prob. 13.6-6. Starting from the initial trial so-
lution (x1, x2) � (0, 0), use one iteration of the Frank-Wolfe algo-
rithm to obtain exactly the same solution you found in part (b) of
Prob. 13.6-6, and then use a second iteration to verify that it is an
optimal solution (because it is replicated exactly).

D,I 13.9-3. Reconsider the linearly constrained convex program-
ming model given in Prob. 13.6-15. Starting from the initial trial

plants, along with the maximum number of subassemblies that can
be produced on RT and on OT each day.
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Let x1 and x2 denote the total number of subassemblies pro-
duced per day at plants 1 and 2, respectively. The objective is to
maximize Z � x1 	 x2, subject to the constraint that the total daily
cost not exceed $60,000. Note that the mathematical programming
formulation of this problem (with x1 and x2 as decision variables)
has the same form as the main case of the separable programming
model described in Sec. 13.8, except that the separable functions
appear in a constraint function rather than the objective function.
However, the same approach can be used to reformulate the prob-
lem as a linear programming model where it is feasible to use OT
even when the RT capacity at that plant is not fully used.
(a) Formulate this linear programming model.
(b) Explain why the logic of separable programming also applies

here to guarantee that an optimal solution for the model for-
mulated in part (a) never uses OT unless the RT capacity at
that plant has been fully used.

13.8-10. Consider the following nonlinear programming problem
(first considered in Prob. 11.3-23).

Maximize Z � 5x1 	 x2,

subject to

2x1
2 	 x2 � 13

x1
2 	 x2 � 9

and

x1 � 0, x2 � 0.

(a) Show that this problem is a convex programming problem.
(b) Use the separable programming technique discussed at the end

of Sec. 13.8 to formulate an approximate linear programming
model for this problem. Use the integers as the breakpoints of
the piecewise linear function.

C (c) Use the computer to solve the model formulated in part (b).
Then reexpress this solution in terms of the original vari-
ables of the problem.

13.8-11. Consider the following convex programming problem:

Maximize Z � 32x1 � x1
4 	 4x2 � x2

2,

Unit Cost Capacity

RT OT RT OT

Plant 1 $15 $25 2,000 1,000
Plant 2 $16 $24 1,000 500



D,I 13.9-10.* Consider the following linearly constrained convex
programming problem:

Maximize f(x) � 3x1 	 4x2 � x1
3 � x2

2,

subject to

x1 	 x2 � 1

and

x1 � 0, x2 � 0.

(a) Starting from the initial trial solution (x1, x2) � (

1
4


, 

1
4


), apply
three iterations of the Frank-Wolfe algorithm.

(b) Use the KKT conditions to check whether the solution obtained
in part (a) is, in fact, optimal.

13.9-11. Consider the following linearly constrained convex pro-
gramming problem:

Maximize f(x) � 4x1 � x1
4 	 2x2 � x2

2,

subject to

4x1 	 2x2 � 5

and

x1 � 0, x2 � 0.

(a) Starting from the initial trial solution (x1, x2) � (

1
2


, 

1
2


), apply
four iterations of the Frank-Wolfe algorithm.

(b) Show graphically how the sequence of trial solutions obtained
in part (a) can be extrapolated to obtain a closer approxima-
tion of an optimal solution. What is your resulting estimate of
this solution?

(c) Use the KKT conditions to check whether the solution you ob-
tained in part (b) is, in fact, optimal. If not, use these condi-
tions to derive the exact optimal solution.

13.10-1. Reconsider the linearly constrained convex programming
model given in Prob. 13.9-10.
(a) If SUMT were to be applied to this problem, what would be

the unconstrained function P(x; r) to be maximized at each it-
eration?

(b) Setting r � 1 and using (

1
4


, 

1
4


) as the initial trial solution, man-
ually apply one iteration of the gradient search procedure (ex-
cept stop before solving for t*) to begin maximizing the func-
tion P(x; r) you obtained in part (a).

D,C (c) Beginning with the same initial trial solution as in part (b),
use the automatic routine in your OR Courseware to ap-
ply SUMT to this problem with r � 1, 10�2, 10�4.

