
230

6
Duality Theory and 
Sensitivity Analysis

One of the most important discoveries in the early development of linear programming
was the concept of duality and its many important ramifications. This discovery revealed
that every linear programming problem has associated with it another linear programming
problem called the dual. The relationships between the dual problem and the original
problem (called the primal) prove to be extremely useful in a variety of ways. For ex-
ample, you soon will see that the shadow prices described in Sec. 4.7 actually are pro-
vided by the optimal solution for the dual problem. We shall describe many other valu-
able applications of duality theory in this chapter as well.

One of the key uses of duality theory lies in the interpretation and implementation of
sensitivity analysis. As we already mentioned in Secs. 2.3, 3.3, and 4.7, sensitivity analy-
sis is a very important part of almost every linear programming study. Because most of
the parameter values used in the original model are just estimates of future conditions,
the effect on the optimal solution if other conditions prevail instead needs to be investi-
gated. Furthermore, certain parameter values (such as resource amounts) may represent
managerial decisions, in which case the choice of the parameter values may be the main
issue to be studied, which can be done through sensitivity analysis.

For greater clarity, the first three sections discuss duality theory under the assump-
tion that the primal linear programming problem is in our standard form (but with no re-
striction that the bi values need to be positive). Other forms are then discussed in Sec. 6.4.
We begin the chapter by introducing the essence of duality theory and its applications.
We then describe the economic interpretation of the dual problem (Sec. 6.2) and delve
deeper into the relationships between the primal and dual problems (Sec. 6.3). Section 6.5
focuses on the role of duality theory in sensitivity analysis. The basic procedure for sen-
sitivity analysis (which is based on the fundamental insight of Sec. 5.3) is summarized in
Sec. 6.6 and illustrated in Sec. 6.7.



Thus, the dual problem uses exactly the same parameters as the primal problem, but in dif-
ferent locations. To highlight the comparison, now look at these same two problems in ma-
trix notation (as introduced at the beginning of Sec. 5.2), where c and y � [y1, y2, . . . , ym]
are row vectors but b and x are column vectors.

Primal Problem Dual Problem

6.1 THE ESSENCE OF DUALITY THEORY 231

Given our standard form for the primal problem at the left (perhaps after conversion from
another form), its dual problem has the form shown to the right.

Primal Problem Dual Problem
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Maximize Z � �
n

j�1
cjxj,

subject to

�
n

j�1
aijxj � bi, for i � 1, 2, . . . , m

and

xj � 0, for j � 1, 2, . . . , n.

Minimize W � �
m

i�1
biyi,

subject to

�
m

i�1
aijyi � cj, for j � 1, 2, . . . , n

and

yi � 0, for i � 1, 2, . . . , m.

Maximize Z � cx,

subject to

Ax � b

and

x � 0.

Minimize W � yb,

subject to

yA � c

and

y � 0.

To illustrate, the primal and dual problems for the Wyndor Glass Co. example of Sec. 3.1
are shown in Table 6.1 in both algebraic and matrix form.

The primal-dual table for linear programming (Table 6.2) also helps to highlight the
correspondence between the two problems. It shows all the linear programming parame-
ters (the aij, bi, and cj) and how they are used to construct the two problems. All the head-
ings for the primal problem are horizontal, whereas the headings for the dual problem are
read by turning the book sideways. For the primal problem, each column (except the Right
Side column) gives the coefficients of a single variable in the respective constraints and
then in the objective function, whereas each row (except the bottom one) gives the param-
eters for a single contraint. For the dual problem, each row (except the Right Side row)
gives the coefficients of a single variable in the respective constraints and then in the ob-
jective function, whereas each column (except the rightmost one) gives the parameters for
a single constraint. In addition, the Right Side column gives the right-hand sides for the
primal problem and the objective function coefficients for the dual problem, whereas the
bottom row gives the objective function coefficients for the primal problem and the right-
hand sides for the dual problem.



TABLE 6.1 Primal and dual problems for the Wyndor Glass Co. example
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Maximize Z � 3x1 � 5x2,

subject to

3x1 � 2x2 � 4

3x1 � 2x2 � 12

3x1 � 2x2 � 18

and x1 � 0, x2 � 0.

Minimize W � 4y1 � 12y2 � 18y3,

subject to

y12y2 � 3y3 � 3

2y2 � 2y3 � 5

and

y1 � 0, y2 � 0, y3 � 0.

Maximize Z � [3, 5]� �,
subject to

� � �

and
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Consequently, (1) the parameters for a constraint in either problem are the coeffi-
cients of a variable in the other problem and (2) the coefficients for the objective func-
tion of either problem are the right sides for the other problem. Thus, there is a direct cor-
respondence between these entities in the two problems, as summarized in Table 6.3. These
correspondences are a key to some of the applications of duality theory, including sensi-
tivity analysis.

Origin of the Dual Problem

Duality theory is based directly on the fundamental insight (particularly with regard to
row 0) presented in Sec. 5.3. To see why, we continue to use the notation introduced in
Table 5.10 for row 0 of the final tableau, except for replacing Z* by W* and dropping the
asterisks from z* and y* when referring to any tableau. Thus, at any given iteration of the
simplex method for the primal problem, the current numbers in row 0 are denoted as
shown in the (partial) tableau given in Table 6.4. For the coefficients of x1, x2, . . . , xn,
recall that z � (z1, z2, . . . , zn) denotes the vector that the simplex method added to the
vector of initial coefficients, �c, in the process of reaching the current tableau. (Do not
confuse z with the value of the objective function Z.) Similarly, since the initial coeffi-
cients of xn�1, xn�2, . . . , xn�m in row 0 all are 0, y � (y1, y2, . . . , ym) denotes the vec-
tor that the simplex method has added to these coefficients. Also recall [see Eq. (1) in the

Primal Problem Dual Problem
in Algebraic Form in Algebraic Form

Primal Problem Dual Problem
in Matrix Form in Matrix Form



“Mathematical Summary” subsection of Sec. 5.3] that the fundamental insight led to the
following relationships between these quantities and the parameters of the original model:

W � yb � �
m

i�1
biyi ,

z � yA, so zj � �
m

i�1
aijyi , for j � 1, 2, . . . , n.

To illustrate these relationships with the Wyndor example, the first equation gives 
W � 4y1 � 12y2 � 18y3, which is just the objective function for the dual problem shown
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TABLE 6.2 Primal-dual table for linear programming, illustrated by the Wyndor
Glass Co. example

(a) General Case

Primal Problem

Coefficient of:
Right

x1 x2
… xn Side

y1 a11 a12
… a1n � b1

y2 a21 a22
… a2n � b2

� �
ym am1 am2

… amn � bm

VI VI … VI
c1 c2

… cn

TABLE 6.3 Correspondence between 
entities in primal and 
dual problems

One Problem Other Problem

Constraint i ←→ Variable i
Objective function ←→ Right sides
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(b) Wyndor Glass Co. Example

x1 x2

y1 1 0 � 4
y2 0 2 � 12
y3 3 2 � 18

VI VI
3 5



in the upper right-hand box of Table 6.1. The second set of equations give z1 � y1 � 3y3

and z2 � 2y2 � 2y3, which are the left-hand sides of the functional constraints for this
dual problem. Thus, by subtracting the right-hand sides of these � constraints (c1 � 3 and 
c2 � 5), (z1 � c1) and (z2 � c2) can be interpreted as being the surplus variables for these
functional constraints.

The remaining key is to express what the simplex method tries to accomplish (ac-
cording to the optimality test) in terms of these symbols. Specifically, it seeks a set of ba-
sic variables, and the corresponding BF solution, such that all coefficients in row 0 are
nonnegative. It then stops with this optimal solution. Using the notation in Table 6.4, this
goal is expressed symbolically as follows:

Condition for Optimality:
zj � cj � 0 for j � 1, 2, . . . , n,

yi � 0 for i � 1, 2, . . . , m.

After we substitute the preceding expression for zj, the condition for optimality says that
the simplex method can be interpreted as seeking values for y1, y2, . . . , ym such that
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TABLE 6.4 Notation for entries in row 0 of a simplex tableau

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2
… xn xn�1 xn�2

… xn�m Side

Any Z (0) 1 z1 � c1 z2 � c2
… zn � cn y1 y2

… ym W

W � �
m

i�1
biyi,

subject to

�
m

i�1
aijyi � cj, for j � 1, 2, . . . , n

and

yi � 0, for i � 1, 2, . . . , m.

But, except for lacking an objective for W, this problem is precisely the dual problem! To
complete the formulation, let us now explore what the missing objective should be.

Since W is just the current value of Z, and since the objective for the primal problem
is to maximize Z, a natural first reaction is that W should be maximized also. However,
this is not correct for the following rather subtle reason: The only feasible solutions for this
new problem are those that satisfy the condition for optimality for the primal problem.
Therefore, it is only the optimal solution for the primal problem that corresponds to a fea-
sible solution for this new problem. As a consequence, the optimal value of Z in the pri-
mal problem is the minimum feasible value of W in the new problem, so W should be min-
imized. (The full justification for this conclusion is provided by the relationships we develop
in Sec. 6.3.) Adding this objective of minimizing W gives the complete dual problem.



