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5
The Theory of the 
Simplex Method

Chapter 4 introduced the basic mechanics of the simplex method. Now we shall delve a
little more deeply into this algorithm by examining some of its underlying theory. The
first section further develops the general geometric and algebraic properties that form the
foundation of the simplex method. We then describe the matrix form of the simplex method
(called the revised simplex method ), which streamlines the procedure considerably for
computer implementation. Next we present a fundamental insight about a property of the
simplex method that enables us to deduce how changes that are made in the original model
get carried along to the final simplex tableau. This insight will provide the key to the im-
portant topics of Chap. 6 (duality theory and sensitivity analysis).

Section 4.1 introduced corner-point feasible (CPF) solutions and the key role they play
in the simplex method. These geometric concepts were related to the algebra of the sim-
plex method in Secs. 4.2 and 4.3. However, all this was done in the context of the Wyn-
dor Glass Co. problem, which has only two decision variables and so has a straightfor-
ward geometric interpretation. How do these concepts generalize to higher dimensions
when we deal with larger problems? We address this question in this section.

We begin by introducing some basic terminology for any linear programming prob-
lem with n decision variables. While we are doing this, you may find it helpful to refer to
Fig. 5.1 (which repeats Fig. 4.1) to interpret these definitions in two dimensions (n � 2).

Terminology

It may seem intuitively clear that optimal solutions for any linear programming problem
must lie on the boundary of the feasible region, and in fact this is a general property. Be-
cause boundary is a geometric concept, our initial definitions clarify how the boundary of
the feasible region is identified algebraically.

The constraint boundary equation for any constraint is obtained by replacing its �, �,
or � sign by an � sign.

Consequently, the form of a constraint boundary equation is ai1x1 � ai2x2 � ��� �
ainxn � bi for functional constraints and xj � 0 for nonnegativity constraints. Each such
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equation defines a “flat” geometric shape (called a hyperplane) in n-dimensional space,
analogous to the line in two-dimensional space and the plane in three-dimensional space.
This hyperplane forms the constraint boundary for the corresponding constraint. When
the constraint has either a � or a � sign, this constraint boundary separates the points
that satisfy the constraint (all the points on one side up to and including the constraint
boundary) from the points that violate the constraint (all those on the other side of the
constraint boundary). When the constraint has an � sign, only the points on the constraint
boundary satisfy the constraint.

For example, the Wyndor Glass Co. problem has five constraints (three functional
constraints and two nonnegativity constraints), so it has the five constraint boundary equa-
tions shown in Fig. 5.1. Because n � 2, the hyperplanes defined by these constraint bound-
ary equations are simply lines. Therefore, the constraint boundaries for the five constraints
are the five lines shown in Fig. 5.1.

The boundary of the feasible region contains just those feasible solutions that satisfy one
or more of the constraint boundary equations.

Geometrically, any point on the boundary of the feasible region lies on one or more
of the hyperplanes defined by the respective constraint boundary equations. Thus, in Fig.
5.1, the boundary consists of the five darker line segments.

Next, we give a general definition of CPF solution in n-dimensional space.

A corner-point feasible (CPF) solution is a feasible solution that does not lie on any
line segment1 connecting two other feasible solutions.
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1An algebraic expression for a line segment is given in Appendix 2. 



As this definition implies, a feasible solution that does lie on a line segment connecting
two other feasible solutions is not a CPF solution. To illustrate when n � 2, consider Fig.
5.1. The point (2, 3) is not a CPF solution, because it lies on various such line segments,
e.g., the line segment connecting (0, 3) and (4, 3). Similarly, (0, 3) is not a CPF solution,
because it lies on the line segment connecting (0, 0) and (0, 6). However, (0, 0) is a CPF
solution, because it is impossible to find two other feasible solutions that lie on com-
pletely opposite sides of (0, 0). (Try it.)

When the number of decision variables n is greater than 2 or 3, this definition for
CPF solution is not a very convenient one for identifying such solutions. Therefore, it will
prove most helpful to interpret these solutions algebraically. For the Wyndor Glass Co.
example, each CPF solution in Fig. 5.1 lies at the intersection of two (n � 2) constraint
lines; i.e., it is the simultaneous solution of a system of two constraint boundary equa-
tions. This situation is summarized in Table 5.1, where defining equations refer to the
constraint boundary equations that yield (define) the indicated CPF solution.

For any linear programming problem with n decision variables, each CPF solution lies at
the intersection of n constraint boundaries; i.e., it is the simultaneous solution of a sys-
tem of n constraint boundary equations.

However, this is not to say that every set of n constraint boundary equations chosen
from the n � m constraints (n nonnegativity and m functional constraints) yields a CPF
solution. In particular, the simultaneous solution of such a system of equations might vi-
olate one or more of the other m constraints not chosen, in which case it is a corner-point
infeasible solution. The example has three such solutions, as summarized in Table 5.2.
(Check to see why they are infeasible.)

Furthermore, a system of n constraint boundary equations might have no solution at
all. This occurs twice in the example, with the pairs of equations (1) x1 � 0 and x1 � 4
and (2) x2 � 0 and 2x2 � 12. Such systems are of no interest to us.

The final possibility (which never occurs in the example) is that a system of n constraint
boundary equations has multiple solutions because of redundant equations. You need not be
concerned with this case either, because the simplex method circumvents its difficulties.
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TABLE 5.1 Defining equations for each 
CPF solution for the 
Wyndor Glass Co. problem

CPF Solution Defining Equations

(0, 0) x1 � 0
x2 � 0

(0, 6) x1 � 0
2x2 � 12

(2, 6) 2x2 � 12
3x1 � 2x2 � 18

(4, 3) 3x1 � 2x2 � 18
x1 � 4

(4, 0) x1 � 4
x2 � 0



To summarize for the example, with five constraints and two variables, there are 10
pairs of constraint boundary equations. Five of these pairs became defining equations for
CPF solutions (Table 5.1), three became defining equations for corner-point infeasible so-
lutions (Table 5.2), and each of the final two pairs had no solution.

Adjacent CPF Solutions

Section 4.1 introduced adjacent CPF solutions and their role in solving linear program-
ming problems. We now elaborate.

Recall from Chap. 4 that (when we ignore slack, surplus, and artificial variables) each
iteration of the simplex method moves from the current CPF solution to an adjacent one.
What is the path followed in this process? What really is meant by adjacent CPF solu-
tion? First we address these questions from a geometric viewpoint, and then we turn to
algebraic interpretations.

These questions are easy to answer when n � 2. In this case, the boundary of the fea-
sible region consists of several connected line segments forming a polygon, as shown in
Fig. 5.1 by the five darker line segments. These line segments are the edges of the feasi-
ble region. Emanating from each CPF solution are two such edges leading to an adjacent
CPF solution at the other end. (Note in Fig. 5.1 how each CPF solution has two adjacent
ones.) The path followed in an iteration is to move along one of these edges from one end
to the other. In Fig. 5.1, the first iteration involves moving along the edge from (0, 0) to
(0, 6), and then the next iteration moves along the edge from (0, 6) to (2, 6). As Table 5.1
illustrates, each of these moves to an adjacent CPF solution involves just one change in
the set of defining equations (constraint boundaries on which the solution lies).

When n � 3, the answers are slightly more complicated. To help you visualize what is
going on, Fig. 5.2 shows a three-dimensional drawing of a typical feasible region when n �
3, where the dots are the CPF solutions. This feasible region is a polyhedron rather than the
polygon we had with n � 2 (Fig. 5.1), because the constraint boundaries now are planes rather
than lines. The faces of the polyhedron form the boundary of the feasible region, where each
face is the portion of a constraint boundary that satisfies the other constraints as well. Note
that each CPF solution lies at the intersection of three constraint boundaries (sometimes in-
cluding some of the x1 � 0, x2 � 0, and x3 � 0 constraint boundaries for the nonnegativity
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TABLE 5.2 Defining equations for each 
corner-point infeasible 
solution for the Wyndor 
Glass Co. problem

Corner-Point Defining
Infeasible Solution Equations

(0, 9) x1 � 0
3x1 � 2x2 � 18

(4, 6) 2x2 � 12
x1 � 4

(6, 0) 3x1 � 2x2 � 18
x2 � 0



constraints), and the solution also satisfies the other constraints. Such intersections that do not
satisfy one or more of the other constraints yield corner-point infeasible solutions instead.

The darker line segment in Fig. 5.2 depicts the path of the simplex method on a typ-
ical iteration. The point (2, 4, 3) is the current CPF solution to begin the iteration, and
the point (4, 2, 4) will be the new CPF solution at the end of the iteration. The point 
(2, 4, 3) lies at the intersection of the x2 � 4, x1 � x2 � 6, and �x1 � 2x3 � 4 constraint
boundaries, so these three equations are the defining equations for this CPF solution. If
the x2 � 4 defining equation were removed, the intersection of the other two constraint
boundaries (planes) would form a line. One segment of this line, shown as the dark line
segment from (2, 4, 3) to (4, 2, 4) in Fig. 5.2, lies on the boundary of the feasible region,
whereas the rest of the line is infeasible. This line segment is an edge of the feasible re-
gion, and its endpoints (2, 4, 3) and (4, 2, 4) are adjacent CPF solutions.

For n � 3, all the edges of the feasible region are formed in this way as the feasible
segment of the line lying at the intersection of two constraint boundaries, and the two end-
points of an edge are adjacent CPF solutions. In Fig. 5.2 there are 15 edges of the feasi-
ble region, and so there are 15 pairs of adjacent CPF solutions. For the current CPF so-
lution (2, 4, 3), there are three ways to remove one of its three defining equations to obtain
an intersection of the other two constraint boundaries, so there are three edges emanating
from (2, 4, 3). These edges lead to (4, 2, 4), (0, 4, 2), and (2, 4, 0), so these are the CPF
solutions that are adjacent to (2, 4, 3).

For the next iteration, the simplex method chooses one of these three edges, say, the
darker line segment in Fig. 5.2, and then moves along this edge away from (2, 4, 3) un-
til it reaches the first new constraint boundary, x1 � 4, at its other endpoint. [We cannot
continue farther along this line to the next constraint boundary, x2 � 0, because this leads
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to a corner-point infeasible solution—(6, 0, 5).] The intersection of this first new con-
straint boundary with the two constraint boundaries forming the edge yields the new CPF
solution (4, 2, 4).

When n � 3, these same concepts generalize to higher dimensions, except the con-
straint boundaries now are hyperplanes instead of planes. Let us summarize.

Consider any linear programming problem with n decision variables and a bounded fea-
sible region. A CPF solution lies at the intersection of n constraint boundaries (and satis-
fies the other constraints as well). An edge of the feasible region is a feasible line seg-
ment that lies at the intersection of n � 1 constraint boundaries, where each endpoint lies
on one additional constraint boundary (so that these endpoints are CPF solutions). Two
CPF solutions are adjacent if the line segment connecting them is an edge of the feasi-
ble region. Emanating from each CPF solution are n such edges, each one leading to one
of the n adjacent CPF solutions. Each iteration of the simplex method moves from the
current CPF solution to an adjacent one by moving along one of these n edges.