(d) Compare the final solution obtained in part (c) to the true op-
timal solution for Prob. 13.9-10 given in the back of the book.
What is the percentage error in x1, in x2, and in f(x)?

solution (x1, x2) � (0, 0), use one iteration of the Frank-Wolfe al-
gorithm to obtain exactly the same solution you found in part (c)
of Prob. 13.6-15, and then use a second iteration to verify that it
is an optimal solution (because it is replicated exactly). Explain
why exactly the same results would be obtained on these two it-
erations with any other trial solution.

D,I 13.9-4. Reconsider the linearly constrained convex program-
ming model given in Prob. 13.6-16. Starting from the initial trial
solution (x1, x2, x3) � (0, 0, 0), apply two iterations of the Frank-
Wolfe algorithm.

D,I 13.9-5. Consider the quadratic programming example presented
in Sec. 13.7. Starting from the initial trial solution (x1, x2) � (5, 5),
apply seven iterations of the Frank-Wolfe algorithm.

13.9-6. Reconsider the quadratic programming model given in
Prob. 13.7-4.
D,I (a) Starting from the initial trial solution (x1, x2) � (0, 0), use

the Frank-Wolfe algorithm (six iterations) to solve the
problem (approximately).

(b) Show graphically how the sequence of trial solutions obtained
in part (a) can be extrapolated to obtain a closer approxima-
tion of an optimal solution. What is your resulting estimate of
this solution?

D,I 13.9-7. Reconsider the first quadratic programming variation
of the Wyndor Glass Co. problem presented in Sec. 13.2 (see Fig.
13.6). Starting from the initial trial solution (x1, x2) � (0, 0), use
three iterations of the Frank-Wolfe algorithm to obtain and verify
the optimal solution.

D,I 13.9-8. Reconsider the linearly constrained convex program-
ming model given in Prob. 13.4-7. Starting from the initial trial so-
lution (x1, x2) � (0, 0), use the Frank-Wolfe algorithm (four itera-
tions) to solve this model (approximately).

D,I 13.9-9. Consider the following linearly constrained convex
programming problem:

Maximize f(x) � 3x1x2 	 40x1 	 30x2 � 4x1
2 � x1

4

� 3x2
2 � x2

4,

subject to

4x1 	 3x2 � 12
x1 	 2x2 � 4

and

x1 � 0, x2 � 0.

Starting from the initial trial solution (x1, x2) � (0, 0), apply two
iterations of the Frank-Wolfe algorithm.
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(b) Derive the minimizing solution of P(x; r) analytically, and then
give this solution for r � 1, 10�2, 10�4, 10�6.

D,C (c) Beginning with the initial trial solution (x1, x2) � (2, 1),
use the automatic routine in your OR Courseware to ap-
ply SUMT to this problem (in maximization form) with 
r � 1, 10�2, 10�4, 10�6.

D,C 13.10-7. Consider the following convex programming problem:

Maximize f(x) � x1x2 � x1 � x1
2 � x2 � x2

2,

subject to

x2 � 0.

Beginning with the initial trial solution (x1, x2) � (1, 1), use the
automatic routine in your OR Courseware to apply SUMT to this
problem with r � 1, 10�2, 10�4.

D,C 13.10-8. Reconsider the quadratic programming model given
in Prob. 13.7-4. Beginning with the initial trial solution (x1, x2) �
(


1
2


, 

1
2


), use the automatic routine in your OR Courseware to apply
SUMT to this model with r � 1, 10�2, 10�4, 10�6.

D,C 13.10-9. Reconsider the first quadratic programming variation
of the Wyndor Glass Co. problem presented in Sec. 13.2 (see Fig.
13.6). Beginning with the initial trial solution (x1, x2) � (2, 3), use
the automatic routine in your OR Courseware to apply SUMT to
this problem with r � 102, 1, 10�2, 10�4.

13.10-10. Consider the following nonconvex programming problem:

Maximize f(x) � 1,000x � 400x2 	 40x3 � x4,

subject to

x2 	 x � 500

and

x � 0.

(a) Identify the feasible values for x. Obtain general expressions
for the first three derivatives of f(x). Use this information to
help you draw a rough sketch of f(x) over the feasible region
for x. Without calculating their values, mark the points on your
graph that correspond to local maxima and minima.

I (b) Use the one-dimensional search procedure with � � 0.05 to
find each of the local maxima. Use your sketch from part (a)
to identify appropriate initial bounds for each of these
searches. Which of the local maxima is a global maximum?