Consequently, the dual problem may be viewed as a restatement in linear program-
ming terms of the goal of the simplex method, namely, to reach a solution for the primal
problem that satisfies the optimality test. Before this goal has been reached, the corre-
sponding y in row 0 (coefficients of slack variables) of the current tableau must be in-
feasible for the dual problem. However, after the goal is reached, the corresponding y
must be an optimal solution (labeled y*) for the dual problem, because it is a feasible so-
lution that attains the minimum feasible value of W. This optimal solution (y1*, y2*, . . . ,
ym*) provides for the primal problem the shadow prices that were described in Sec. 4.7.
Furthermore, this optimal W is just the optimal value of Z, so the optimal objective func-
tion values are equal for the two problems. This fact also implies that cx � yb for any x
and y that are feasible for the primal and dual problems, respectively.

To illustrate, the left-hand side of Table 6.5 shows row 0 for the respective iterations
when the simplex method is applied to the Wyndor Glass Co. example. In each case, row
0 is partitioned into three parts: the coefficients of the decision variables (x1, x2), the co-
efficients of the slack variables (x3, x4, x5), and the right-hand side (value of Z). Since the
coefficients of the slack variables give the corresponding values of the dual variables 
(y1, y2, y3), each row 0 identifies a corresponding solution for the dual problem, as shown
in the y1, y2, and y3 columns of Table 6.5. To interpret the next two columns, recall that
(z1 � c1) and (z2 � c2) are the surplus variables for the functional constraints in the dual
problem, so the full dual problem after augmenting with these surplus variables is

Minimize W � 4y1 � 12y2 � 18y3,

subject to

y1 � 3y3 � (z1 � c1) � 3
2y2 � 2y3 � (z2 � c2) � 5

and

y1 � 0, y2 � 0, y3 � 0.

Therefore, by using the numbers in the y1, y2, and y3 columns, the values of these surplus
variables can be calculated as

z1 � c1 � y1 � 3y3 � 3,
z2 � c2 � 2y2 � 2y3 � 5.
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TABLE 6.5 Row 0 and corresponding dual solution for each iteration for the
Wyndor Glass Co. example

Primal Problem Dual Problem

Iteration Row 0 y1 y2 y3 z1 � c1 z2 � c2 W

0 [�3, �5 0, 0, 0 0] 0 0 0 �3 �5 0

1 [�3, �0 0, �
5
2

�, 0 30] 0 �
5
2

� 0 �3 �0 30

2 [�0, �0 0, �
3
2

�, 1 36] 0 �
3
2

� 1 �0 �0 36



Thus, a negative value for either surplus variable indicates that the corresponding con-
straint is violated. Also included in the rightmost column of the table is the calculated
value of the dual objective function W � 4y1 � 12y2 � 18y3.

As displayed in Table 6.4, all these quantities to the right of row 0 in Table 6.5 al-
ready are identified by row 0 without requiring any new calculations. In particular, note
in Table 6.5 how each number obtained for the dual problem already appears in row 0 in
the spot indicated by Table 6.4.

For the initial row 0, Table 6.5 shows that the corresponding dual solution 
(y1, y2, y3) � (0, 0, 0) is infeasible because both surplus variables are negative. The first
iteration succeeds in eliminating one of these negative values, but not the other. After two
iterations, the optimality test is satisfied for the primal problem because all the dual vari-
ables and surplus variables are nonnegative. This dual solution (y1*, y2*, y3*) � (0, �

3
2

�, 1) is
optimal (as could be verified by applying the simplex method directly to the dual prob-
lem), so the optimal value of Z and W is Z* � 36 � W*.

Summary of Primal-Dual Relationships

Now let us summarize the newly discovered key relationships between the primal and dual
problems.

Weak duality property: If x is a feasible solution for the primal problem and y
is a feasible solution for the dual problem, then

cx � yb.

For example, for the Wyndor Glass Co. problem, one feasible solution is x1 � 3, x2 � 3,
which yields Z � cx � 24, and one feasible solution for the dual problem is y1 � 1,
y2 � 1, y3 � 2, which yields a larger objective function value W � yb � 52. These are just
sample feasible solutions for the two problems. For any such pair of feasible solutions, this
inequality must hold because the maximum feasible value of Z � cx (36) equals the min-
imum feasible value of the dual objective function W � yb, which is our next property.

Strong duality property: If x* is an optimal solution for the primal problem
and y* is an optimal solution for the dual problem, then

cx* � y*b.

Thus, these two properties imply that cx � yb for feasible solutions if one or both of them
are not optimal for their respective problems, whereas equality holds when both are optimal.

The weak duality property describes the relationship between any pair of solutions
for the primal and dual problems where both solutions are feasible for their respective
problems. At each iteration, the simplex method finds a specific pair of solutions for the
two problems, where the primal solution is feasible but the dual solution is not feasible
(except at the final iteration). Our next property describes this situation and the relation-
ship between this pair of solutions.

Complementary solutions property: At each iteration, the simplex method si-
multaneously identifies a CPF solution x for the primal problem and a comple-
mentary solution y for the dual problem (found in row 0, the coefficients of the
slack variables), where

cx � yb.
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If x is not optimal for the primal problem, then y is not feasible for the dual 
problem.

To illustrate, after one iteration for the Wyndor Glass Co. problem, x1 � 0, x2 � 6, and 
y1 � 0, y2 � �

5
2

�, y3 � 0, with cx � 30 � yb. This x is feasible for the primal problem, but
this y is not feasible for the dual problem (since it violates the constraint, y1 � 3y3 � 3).

The complementary solutions property also holds at the final iteration of the simplex
method, where an optimal solution is found for the primal problem. However, more can
be said about the complementary solution y in this case, as presented in the next property.

Complementary optimal solutions property: At the final iteration, the simplex
method simultaneously identifies an optimal solution x* for the primal problem
and a complementary optimal solution y* for the dual problem (found in row
0, the coefficients of the slack variables), where

cx* � y*b.

The yi* are the shadow prices for the primal problem.

For the example, the final iteration yields x1* � 2, x2* � 6, and y1* � 0, y2* � �
3
2

�, y3* � 1,
with cx* � 36 � y*b.

We shall take a closer look at some of these properties in Sec. 6.3. There you will
see that the complementary solutions property can be extended considerably further. In
particular, after slack and surplus variables are introduced to augment the respective prob-
lems, every basic solution in the primal problem has a complementary basic solution in
the dual problem. We already have noted that the simplex method identifies the values of
the surplus variables for the dual problem as zj � cj in Table 6.4. This result then leads to
an additional complementary slackness property that relates the basic variables in one
problem to the nonbasic variables in the other (Tables 6.7 and 6.8), but more about that
later.

In Sec. 6.4, after describing how to construct the dual problem when the primal prob-
lem is not in our standard form, we discuss another very useful property, which is sum-
marized as follows:

Symmetry property: For any primal problem and its dual problem, all rela-
tionships between them must be symmetric because the dual of this dual prob-
lem is this primal problem.

Therefore, all the preceding properties hold regardless of which of the two problems is
labeled as the primal problem. (The direction of the inequality for the weak duality prop-
erty does require that the primal problem be expressed or reexpressed in maximization
form and the dual problem in minimization form.) Consequently, the simplex method can
be applied to either problem, and it simultaneously will identify complementary solutions
(ultimately a complementary optimal solution) for the other problem.

So far, we have focused on the relationships between feasible or optimal solutions in
the primal problem and corresponding solutions in the dual problem. However, it is pos-
sible that the primal (or dual) problem either has no feasible solutions or has feasible so-
lutions but no optimal solution (because the objective function is unbounded). Our final
property summarizes the primal-dual relationships under all these possibilities.
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Duality theorem: The following are the only possible relationships between the
primal and dual problems.

1. If one problem has feasible solutions and a bounded objective function (and
so has an optimal solution), then so does the other problem, so both the weak
and strong duality properties are applicable.

2. If one problem has feasible solutions and an unbounded objective function
(and so no optimal solution), then the other problem has no feasible solutions.

3. If one problem has no feasible solutions, then the other problem has either no
feasible solutions or an unbounded objective function.

Applications

As we have just implied, one important application of duality theory is that the dual prob-
lem can be solved directly by the simplex method in order to identify an optimal solution
for the primal problem. We discussed in Sec. 4.8 that the number of functional constraints
affects the computational effort of the simplex method far more than the number of vari-
ables does. If m 	 n, so that the dual problem has fewer functional constraints (n) than
the primal problem (m), then applying the simplex method directly to the dual problem
instead of the primal problem probably will achieve a substantial reduction in computa-
tional effort.

The weak and strong duality properties describe key relationships between the pri-
mal and dual problems. One useful application is for evaluating a proposed solution for
the primal problem. For example, suppose that x is a feasible solution that has been pro-
posed for implementation and that a feasible solution y has been found by inspection for
the dual problem such that cx � yb. In this case, x must be optimal without the simplex
method even being applied! Even if cx � yb, then yb still provides an upper bound on
the optimal value of Z, so if yb � cx is small, intangible factors favoring x may lead to
its selection without further ado.