When you shift from a geometric viewpoint to an algebraic one, intersection of con-
straint boundaries changes to simultaneous solution of constraint boundary equations.
The n constraint boundary equations yielding (defining) a CPF solution are its defining
equations, where deleting one of these equations yields a line whose feasible segment is
an edge of the feasible region.

We next analyze some key properties of CPF solutions and then describe the implica-
tions of all these concepts for interpreting the simplex method. However, while the above
summary is fresh in your mind, let us give you a preview of its implications. When the sim-
plex method chooses an entering basic variable, the geometric interpretation is that it is
choosing one of the edges emanating from the current CPF solution to move along. In-
creasing this variable from zero (and simultaneously changing the values of the other basic
variables accordingly) corresponds to moving along this edge. Having one of the basic vari-
ables (the leaving basic variable) decrease so far that it reaches zero corresponds to reach-
ing the first new constraint boundary at the other end of this edge of the feasible region.

Properties of CPF Solutions

We now focus on three key properties of CPF solutions that hold for any linear pro-
gramming problem that has feasible solutions and a bounded feasible region.

Property 1: (a) If there is exactly one optimal solution, then it must be a CPF
solution. (b) If there are multiple optimal solutions (and a bounded feasible re-
gion), then at least two must be adjacent CPF solutions.

Property 1 is a rather intuitive one from a geometric viewpoint. First consider Case
(a), which is illustrated by the Wyndor Glass Co. problem (see Fig. 5.1) where the one
optimal solution (2, 6) is indeed a CPF solution. Note that there is nothing special about
this example that led to this result. For any problem having just one optimal solution, it
always is possible to keep raising the objective function line (hyperplane) until it just
touches one point (the optimal solution) at a corner of the feasible region.

We now give an algebraic proof for this case.

Proof of Case (a) of Property 1: We set up a proof by contradiction by assum-
ing that there is exactly one optimal solution and that it is not a CPF solution.
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We then show below that this assumption leads to a contradiction and so cannot
be true. (The solution assumed to be optimal will be denoted by x*, and its ob-
jective function value by Z*.)

Recall the definition of CPF solution (a feasible solution that does not lie
on any line segment connecting two other feasible solutions). Since we have as-
sumed that the optimal solution x* is not a CPF solution, this implies that there
must be two other feasible solutions such that the line segment connecting them
contains the optimal solution. Let the vectors x	 and x		 denote these two other
feasible solutions, and let Z1 and Z2 denote their respective objective function
values. Like each other point on the line segment connecting x	 and x		,

x* � 
x		 � (1 � 
)x	

for some value of 
 such that 0 � 
 � 1. Thus,

Z* � 
Z2 � (1 � 
)Z1.

Since the weights 
 and 1 � 
 add to 1, the only possibilities for how Z*, Z1,
and Z2 compare are (1) Z* � Z1 � Z2, (2) Z1 � Z* � Z2, and (3) Z1 � Z* � Z2.
The first possibility implies that x	 and x		 also are optimal, which contradicts
the assumption that there is exactly one optimal solution. Both the latter possi-
bilities contradict the assumption that x* (not a CPF solution) is optimal. The re-
sulting conclusion is that it is impossible to have a single optimal solution that
is not a CPF solution.

Now consider Case (b), which was demonstrated in Sec. 3.2 under the definition of
optimal solution by changing the objective function in the example to Z � 3x1 � 2x2 (see
Fig. 3.5 on page 35). What then happens when you are solving graphically is that the ob-
jective function line keeps getting raised until it contains the line segment connecting the
two CPF solutions (2, 6) and (4, 3). The same thing would happen in higher dimensions
except that an objective function hyperplane would keep getting raised until it contained
the line segment(s) connecting two (or more) adjacent CPF solutions. As a consequence,
all optimal solutions can be obtained as weighted averages of optimal CPF solutions. (This
situation is described further in Probs. 4.5-5 and 4.5-6.)

The real significance of Property 1 is that it greatly simplifies the search for an op-
timal solution because now only CPF solutions need to be considered. The magnitude of
this simplification is emphasized in Property 2.

Property 2: There are only a finite number of CPF solutions.

This property certainly holds in Figs. 5.1 and 5.2, where there are just 5 and 10 CPF
solutions, respectively. To see why the number is finite in general, recall that each CPF so-
lution is the simultaneous solution of a system of n out of the m � n constraint boundary
equations. The number of different combinations of m � n equations taken n at a time is

� � � ,

which is a finite number. This number, in turn, in an upper bound on the number of CPF
solutions. In Fig. 5.1, m � 3 and n � 2, so there are 10 different systems of two equa-

(m � n)!
�

m!n!
m � n
�

n
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tions, but only half of them yield CPF solutions. In Fig. 5.2, m � 4 and n � 3, which
gives 35 different systems of three equations, but only 10 yield CPF solutions.

Property 2 suggests that, in principle, an optimal solution can be obtained by exhaus-
tive enumeration; i.e., find and compare all the finite number of CPF solutions. Unfortu-
nately, there are finite numbers, and then there are finite numbers that (for all practical pur-
poses) might as well be infinite. For example, a rather small linear programming problem
with only m � 50 and n � 50 would have 100!/(50!)2 � 1029 systems of equations to be
solved! By contrast, the simplex method would need to examine only approximately 100
CPF solutions for a problem of this size. This tremendous savings can be obtained because
of the optimality test given in Sec. 4.1 and restated here as Property 3.

Property 3: If a CPF solution has no adjacent CPF solutions that are better (as
measured by Z), then there are no better CPF solutions anywhere. Therefore,
such a CPF solution is guaranteed to be an optimal solution (by Property 1), as-
suming only that the problem possesses at least one optimal solution (guaranteed
if the problem possesses feasible solutions and a bounded feasible region).

To illustrate Property 3, consider Fig. 5.1 for the Wyndor Glass Co. example. For the
CPF solution (2, 6), its adjacent CPF solutions are (0, 6) and (4, 3), and neither has a bet-
ter value of Z than (2, 6) does. This outcome implies that none of the other CPF solu-
tions—(0, 0) and (4, 0)—can be better than (2, 6), so (2, 6) must be optimal.

By contrast, Fig. 5.3 shows a feasible region that can never occur for a linear pro-
gramming problem but that does violate Property 3. The problem shown is identical to
the Wyndor Glass Co. example (including the same objective function) except for the en-
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largement of the feasible region to the right of (�
8
3

�, 5). Consequently, the adjacent CPF so-
lutions for (2, 6) now are (0, 6) and (�

8
3

�, 5), and again neither is better than (2, 6). How-
ever, another CPF solution (4, 5) now is better than (2, 6), thereby violating Property 3.
The reason is that the boundary of the feasible region goes down from (2, 6) to ( �

8
3

�, 5) and
then “bends outward” to (4, 5), beyond the objective function line passing through (2, 6).

The key point is that the kind of situation illustrated in Fig. 5.3 can never occur in
linear programming. The feasible region in Fig. 5.3 implies that the 2x2 � 12 and 3x1 �
2x2 � 18 constraints apply for 0 � x1 � �

8
3

�. However, under the condition that �
8
3

� � x1 � 4,
the 3x1 � 2x2 � 18 constraint is dropped and replaced by x2 � 5. Such “conditional con-
straints” just are not allowed in linear programming.

The basic reason that Property 3 holds for any linear programming problem is that
the feasible region always has the property of being a convex set, as defined in Appendix
2 and illustrated in several figures there. For two-variable linear programming problems,
this convex property means that the angle inside the feasible region at every CPF solu-
tion is less than 180°. This property is illustrated in Fig. 5.1, where the angles at (0, 0),
(0, 6), and (4, 0) are 90° and those at (2, 6) and (4, 3) are between 90° and 180°. By con-
trast, the feasible region in Fig. 5.3 is not a convex set, because the angle at ( �

8
3

�, 5) is more
than 180°. This is the kind of “bending outward” at an angle greater than 180° that can
never occur in linear programming. In higher dimensions, the same intuitive notion of
“never bending outward” continues to apply.

To clarify the significance of a convex feasible region, consider the objective func-
tion hyperplane that passes through a CPF solution that has no adjacent CPF solutions
that are better. [In the original Wyndor Glass Co. example, this hyperplane is the objec-
tive function line passing through (2, 6).] All these adjacent solutions [(0, 6) and (4, 3) in
the example] must lie either on the hyperplane or on the unfavorable side (as measured
by Z) of the hyperplane. The feasible region being convex means that its boundary can-
not “bend outward” beyond an adjacent CPF solution to give another CPF solution that
lies on the favorable side of the hyperplane. So Property 3 holds.

Extensions to the Augmented Form of the Problem

For any linear programming problem in our standard form (including functional constraints
in � form), the appearance of the functional constraints after slack variables are intro-
duced is as follows:

(1) a11x1 � a12x2 � ��� � a1nxn � xn�1 � b1

(2) a21x1 � a22x2 � ��� � a2nxn � xn�2 � b2

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(m) am1x1 � am2x2 � ��� � amnxn � xn�m � bm,

where xn�1, xn�2, . . . , xn�m are the slack variables. For other linear programming prob-
lems, Sec. 4.6 described how essentially this same appearance (proper form from Gauss-
ian elimination) can be obtained by introducing artificial variables, etc. Thus, the origi-
nal solutions (x1, x2, . . . , xn) now are augmented by the corresponding values of the
slack or artificial variables (xn�1, xn�2, . . . , xn�m) and perhaps some surplus variables
as well. This augmentation led in Sec. 4.2 to defining basic solutions as augmented cor-
ner-point solutions and basic feasible solutions (BF solutions) as augmented CPF so-
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lutions. Consequently, the preceding three properties of CPF solutions also hold for BF
solutions.

Now let us clarify the algebraic relationships between basic solutions and corner-point
solutions. Recall that each corner-point solution is the simultaneous solution of a system
of n constraint boundary equations, which we called its defining equations. The key ques-
tion is: How do we tell whether a particular constraint boundary equation is one of the
defining equations when the problem is in augmented form? The answer, fortunately, is
a simple one. Each constraint has an indicating variable that completely indicates (by
whether its value is zero) whether that constraint’s boundary equation is satisfied by the
current solution. A summary appears in Table 5.3. For the type of constraint in each row
of the table, note that the corresponding constraint boundary equation (fourth column) is
satisfied if and only if this constraint’s indicating variable (fifth column) equals zero. In
the last row (functional constraint in � form), the indicating variable x�n�i � xsi

actually
is the difference between the artificial variable x�n�i and the surplus variable xsi

.
Thus, whenever a constraint boundary equation is one of the defining equations for

a corner-point solution, its indicating variable has a value of zero in the augmented form
of the problem. Each such indicating variable is called a nonbasic variable for the corre-
sponding basic solution. The resulting conclusions and terminology (already introduced
in Sec. 4.2) are summarized next.