D,C (c) Use the automatic routine in your OR Courseware to ap-
ply SUMT to this problem with r � 103, 102, 10, 1 to find
each of the local maxima. Use x � 3 and x � 15 as the
initial trial solutions for these searches. Which of the lo-
cal maxima is a global maximum?

13.10-2. Reconsider the linearly constrained convex programming
model given in Prob. 13.9-11. Follow the instructions of parts (a),
(b), and (c) of Prob. 13.10-1 for this model, except use (x1, x2) �
(


1
2


, 

1
2


) as the initial trial solution and use r � 1, 10�2, 10�4, 10�6.

13.10-3. Reconsider the model given in Prob. 13.3-3.
(a) If SUMT were to be applied directly to this problem, what

would be the unconstrained function P(x; r) to be minimized
at each iteration?

(b) Setting r � 100 and using (x1, x2) � (5, 5) as the initial trial
solution, manually apply one iteration of the gradient search
procedure (except stop before solving for t*) to begin mini-
mizing the function P(x; r) you obtained in part (a).

D,C (c) Beginning with the same initial trial solution as in part (b),
use the automatic routine in your OR Courseware to ap-
ply SUMT to this problem with r � 100, 1, 10�2, 10�4.
(Hint: The computer routine assumes that the problem has
been converted to maximization form with the functional
constraints in � form.)

13.10-4. Consider the example for applying SUMT given in Sec.
13.10.
(a) Show that (x1, x2) � (1, 2) satisfies the KKT conditions.
(b) Display the feasible region graphically, and then plot the lo-

cus of points x1x2 � 2 to demonstrate that (x1, x2) � (1, 2) with
f(1, 2) � 2 is, in fact, a global maximum.

13.10-5.* Consider the following convex programming problem:

Maximize f(x) � �2x1 � (x2 � 3)2,

subject to

x1 � 3 and x2 � 3.

(a) If SUMT were applied to this problem, what would be the un-
constrained function P(x; r) to be maximized at each iteration?

(b) Derive the maximizing solution of P(x; r) analytically, and then
give this solution for r � 1, 10�2, 10�4, 10�6.

D,C (c) Beginning with the initial trial solution (x1, x2) � (4, 4),
use the automatic routine in your OR Courseware to ap-
ply SUMT to this problem with r � 1, 10�2, 10�4, 10�6.

13.10-6. Use SUMT to solve the following convex programming
problem:

Minimize f(x) � 

(x1 	

3
1)3


 	 x2,

subject to

x1 � 1 and x2 � 0.

(a) If SUMT were applied directly to this problem, what would
be the unconstrained function P(x; r) to be minimized at each
iteration?
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(a) If SUMT were applied to this problem, what would be the un-
constrained function P(x; r) to be minimized at each iteration?

(b) Describe how SUMT should be applied to attempt to obtain a
global minimum. (Do not actually solve.)

13.11-1. Consider the following problem:

Maximize Z � 4x1 � x1
2 	 10x2 � x2

2,

subject to

x1
2 	 4x2

2 � 16

and

x1 � 0, x2 � 0.

(a) Is this a convex programming problem? Answer yes or no, and
then justify your answer.

(b) Can the modified simplex method be used to solve this prob-
lem? Answer yes or no, and then justify your answer (but do
not actually solve.)

(c) Can the Frank-Wolfe algorithm be used to solve this problem?
Answer yes or no, and then justify your answer (but do not ac-
tually solve).

(d) What are the KKT conditions for this problem? Use these con-
ditions to determine whether (x1, x2) � (1, 1) can be optimal.

(e) Use the separable programming technique to formulate an ap-
proximate linear programming model for this problem. Use the
feasible integers as the breakpoints for each piecewise linear
function.

C (f) Use the simplex method to solve the problem as formulated
in part (e).

(g) Give the function P(x; r) to be maximized at each iteration
when applying SUMT to this problem. (Do not actually solve.)

D,C (h) Use SUMT (the automatic routine in your OR Course-
ware) to solve the problem as formulated in part (g). Be-
gin with the initial trial solution (x1, x2) � (2, 1) and use
r � 1, 10�2, 10�4, 10�6.

13.10-11. Consider the following nonconvex programming problem:

Maximize f(x) � 3x1x2 � 2x1
2 � x2

2,

subject to

x1
2 	 2x2

2 � 4
2x1 � x2 � 3

x1x2
2 	 x1

2x2 � 2

and

x1 � 0, x2 � 0.