One of the key applications of the complementary solutions property is its use in the
dual simplex method presented in Sec. 7.1. This algorithm operates on the primal prob-
lem exactly as if the simplex method were being applied simultaneously to the dual prob-
lem, which can be done because of this property. Because the roles of row 0 and the right
side in the simplex tableau have been reversed, the dual simplex method requires that row
0 begin and remain nonnegative while the right side begins with some negative values
(subsequent iterations strive to reach a nonnegative right side). Consequently, this algo-
rithm occasionally is used because it is more convenient to set up the initial tableau in
this form than in the form required by the simplex method. Furthermore, it frequently is
used for reoptimization (discussed in Sec. 4.7), because changes in the original model lead
to the revised final tableau fitting this form. This situation is common for certain types of
sensitivity analysis, as you will see later in the chapter.

In general terms, duality theory plays a central role in sensitivity analysis. This role
is the topic of Sec. 6.5.

Another important application is its use in the economic interpretation of the dual prob-
lem and the resulting insights for analyzing the primal problem. You already have seen one
example when we discussed shadow prices in Sec. 4.7. The next section describes how this
interpretation extends to the entire dual problem and then to the simplex method.
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TABLE 6.6 Economic interpretation of the primal problem

Quantity Interpretation

xj Level of activity j ( j � 1, 2, . . . , n)
cj Unit profit from activity j
Z Total profit from all activities
bi Amount of resource i available (i � 1, 2, . . . , m)
aij Amount of resource i consumed by each unit of activity j

The economic interpretation of duality is based directly upon the typical interpretation for
the primal problem (linear programming problem in our standard form) presented in Sec.
3.2. To refresh your memory, we have summarized this interpretation of the primal prob-
lem in Table 6.6.

Interpretation of the Dual Problem

To see how this interpretation of the primal problem leads to an economic interpretation
for the dual problem,1 note in Table 6.4 that W is the value of Z (total profit) at the cur-
rent iteration. Because

W � b1y1 � b2y2 � … � bmym,

each biyi can thereby be interpreted as the current contribution to profit by having bi units
of resource i available for the primal problem. Thus,

The dual variable yi is interpreted as the contribution to profit per unit of resource i
(i � 1, 2, . . . , m), when the current set of basic variables is used to obtain the primal 
solution.

In other words, the yi values (or yi* values in the optimal solution) are just the shadow
prices discussed in Sec. 4.7.

For example, when iteration 2 of the simplex method finds the optimal solution for
the Wyndor problem, it also finds the optimal values of the dual variables (as shown in
the bottom row of Table 6.5) to be y1* � 0, y2* � �

3
2

�, and y3* � 1. These are precisely the
shadow prices found in Sec. 4.7 for this problem through graphical analysis. Recall that
the resources for the Wyndor problem are the production capacities of the three plants be-
ing made available to the two new products under consideration, so that bi is the number
of hours of production time per week being made available in Plant i for these new prod-
ucts, where i � 1, 2, 3. As discussed in Sec. 4.7, the shadow prices indicate that individ-
ually increasing any bi by 1 would increase the optimal value of the objective function
(total weekly profit in units of thousands of dollars) by yi*. Thus, yi* can be interpreted as
the contribution to profit per unit of resource i when using the optimal solution.

6.2 ECONOMIC INTERPRETATION OF DUALITY

1Actually, several slightly different interpretations have been proposed. The one presented here seems to us to
be the most useful because it also directly interprets what the simplex method does in the primal problem.



This interpretation of the dual variables leads to our interpretation of the overall dual
problem. Specifically, since each unit of activity j in the primal problem consumes aij

units of resource i,


m
i�1 ai jyi is interpreted as the current contribution to profit of the mix of resources that

would be consumed if 1 unit of activity j were used ( j � 1, 2, . . . , n).

For the Wyndor problem, 1 unit of activity j corresponds to producing 1 batch of product j
per week, where j � 1, 2. The mix of resources consumed by producing 1 batch of product
1 is 1 hour of production time in Plant 1 and 3 hours in Plant 3. The corresponding mix per
batch of product 2 is 2 hours each in Plants 2 and 3. Thus, y1 � 3y3 and 2y2 � 2y3 are in-
terpreted as the current contributions to profit (in thousands of dollars per week) of these
respective mixes of resources per batch produced per week of the respective products.

For each activity j, this same mix of resources (and more) probably can be used in
other ways as well, but no alternative use should be considered if it is less profitable than
1 unit of activity j. Since cj is interpreted as the unit profit from activity j, each functional
constraint in the dual problem is interpreted as follows:


m
i�1 aijyi � cj says that the actual contribution to profit of the above mix of resources

must be at least as much as if they were used by 1 unit of activity j; otherwise, we would
not be making the best possible use of these resources.

For the Wyndor problem, the unit profits (in thousands of dollars per week) are c1 � 3
and c2 � 5, so the dual functional constraints with this interpretation are y1 � y3 � 3 
and 2y2 � 2y3 � 5. Similarly, the interpretation of the nonnegativity constraints is the 
following:

yi � 0 says that the contribution to profit of resource i (i � 1, 2, . . . , m) must be non-
negative: otherwise, it would be better not to use this resource at all.

The objective

Minimize W � �
m

i�1
biyi

can be viewed as minimizing the total implicit value of the resources consumed by the
activities. For the Wyndor problem, the total implicit value (in thousands of dollars per
week) of the resources consumed by the two products is W � 4y1 � 12y2 � 18y3.

This interpretation can be sharpened somewhat by differentiating between basic and
nonbasic variables in the primal problem for any given BF solution (x1, x2, . . . , xn�m).
Recall that the basic variables (the only variables whose values can be nonzero) always
have a coefficient of zero in row 0. Therefore, referring again to Table 6.4 and the ac-
companying equation for zj, we see that

�
m

i�1
aijyi � cj, if xj 	 0 ( j � 1, 2, . . . , n),

yi � 0, if xn�i 	 0 (i � 1, 2, . . . , m).

(This is one version of the complementary slackness property discussed in the next sec-
tion.) The economic interpretation of the first statement is that whenever an activity j op-

240 6 DUALITY THEORY AND SENSITIVITY ANALYSIS



erates at a strictly positive level (xj 	 0), the marginal value of the resources it consumes
must equal (as opposed to exceeding) the unit profit from this activity. The second state-
ment implies that the marginal value of resource i is zero (yi � 0) whenever the supply
of this resource is not exhausted by the activities (xn�i 	 0). In economic terminology,
such a resource is a “free good”; the price of goods that are oversupplied must drop to
zero by the law of supply and demand. This fact is what justifies interpreting the objec-
tive for the dual problem as minimizing the total implicit value of the resources consumed,
rather than the resources allocated.

To illustrate these two statements, consider the optimal BF solution (2, 6, 2, 0, 0) for
the Wyndor problem. The basic variables are x1, x2, and x3, so their coefficients in row 0
are zero, as shown in the bottom row of Table 6.5. This bottom row also gives the corre-
sponding dual solution: y1* � 0, y2* � �

3
2

�, y3* � 1, with surplus variables (z1* � c1) � 0 and
(z2* � c2) � 0. Since x1 	 0 and x2 	 0, both these surplus variables and direct calcula-
tions indicate that y1* � 3y3* � c1 � 3 and 2y2* � 2y3* � c2 � 5. Therefore, the value of
the resources consumed per batch of the respective products produced does indeed equal
the respective unit profits. The slack variable for the constraint on the amount of Plant 1
capacity used is x3 	 0, so the marginal value of adding any Plant 1 capacity would be
zero (y1* � 0).

Interpretation of the Simplex Method

The interpretation of the dual problem also provides an economic interpretation of what
the simplex method does in the primal problem. The goal of the simplex method is to find
how to use the available resources in the most profitable feasible way. To attain this goal,
we must reach a BF solution that satisfies all the requirements on profitable use of the re-
sources (the constraints of the dual problem). These requirements comprise the condition
for optimality for the algorithm. For any given BF solution, the requirements (dual con-
straints) associated with the basic variables are automatically satisfied (with equality).
However, those associated with nonbasic variables may or may not be satisfied.

In particular, if an original variable xj is nonbasic so that activity j is not used, then
the current contribution to profit of the resources that would be required to undertake each
unit of activity j

�
m

i�1
aijyi

may be smaller than, larger than, or equal to the unit profit cj obtainable from the activ-
ity. If it is smaller, so that zj � cj � 0 in row 0 of the simplex tableau, then these resources
can be used more profitably by initiating this activity. If it is larger (zj � cj 	 0), then
these resources already are being assigned elsewhere in a more profitable way, so they
should not be diverted to activity j. If zj � cj � 0, there would be no change in profitability
by initiating activity j.