Each basic solution has m basic variables, and the rest of the variables are nonbasic vari-
ables set equal to zero. (The number of nonbasic variables equals n plus the number of
surplus variables.) The values of the basic variables are given by the simultaneous solu-
tion of the system of m equations for the problem in augmented form (after the nonbasic
variables are set to zero). This basic solution is the augmented corner-point solution whose
n defining equations are those indicated by the nonbasic variables. In particular, whenever
an indicating variable in the fifth column of Table 5.3 is a nonbasic variable, the constraint
boundary equation in the fourth column is a defining equation for the corner-point solu-
tion. (For functional constraints in � form, at least one of the two supplementary variables
x�n�i and xsi

always is a nonbasic variable, but the constraint boundary equation becomes a
defining equation only if both of these variables are nonbasic variables.)
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TABLE 5.3 Indicating variables for constraint boundary equations*

Constraint
Type of Form of Constraint in Boundary Indicating
Constraint Constraint Augmented Form Equation Variable

Nonnegativity xj � 0 xj � 0 xj � 0 xj

Functional (�) �
n

j�1
aijxj � bi �

n

j�1
aijxj � xn�i � bi �

n

j�1
aijxj � bi xn�i

Functional (�) �
n

j�1
aijxj � bi �

n

j�1
aijxj � x�n�i � bi �

n

j�1
aijxj � bi x�n�i

Functional (�) �
n

j�1
aijxj � bi �

n

j�1
aijxj � x�n�i � xsi

� bi �
n

j�1
aijxj � bi x�n�i � xsi

*Indicating variable � 0 ⇒ constraint boundary equation satisfied; 
indicating variable  0 ⇒ constraint boundary equation violated.



Now consider the basic feasible solutions. Note that the only requirements for a so-
lution to be feasible in the augmented form of the problem are that it satisfy the system
of equations and that all the variables be nonnegative.

A BF solution is a basic solution where all m basic variables are nonnegative (� 0). A
BF solution is said to be degenerate if any of these m variables equals zero.

Thus, it is possible for a variable to be zero and still not be a nonbasic variable for the
current BF solution. (This case corresponds to a CPF solution that satisfies another con-
straint boundary equation in addition to its n defining equations.) Therefore, it is neces-
sary to keep track of which is the current set of nonbasic variables (or the current set of
basic variables) rather than to rely upon their zero values.

We noted earlier that not every system of n constraint boundary equations yields a
corner-point solution, because either the system has no solution or it has multiple solu-
tions. For analogous reasons, not every set of n nonbasic variables yields a basic solution.
However, these cases are avoided by the simplex method.

To illustrate these definitions, consider the Wyndor Glass Co. example once more. Its
constraint boundary equations and indicating variables are shown in Table 5.4.

Augmenting each of the CPF solutions (see Table 5.1) yields the BF solutions listed
in Table 5.5. This table places adjacent BF solutions next to each other, except for the pair
consisting of the first and last solutions listed. Notice that in each case the nonbasic vari-
ables necessarily are the indicating variables for the defining equations. Thus, adjacent
BF solutions differ by having just one different nonbasic variable. Also notice that each
BF solution is the simultaneous solution of the system of equations for the problem in
augmented form (see Table 5.4) when the nonbasic variables are set equal to zero.

Similarly, the three corner-point infeasible solutions (see Table 5.2) yield the three
basic infeasible solutions shown in Table 5.6.

The other two sets of nonbasic variables, (1) x1 and x3 and (2) x2 and x4, do not yield
a basic solution, because setting either pair of variables equal to zero leads to having no
solution for the system of Eqs. (1) to (3) given in Table 5.4. This conclusion parallels the
observation we made early in this section that the corresponding sets of constraint bound-
ary equations do not yield a solution.
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TABLE 5.4 Indicating variables for the constraint boundary equations of the
Wyndor Glass Co. problem*

Constraint in Constraint Boundary Indicating
Constraint Augmented Form Equation Variable

x1 � 0 x1 � 0 x1 � 0 x1

x2 � 0 x2 � 0 x2 � 0 x2

x1 � 4 (1) 2x1 � 2x2 � x3x3x3 � 24 x1 � 4 x3

2x2 � 12 (2) 3x1 � 2x2 � x3x4x3 � 12 2x2 � 12 x4

3x1 � x2 � 18 (3) 3x1 � 2x2 � x3x3x5 � 18 3x1 � 2x2 � 18 x5

*Indicating variable � 0 ⇒ constraint boundary equation satisfied; 
indicating variable  0 ⇒ constraint boundary equation violated.



The simplex method starts at a BF solution and then iteratively moves to a better ad-
jacent BF solution until an optimal solution is reached. At each iteration, how is the ad-
jacent BF solution reached?

For the original form of the problem, recall that an adjacent CPF solution is reached
from the current one by (1) deleting one constraint boundary (defining equation) from the
set of n constraint boundaries defining the current solution, (2) moving away from the
current solution in the feasible direction along the intersection of the remaining n � 1
constraint boundaries (an edge of the feasible region), and (3) stopping when the first new
constraint boundary (defining equation) is reached.

Equivalently, in our new terminology, the simplex method reaches an adjacent BF so-
lution from the current one by (1) deleting one variable (the entering basic variable) from
the set of n nonbasic variables defining the current solution, (2) moving away from the
current solution by increasing this one variable from zero (and adjusting the other basic
variables to still satisfy the system of equations) while keeping the remaining n � 1 non-
basic variables at zero, and (3) stopping when the first of the basic variables (the leaving
basic variable) reaches a value of zero (its constraint boundary). With either interpreta-
tion, the choice among the n alternatives in step 1 is made by selecting the one that would
give the best rate of improvement in Z (per unit increase in the entering basic variable)
during step 2.
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TABLE 5.5 BF solutions for the Wyndor Glass Co. problem

Defining Nonbasic
CPF Solution Equations BF Solution Variables

(0, 0) x1 � 0 (0, 0, 4, 12, 18) x1

x2 � 0 x2

(0, 6) x1 � 0 (0, 6, 4, 0, 6) x1

2x2 � 12 x4

(2, 6) 2x2 � 12 (2, 6, 2, 0, 0) x4

3x1 � 2x2 � 18 x5

(4, 3) 3x1 � 2x2 � 18 (4, 3, 0, 6, 0) x5

x1 � 4 x3

(4, 0) x1 � 4 (4, 0, 0, 12, 6) x3

x2 � 0 x2

TABLE 5.6 Basic infeasible solutions for the Wyndor Glass Co. problem

Corner-Point Defining Basic Infeasible Nonbasic
Infeasible Solution Equations Solution Variables

(0, 9) x1 � 0 (0, 9, 4, �6, 0) x1

3x1 � 2x2 � 18 x5

(4, 6) 2x2 � 12 (4, 6, 0, 0, �6) x4

x1 � 4 x3

(6, 0) 3x1 � 2x2 � 18 (6, 0, �2, 12, 0) x5

x2 � 0 x2



Table 5.7 illustrates the close correspondence between these geometric and algebraic
interpretations of the simplex method. Using the results already presented in Secs. 4.3 and
4.4, the fourth column summarizes the sequence of BF solutions found for the Wyndor
Glass Co. problem, and the second column shows the corresponding CPF solutions. In the
third column, note how each iteration results in deleting one constraint boundary (defining
equation) and substituting a new one to obtain the new CPF solution. Similarly, note in the
fifth column how each iteration results in deleting one nonbasic variable and substituting
a new one to obtain the new BF solution. Furthermore, the nonbasic variables being deleted
and added are the indicating variables for the defining equations being deleted and added
in the third column. The last column displays the initial system of equations [excluding
Eq. (0)] for the augmented form of the problem, with the current basic variables shown in
bold type. In each case, note how setting the nonbasic variables equal to zero and then
solving this system of equations for the basic variables must yield the same solution for
(x1, x2) as the corresponding pair of defining equations in the third column.
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TABLE 5.7 Sequence of solutions obtained by the simplex method for the 
Wyndor Glass Co. problem

CPF Defining Nonbasic Functional Constraints
Iteration Solution Equations BF Solution Variables in Augmented Form

0 (0, 0) x1 � 0 (0, 0, 4, 12, 18) x1 � 0 x1 � 2x2 � x3 � 4
x2 � 0 x2 � 0 2x2 � x4 � 12

3x1 � 2x2 � x5 � 18

1 (0, 6) x1 � 0 (0, 6, 4, 0, 6) x1 � 0 x1 � 2x2 � x3 � 4
2x2 � 12 x4 � 0 2x2 � x4 � 12

3x1 � 2x2 � x5 � 18

2 (2, 6) 2x2 � 12 (2, 6, 2, 0, 0) x4 � 0 x1 � 2x2 � x3 � 4
3x1 � 2x2 � 18 x5 � 0 2x2 � x4 � 12

3x1 � 2x2 � x5 � 18

The simplex method as described in Chap. 4 (hereafter called the original simplex method )
is a straightforward algebraic procedure. However, this way of executing the algorithm
(in either algebraic or tabular form) is not the most efficient computational procedure for
computers because it computes and stores many numbers that are not needed at the cur-
rent iteration and that may not even become relevant for decision making at subsequent
iterations. The only pieces of information relevant at each iteration are the coefficients of
the nonbasic variables in Eq. (0), the coefficients of the entering basic variable in the other
equations, and the right-hand sides of the equations. It would be very useful to have a
procedure that could obtain this information efficiently without computing and storing all
the other coefficients.

As mentioned in Sec. 4.8, these considerations motivated the development of the re-
vised simplex method. This method was designed to accomplish exactly the same things
as the original simplex method, but in a way that is more efficient for execution on a com-
puter. Thus, it is a streamlined version of the original procedure. It computes and stores
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………………………

only the information that is currently needed, and it carries along the essential data in a
more compact form.

The revised simplex method explicitly uses matrix manipulations, so it is necessary
to describe the problem in matrix notation. (See Appendix 4 for a review of matrices.) To
help you distinguish between matrices, vectors, and scalars, we consistently use BOLD-
FACE CAPITAL letters to represent matrices, boldface lowercase letters to represent
vectors, and italicized letters in ordinary print to represent scalars. We also use a boldface
zero (0) to denote a null vector (a vector whose elements all are zero) in either column
or row form (which one should be clear from the context), whereas a zero in ordinary
print (0) continues to represent the number zero.

Using matrices, our standard form for the general linear programming model given
in Sec. 3.2 becomes

where c is the row vector

c � [c1, c2, . . . , cn],

x, b, and 0 are the column vectors such that

x � , b � , 0 � ,

and A is the matrix

A � .

To obtain the augmented form of the problem, introduce the column vector of slack 
variables

xs �

so that the constraints become

[A, I] � � � b and � � � 0,
x
xs

x
xs
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Maximize Z � cx,

subject to

Ax � b and x � 0,
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…………………………

where I is the m � m identity matrix, and the null vector 0 now has n � m elements. (We
comment at the end of the section about how to deal with problems that are not in our
standard form.)