(a) If SUMT were to be applied to this problem, what would be
the unconstrained function P(x; r) to be maximized at each it-
eration?

D,C (b) Starting from the initial trial solution (x1, x2) � (1, 1), use
the automatic routine in your OR Courseware to apply
SUMT to this problem with r � 1, 10�2, 10�4.

13.10-12. Reconsider the convex programming model with an
equality constraint given in Prob. 13.6-14.
(a) If SUMT were to be applied to this model, what would be the

unconstrained function P(x; r) to be minimized at each itera-
tion?

D,C (b) Starting from the initial trial solution (x1, x2, x3) � (

3
2


, 

3
2


, 2),
use the automatic routine in your OR Courseware to apply
SUMT to this model with r � 10�2, 10�4, 10�6, 10�8.

13.10-13. Consider the following nonconvex programming problem.

Minimize f(x) � sin 3x1 	 cos 3x2 	 sin(x1 	 x2),

subject to

x1
2 � 10x2 � �1

10x1 	 x2
2 � 100

and

x1 � 0, x2 � 0.
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Ever since the day she took her first economics class in high school, Lydia wondered
about the financial practices of her parents. They worked very hard to earn enough
money to live a comfortable middle-class life, but they never made their money work
for them. They simply deposited their hard-earned paychecks in savings accounts
earning a nominal amount of interest. (Fortunately, there always was enough money
when it came time to pay her college bills.) She promised herself that when she be-
came an adult, she would not follow the same financially conservative practices as
her parents.
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And Lydia kept this promise. Every morning while getting ready for work, she
watches the CNN financial reports. She plays investment games on the World Wide
Web, finding portfolios that maximize her return while minimizing her risk. She reads
the Wall Street Journal and Financial Times with a thirst she cannot quench.

Lydia also reads the investment advice columns of the financial magazines, and
she has noticed that on average, the advice of the investment advisers turns out to be
very good. Therefore, she decides to follow the advice given in the latest issue of one
of the magazines. In his monthly column the editor Jonathan Taylor recommends three
stocks that he believes will rise far above market average. In addition, the well-known
mutual fund guru Donna Carter advocates the purchase of three more stocks that she
thinks will outperform the market over the next year.

BIGBELL (ticker symbol on the stock exchange: BB), one of the nation’s largest
telecommunications companies, trades at a price-earnings ratio well below market av-
erage. Huge investments over the last 8 months have depressed earnings considerably.
However, with their new cutting edge technology, the company is expected to signifi-
cantly raise their profit margins. Taylor predicts that the stock will rise from its cur-
rent price of $60 per share to $72 per share within the next year.

LOTSOFPLACE (LOP) is one of the leading hard drive manufacturers in the world.
The industry recently underwent major consolidation, as fierce price wars over the last
few years were followed by many competitors going bankrupt or being bought by 
LOTSOFPLACE and its competitors. Due to reduced competition in the hard drive
market, revenues and earnings are expected to rise considerably over the next year. Tay-
lor predicts a one-year increase of 42 percent in the stock of LOTSOFPLACE from
the current price of $127 per share.

INTERNETLIFE (ILI) has survived the many ups and downs of Internet compa-
nies. With the next Internet frenzy just around the corner, Taylor expects a doubling of
this company’s stock price from $4 to $8 within a year.

HEALTHTOMORROW (HEAL) is a leading biotechnology company that is about
to get approval for several new drugs from the Food and Drug Administration, which
will help earnings to grow 20 percent over the next few years. In particular a new drug
to significantly reduce the risk of heart attacks is supposed to reap huge profits. Also,
due to several new great-tasting medications for children, the company has been able
to build an excellent image in the media. This public relations coup will surely have
positive effects for the sale of its over-the-counter medications. Carter is convinced that
the stock will rise from $50 to $75 per share within a year.

QUICKY (QUI) is a fast-food chain which has been vastly expanding its network
of restaurants all over the United States. Carter has followed this company closely
since it went public some 15 years ago when it had only a few dozen restaurants on
the west coast of the United States. Since then the company has expanded, and it now
has restaurants in every state. Due to its emphasis on healthy foods, it is capturing a
growing market share. Carter believes that the stock will continue to perform well
above market average for an increase of 46 percent in one year from its current stock
price of $150.