Similarly, if a slack variable xn�i is nonbasic so that the total allocation bi of resource
i is being used, then yi is the current contribution to profit of this resource on a marginal
basis. Hence, if yi � 0, profit can be increased by cutting back on the use of this resource
(i.e., increasing xn�i). If yi 	 0, it is worthwhile to continue fully using this resource,
whereas this decision does not affect profitability if yi � 0.
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Therefore, what the simplex method does is to examine all the nonbasic variables in
the current BF solution to see which ones can provide a more profitable use of the re-
sources by being increased. If none can, so that no feasible shifts or reductions in the cur-
rent proposed use of the resources can increase profit, then the current solution must be
optimal. If one or more can, the simplex method selects the variable that, if increased by
1, would improve the profitability of the use of the resources the most. It then actually in-
creases this variable (the entering basic variable) as much as it can until the marginal val-
ues of the resources change. This increase results in a new BF solution with a new row 0
(dual solution), and the whole process is repeated.

The economic interpretation of the dual problem considerably expands our ability to
analyze the primal problem. However, you already have seen in Sec. 6.1 that this inter-
pretation is just one ramification of the relationships between the two problems. In the
next section, we delve into these relationships more deeply.
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Because the dual problem is a linear programming problem, it also has corner-point so-
lutions. Furthermore, by using the augmented form of the problem, we can express these
corner-point solutions as basic solutions. Because the functional constraints have the
� form, this augmented form is obtained by subtracting the surplus (rather than adding
the slack) from the left-hand side of each constraint j ( j � 1, 2, . . . , n).1 This surplus is

zj � cj � �
m

i�1
aijyi � cj , for j � 1, 2, . . . , n.

Thus, zj�cj plays the role of the surplus variable for constraint j (or its slack variable if
the constraint is multiplied through by �1). Therefore, augmenting each corner-point so-
lution (y1, y2, . . . , ym) yields a basic solution (y1, y2, . . . , ym, z1 � c1, z2 � c2, . . . ,
zn � cn) by using this expression for zj � cj. Since the augmented form of the dual prob-
lem has n functional constraints and n � m variables, each basic solution has n basic vari-
ables and m nonbasic variables. (Note how m and n reverse their previous roles here be-
cause, as Table 6.3 indicates, dual constraints correspond to primal variables and dual
variables correspond to primal constraints.)

Complementary Basic Solutions

One of the important relationships between the primal and dual problems is a direct cor-
respondence between their basic solutions. The key to this correspondence is row 0 of the
simplex tableau for the primal basic solution, such as shown in Table 6.4 or 6.5. Such a
row 0 can be obtained for any primal basic solution, feasible or not, by using the formu-
las given in the bottom part of Table 5.8.

Note again in Tables 6.4 and 6.5 how a complete solution for the dual problem (includ-
ing the surplus variables) can be read directly from row 0. Thus, because of its coefficient in
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1You might wonder why we do not also introduce artificial variables into these constraints as discussed in Sec.
4.6. The reason is that these variables have no purpose other than to change the feasible region temporarily as
a convenience in starting the simplex method. We are not interested now in applying the simplex method to the
dual problem, and we do not want to change its feasible region.



row 0, each variable in the primal problem has an associated variable in the dual problem,
as summarized in Table 6.7, first for any problem and then for the Wyndor problem.

A key insight here is that the dual solution read from row 0 must also be a basic so-
lution! The reason is that the m basic variables for the primal problem are required to have
a coefficient of zero in row 0, which thereby requires the m associated dual variables to
be zero, i.e., nonbasic variables for the dual problem. The values of the remaining n (ba-
sic) variables then will be the simultaneous solution to the system of equations given at
the beginning of this section. In matrix form, this system of equations is z � c � yA � c,
and the fundamental insight of Sec. 5.3 actually identifies its solution for z � c and y as
being the corresponding entries in row 0.

Because of the symmetry property quoted in Sec. 6.1 (and the direct association be-
tween variables shown in Table 6.7), the correspondence between basic solutions in the
primal and dual problems is a symmetric one. Furthermore, a pair of complementary ba-
sic solutions has the same objective function value, shown as W in Table 6.4.

Let us now summarize our conclusions about the correspondence between primal and
dual basic solutions, where the first property extends the complementary solutions prop-
erty of Sec. 6.1 to the augmented forms of the two problems and then to any basic solu-
tion (feasible or not) in the primal problem.

Complementary basic solutions property: Each basic solution in the primal
problem has a complementary basic solution in the dual problem, where their
respective objective function values (Z and W) are equal. Given row 0 of the sim-
plex tableau for the primal basic solution, the complementary dual basic solution
(y, z � c) is found as shown in Table 6.4.

The next property shows how to identify the basic and nonbasic variables in this com-
plementary basic solution.

Complementary slackness property: Given the association between variables
in Table 6.7, the variables in the primal basic solution and the complementary
dual basic solution satisfy the complementary slackness relationship shown in
Table 6.8. Furthermore, this relationship is a symmetric one, so that these two
basic solutions are complementary to each other.

The reason for using the name complementary slackness for this latter property is that
it says (in part) that for each pair of associated variables, if one of them has slack in its
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TABLE 6.7 Association between variables in primal and dual problems

Primal Variable Associated Dual Variable

Any problem
(Decision variable) xj zj � cj (surplus variable) j � 1, 2, . . . , n
(Slack variable) xn�i yi (decision variable) i � 1, 2, . . . , m

Decision variables: x1 z1 � c1 (surplus variables)
Decision variables: x2 z2 � c2

Wyndor problem Slack variables:    x3 y1 (decision variables)
Decision variables: x4 y2

Decision variables: x5 y3



nonnegativity constraint (a basic variable 	 0), then the other one must have no slack (a
nonbasic variable � 0). We mentioned in Sec. 6.2 that this property has a useful economic
interpretation for linear programming problems.

Example. To illustrate these two properties, again consider the Wyndor Glass Co. prob-
lem of Sec. 3.1. All eight of its basic solutions (five feasible and three infeasible) are
shown in Table 6.9. Thus, its dual problem (see Table 6.1) also must have eight basic so-
lutions, each complementary to one of these primal solutions, as shown in Table 6.9.

The three BF solutions obtained by the simplex method for the primal problem are
the first, fifth, and sixth primal solutions shown in Table 6.9. You already saw in Table
6.5 how the complementary basic solutions for the dual problem can be read directly from
row 0, starting with the coefficients of the slack variables and then the original variables.
The other dual basic solutions also could be identified in this way by constructing row 0
for each of the other primal basic solutions, using the formulas given in the bottom part
of Table 5.8.

Alternatively, for each primal basic solution, the complementary slackness property
can be used to identify the basic and nonbasic variables for the complementary dual ba-
sic solution, so that the system of equations given at the beginning of the section can be
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TABLE 6.8 Complementary slackness 
relationship for complementary 
basic solutions

Primal Associated
Variable Dual Variable

Basic Nonbasic (m variables)
Nonbasic Basic (n variables)

TABLE 6.9 Complementary basic solutions for the Wyndor Glass Co. example

Primal Problem Dual Problem

No. Basic Solution Feasible? Z � W Feasible? Basic Solution

1 (0, 0, 4, 12, 18) Yes 0 No (0, 0, 0, �3, �5)
2 (4, 0, 0, 12, 6) Yes 12 No (3, 0, 0, 0, �5)
3 (6, 0, �2, 12, 0) No 18 No (0, 0, 1, 0, �3)

4 (4, 3, 0, 6, 0) Yes 27 No ���
9
2

�, 0, �
5
2

�, 0, 0�
5 (0, 6, 4, 0, 6) Yes 30 No �0, �

5
2

�, 0, �3, 0�
6 (2, 6, 2, 0, 0) Yes 36 Yes �0, �

3
2

�, 1, 0, 0�
7 (4, 6, 0, 0, �6) No 42 Yes �3, �

5
2

�, 0, 0, 0�
8 (0, 9, 4, �6, 0) No 45 Yes �0, 0, �

5
2

�, �
9
2

�, 0�



solved directly to obtain this complementary solution. For example, consider the next-to-
last primal basic solution in Table 6.9, (4, 6, 0, 0, �6). Note that x1, x2, and x5 are basic
variables, since these variables are not equal to 0. Table 6.7 indicates that the associated
dual variables are (z1 � c1), (z2 � c2), and y3. Table 6.8 specifies that these associated dual
variables are nonbasic variables in the complementary basic solution, so

z1 � c1 � 0, z2 � c2 � 0, y3 � 0.

Consequently, the augmented form of the functional constraints in the dual problem,

y1 � 3y3 � (z1 � c1) � 3
2y2 � 2y3 � (z2 � c2) � 5,

reduce to

y1 � 0 � 0 � 3
2y2 � 0 � 0 � 5,

so that y1 � 3 and y2 � �
5
2

�. Combining these values with the values of 0 for the nonbasic
variables gives the basic solution (3, �

5
2

�, 0, 0, 0), shown in the rightmost column and next-
to-last row of Table 6.9. Note that this dual solution is feasible for the dual problem be-
cause all five variables satisfy the nonnegativity constraints.