Solving for a Basic Feasible Solution

Recall that the general approach of the simplex method is to obtain a sequence of im-
proving BF solutions until an optimal solution is reached. One of the key features of the
revised simplex method involves the way in which it solves for each new BF solution af-
ter identifying its basic and nonbasic variables. Given these variables, the resulting basic
solution is the solution of the m equations

[A, I] � � � b,

in which the n nonbasic variables from the n � m elements of

� �
are set equal to zero. Eliminating these n variables by equating them to zero leaves a 
set of m equations in m unknowns (the basic variables). This set of equations can be de-
noted by

BxB � b,

where the vector of basic variables

xB �

is obtained by eliminating the nonbasic variables from

� �,

and the basis matrix

B �

is obtained by eliminating the columns corresponding to coefficients of nonbasic variables
from [A, I]. (In addition, the elements of xB and, therefore, the columns of B may be
placed in a different order when the simplex method is executed.)

The simplex method introduces only basic variables such that B is nonsingular, so
that B�1 always will exist. Therefore, to solve BxB � b, both sides are premultiplied 
by B�1:

B�1BxB � B�1b.
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Since B�1B � I, the desired solution for the basic variables is

Let cB be the vector whose elements are the objective function coefficients (including ze-
ros for slack variables) for the corresponding elements of xB. The value of the objective
function for this basic solution is then

Example. To illustrate this method of solving for a BF solution, consider again the
Wyndor Glass Co. problem presented in Sec. 3.1 and solved by the original simplex method
in Table 4.8. In this case,

c � [3, 5], [A, I] � , b � , x � � �, xs � .

Referring to Table 4.8, we see that the sequence of BF solutions obtained by the simplex
method (original or revised) is the following:

Iteration 0

xB � , B � � B�1, so � � ,

cB � [0, 0, 0], so Z � [0, 0, 0] � 0.

Iteration 1

xB � , B � , B�1 � ,

so

� � ,

cB � [0, 5, 0], so Z � [0, 5, 0] � 30.
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Z � cBxB � cBB�1b.

xB � B�1b.
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Iteration 2

xB � , B � , B�1 � ,

so

� � ,

cB � [0, 5, 3], so Z � [0, 5, 3] � 36.

Matrix Form of the Current Set of Equations

The last preliminary before we summarize the revised simplex method is to show the ma-
trix form of the set of equations appearing in the simplex tableau for any iteration of the
original simplex method.

For the original set of equations, the matrix form is

� � � � �.

This set of equations also is exhibited in the first simplex tableau of Table 5.8.
The algebraic operations performed by the simplex method (multiply an equation by

a constant and add a multiple of one equation to another equation) are expressed in ma-
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TABLE 5.8 Initial and later simplex tableaux in matrix form

Coefficient of:
Basic Right

Iteration Variable Eq. Z Original Variables Slack Variables Side

0 Z (0) 1 �c 0 0
xB (1, 2, . . . , m) 0 A I b

Any Z (0) 1 cBB
�1A � c cBB

�1 cBB
�1b

xB (1, 2, . . .  m) 0 B�1 A B�1 B�1b



trix form by premultiplying both sides of the original set of equations by the appropriate
matrix. This matrix would have the same elements as the identity matrix, except that each
multiple for an algebraic operation would go into the spot needed to have the matrix mul-
tiplication perform this operation. Even after a series of algebraic operations over several
iterations, we still can deduce what this matrix must be (symbolically) for the entire se-
ries by using what we already know about the right-hand sides of the new set of equa-
tions. In particular, after any iteration, xB � B�1b and Z � cBB�1b, so the right-hand sides
of the new set of equations have become

� � � � �� � � � �.

Because we perform the same series of algebraic operations on both sides of the orig-
inal set of operations, we use this same matrix that premultiplies the original right-hand
side to premultiply the original left-hand side. Consequently, since

� �� � � � �,

the desired matrix form of the set of equations after any iteration is

� � � � �.

The second simplex tableau of Table 5.8 also exhibits this same set of equations.

Example. To illustrate this matrix form for the current set of equations, we will show
how it yields the final set of equations resulting from iteration 2 for the Wyndor Glass
Co. problem. Using the B�1 and cB given for iteration 2 at the end of the preceding sub-
section, we have

B�1A � � ,

cBB�1 � [0, 5, 3] � [0, �
3
2

�, 1],

cBB�1A � c � [0, 5, 3] � [3, 5] � [0, 0].
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Also, by using the values of xB � B�1b and Z � cBB�1b calculated at the end of the pre-
ceding subsection, these results give the following set of equations:

� ,

as shown in the final simplex tableau in Table 4.8.

The Overall Procedure

There are two key implications from the matrix form of the current set of equations shown
at the bottom of Table 5.8. The first is that only B�1 needs to be derived to be able to cal-
culate all the numbers in the simplex tableau from the original parameters (A, b, cB) of
the problem. (This implication is the essence of the fundamental insight described in the
next section.) The second is that any one of these numbers can be obtained individually,
usually by performing only a vector multiplication (one row times one column) instead
of a complete matrix multiplication. Therefore, the required numbers to perform an iter-
ation of the simplex method can be obtained as needed without expending the computa-
tional effort to obtain all the numbers. These two key implications are incorporated into
the following summary of the overall procedure.

Summary of the Revised Simplex Method.

1. Initialization: Same as for the original simplex method.
2. Iteration:

Step 1 Determine the entering basic variable: Same as for the original simplex
method.

Step 2 Determine the leaving basic variable: Same as for the original simplex
method, except calculate only the numbers required to do this [the coefficients of the
entering basic variable in every equation but Eq. (0), and then, for each strictly posi-
tive coefficient, the right-hand side of that equation].1

Step 3 Determine the new BF solution: Derive B�1 and set xB � B�1b. 
3. Optimality test: Same as for the original simplex method, except calculate only the

numbers required to do this test, i.e., the coefficients of the nonbasic variables in 
Eq. (0).

In step 3 of an iteration, B�1 could be derived each time by using a standard computer
routine for inverting a matrix. However, since B (and therefore B�1) changes so little from
one iteration to the next, it is much more efficient to derive the new B�1 (denote it by B�1

new)
from the B�1 at the preceding iteration (denote it by B�1

old). (For the initial BF solution,
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1Because the value of xB is the entire vector of right-hand sides except for Eq. (0), the relevant right-hand sides
need not be calculated here if xB was calculated in step 3 of the preceding iteration.



B � I � B�1.) One method for doing this derivation is based directly upon the interpreta-
tion of the elements of B�1 [the coefficients of the slack variables in the current Eqs. (1),
(2), . . . , (m)] presented in the next section, as well as upon the procedure used by the orig-
inal simplex method to obtain the new set of equations from the preceding set.

To describe this method formally, let

xk � entering basic variable,

a	ik � coefficient of xk in current Eq. (i), for i � 1, 2, . . . , m (calculated in step 2 of
an iteration),

r � number of equation containing the leaving basic variable.

Recall that the new set of equations [excluding Eq. (0)] can be obtained from the pre-
ceding set by subtracting a	ik /a	rk times Eq. (r) from Eq. (i), for all i � 1, 2, . . . , m ex-
cept i � r, and then dividing Eq. (r) by a	rk. Therefore, the element in row i and column
j of B�1

new is

(B�1
old)ij � �

a
a
	r

	ik
k

�(B�1
old)rj if i  r,

(B�1
new)ij �

�
a
1
	rk
�(B�1

old)rj if i � r.

These formulas are expressed in matrix notation as

B�1
new � EB�1

old,

where matrix E is an identity matrix except that its rth column is replaced by the vector

��
a
a
	r

	ik
k

� if i  r,
� � , where �i �

�
a
1
	rk
� if i � r.

Thus, E � [U1, U2, . . . , Ur�1, �, Ur�1, . . . , Um], where the m elements of each of the
Ui column vectors are 0 except for a 1 in the ith position.

Example. We shall illustrate the revised simplex method by applying it to the Wyndor
Glass Co. problem. The initial basic variables are the slack variables

xB � .

Iteration 1
Because the initial B�1 � I, no calculations are needed to obtain the numbers required to
identify the entering basic variable x2 (�c2 � �5 � �3 � �c1) and the leaving basic vari-
able x4 (a12 � 0, b2/a22 � �

1
2
2
� � �

1
2
8
� � b3/a32, so r � 2). Thus, the new set of basic variables is

xB � .
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To obtain the new B�1,

� � � ,

so

B�1 � � ,

so that

xB � � .

To test whether this solution is optimal, we calculate the coefficients of the nonbasic
variables (x1 and x4) in Eq. (0). Performing only the relevant parts of the matrix multi-
plications, we obtain

cBB�1A � c � [0, 5, 0] � [3, —] � [�3, —],

cBB�1 � [0, 5, 0] � [—, �
5
2

�, —],

so the coefficients of x1 and x4 are �3 and �
5
2

�, respectively. Since x1 has a negative coeffi-
cient, this solution is not optimal.

Iteration 2
Using these coefficients of the nonbasic variables in Eq. (0), since only x1 has a negative
coefficient, we begin the next iteration by identifying x1 as the entering basic variable. To
determine the leaving basic variable, we must calculate the other coefficients of x1:

B�1A � � .
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By using the right side column for the current BF solution (the value of xB) just given for
iteration 1, the ratios 4/1 � 6/3 indicate that x5 is the leaving basic variable, so the new
set of basic variables is

xB � with � � � .

Therefore, the new B�1 is

B�1 � � ,

so that

xB � � .

Applying the optimality test, we find that the coefficients of the nonbasic variables 
(x4 and x5) in Eq. (0) are

cBB�1 � [0, 5, 3] � [—, �
3
2

�, 1].

Because both coefficients ( �
3
2

� and 1) are nonnegative, the current solution (x1 � 2, x2 � 6,
x3 � 2, x4 � 0, x5 � 0) is optimal and the procedure terminates.

General Observations

The preceding discussion was limited to the case of linear programming problems fitting
our standard form given in Sec. 3.2. However, the modifications for other forms are rel-
atively straightforward. The initialization would be conducted just as it would for the orig-
inal simplex method (see Sec. 4.6). When this step involves introducing artificial variables
to obtain an initial BF solution (and thereby to obtain an identity matrix as the initial ba-
sis matrix), these variables are included among the m elements of xs.

Let us summarize the advantages of the revised simplex method over the original sim-
plex method. One advantage is that the number of arithmetic computations may be re-
duced. This is especially true when the A matrix contains a large number of zero elements
(which is usually the case for the large problems arising in practice). The amount of in-
formation that must be stored at each iteration is less, sometimes considerably so. The re-
vised simplex method also permits the control of the rounding errors inevitably generated
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by computers. This control can be exercised by periodically obtaining the current B�1 by
directly inverting B. Furthermore, some of the postoptimality analysis problems discussed
in Sec. 4.7 can be handled more conveniently with the revised simplex method. For all
these reasons, the revised simplex method is usually preferable to the original simplex
method for computer execution.
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We shall now focus on a property of the simplex method (in any form) that has been re-
vealed by the revised simplex method in the preceding section.1 This fundamental insight
provides the key to both duality theory and sensitivity analysis (Chap. 6), two very im-
portant parts of linear programming.