AUTOMOBILE ALLIANCE (AUA) is a leading car manufacturer from the De-
troit area that just recently introduced two new models. These models show very strong
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initial sales, and therefore the company’s stock is predicted to rise from $20 to $26
over the next year.

On the World Wide Web Lydia found data about the risk involved in the stocks of
these companies. The historical variances of return of the six stocks and their covari-
ances are shown below.
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Covariances LOP ILI HEAL QUI AUA

BB 0.005 0.03 �0.031 �0.027 0.01

LOP 0.085 �0.07 �0.05 0.02

ILI �0.11 �0.02 0.042

HEAL 0.05 �0.06

QUI �0.02

(a) At first, Lydia wants to ignore the risk of all the investments. Given this strategy, what is her
optimal investment portfolio; that is, what fraction of her money should she invest in each of
the six different stocks? What is the total risk of her portfolio?

(b) Lydia decides that she doesn’t want to invest more than 40 percent in any individual stock.
While still ignoring risk, what is her new optimal investment portfolio? What is the total risk
of her new portfolio?

(c) Now Lydia wants to take into account the risk of her investment opportunities. Identify one
of the model types described in this chapter that is applicable to her problem, and then for-
mulate a model of this kind to be used in the following parts.

(d) What fractions of her money should Lydia put into the various stocks if she decides to max-
imize the expected return minus beta times the risk of her investment for beta � 0.25?

(e) Lydia recently received a bonus at work, $15,000 after taxes, that she wishes to invest. For
the investment policy in part (d ), how much money does she invest in the various stocks?
How many shares of each stock does she buy?

(f) How does the solution in part (e) change if beta � 0.5? If beta � 1? If beta � 2?
(g) Give an intuitive explanation for the change in the expected return and the risk in part ( f )

as beta changes.
(h) Lydia wants to ensure that she receives an expected return of at least 35 percent. She wants

to reach this goal at minimum risk. What investment portfolio allows her to do that?
(i) What is the minimum risk Lydia can achieve if she wants an expected return of at least 25

percent? Of at least 40 percent?
( j) Do you see any problems or disadvantages with Lydia’s approach to her investment 

strategy?

Company BB LOP ILI HEAL QUI AUA

Variance 0.032 0.1 0.333 0.125 0.065 0.08
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Charles Rosen relaxes in a plush, overstuffed recliner by the fire, enjoying the final
vestiges of his week-long winter vacation. As a financial analyst working for a large
investment firm in Germany, Charles has very few occasions to enjoy these private mo-
ments, since he is generally catching red-eye flights around the world to evaluate var-
ious investment opportunities. Charles pats the loyal golden retriever lying at his feet
and takes a swig of brandy, enjoying the warmth of the liquid. He sighs and realizes
that he must begin attending to his own financial matters while he still has the time
during the holiday. He opens a folder placed conspicuously on the top of a large stack
of papers. The folder contains information about an investment Charles made when he
graduated from college four years ago. . . . 

Charles remembers his graduation day fondly. He obtained a degree in business
administration and was full of investment ideas that were born while he had been day-
dreaming in his numerous finance classes. Charles maintained a well-paying job
throughout college, and he was able to save a large portion of the college fund that his
parents had invested for him.

Upon graduation, Charles decided that he should transfer the college funds to a
more lucrative investment opportunity. Since he had signed to work in Germany, he
evaluated investment opportunities in that country. Ultimately, he decided to invest
30,000 German marks (DM) in so-called B-Bonds that would mature in 7 years. Charles
purchased the bonds just 4 years ago last week (in early January of what will be called
the “first year” in this discussion). He considered the bonds an excellent investment
opportunity, since they offered high interest rates (see Table I) that would rise over the
subsequent 7 years and because he could sell the bonds whenever he wanted after the
first year. He calculated the amount that he would be paid if he sold bonds originally
worth DM 100 on the last day of any of the 7 years (see Table II). The amount paid
included the principal plus the interest. For example, if he sold bonds originally worth
DM 100 on December 31 of the sixth year, he would be paid DM 163.51 (the princi-
pal is DM 100, and the interest is DM 63.51).