Finally, notice that Table 6.9 demonstrates that (0, �
3
2

�, 1, 0, 0) is the optimal solution
for the dual problem, because it is the basic feasible solution with minimal W (36).

Relationships between Complementary Basic Solutions

We now turn our attention to the relationships between complementary basic solutions,
beginning with their feasibility relationships. The middle columns in Table 6.9 provide
some valuable clues. For the pairs of complementary solutions, notice how the yes or no
answers on feasibility also satisfy a complementary relationship in most cases. In partic-
ular, with one exception, whenever one solution is feasible, the other is not. (It also is
possible for neither solution to be feasible, as happened with the third pair.) The one ex-
ception is the sixth pair, where the primal solution is known to be optimal. The explana-
tion is suggested by the Z � W column. Because the sixth dual solution also is optimal
(by the complementary optimal solutions property), with W � 36, the first five dual so-
lutions cannot be feasible because W � 36 (remember that the dual problem objective is
to minimize W). By the same token, the last two primal solutions cannot be feasible be-
cause Z 	 36.

This explanation is further supported by the strong duality property that optimal pri-
mal and dual solutions have Z � W.

Next, let us state the extension of the complementary optimal solutions property of
Sec. 6.1 for the augmented forms of the two problems.

Complementary optimal basic solutions property: Each optimal basic solution
in the primal problem has a complementary optimal basic solution in the dual
problem, where their respective objective function values (Z and W) are equal.
Given row 0 of the simplex tableau for the optimal primal solution, the comple-
mentary optimal dual solution (y*, z* � c) is found as shown in Table 6.4.
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To review the reasoning behind this property, note that the dual solution (y*, z* � c)
must be feasible for the dual problem because the condition for optimality for the primal
problem requires that all these dual variables (including surplus variables) be nonnegative.
Since this solution is feasible, it must be optimal for the dual problem by the weak dual-
ity property (since W � Z, so y*b � cx* where x* is optimal for the primal problem).

Basic solutions can be classified according to whether they satisfy each of two con-
ditions. One is the condition for feasibility, namely, whether all the variables (including
slack variables) in the augmented solution are nonnegative. The other is the condition for
optimality, namely, whether all the coefficients in row 0 (i.e., all the variables in the com-
plementary basic solution) are nonnegative. Our names for the different types of basic so-
lutions are summarized in Table 6.10. For example, in Table 6.9, primal basic solutions
1, 2, 4, and 5 are suboptimal, 6 is optimal, 7 and 8 are superoptimal, and 3 is neither fea-
sible nor superoptimal.

Given these definitions, the general relationships between complementary basic solu-
tions are summarized in Table 6.11. The resulting range of possible (common) values for
the objective functions (Z � W) for the first three pairs given in Table 6.11 (the last pair can
have any value) is shown in Fig. 6.1. Thus, while the simplex method is dealing directly
with suboptimal basic solutions and working toward optimality in the primal problem, it is
simultaneously dealing indirectly with complementary superoptimal solutions and working
toward feasibility in the dual problem. Conversely, it sometimes is more convenient (or nec-
essary) to work directly with superoptimal basic solutions and to move toward feasibility in
the primal problem, which is the purpose of the dual simplex method described in Sec. 7.1.

The third and fourth columns of Table 6.11 introduce two other common terms that
are used to describe a pair of complementary basic solutions. The two solutions are said
to be primal feasible if the primal basic solution is feasible, whereas they are called dual
feasible if the complementary dual basic solution is feasible for the dual problem. Using
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TABLE 6.10 Classification of basic solutions

Satisfies Condition 
for Optimality?

Yes No

Yes Optimal Suboptimal
Feasible?

No Superoptimal Neither feasible nor superoptimal

TABLE 6.11 Relationships between complementary basic solutions

Both Basic Solutions
Primal Basic Complementary
Solution Dual Basic Solution Primal Feasible? Dual Feasible?

Suboptimal Superoptimal Yes No
Optimal Optimal Yes Yes
Superoptimal Suboptimal No Yes
Neither feasible Neither feasible No No
nor superoptimal nor superoptimal



this terminology, the simplex method deals with primal feasible solutions and strives to-
ward achieving dual feasibility as well. When this is achieved, the two complementary
basic solutions are optimal for their respective problems.

These relationships prove very useful, particularly in sensitivity analysis, as you will
see later in the chapter.
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Thus far it has been assumed that the model for the primal problem is in our standard
form. However, we indicated at the beginning of the chapter that any linear programming
problem, whether in our standard form or not, possesses a dual problem. Therefore, this
section focuses on how the dual problem changes for other primal forms.

Each nonstandard form was discussed in Sec. 4.6, and we pointed out how it is pos-
sible to convert each one to an equivalent standard form if so desired. These conversions
are summarized in Table 6.12. Hence, you always have the option of converting any model
to our standard form and then constructing its dual problem in the usual way. To illus-
trate, we do this for our standard dual problem (it must have a dual also) in Table 6.13.
Note that what we end up with is just our standard primal problem! Since any pair of pri-
mal and dual problems can be converted to these forms, this fact implies that the dual of
the dual problem always is the primal problem. Therefore, for any primal problem and its
dual problem, all relationships between them must be symmetric. This is just the sym-
metry property already stated in Sec. 6.1 (without proof), but now Table 6.13 demon-
strates why it holds.

6.4 ADAPTING TO OTHER PRIMAL FORMS

Primal problem Dual problem

n

�
j�1

cjxj � Z
m

�
i �1

bi yi W � 

Superoptimal Suboptimal

Suboptimal Superoptimal

(optimal) Z* (optimal) W*

FIGURE 6.1
Range of possible values of 
Z � W for certain types of
complementary basic
solutions.



One consequence of the symmetry property is that all the statements made earlier in
the chapter about the relationships of the dual problem to the primal problem also hold
in reverse.

Another consequence is that it is immaterial which problem is called the primal and
which is called the dual. In practice, you might see a linear programming problem fitting
our standard form being referred to as the dual problem. The convention is that the model
formulated to fit the actual problem is called the primal problem, regardless of its form.

Our illustration of how to construct the dual problem for a nonstandard primal problem
did not involve either equality constraints or variables unconstrained in sign. Actually, for
these two forms, a shortcut is available. It is possible to show (see Probs. 6.4-7 and 6.4-2a)
that an equality constraint in the primal problem should be treated just like a � constraint in
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TABLE 6.13 Constructing the dual of the 
dual problem

Minimize W � yb,

subject to

yA � c

and

y � 0.

Maximize (�W) � �yb,

subject to

�yA � �c

and

y � 0.

Dual Problem Converted to Standard Form

Maximize Z � cx,

subject to

Ax � b

and

x � 0.

Minimize (�Z) � �cx,

subject to

�Ax � �b

and

x � 0.

Converted to 
Standard Form Its Dual Problem

→

→


→

TABLE 6.12 Conversions to standard form for linear programming 
models

Nonstandard Form Equivalent Standard Form

Minimize Z Maximize (�Z)

�
n

j�1
aijxj � bi ��

n

j�1
aijxj � �bi

�
n

j�1
aijxj � bi �

n

j�1
aijxj � bi and ��

n

j�1
aijxj � �bi

xj unconstrained in sign xj
� � xj

�, xj
� � 0, xj

� � 0



constructing the dual problem except that the nonnegativity constraint for the corresponding
dual variable should be deleted (i.e., this variable is unconstrained in sign). By the symme-
try property, deleting a nonnegativity constraint in the primal problem affects the dual prob-
lem only by changing the corresponding inequality constraint to an equality constraint.

Another shortcut involves functional constraints in � form for a maximization prob-
lem. The straightforward (but longer) approach would begin by converting each such con-
straint to � form

�
n

j�1
aijxj � bi → � �

n

j�1
aijxj � �bi.

Constructing the dual problem in the usual way then gives �aij as the coefficient of yi in
functional constraint j (which has � form) and a coefficient of �bi in the objective func-
tion (which is to be minimized), where yi also has a nonnegativity constraint yi � 0. Now
suppose we define a new variable yi� � �yi. The changes caused by expressing the dual
problem in terms of yi� instead of yi are that (1) the coefficients of the variable become ai j

for functional constraint j and bi for the objective function and (2) the constraint on the
variable becomes yi� � 0 (a nonpositivity constraint). The shortcut is to use yi� instead of
yi as a dual variable so that the parameters in the original constraint (aij and bi) immedi-
ately become the coefficients of this variable in the dual problem.