The insight involves the coefficients of the slack variables and the information they
give. It is a direct result of the initialization, where the ith slack variable xn�i is given a
coefficient of �1 in Eq. (i) and a coefficient of 0 in every other equation [including Eq.
(0)] for i � 1, 2, . . . , m, as shown by the null vector 0 and the identity matrix I in the
slack variables column for iteration 0 in Table 5.8. (For most of this section, we are as-
suming that the problem is in our standard form, with bi � 0 for all i � 1, 2, . . . , m, so
that no additional adjustments are needed in the initialization.) The other key factor is that
subsequent iterations change the initial equations only by

1. Multiplying (or dividing) an entire equation by a nonzero constant
2. Adding (or subtracting) a multiple of one entire equation to another entire equation

As already described in the preceding section, a sequence of these kinds of elemen-
tary algebraic operations is equivalent to premultiplying the initial simplex tableau by
some matrix. (See Appendix 4 for a review of matrices.) The consequence can be sum-
marized as follows.

Verbal description of fundamental insight: After any iteration, the coefficients
of the slack variables in each equation immediately reveal how that equation has
been obtained from the initial equations.

As one example of the importance of this insight, recall from Table 5.8 that the ma-
trix formula for the optimal solution obtained by the simplex method is

xB � B�1b,

where xB is the vector of basic variables, B�1 is the matrix of coefficients of slack vari-
ables for rows 1 to m of the final tableau, and b is the vector of original right-hand sides
(resource availabilities). (We soon will denote this particular B�1 by S*.) Postoptimality
analysis normally includes an investigation of possible changes in b. By using this for-
mula, you can see exactly how the optimal BF solution changes (or whether it becomes
infeasible because of negative variables) as a function of b. You do not have to reapply
the simplex method over and over for each new b, because the coefficients of the slack

5.3 A FUNDAMENTAL INSIGHT

1However, since some instructors do not cover the preceding section, we have written this section in a way that
can be understood without first reading Sec. 5.2. It is helpful to take a brief look at the matrix notation intro-
duced at the beginning of Sec. 5.2, including the resulting key equation, xB � B�1b.



variables tell all! In a similar fashion, this fundamental insight provides a tremendous
computational saving for the rest of sensitivity analysis as well.

To spell out the how and the why of this insight, let us look again at the Wyndor
Glass Co. example. (The OR Tutor also includes another demonstration example.)

Example. Table 5.9 shows the relevant portion of the simplex tableau for demonstrat-
ing this fundamental insight. Light lines have been drawn around the coefficients of the
slack variables in all the tableaux in this table because these are the crucial coefficients
for applying the insight. To avoid clutter, we then identify the pivot row and pivot column
by a single box around the pivot number only.

Iteration 1
To demonstrate the fundamental insight, our focus is on the algebraic operations performed
by the simplex method while using Gaussian elimination to obtain the new BF solution.
If we do all the algebraic operations with the old row 2 (the pivot row) rather than the
new one, then the algebraic operations spelled out in Chap. 4 for iteration 1 are

New row 0 � old row 0 � ( �
5
2

�)(old row 2),

New row 1 � old row 1 � (0)(old row 2),

New row 2 � ( �
1
2

�)(old row 2),

New row 3 � old row 3 � (�1)(old row 2).
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TABLE 5.9 Simplex tableaux without leftmost columns for the 
Wyndor Glass Co. problem

Coefficient of:

Iteration x1 x2 x3 x4 x5 Right Side

�3 �5 0 0 0 0
1 0 1 0 0 4

0
0 2 0 1 0 12
3 2 0 0 1 18

�3 0 0 �
5
2

� 0 30

1 0 1 0 0 4
1

0 1 0 �
1
2

� 0 6

3 0 0 �1 1 6

0 0 0 �
3
2

� 1 36

0 0 1 �
1
3

� ��
1
3

� 2
2

0 1 0 �
1
2

� 0 6

1 0 0 ��
1
3

� �
1
3

� 2



Ignoring row 0 for the moment, we see that these algebraic operations amount to pre-
multiplying rows 1 to 3 of the initial tableau by the matrix

.

Rows 1 to 3 of the initial tableau are

Old rows 1–3 � ,

where the third, fourth, and fifth columns (the coefficients of the slack variables) form an
identity matrix. Therefore,

New rows 1–3 �

� .

Note how the first matrix is reproduced exactly in the box below it as the coefficients of
the slack variables in rows 1 to 3 of the new tableau, because the coefficients of the slack
variables in rows 1 to 3 of the initial tableau form an identity matrix. Thus, just as stated
in the verbal description of the fundamental insight, the coefficients of the slack variables
in the new tableau do indeed provide a record of the algebraic operations performed.

This insight is not much to get excited about after just one iteration, since you can
readily see from the initial tableau what the algebraic operations had to be, but it becomes
invaluable after all the iterations are completed.

For row 0, the algebraic operation performed amounts to the following matrix calcu-
lations, where now our focus is on the vector [0, �

5
2

�, 0] that premultiplies rows 1 to 3 of
the initial tableau.

New row 0 � [�3, �5 0, 0, 0 0] � [0, �
5
2

�, 0]

� [�3, 0, 0, �
5
2

�, 0, 30].

Note how this vector is reproduced exactly in the box below it as the coefficients of the
slack variables in row 0 of the new tableau, just as was claimed in the statement of the
fundamental insight. (Once again, the reason is the identity matrix for the coefficients of
the slack variables in rows 1 to 3 of the initial tableau, along with the zeros for these co-
efficients in row 0 of the initial tableau.)
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Iteration 2
The algebraic operations performed on the second tableau of Table 5.9 for iteration 2 are

New row 0 � old row 0 � (1)(old row 3),

New row 1 � old row 1 � (��
1
3

�)(old row 3),

New row 2 � old row 2 � (0)(old row 3),

New row 3 � (�
1
3

�)(old row 3).

Ignoring row 0 for the moment, we see that these operations amount to premultiplying
rows 1 to 3 of this tableau by the matrix

.

Writing this second tableau as the matrix product shown for iteration 1 (namely, the cor-
responding matrix times rows 1 to 3 of the initial tableau) then yields

Final rows 1–3 �

�

� .

The first two matrices shown on the first line of these calculations summarize the alge-
braic operations of the second and first iterations, respectively. Their product, shown as
the first matrix on the second line, then combines the algebraic operations of the two it-
erations. Note how this matrix is reproduced exactly in the box below it as the coefficients
of the slack variables in rows 1 to 3 of the new (final) tableau shown on the third line.
What this portion of the tableau reveals is how the entire final tableau (except row 0) has
been obtained from the initial tableau, namely,

Final row 1 � (1)(initial row 1) � (�
1
3

�)(initial row 2) � (��
1
3

�)(initial row 3),

Final row 2 � (0)(initial row 1) � (�
1
2

�)(initial row 2) � (0)(initial row 3),

Final row 3 � (0)(initial row 1) � (��
1
3

�)(initial row 2) � (�
1
3

�)(initial row 3).

To see why these multipliers of the initial rows are correct, you would have to trace
through all the algebraic operations of both iterations. For example, why does final row
1 include (�

1
3

�)(initial row 2), even though a multiple of row 2 has never been added directly
to row 1? The reason is that initial row 2 was subtracted from initial row 3 in iteration 1,
and then (�

1
3

�)(old row 3) was subtracted from old row 1 in iteration 2.
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However, there is no need for you to trace through. Even when the simplex method
has gone through hundreds or thousands of iterations, the coefficients of the slack vari-
ables in the final tableau will reveal how this tableau has been obtained from the initial
tableau. Furthermore, the same algebraic operations would give these same coefficients
even if the values of some of the parameters in the original model (initial tableau) were
changed, so these coefficients also reveal how the rest of the final tableau changes with
changes in the initial tableau.

To complete this story for row 0, the fundamental insight reveals that the entire final
row 0 can be calculated from the initial tableau by using just the coefficients of the slack
variables in the final row 0—[0, �

3
2

�, 1]. This calculation is shown below, where the first
vector is row 0 of the initial tableau and the matrix is rows 1 to 3 of the initial tableau.

Final row 0 � [�3, �5 0, 0, 0 0] � [0, �
3
2

�, 1]

� [0, 0, 0, �
3
2

�, 1, 36].

Note again how the vector premultiplying rows 1 to 3 of the initial tableau is reproduced
exactly as the coefficients of the slack variables in the final row 0. These quantities must
be identical because of the coefficients of the slack variables in the initial tableau (an
identity matrix below a null vector). This conclusion is the row 0 part of the fundamen-
tal insight.

Mathematical Summary

Because its primary applications involve the final tableau, we shall now give a general
mathematical expression for the fundamental insight just in terms of this tableau, using
matrix notation. If you have not read Sec. 5.2, you now need to know that the parame-
ters of the model are given by the matrix A � �aij� and the vectors b � �bi� and c � �cj�,
as displayed at the beginning of that section.

The only other notation needed is summarized and illustrated in Table 5.10. Notice
how vector t (representing row 0) and matrix T (representing the other rows) together cor-
respond to the rows of the initial tableau in Table 5.9, whereas vector t* and matrix T*
together correspond to the rows of the final tableau in Table 5.9. This table also shows
these vectors and matrices partitioned into three parts: the coefficients of the original vari-
ables, the coefficients of the slack variables (our focus), and the right-hand side. Once
again, the notation distinguishes between parts of the initial tableau and the final tableau
by using an asterisk only in the latter case.

For the coefficients of the slack variables (the middle part) in the initial tableau of
Table 5.10, notice the null vector 0 in row 0 and the identity matrix I below, which pro-
vide the keys for the fundamental insight. The vector and matrix in the same location of
the final tableau, y* and S*, then play a prominent role in the equations for the funda-
mental insight. A and b in the initial tableau turn into A* and b* in the final tableau. For
row 0 of the final tableau, the coefficients of the decision variables are z* � c (so the vec-
tor z* is what has been added to the vector of initial coefficients, �c), and the right-hand
side Z* denotes the optimal value of Z.
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It is helpful at this point to look back at Table 5.8 in Sec. 5.2 and compare it with
Table 5.10. (If you haven’t previously studied Sec. 5.2, you will need to read the defini-
tion of the basis matrix B and the vectors xB and cB given early in that section before
looking at Table 5.8.) The notation for the components of the initial simplex tableau is
the same in the two tables. The lower part of Table 5.8 shows any later simplex tableau
in matrix form, whereas the lower part of Table 5.10 gives the final tableau in matrix form.
Note that the matrix B�1 in Table 5.8 is in the same location as S* in Table 5.10. Thus,

S* � B�1

when B is the basis matrix for the optimal solution found by the simplex method.
Referring to Table 5.10 again, suppose now that you are given the initial tableau, t and

T, and just y* and S* from the final tableau. How can this information alone be used to cal-
culate the rest of the final tableau? The answer is provided by Table 5.8. This table includes
some information that is not directly relevant to our current discussion, namely, how y* and
S* themselves can be calculated (y* � cBB�1 and S* � B�1) by knowing the set of basic
variables and so the basis matrix B for the optimal solution found by the simplex method.
However, the lower part of this table also shows how the rest of the final tableau can be ob-
tained from the coefficients of the slack variables, which is summarized as follows.

Fundamental Insight

(1) t* � t � y*T � [y*A � c y* y*b].
(2) T* � S*T � [S*A S* S*b].
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TABLE 5.10 General notation for initial and final
simplex tableaux in matrix form,
illustrated by the Wyndor Glass 
Co. problem

Initial Tableau

Row 0: t � [�3, �5 0, 0, 0 0] � [�c 0 0].