Charles did not sell any of the bonds during the first four years. Last year, how-
ever, the German federal government introduced a capital gains tax on interest income.
The German government designated that the first DM 6,100 a single individual earns
in interest per year would be tax-free. Any interest income beyond DM 6,100 would
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TABLE 1 Interest rates over the 7 years

Year Interest Rate Annual Percentage Yield

1 7.50% 7.50%
2 8.50% 8.00%
3 8.50% 8.17%
4 8.75% 8.31%
5 9.00% 8.45%
6 9.00% 8.54%
7 9.00% 8.61%



be taxed at a rate of 30 percent. For example, if Charles earned interest income of DM
10,100, he would be required to pay 30 percent of DM 4,000 (DM 10,100 � DM 6,100)
in taxes, or DM 1,200. His after-tax income would therefore be DM 8,900.

Because of the new tax implemented last year, Charles has decided to reevaluate
the investment. He knows that the new tax affects his potential return on the B-Bonds,
but he also knows that most likely a strategy exists for maximizing his return on the
bonds. He might be able to decrease the tax he has to pay on interest income by sell-
ing portions of his bonds in different years. Charles considers his strategy viable be-
cause the government requires investors to pay taxes on interest income only when they
sell their B-Bonds. For example, if Charles were to sell one-third of his B-Bonds on
December 31 of the sixth year, he would have to pay taxes on the interest income of
DM 251 (DM 6,351 � DM 6,100).

Charles asks himself several questions. Should he keep all the bonds until the end
of the seventh year? If so, he would earn 0.7823 times DM 30,000 in interest income,
but he would have to pay very substantial taxes for that year. Considering these tax
payments, Charles wonders if he should sell a portion of the bonds at the end of this
year (the fifth year) and at the end of next year.

If Charles sells his bonds, his alternative investment opportunities are limited. He
could purchase a certificate of deposit (CD) paying 4.0 percent interest, so he investi-
gates this alternative. He meets with an investment adviser from the local branch of a
bank, and the adviser tells him to keep the B-Bonds until the end of the seventh year.
She argues that even if he had to pay 30 percent in taxes on the 9.00 percent rate of
interest the B-Bonds would be paying in their last year (see Table I), this strategy would
still result in a net rate of 6.30 percent interest, which is much better than the 4.0 per-
cent interest he could obtain on a CD.

Charles concludes that he would make all his transactions on December 31, re-
gardless of the year. Also, since he intends to attend business school in the United
States in the fall of the seventh year and plans to pay his tuition for his second, third,
and fourth semester with his investment, he does not plan to keep his money in Ger-
many beyond December 31 of the seventh year.

(For the first three parts, assume that if Charles sells a portion of his bonds, he
will put the money under his mattress earning zero percent interest. For the subsequent
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TABLE II Total return on 
100 DM

Year DM

1 107.50
2 116.64
3 126.55
4 137.62
5 150.01
6 163.51
7 178.23



parts, assume that he could invest the proceeds of the bonds in the certificate of de-
posit.)

(a) Identify one of the model types described in this chapter that is applicable to this problem,
and then formulate a model of this kind to be used in the following parts.

(b) What is the optimal investment strategy for Charles?
(c) What is fundamentally wrong with the advice Charles got from the investment adviser at the

bank?
(d) Now that Charles is considering investment in the certificate of deposit, what is his optimal

investment strategy?
(e) What would his optimal investment strategy for the fifth, sixth, and seventh years have been

if he had originally invested DM 50,000?
(f) Charles and his fiancée have been planning to get married after his first year in business

school. However, Charles learns that for married couples, the tax-free amount of interest earn-
ings each year is DM 12,200. How much money could Charles save on his DM 30,000 in-
vestment by getting married this year (the fifth year for his investment)?

(g) Due to a recession in Germany, interest rates are low and are expected to remain low. How-
ever, since the American economy is booming, interest rates are expected to rise in the United
States. A rise in interest rates would lead to a rise of the dollar in comparison to the mark.
Analysts at Charles’ investment bank expect the dollar to remain at the current exchange rate
of DM 1.50 per dollar for the fifth year and then to rise to DM 1.80 per dollar by the end
of the seventh year. Therefore, Charles is considering investing at the beginning of the sixth
year in a 2-year American municipal bond paying 3.6 percent tax-exempt interest to help
pay tuition. How much money should he plan to convert into dollars by selling B-Bonds for
this investment?
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