Here is a useful mnemonic device for remembering what the forms of dual constraints
should be. With a maximization problem, it might seem sensible for a functional con-
straint to be in � form, slightly odd to be in � form, and somewhat bizarre to be in
� form. Similarly, for a minimization problem, it might seem sensible to be in � form,
slightly odd to be in � form, and somewhat bizarre to be in � form. For the constraint
on an individual variable in either kind of problem, it might seem sensible to have a non-
negativity constraint, somewhat odd to have no constraint (so the variable is unconstrained
in sign), and quite bizarre for the variable to be restricted to be less than or equal to zero.
Now recall the correspondence between entities in the primal and dual problems indicated
in Table 6.3; namely, functional constraint i in one problem corresponds to variable i in
the other problem, and vice versa. The sensible-odd-bizarre method, or SOB method for
short, says that the form of a functional constraint or the constraint on a variable in the
dual problem should be sensible, odd, or bizarre, depending on whether the form for 
the corresponding entity in the primal problem is sensible, odd, or bizarre. Here is a 
summary.

The SOB Method for Determining the Form of Constraints in the Dual.1

1. Formulate the primal problem in either maximization form or minimization form, and
then the dual problem automatically will be in the other form.

2. Label the different forms of functional constraints and of constraints on individual vari-
ables in the primal problem as being sensible, odd, or bizarre according to Table 6.14.
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1This particular mnemonic device (and a related one) for remembering what the forms of dual constraints should
be has been suggested by Arthur T. Benjamin, a mathematics professor at Harvey Mudd College. An interest-
ing and wonderfully bizarre fact about Professor Benjamin himself is that he is one of the world’s great human
calculators who can perform such feats as quickly multiplying six-digit numbers in his head.



The labeling of the functional constraints depends on whether the problem is a maxi-
mization problem (use the second column) or a minimization problem (use the third
column).

3. For each constraint on an individual variable in the dual problem, use the form that
has the same label as for the functional constraint in the primal problem that corre-
sponds to this dual variable (as indicated by Table 6.3).

4. For each functional constraint in the dual problem, use the form that has the same la-
bel as for the constraint on the corresponding individual variable in the primal prob-
lem (as indicated by Table 6.3).

The arrows between the second and third columns of Table 6.14 spell out the corre-
spondence between the forms of constraints in the primal and dual. Note that the corre-
spondence always is between a functional constraint in one problem and a constraint on
an individual variable in the other problem. Since the primal problem can be either a max-
imization or minimization problem, where the dual then will be of the opposite type, the
second column of the table gives the form for whichever is the maximization problem and
the third column gives the form for the other problem (a minimization problem).

To illustrate, consider the radiation therapy example presented in Sec. 3.4. (Its model
is shown on p. 46.) To show the conversion in both directions in Table 6.14, we begin
with the maximization form of this model as the primal problem, before using the (orig-
inal) minimization form.

The primal problem in maximization form is shown on the left side of Table 6.15.
By using the second column of Table 6.14 to represent this problem, the arrows in this
table indicate the form of the dual problem in the third column. These same arrows are
used in Table 6.15 to show the resulting dual problem. (Because of these arrows, we
have placed the functional constraints last in the dual problem rather than in their usual
top position.) Beside each constraint in both problems, we have inserted (in parenthe-
ses) an S, O, or B to label the form as sensible, odd, or bizarre. As prescribed by the
SOB method, the label for each dual constraint always is the same as for the corre-
sponding primal constraint.
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TABLE 6.14 Corresponding primal-dual forms

Primal Problem Dual Problem
Label (or Dual Problem) (or Primal Problem)

Maximize Z (or W) Minimize W (or Z)

Constraint i: Variable yi (or xi):
Sensible � form yi � 0
Odd � form Unconstrained
Bizarre � form yi� � 0

Variable xj (or yj): Constraint j:
Sensible xj � 0 � form
Odd Unconstrained � form
Bizarre xj� � 0 � form

←→
←→
←→

←→
←→
←→



However, there was no need (other than for illustrative purposes) to convert the pri-
mal problem to maximization form. Using the original minimization form, the equivalent
primal problem is shown on the left side of Table 6.16. Now we use the third column of
Table 6.14 to represent this primal problem, where the arrows indicate the form of the
dual problem in the second column. These same arrows in Table 6.16 show the resulting
dual problem on the right side. Again, the labels on the constraints show the application
of the SOB method.

Just as the primal problems in Tables 6.15 and 6.16 are equivalent, the two dual prob-
lems also are completely equivalent. The key to recognizing this equivalency lies in the
fact that the variables in each version of the dual problem are the negative of those in the
other version (y1� � �y1, y2� � �y2, y3 � �y3�). Therefore, for each version, if the vari-
ables in the other version are used instead, and if both the objective function and the con-
straints are multiplied through by �1, then the other version is obtained. (Problem 6.4-5
asks you to verify this.)

If the simplex method is to be applied to either a primal or a dual problem that has
any variables constrained to be nonpositive (for example, y3� � 0 in the dual problem of
Table 6.15), this variable may be replaced by its nonnegative counterpart (for example,
y3 � �y3�).
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TABLE 6.15 One primal-dual form for the radiation therapy example

Maximize �Z � �0.4x1 � 0.5x2,

subject to

(S) 0.3x1 � 0.1x2 � 2.7
(O) 0.5x1 � 0.5x2 � 6
(B) 0.6x1 � 0.4x2 � 6

and

(S) x1 � 0
(S) x2 � 0

Minimize W � 2.7y1 � 6y2 � 6y3�,

subject to

y1 � 0 (S)
y2 unconstrained in sign (O)
y3� � 0 (B)

and

0.3y1 � 0.5y2 � 0.6y3� � �0.4 (S)
0.1y1 � 0.5y2 � 0.4y3� � �0.5 (S)

Primal Problem Dual Problem

←→
←→
←→

←→
←→

TABLE 6.16 The other primal-dual form for the radiation therapy example

Minimize Z � 0.4x1 � 0.5x2,

subject to

(B) 0.3x1 � 0.1x2 � 2.7
(O) 0.5x1 � 0.5x2 � 6
(S) 0.6x1 � 0.4x2 � 6

and

(S) x1 � 0
(S) x2 � 0

Maximize W � 2.7y1� � 6y2� � 6y3,

subject to

y1� � 0 (B)
y2� unconstrained in sign (O)
y3 � 0 (S)

and

0.3y1� � 0.5y2� � 0.6y3 � 0.4 (S)
0.1y1� � 0.5y2� � 0.4y3 � 0.6 (S)

Primal Problem Dual Problem

←→
←→
←→

←→
←→



When artificial variables are used to help the simplex method solve a primal prob-
lem, the duality interpretation of row 0 of the simplex tableau is the following: Since ar-
tificial variables play the role of slack variables, their coefficients in row 0 now provide
the values of the corresponding dual variables in the complementary basic solution for the
dual problem. Since artificial variables are used to replace the real problem with a more
convenient artificial problem, this dual problem actually is the dual of the artificial prob-
lem. However, after all the artificial variables become nonbasic, we are back to the real
primal and dual problems. With the two-phase method, the artificial variables would need
to be retained in phase 2 in order to read off the complete dual solution from row 0. With
the Big M method, since M has been added initially to the coefficient of each artificial
variable in row 0, the current value of each corresponding dual variable is the current co-
efficient of this artificial variable minus M.

For example, look at row 0 in the final simplex tableau for the radiation therapy
example, given at the bottom of Table 4.12 on p. 142. After M is subtracted from the
coefficients of the artificial variables x�4 and x�6, the optimal solution for the corresponding
dual problem given in Table 6.15 is read from the coefficients of x3, x�4, and x�6 as (y1,
y2, y3�) � (0.5, �1.1, 0). As usual, the surplus variables for the two functional constraints
are read from the coefficients of x1 and x2 as z1 � c1 � 0 and z2 � c2 � 0.
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As described further in the next two sections, sensitivity analysis basically involves in-
vestigating the effect on the optimal solution of making changes in the values of the
model parameters aij, bi, and cj. However, changing parameter values in the primal prob-
lem also changes the corresponding values in the dual problem. Therefore, you have your
choice of which problem to use to investigate each change. Because of the primal-dual
relationships presented in Secs. 6.1 and 6.3 (especially the complementary basic solu-
tions property), it is easy to move back and forth between the two problems as desired.
In some cases, it is more convenient to analyze the dual problem directly in order to de-
termine the complementary effect on the primal problem. We begin by considering two
such cases.

Changes in the Coefficients of a Nonbasic Variable

Suppose that the changes made in the original model occur in the coefficients of a vari-
able that was nonbasic in the original optimal solution. What is the effect of these changes
on this solution? Is it still feasible? Is it still optimal?

Because the variable involved is nonbasic (value of zero), changing its coefficients
cannot affect the feasibility of the solution. Therefore, the open question in this case is
whether it is still optimal. As Tables 6.10 and 6.11 indicate, an equivalent question is
whether the complementary basic solution for the dual problem is still feasible after these
changes are made. Since these changes affect the dual problem by changing only one con-
straint, this question can be answered simply by checking whether this complementary
basic solution still satisfies this revised constraint.

We shall illustrate this case in the corresponding subsection of Sec. 6.7 after devel-
oping a relevant example.