Other rows: T � � [A I b].

Combined: � � � � �.

Final Tableau

Row 0: t* � [0, 0 0, �
3
2

�, 1 36] � [z* � c y* Z*].

Other rows: T* � � [A* S* b*].

Combined: � � � � �.Z*

b*

y*

S*

z* � c

A*

t*

T*
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Thus, by knowing the parameters of the model in the initial tableau (c, A, and b) and only
the coefficients of the slack variables in the final tableau (y* and S*), these equations en-
able calculating all the other numbers in the final tableau.

We already used these two equations when dealing with iteration 2 for the Wyndor
Glass Co. problem in the preceding subsection. In particular, the right-hand side of the
expression for final row 0 for iteration 2 is just t � y*T, and the second line of the ex-
pression for final rows 1 to 3 is just S*T.

Now let us summarize the mathematical logic behind the two equations for the fun-
damental insight. To derive Eq. (2), recall that the entire sequence of algebraic operations
performed by the simplex method (excluding those involving row 0) is equivalent to pre-
multiplying T by some matrix, call it M. Therefore,

T* � MT,

but now we need to identify M. By writing out the component parts of T and T*, this
equation becomes

[A* S* b*] � M [A I b]
� [MA M Mb].

Because the middle (or any other) component of these equal matrices must be the same,
it follows that M � S*, so Eq. (2) is a valid equation.

Equation (1) is derived in a similar fashion by noting that the entire sequence of al-
gebraic operations involving row 0 amounts to adding some linear combination of the
rows in T to t, which is equivalent to adding to t some vector times T. Denoting this vec-
tor by v, we thereby have

t* � t � vT,

but v still needs to be identified. Writing out the component parts of t and t* yields

[z* � c y* Z*] � [�c 0 0] � v [A I b]
� [�c � vA v vb].

Equating the middle component of these equal vectors gives v � y*, which validates
Eq. (1).

Adapting to Other Model Forms

Thus far, the fundamental insight has been described under the assumption that the origi-
nal model is in our standard form, described in Sec. 3.2. However, the above mathemati-
cal logic now reveals just what adjustments are needed for other forms of the original model.
The key is the identity matrix I in the initial tableau, which turns into S* in the final tableau.
If some artificial variables must be introduced into the initial tableau to serve as initial ba-
sic variables, then it is the set of columns (appropriately ordered) for all the initial basic
variables (both slack and artificial) that forms I in this tableau. (The columns for any sur-
plus variables are extraneous.) The same columns in the final tableau provide S* for the
T* � S*T equation and y* for the t* � t � y*T equation. If M’s were introduced into the
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preliminary row 0 as coefficients for artificial variables, then the t for the t* � t � y*T
equation is the row 0 for the initial tableau after these nonzero coefficients for basic vari-
ables are algebraically eliminated. (Alternatively, the preliminary row 0 can be used for t,
but then these M’s must be subtracted from the final row 0 to give y*.) (See Prob. 5.3-11.)

Applications

The fundamental insight has a variety of important applications in linear programming.
One of these applications involves the revised simplex method. As described in the pre-
ceding section (see Table 5.8), this method used B�1 and the initial tableau to calculate
all the relevant numbers in the current tableau for every iteration. It goes even further than
the fundamental insight by using B�1 to calculate y* itself as y* � cBB�1.

Another application involves the interpretation of the shadow prices
( y1*, y2*, . . . , y*m) described in Sec. 4.7. The fundamental insight reveals that Z* (the value
of Z for the optimal solution) is

Z* � y*b � �
m

i�1
yi*bi,

so, e.g.,

Z* � 0b1 � �
3
2

�b2 � b3

for the Wyndor Glass Co. problem. This equation immediately yields the interpretation
for the yi* values given in Sec. 4.7.

Another group of extremely important applications involves various postoptimality
tasks (reoptimization technique, sensitivity analysis, parametric linear programming—
described in Sec. 4.7) that investigate the effect of making one or more changes in the
original model. In particular, suppose that the simplex method already has been applied
to obtain an optimal solution (as well as y* and S*) for the original model, and then these
changes are made. If exactly the same sequence of algebraic operations were to be ap-
plied to the revised initial tableau, what would be the resulting changes in the final tableau?
Because y* and S* don’t change, the fundamental insight reveals the answer immediately.

For example, consider the change from b2 � 12 to b2 � 13 as illustrated in Fig. 4.8
for the Wyndor Glass Co. problem. It is not necessary to solve for the new optimal solu-
tion (x1, x2) � (�

5
3

�, �
1
2
3
�) because the values of the basic variables in the final tableau (b*) are

immediately revealed by the fundamental insight:

� b* � S*b � � .

There is an even easier way to make this calculation. Since the only change is in the sec-
ond component of b (�b2 � 1), which gets premultiplied by only the second column of
S*, the change in b* can be calculated as simply

�b* � �b2 � ,
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so the original values of the basic variables in the final tableau (x3 � 2, x2 � 6, x1 � 2)
now become

� � � .

(If any of these new values were negative, and thus infeasible, then the reoptimization
technique described in Sec. 4.7 would be applied, starting from this revised final tableau.)
Applying incremental analysis to the preceding equation for Z* also immediately yields

�Z* � �
3
2

��b2 � �
3
2

�.

The fundamental insight can be applied to investigating other kinds of changes in the
original model in a very similar fashion; it is the crux of the sensitivity analysis proce-
dure described in the latter part of Chap. 6.

You also will see in the next chapter that the fundamental insight plays a key role in
the very useful duality theory for linear programming.
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Although the simplex method is an algebraic procedure, it is based on some fairly sim-
ple geometric concepts. These concepts enable one to use the algorithm to examine only
a relatively small number of BF solutions before reaching and identifying an optimal 
solution.

Chapter 4 describes how elementary algebraic operations are used to execute the al-
gebraic form of the simplex method, and then how the tableau form of the simplex method
uses the equivalent elementary row operations in the same way. Studying the simplex
method in these forms is a good way of getting started in learning its basic concepts. How-
ever, these forms of the simplex method do not provide the most efficient form for exe-
cution on a computer. Matrix operations are a faster way of combining and executing el-
ementary algebraic operations or row operations. Therefore, by using the matrix form of
the simplex method, the revised simplex method provides an effective way of adapting
the simplex method for computer implementation.

The final simplex tableau includes complete information on how it can be algebraically
reconstructed directly from the initial simplex tableau. This fundamental insight has some
very important applications, especially for postoptimality analysis.

5.4 CONCLUSIONS
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A Demonstration Example in OR Tutor:

Fundamental Insight

Interactive Routines:

Enter or Revise a General Linear Programming Model
Set Up for the Simplex Method—Interactive Only
Solve Interactively by the Simplex Method

Files (Chapter 3) for Solving the Wyndor Example:

Excel File
LINGO/LINDO File
MPL/CPLEX File

See Appendix 1 for documentation of the software.

LEARNING AIDS FOR THIS CHAPTER IN YOUR OR COURSEWARE

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.
I: You can check some of your work by using the interactive rou-

tines listed above for the original simplex method.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

5.1-1.* Consider the following problem.

Maximize Z � 3x1 � 2x2,

subject to

2x1 � x2 � 6
x1 � 2x2 � 6

and

x1 � 0, x2 � 0.

(a) Solve this problem graphically. Identify the CPF solutions by
circling them on the graph.

(b) Identify all the sets of two defining equations for this problem.
For each set, solve (if a solution exists) for the corresponding
corner-point solution, and classify it as a CPF solution or cor-
ner-point infeasible solution.

(c) Introduce slack variables in order to write the functional con-
straints in augmented form. Use these slack variables to iden-
tify the basic solution that corresponds to each corner-point so-
lution found in part (b).

PROBLEMS

(d) Do the following for each set of two defining equations from
part (b): Identify the indicating variable for each defining equa-
tion. Display the set of equations from part (c) after deleting
these two indicating (nonbasic) variables. Then use the latter
set of equations to solve for the two remaining variables (the
basic variables). Compare the resulting basic solution to the
corresponding basic solution obtained in part (c).

(e) Without executing the simplex method, use its geometric inter-
pretation (and the objective function) to identify the path (se-
quence of CPF solutions) it would follow to reach the optimal
solution. For each of these CPF solutions in turn, identify the
following decisions being made for the next iteration: (i) which
defining equation is being deleted and which is being added; 
(ii) which indicating variable is being deleted (the entering basic
variable) and which is being added (the leaving basic variable).

5.1-2. Repeat Prob. 5.1-1 for the model in Prob. 3.1-5.

5.1-3. Consider the following problem.

Maximize Z � 2x1 � 3x2,

subject to

�3x1 � x2 � 1
�4x1 � 2x2 � 20
�4x1 � x2 � 10
�x1 � 2x2 � 5

and

x1 � 0, x2 � 0.



(a) Identify the 10 sets of defining equations for this problem. For
each one, solve (if a solution exists) for the corresponding cor-
ner-point solution, and classify it as a CPF solution or corner-
point infeasible solution.

(b) For each corner-point solution, give the corresponding basic
solution and its set of nonbasic variables. (Compare with 
Table 6.9.)

5.1-7. Consider the following problem.

Minimize Z � x1 � 2x2,

subject to

�x1 � x2 � 15
�2x1 � x2 � 90
�2x1 � x2 � 30

and

x1 � 0, x2 � 0.

(a) Solve this problem graphically.
(b) Develop a table giving each of the CPF solutions and the corre-

sponding defining equations, BF solution, and nonbasic variables.

5.1-8. Reconsider the model in Problem 4.6-3.
(a) Identify the 10 sets of defining equations for this problem. For

each one, solve (if a solution exists) for the corresponding cor-
ner-point solution, and classify it as a CPF solution or a cor-
ner-point infeasible solution.

(b) For each corner-point solution, give the corresponding basic
solution and its set of nonbasic variables.

5.1-9. Reconsider the model in Prob. 3.1-4.
(a) Identify the 15 sets of defining equations for this problem. For

each one, solve (if a solution exists) for the corresponding cor-
ner-point solution, and classify it as a CPF solution or a cor-
ner-point infeasible solution.

(b) For each corner-point solution, give the corresponding basic
solution and its set of nonbasic variables.

5.1-10. Each of the following statements is true under most cir-
cumstances, but not always. In each case, indicate when the state-
ment will not be true and why.
(a) The best CPF solution is an optimal solution.
(b) An optimal solution is a CPF solution.
(c) A CPF solution is the only optimal solution if none of its ad-

jacent CPF solutions are better (as measured by the value of
the objective function).

5.1-11. Consider the original form (before augmenting) of a lin-
ear programming problem with n decision variables (each with a
nonnegativity constraint) and m functional constraints. Label each
of the following statements as true or false, and then justify your

(a) Solve this problem graphically. Identify the CPF solutions by
circling them on the graph.

(b) Develop a table giving each of the CPF solutions and the cor-
responding defining equations, BF solution, and nonbasic vari-
ables. Calculate Z for each of these solutions, and use just this
information to identify the optimal solution.