6.5 THE ROLE OF DUALITY THEORY IN SENSITIVITY ANALYSIS



Introduction of a New Variable

As indicated in Table 6.6, the decision variables in the model typically represent the lev-
els of the various activities under consideration. In some situations, these activities were
selected from a larger group of possible activities, where the remaining activities were not
included in the original model because they seemed less attractive. Or perhaps these other
activities did not come to light until after the original model was formulated and solved.
Either way, the key question is whether any of these previously unconsidered activities
are sufficiently worthwhile to warrant initiation. In other words, would adding any of these
activities to the model change the original optimal solution?

Adding another activity amounts to introducing a new variable, with the appropriate
coefficients in the functional constraints and objective function, into the model. The only
resulting change in the dual problem is to add a new constraint (see Table 6.3).

After these changes are made, would the original optimal solution, along with the
new variable equal to zero (nonbasic), still be optimal for the primal problem? As for the
preceding case, an equivalent question is whether the complementary basic solution for
the dual problem is still feasible. And, as before, this question can be answered simply
by checking whether this complementary basic solution satisfies one constraint, which in
this case is the new constraint for the dual problem.

To illustrate, suppose for the Wyndor Glass Co. problem of Sec. 3.1 that a possible
third new product now is being considered for inclusion in the product line. Letting xnew

represent the production rate for this product, we show the resulting revised model as 
follows:

Maximize Z � 3x1 � 5x2 � 4xnew,

subject to

x1 � 2x2 � 2xnew � 4
3x1 � 2x2 � 3xnew � 12
3x1 � 2x2 � xnew � 18

and

x1 � 0, x2 � 0, xnew � 0.

After we introduced slack variables, the original optimal solution for this problem with-
out xnew (given by Table 4.8) was (x1, x2, x3, x4, x5) � (2, 6, 2, 0, 0). Is this solution, along
with xnew � 0, still optimal?

To answer this question, we need to check the complementary basic solution for the
dual problem. As indicated by the complementary optimal basic solutions property in Sec.
6.3, this solution is given in row 0 of the final simplex tableau for the primal problem,
using the locations shown in Table 6.4 and illustrated in Table 6.5. Therefore, as given in
both the bottom row of Table 6.5 and the sixth row of Table 6.9, the solution is 

(y1, y2, y3, z1 � c1, z2 � c2) � �0, �
3
2

�, 1, 0, 0�.

(Alternatively, this complementary basic solution can be derived in the way that was illus-
trated in Sec. 6.3 for the complementary basic solution in the next-to-last row of Table 6.9.)
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Since this solution was optimal for the original dual problem, it certainly satisfies the
original dual constraints shown in Table 6.1. But does it satisfy this new dual constraint?

2y1 � 3y2 � y3 � 4

Plugging in this solution, we see that

2(0) � 3��
3
2

�� � (1) � 4

is satisfied, so this dual solution is still feasible (and thus still optimal). Consequently, the
original primal solution (2, 6, 2, 0, 0), along with xnew � 0, is still optimal, so this third
possible new product should not be added to the product line.

This approach also makes it very easy to conduct sensitivity analysis on the coefficients
of the new variable added to the primal problem. By simply checking the new dual constraint,
you can immediately see how far any of these parameter values can be changed before they
affect the feasibility of the dual solution and so the optimality of the primal solution.

Other Applications

Already we have discussed two other key applications of duality theory to sensitivity analy-
sis, namely, shadow prices and the dual simplex method. As described in Secs. 4.7 and 6.2,
the optimal dual solution (y1*, y2*, . . . , ym*) provides the shadow prices for the respective
resources that indicate how Z would change if (small) changes were made in the bi (the re-
source amounts). The resulting analysis will be illustrated in some detail in Sec. 6.7.

In more general terms, the economic interpretation of the dual problem and of the sim-
plex method presented in Sec. 6.2 provides some useful insights for sensitivity analysis.

When we investigate the effect of changing the bi or the aij values (for basic vari-
ables), the original optimal solution may become a superoptimal basic solution (as de-
fined in Table 6.10) instead. If we then want to reoptimize to identify the new optimal so-
lution, the dual simplex method (discussed at the end of Secs. 6.1 and 6.3) should be
applied, starting from this basic solution.

We mentioned in Sec. 6.1 that sometimes it is more efficient to solve the dual prob-
lem directly by the simplex method in order to identify an optimal solution for the pri-
mal problem. When the solution has been found in this way, sensitivity analysis for the
primal problem then is conducted by applying the procedure described in the next two
sections directly to the dual problem and then inferring the complementary effects on the
primal problem (e.g., see Table 6.11). This approach to sensitivity analysis is relatively
straightforward because of the close primal-dual relationships described in Secs. 6.1 and
6.3. (See Prob. 6.6-3.)
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The work of the operations research team usually is not even nearly done when the sim-
plex method has been successfully applied to identify an optimal solution for the model.
As we pointed out at the end of Sec. 3.3, one assumption of linear programming is that
all the parameters of the model (aij, bi, and cj) are known constants. Actually, the param-
eter values used in the model normally are just estimates based on a prediction of future
conditions. The data obtained to develop these estimates often are rather crude or non-
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existent, so that the parameters in the original formulation may represent little more than
quick rules of thumb provided by harassed line personnel. The data may even represent
deliberate overestimates or underestimates to protect the interests of the estimators.

Thus, the successful manager and operations research staff will maintain a healthy
skepticism about the original numbers coming out of the computer and will view them in
many cases as only a starting point for further analysis of the problem. An “optimal” so-
lution is optimal only with respect to the specific model being used to represent the real
problem, and such a solution becomes a reliable guide for action only after it has been ver-
ified as performing well for other reasonable representations of the problem. Furthermore,
the model parameters (particularly bi) sometimes are set as a result of managerial policy
decisions (e.g., the amount of certain resources to be made available to the activities), and
these decisions should be reviewed after their potential consequences are recognized.

For these reasons it is important to perform sensitivity analysis to investigate the ef-
fect on the optimal solution provided by the simplex method if the parameters take on
other possible values. Usually there will be some parameters that can be assigned any rea-
sonable value without the optimality of this solution being affected. However, there may
also be parameters with likely alternative values that would yield a new optimal solution.
This situation is particularly serious if the original solution would then have a substan-
tially inferior value of the objective function, or perhaps even be infeasible!

Therefore, one main purpose of sensitivity analysis is to identify the sensitive param-
eters (i.e., the parameters whose values cannot be changed without changing the optimal
solution). For certain parameters that are not categorized as sensitive, it is also very help-
ful to determine the range of values of the parameter over which the optimal solution will
remain unchanged. (We call this range of values the allowable range to stay optimal.) In
some cases, changing a parameter value can affect the feasibility of the optimal BF solu-
tion. For such parameters, it is useful to determine the range of values over which the op-
timal BF solution (with adjusted values for the basic variables) will remain feasible. (We
call this range of values the allowable range to stay feasible.) In the next section, we will
describe the specific procedures for obtaining this kind of information.

Such information is invaluable in two ways. First, it identifies the more important pa-
rameters, so that special care can be taken to estimate them closely and to select a solu-
tion that performs well for most of their likely values. Second, it identifies the parame-
ters that will need to be monitored particularly closely as the study is implemented. If it
is discovered that the true value of a parameter lies outside its allowable range, this im-
mediately signals a need to change the solution.

For small problems, it would be straightforward to check the effect of a variety of
changes in parameter values simply by reapplying the simplex method each time to see
if the optimal solution changes. This is particularly convenient when using a spreadsheet
formulation. Once the Solver has been set up to obtain an optimal solution, all you have
to do is make any desired change on the spreadsheet and then click on the Solve button
again.

However, for larger problems of the size typically encountered in practice, sensitiv-
ity analysis would require an exorbitant computational effort if it were necessary to reap-
ply the simplex method from the beginning to investigate each new change in a parame-
ter value. Fortunately, the fundamental insight discussed in Sec. 5.3 virtually eliminates
computational effort. The basic idea is that the fundamental insight immediately reveals
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just how any changes in the original model would change the numbers in the final sim-
plex tableau (assuming that the same sequence of algebraic operations originally per-
formed by the simplex method were to be duplicated ). Therefore, after making a few sim-
ple calculations to revise this tableau, we can check easily whether the original optimal
BF solution is now nonoptimal (or infeasible). If so, this solution would be used as the
initial basic solution to restart the simplex method (or dual simplex method) to find the
new optimal solution, if desired. If the changes in the model are not major, only a very
few iterations should be required to reach the new optimal solution from this “advanced”
initial basic solution.

To describe this procedure more specifically, consider the following situation. The
simplex method already has been used to obtain an optimal solution for a linear pro-
gramming model with specified values for the bi, cj, and aij parameters. To initiate sen-
sitivity analysis, at least one of the parameters is changed. After the changes are made,
let b�i, c�j, and a�ij denote the values of the various parameters. Thus, in matrix notation,

b � b�, c � c�, A � A�,

for the revised model.
The first step is to revise the final simplex tableau to reflect these changes. Continu-

ing to use the notation presented in Table 5.10, as well as the accompanying formulas for
the fundamental insight [(1) t* � t � y*T and (2) T* � S*T], we see that the revised fi-
nal tableau is calculated from y* and S* (which have not changed) and the new initial
tableau, as shown in Table 6.17.