(c) Develop the corresponding table for the corner-point infeasi-
ble solutions, etc. Also identify the sets of defining equations
and nonbasic variables that do not yield a solution.

5.1-4. Consider the following problem.

Maximize Z � 2x1 � x2 � x3,

subject to

3x1 � x2 � x3 � 60
x1 � x2 � 2x3 � 10
x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

After slack variables are introduced and then one complete itera-
tion of the simplex method is performed, the following simplex
tableau is obtained.
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(a) Identify the CPF solution obtained at iteration 1.
(b) Identify the constraint boundary equations that define this CPF

solution.

5.1-5. Consider the three-variable linear programming problem
shown in Fig. 5.2.
(a) Construct a table like Table 5.1, giving the set of defining equa-

tions for each CPF solution.
(b) What are the defining equations for the corner-point infeasi-

ble solution (6, 0, 5)?
(c) Identify one of the systems of three constraint boundary equa-

tions that yields neither a CPF solution nor a corner-point in-
feasible solution. Explain why this occurs for this system.

5.1-6. Consider the linear programming problem given in Table
6.1 as the dual problem for the Wyndor Glass Co. example.

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 0 �1 �3 0 �2 0 20
x4 (1) 0 0 �4 �5 1 �3 0 30

1
x1 (2) 0 1 �1 �2 0 �1 0 10
x6 (3) 0 0 �2 �3 0 �1 1 10



5.1-17. Consider the following problem.

Maximize Z � 2x1 � 2x2 � 3x3,

subject to

2x1 � x2 � 2x3 � 4
x1 � x2 � x3 � 3

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x5 be the slack variables for the respective functional
constraints. Starting with these two variables as the basic variables
for the initial BF solution, you now are given the information that
the simplex method proceeds as follows to obtain the optimal so-
lution in two iterations: (1) In iteration 1, the entering basic vari-
able is x3 and the leaving basic variable is x4; (2) in iteration 2, the
entering basic variable is x2 and the leaving basic variable is x5.
(a) Develop a three-dimensional drawing of the feasible region for

this problem, and show the path followed by the simplex
method.

(b) Give a geometric interpretation of why the simplex method fol-
lowed this path.

(c) For each of the two edges of the feasible region traversed by
the simplex method, give the equation of each of the two con-
straint boundaries on which it lies, and then give the equation
of the additional constraint boundary at each endpoint.

(d) Identify the set of defining equations for each of the three CPF
solutions (including the initial one) obtained by the simplex
method. Use the defining equations to solve for these solu-
tions.

(e) For each CPF solution obtained in part (d ), give the corre-
sponding BF solution and its set of nonbasic variables. Explain
how these nonbasic variables identify the defining equations
obtained in part (d ).

5.1-18. Consider the following problem.

Maximize Z � 3x1 � 4x2 � 2x3,

subject to

x1 � x2 � x3 � 20
x1 � 2x2 � x3 � 30

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x5 be the slack variables for the respective functional
constraints. Starting with these two variables as the basic variables
for the initial BF solution, you now are given the information that
the simplex method proceeds as follows to obtain the optimal so-
lution in two iterations: (1) In iteration 1, the entering basic vari-

answer with specific references (including page citations) to ma-
terial in the chapter.
(a) If a feasible solution is optimal, it must be a CPF solution.
(b) The number of CPF solutions is at least

�
(m

m
�
!n

n
!
)!

�.

(c) If a CPF solution has adjacent CPF solutions that are better (as
measured by Z ), then one of these adjacent CPF solutions must
be an optimal solution.

5.1-12. Label each of the following statements about linear pro-
gramming problems as true or false, and then justify your answer.
(a) If a feasible solution is optimal but not a CPF solution, then

infinitely many optimal solutions exist.
(b) If the value of the objective function is equal at two different

feasible points x* and x**, then all points on the line segment
connecting x* and x** are feasible and Z has the same value
at all those points.

(c) If the problem has n variables (before augmenting), then the
simultaneous solution of any set of n constraint boundary equa-
tions is a CPF solution.

5.1-13. Consider the augmented form of linear programming prob-
lems that have feasible solutions and a bounded feasible region.
Label each of the following statements as true or false, and then
justify your answer by referring to specific statements (with page
citations) in the chapter.
(a) There must be at least one optimal solution.
(b) An optimal solution must be a BF solution.
(c) The number of BF solutions is finite.

5.1-14.* Reconsider the model in Prob. 4.6-10. Now you are given
the information that the basic variables in the optimal solution are
x2 and x3. Use this information to identify a system of three con-
straint boundary equations whose simultaneous solution must be
this optimal solution. Then solve this system of equations to ob-
tain this solution.

5.1-15. Reconsider Prob. 4.3-7. Now use the given information
and the theory of the simplex method to identify a system of three
constraint boundary equations (in x1, x2, x3) whose simultaneous
solution must be the optimal solution, without applying the sim-
plex method. Solve this system of equations to find the optimal
solution.

5.1-16. Reconsider Prob. 4.3-8. Using the given information and
the theory of the simplex method, analyze the constraints of the
problem in order to identify a system of three constraint boundary
equations whose simultaneous solution must be the optimal solu-
tion (not augmented). Then solve this system of equations to ob-
tain this solution.
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method as it goes through one iteration in moving from (2, 4, 3)
to (4, 2, 4). (You are given the information that it is moving along
this line segment.)
(a) What is the entering basic variable?
(b) What is the leaving basic variable?
(c) What is the new BF solution?

5.1-24. Consider a two-variable mathematical programming prob-
lem that has the feasible region shown on the graph, where the six
dots correspond to CPF solutions. The problem has a linear ob-
jective function, and the two dashed lines are objective function
lines passing through the optimal solution (4, 5) and the second-
best CPF solution (2, 5). Note that the nonoptimal solution (2, 5)
is better than both of its adjacent CPF solutions, which violates
Property 3 in Sec. 5.1 for CPF solutions in linear programming.
Demonstrate that this problem cannot be a linear programming
problem by constructing the feasible region that would result if the
six line segments on the boundary were constraint boundaries for
linear programming constraints.

able is x2 and the leaving basic variable is x5; (2) in iteration 2, the
entering basic variable is x1 and the leaving basic variable is x4.

Follow the instructions of Prob. 5.1-17 for this situation.

5.1-19. By inspecting Fig. 5.2, explain why Property 1b for CPF
solutions holds for this problem if it has the following objective
function.
(a) Maximize Z � x3.
(b) Maximize Z � �x1 � 2x3.

5.1-20. Consider the three-variable linear programming problem
shown in Fig. 5.2.
(a) Explain in geometric terms why the set of solutions satisfying

any individual constraint is a convex set, as defined in Ap-
pendix 2.

(b) Use the conclusion in part (a) to explain why the entire feasi-
ble region (the set of solutions that simultaneously satisfies
every constraint) is a convex set.

5.1-21. Suppose that the three-variable linear programming prob-
lem given in Fig. 5.2 has the objective function

Maximize Z � 3x1 � 4x2 � 3x3.

Without using the algebra of the simplex method, apply just its
geometric reasoning (including choosing the edge giving the max-
imum rate of increase of Z ) to determine and explain the path it
would follow in Fig. 5.2 from the origin to the optimal solution.

5.1-22. Consider the three-variable linear programming problem
shown in Fig. 5.2.
(a) Construct a table like Table 5.4, giving the indicating variable

for each constraint boundary equation and original constraint.
(b) For the CPF solution (2, 4, 3) and its three adjacent CPF so-

lutions (4, 2, 4), (0, 4, 2), and (2, 4, 0), construct a table like
Table 5.5, showing the corresponding defining equations, BF
solution, and nonbasic variables.

(c) Use the sets of defining equations from part (b) to demonstrate
that (4, 2, 4), (0, 4, 2), and (2, 4, 0) are indeed adjacent to 
(2, 4, 3), but that none of these three CPF solutions are adja-
cent to each other. Then use the sets of nonbasic variables from
part (b) to demonstrate the same thing.

5.1-23. The formula for the line passing through (2, 4, 3) and 
(4, 2, 4) in Fig. 5.2 can be written as

(2, 4, 3) � 
[(4, 2, 4) � (2, 4, 3)] � (2, 4, 3) � 
(2, �2, 1),

where 0 � 
 � 1 for just the line segment between these points.
After augmenting with the slack variables x4, x5, x6, x7 for the re-
spective functional constraints, this formula becomes

(2, 4, 3, 2, 0, 0, 0) � 
(2, �2, 1, �2, 2, 0, 0).

Use this formula directly to answer each of the following ques-
tions, and thereby relate the algebra and geometry of the simplex
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x1

1

0 1 2 3 4

2

3

4

5
(2, 5) (4, 5)

x2

5.2-1. Consider the following problem.

Maximize Z � 8x1 � 4x2 � 6x3 � 3x4 � 9x5,

subject to

x1 � 2x2 � 3x3 � 3x4 � x5 � 180 (resource 1)
4x1 � 3x2 � 2x3 � x4 � x5 � 270 (resource 2)
x1 � 3x2 � 2x3 � x4 � 3x5 � 180 (resource 3)



and

x1 � 0, x2 � 0, x3 � 0.

Let x4, x5, and x6 denote the slack variables for the respective con-
straints. After you apply the simplex method, a portion of the fi-
nal simplex tableau is as follows:

and

xj � 0, j � 1, . . . , 5.

You are given the facts that the basic variables in the optimal so-
lution are x3, x1, and x5 and that

�1

� �
2
1
7
� .

(a) Use the given information to identify the optimal solution.
(b) Use the given information to identify the shadow prices for the

three resources.

I 5.2-2.* Work through the revised simplex method step by step
to solve the following problem.

Maximize Z � 5x1 � 8x2 � 7x3 � 4x4 � 6x5,

subject to

2x1 � 3x2 � 3x3 � 2x4 � 2x5 � 20
3x1 � 5x2 � 4x3 � 2x4 � 4x5 � 30

and

xj � 0, j � 1, 2, 3, 4, 5.

I 5.2-3. Work through the revised simplex method step by step to
solve the model given in Prob. 4.3-4.

5.2-4. Reconsider Prob. 5.1-1. For the sequence of CPF solutions
identified in part (e), construct the basis matrix B for each of the
corresponding BF solutions. For each one, invert B manually, use
this B�1 to calculate the current solution, and then perform the next
iteration (or demonstrate that the current solution is optimal).

I 5.2-5. Work through the revised simplex method step by step to
solve the model given in Prob. 4.1-5.

I 5.2-6. Work through the revised simplex method step by step to
solve the model given in Prob. 4.7-6.

I 5.2-7. Work through the revised simplex method step by step to
solve each of the following models:
(a) Model given in Prob. 3.1-5.
(b) Model given in Prob. 4.7-8.

D 5.3-1.* Consider the following problem.

Maximize Z � x1 � x2 � 2x3,

subject to

2x1 � 2x2 � 3x3 � 5
x1 � x2 � x3 � 3
x1 � x2 � x3 � 2



1

�3

10

�3

9

�3

11

�6

2





0

1

3

1

4

1

3

2

0
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Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 1 1 0

x2 (1) 0 1 3 0
x6 (2) 0 0 1 1
x3 (3) 0 1 2 0

(a) Use the fundamental insight presented in Sec. 5.3 to identify
the missing numbers in the final simplex tableau. Show your
calculations.

(b) Identify the defining equations of the CPF solution corre-
sponding to the optimal BF solution in the final simplex
tableau.

D 5.3-2. Consider the following problem.

Maximize Z � 4x1 � 3x2 � x3 � 2x4,

subject to

4x1 � 2x2 � x3 � x4 � 5
3x1 � x2 � 2x3 � x4 � 4

and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

Let x5 and x6 denote the slack variables for the respective con-
straints. After you apply the simplex method, a portion of the fi-
nal simplex tableau is as follows:

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 �1 �1

x2 (1) 0 �1 �1
x4 (2) 0 �1 �2

(a) Use the fundamental insight presented in Sec. 5.3 to identify
the missing numbers in the final simplex tableau. Show your
calculations.

(b) Identify the defining equations of the CPF solution corre-
sponding to the optimal BF solution in the final simplex
tableau.



(a) Use the fundamental insight presented in Sec. 5.3 to identify
the missing numbers in the final simplex tableau. Show your
calculations.

(b) Identify the defining equations of the CPF solution corre-
sponding to the optimal BF solution in the final simplex
tableau.

D 5.3-5. Consider the following problem.

Maximize Z � 20x1 � 6x2 � 8x3,

subject to

8x1 � 2x2 � 3x3 � 200
4x1 � 3x2 � 3x3 � 100
2x1 � 3x2 � x3 � 50
2x1 � 3x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

Let x4, x5, x6, and x7 denote the slack variables for the first through
fourth constraints, respectively. Suppose that after some number of
iterations of the simplex method, a portion of the current simplex
tableau is as follows:

D 5.3-3. Consider the following problem.

Maximize Z � 6x1 � x2 � 2x3,

subject to

�2x1 � 2x2 � �
1
2

�x3 � 2

�4x1 � 2x2 � �
3
2

�x3 � 3

�2x1 � 2x2 � �
1
2

�x3 � 1

and

x1 � 0, x2 � 0, x3 � 0.

Let x4, x5, and x6 denote the slack variables for the respective con-
straints. After you apply the simplex method, a portion of the fi-
nal simplex tableau is as follows:
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Use the fundamental insight presented in Sec. 5.3 to identify the
missing numbers in the final simplex tableau. Show your calcula-
tions.

D 5.3-4. Consider the following problem.

Maximize Z � x1 � x2 � 2x3,

subject to

x1 � x2 � 3x3 � 15
2x1 � x2 � x3 � 2

�x1 � x2 � x3 � 4

and

x1 � 0, x2 � 0, x3 � 0.

Let x4, x5, and x6 denote the slack variables for the respective con-
straints. After the simplex method is applied, a portion of the final
simplex tableau is as follows:

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 �2 0 �2

x5 (1) 0 �1 1 �2
x3 (2) 0 �2 0 �4
x1 (3) 0 �1 0 �1

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 0 ��
3
2

� ��
1
2

�

x4 (1) 0 1 �1 �2

x3 (2) 0 0 ��
1
2

� ��
1
2

�

x2 (3) 0 0 ��
1
2

� ��
1
2

�

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 x7 Side

Z (0) 1 ��
9
4

� ��
1
2

� 0 0

x1 (1) 0 ��
1
3
6
� ��

1
8

� 0 0

x2 (2) 0 ��
1
4

� ��
1
2

� 0 0

x6 (3) 0 ��
3
8

� ��
1
4

� 1 0

x7 (4) 0 �0 �0 0 1



Now suppose that your boss has inserted her best estimate of
the values of c1, c2, c3, and b without informing you and then has
run the simplex method. You are given the resulting final simplex
tableau below (where x4 and x5 are the slack variables for the re-
spective functional constraints), but you are unable to read the value
of Z*.

(a) Use the fundamental insight presented in Sec. 5.3 to identify
the missing numbers in the current simplex tableau. Show your
calculations.

(b) Indicate which of these missing numbers would be generated
by the revised simplex method in order to perform the next it-
eration.

(c) Identify the defining equations of the CPF solution corre-
sponding to the BF solution in the current simplex tableau.

D 5.3-6. You are using the simplex method to solve the following
linear programming problem.

Maximize Z � 6x1 � 5x2 � x3 � 4x4,

subject to

3x1 � 2x2 � 3x3 � x4 � 120
3x1 � 3x2 � x3 � 3x4 � 180

and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

You have obtained the following final simplex tableau where x5

and x6 are the slack variables for the respective constraints.
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Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 0 �
1
4

� 0 �
1
2

� �
3
4

� �
5
4

� Z*

x1 (1) 0 1 �
1
1
1
2
� 0 �

5
6

� �
1
1
2
� �

1
4

� b*1

x3 (2) 0 0 �
1
4

� 1 �
1
2

� ��
1
4

� �
1
4

� b*2

Use the fundamental insight presented in Sec. 5.3 to identify Z*,
b*1, and b*2. Show your calculations.

D 5.3-7. Consider the following problem.

Maximize Z � c1x1 � c2x2 � c3x3,

subject to

x1 � 2x2 � x3 � b
2x1 � x2 � 3x3 � 2b

and

x1 � 0, x2 � 0, x3 � 0.

Note that values have not been assigned to the coefficients in the
objective function (c1, c2, c3), and that the only specification for
the right-hand side of the functional constraints is that the second
one (2b) be twice as large as the first (b).

(a) Use the fundamental insight presented in Sec. 5.3 to identify
the value of (c1, c2, c3) that was used.

(b) Use the fundamental insight presented in Sec. 5.3 to identify
the value of b that was used.

(c) Calculate the value of Z* in two ways, where one way uses
your results from part (a) and the other way uses your result
from part (b). Show your two methods for finding Z*.

5.3-8. For iteration 2 of the example in Sec. 5.3, the following ex-
pression was shown:

Final row 0 � [�3, �5 0, 0, 0 0]

� [0, �
3
2

�, 1] .

Derive this expression by combining the algebraic operations (in
matrix form) for iterations 1 and 2 that affect row 0.

5.3-9. Most of the description of the fundamental insight presented
in Sec. 5.3 assumes that the problem is in our standard form. Now
consider each of the following other forms, where the additional
adjustments in the initialization step are those presented in Sec.
4.6, including the use of artificial variables and the Big M method
where appropriate. Describe the resulting adjustments in the fun-
damental insight.
(a) Equality constraints
(b) Functional constraints in � form
(c) Negative right-hand sides
(d) Variables allowed to be negative (with no lower bound)

5.3-10. Reconsider the model in Prob. 4.6-6. Use artificial vari-
ables and the Big M method to construct the complete first sim-



4

12

18

0

0

1

0

1

0

1

0

0

0

2

2

1

0

3



Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �
1
7
0
� 0 0 ��

3
5

� ��
4
5

� Z*

x2 (1) 0 �
1
5

� 1 0 ��
3
5

� ��
1
5

� 1

x3 (2) 0 �
3
5

� 0 1 ��
1
5

� ��
2
5

� 3



(c) When you apply the t* � t � vT equation, another option is
to use t � [2, 3, 2, 0, M, 0, M, 0], which is the preliminary
row 0 before the algebraic elimination of the nonzero coeffi-
cients of the initial basic variables x�5 and x�7. Repeat part (b)
for this equation with this new t. After you derive the new v,
show that this equation yields the same final row 0 for this
problem as the equation derived in part (b).

(d) Identify the defining equations of the CPF solution corre-
sponding to the optimal BF solution in the final simplex
tableau.

5.3-12. Consider the following problem.

Maximize Z � 2x1 � 4x2 � 3x3,

subject to

x1 � 3x2 � 2x3 � 20
x1 � 5x2 � 2x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

Let x�4 be the artificial variable for the first constraint. Let x5 and
x�6 be the surplus variable and artificial variable, respectively, for
the second constraint.

You are now given the information that a portion of the final
simplex tableau is as follows:

plex tableau for the simplex method, and then identify the columns
that will contains S* for applying the fundamental insight in the
final tableau. Explain why these are the appropriate columns.

5.3-11. Consider the following problem.

Minimize Z � 2x1 � 3x2 � 2x3,

subject to

x1 � 4x2 � 2x3 � 8
3x1 � 2x2 � 2x3 � 6

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x6 be the surplus variables for the first and second con-
straints, respectively. Let x�5 and x�7 be the corresponding artificial
variables. After you make the adjustments described in Sec. 4.6 for
this model form when using the Big M method, the initial simplex
tableau ready to apply the simplex method is as follows:

228 5 THE THEORY OF THE SIMPLEX METHOD

After you apply the simplex method, a portion of the final simplex
tableau is as follows:

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) 1 M � 2 0 M

x1 (1) 0 1 0 �0
x5 (2) 0 1 1 �1

(a) Based on the above tableaux, use the fundamental insight pre-
sented in Sec. 5.3 to identify the missing numbers in the final
simplex tableau. Show your calculations.

(b) Examine the mathematical logic presented in Sec. 5.3 to vali-
date the fundamental insight (see the T* � MT and t* �
t � vT equations and the subsequent derivations of M and v).
This logic assumes that the original model fits our standard
form, whereas the current problem does not fit this form. Show
how, with minor adjustments, this same logic applies to the
current problem when t is row 0 and T is rows 1 and 2 in the
initial simplex tableau given above. Derive M and v for this
problem.

(a) Extend the fundamental insight presented in Sec. 5.3 to iden-
tify the missing numbers in the final simplex tableau. Show
your calculations.

(b) Identify the defining equations of the CPF solution corre-
sponding to the optimal solution in the final simplex tableau.

5.3-13. Consider the following problem.

Maximize Z � 3x1 � 7x2 � 2x3,

subject to

�2x1 � 2x2 � x3 � 10
�3x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x�5 x6 x�7 Side

Z (0) �1 �4M � 2 �6M � 3 �2M � 2 M 0 M 0 �14M

x�5 (1) �0 1 4 2 �1 1 �0 0 8
x�7 (2) �0 3 2 0 �0 0 �1 1 6

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x�5 x6 x�7 Side

Z (0) �1 M � 0.5 M � 0.5

x2 (1) �0 � 0.3 �0.1
x1 (2) �0 �0.2 �0.4



(d) Construct the basis matrix B for the optimal BF solution, in-
vert B manually, and then use this B�1 to solve for the opti-
mal solution and the shadow prices y*. Then apply the opti-
mality test for the revised simplex method to verify that this
solution is optimal.

(e) Given B�1 and y* from part (d ), use the fundamental insight
presented in Sec. 5.3 to construct the complete final simplex
tableau.

You are given the fact that the basic variables in the optimal solu-
tion are x1 and x3.
(a) Introduce slack variables, and then use the given information

to find the optimal solution directly by Gaussian elimination.
(b) Extend the work in part (a) to find the shadow prices.
(c) Use the given information to identify the defining equations of

the optimal CPF solution, and then solve these equations to
obtain the optimal solution.
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