Example (Variation 1 of the Wyndor Model). To illustrate, suppose that the first
revision in the model for the Wyndor Glass Co. problem of Sec. 3.1 is the one shown in
Table 6.18.

Thus, the changes from the original model are c1 � 3 � 4, a31 � 3 � 2, and b2 �
12 � 24. Figure 6.2 shows the graphical effect of these changes. For the original model,
the simplex method already has identified the optimal CPF solution as (2, 6), lying at the
intersection of the two constraint boundaries, shown as dashed lines 2x2 � 12 and 
3x1 � 2x2 � 18. Now the revision of the model has shifted both of these constraint bound-
aries as shown by the dark lines 2x2 � 24 and 2x1 � 2x2 � 18. Consequently, the previous
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TABLE 6.17 Revised final simplex tableau resulting from changes in original model

Coefficient of:

Eq. Z Original Variables Slack Variables Right Side

(0) 1 �c� 0 0
New initial tableau

(1, 2, . . . , m) 0 A� I b�

(0) 1 z* � c� � y*A� � c� y* Z* � y*b�
Revised final tableau

(1, 2, . . . , m) 0 A* � S*A� S* b* � S*b�
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TABLE 6.18 The original model and the first revised model (variation 1) for
conducting sensitivity analysis on the Wyndor Glass Co. model

Maximize Z � [3, 5] � �,
subject to

� � �

and

x � 0.
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FIGURE 6.2
Shift of the final corner-point
solution from (2, 6) to 
(�3, 12) for Variation 1 of
the Wyndor Glass Co. model
where c1 � 3 � 4, 
a31 � 3 � 2, and 
b2 � 12 � 24.



CPF solution (2, 6) now shifts to the new intersection (�3, 12), which is a corner-point in-
feasible solution for the revised model. The procedure described in the preceding para-
graphs finds this shift algebraically (in augmented form). Furthermore, it does so in a man-
ner that is very efficient even for huge problems where graphical analysis is impossible.

To carry out this procedure, we begin by displaying the parameters of the revised
model in matrix form:

c� � [4, 5], A� � , b� � .

The resulting new initial simplex tableau is shown at the top of Table 6.19. Below this
tableau is the original final tableau (as first given in Table 4.8). We have drawn dark boxes
around the portions of this final tableau that the changes in the model definitely do not
change, namely, the coefficients of the slack variables in both row 0 (y*) and the rest of
the rows (S*). Thus,

y* � [0, �
3
2

�, 1], S* � .
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TABLE 6.19 Obtaining the revised final simplex tableau for Variation 1 of the
Wyndor Glass Co. model

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �4 �5 0 0 0 0

New initial tableau
x3 (1) 0 1 0 1 0 0 4
x4 (2) 0 0 2 0 1 0 24
x5 (3) 0 2 2 0 0 1 18

Z (0) 1 0 0 0 �
3
2

� 1 36

Final tableau for
x3 (1) 0 0 0 1 �

1
3

� ��
1
3

� 2

original model
x2 (2) 0 0 1 0 �

1
2

� 0 6

x1 (3) 0 1 0 0 ��
1
3

� �
1
3

� 2

Z (0) 1 �2 0 0 �
3
2

� 1 54

x3 (1) 0 �
1
3

� 0 1 �
1
3

� ��
1
3

� 6
Revised final tableau

x2 (2) 0 0 1 0 �
1
2

� 0 12

x1 (3) 0 �
2
3

� 0 0 ��
1
3

� �
1
3

� �2



These coefficients of the slack variables necessarily are unchanged with the same alge-
braic operations originally performed by the simplex method because the coefficients of
these same variables in the initial tableau are unchanged.

However, because other portions of the initial tableau have changed, there will be
changes in the rest of the final tableau as well. Using the formulas in Table 6.17, we cal-
culate the revised numbers in the rest of the final tableau as follows:

z* � c� � [0, �
3
2

�, 1] � [4, 5] � [�2, 0], Z* � [0, �
3
2

�, 1] � 54,

A* � � ,

b* � � .

The resulting revised final tableau is shown at the bottom of Table 6.19.
Actually, we can substantially streamline these calculations for obtaining the revised

final tableau. Because none of the coefficients of x2 changed in the original model (tableau),
none of them can change in the final tableau, so we can delete their calculation. Several
other original parameters (a11, a21, b1, b3) also were not changed, so another shortcut is
to calculate only the incremental changes in the final tableau in terms of the incremental
changes in the initial tableau, ignoring those terms in the vector or matrix multiplication
that involve zero change in the initial tableau. In particular, the only incremental changes
in the initial tableau are �c1 � 1, �a31 � �1, and �b2 � 12, so these are the only terms
that need be considered. This streamlined approach is shown below, where a zero or dash
appears in each spot where no calculation is needed.

�(z* � c) � y* �A � �c � [0, �
3
2

�, 1] � [1, —] � [�2, —].

�Z* � y* �b � [0, �
3
2

�, 1] � 18.

�A* � S* �A � � .

�b* � S* �b � � .

Adding these increments to the original quantities in the final tableau (middle of Table
6.19) then yields the revised final tableau (bottom of Table 6.19).
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This incremental analysis also provides a useful general insight, namely, that changes
in the final tableau must be proportional to each change in the initial tableau. We illus-
trate in the next section how this property enables us to use linear interpolation or ex-
trapolation to determine the range of values for a given parameter over which the final
basic solution remains both feasible and optimal.

After obtaining the revised final simplex tableau, we next convert the tableau to proper
form from Gaussian elimination (as needed). In particular, the basic variable for row i
must have a coefficient of 1 in that row and a coefficient of 0 in every other row (in-
cluding row 0) for the tableau to be in the proper form for identifying and evaluating the
current basic solution. Therefore, if the changes have violated this requirement (which can
occur only if the original constraint coefficients of a basic variable have been changed),
further changes must be made to restore this form. This restoration is done by using Gauss-
ian elimination, i.e., by successively applying step 3 of an iteration for the simplex method
(see Chap. 4) as if each violating basic variable were an entering basic variable. Note that
these algebraic operations may also cause further changes in the right side column, so
that the current basic solution can be read from this column only when the proper form
from Gaussian elimination has been fully restored.

For the example, the revised final simplex tableau shown in the top half of Table
6.20 is not in proper form from Gaussian elimination because of the column for the ba-
sic variable x1. Specifically, the coefficient of x1 in its row (row 3) is �

2
3

� instead of 1, and
it has nonzero coefficients (�2 and �

1
3

�) in rows 0 and 1. To restore proper form, row 3 is
multiplied by �

3
2

�; then 2 times this new row 3 is added to row 0 and �
1
3

� times new row 3 is
subtracted from row 1. This yields the proper form from Gaussian elimination shown in
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TABLE 6.20 Converting the revised final simplex tableau to proper form from
Gaussian elimination for Variation 1 of the Wyndor Glass Co. model

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �2 0 0 �
3
2

� 1 54

Revised final
x3 (1) 0 �

1
3

� 0 1 �
1
3

� ��
1
3

� 6

tableau
x2 (2) 0 0 1 0 �

1
2

� 0 12

x1 (3) 0 �
2
3

� 0 0 ��
1
3

� �
1
3

� �2

Z (0) 1 0 0 0 �
1
2

� 2 48

Converted to proper
x3 (1) 0 0 0 1 �

1
2

� ��
1
2

� 7

form
x2 (2) 0 0 1 0 �

1
2

� 0 12

x1 (3) 0 1 0 0 ��
1
2

� �
1
2

� �3



the bottom half of Table 6.20, which now can be used to identify the new values for the
current (previously optimal) basic solution:

(x1, x2, x3, x4, x5) � (�3, 12, 7, 0, 0).

Because x1 is negative, this basic solution no longer is feasible. However, it is superop-
timal (as defined in Table 6.10), and so dual feasible, because all the coefficients in row 0 still
are nonnegative. Therefore, the dual simplex method can be used to reoptimize (if desired),
by starting from this basic solution. (The sensitivity analysis routine in the OR Courseware
includes this option.) Referring to Fig. 6.2 (and ignoring slack variables), the dual simplex
method uses just one iteration to move from the corner-point solution (�3, 12) to the optimal
CPF solution (0, 9). (It is often useful in sensitivity analysis to identify the solutions that are
optimal for some set of likely values of the model parameters and then to determine which of
these solutions most consistently performs well for the various likely parameter values.)

If the basic solution (�3, 12, 7, 0, 0) had been neither primal feasible nor dual fea-
sible (i.e., if the tableau had negative entries in both the right side column and row 0), ar-
tificial variables could have been introduced to convert the tableau to the proper form for
an initial simplex tableau.1

The General Procedure. When one is testing to see how sensitive the original opti-
mal solution is to the various parameters of the model, the common approach is to check
each parameter (or at least cj and bi) individually. In addition to finding allowable ranges
as described in the next section, this check might include changing the value of the pa-
rameter from its initial estimate to other possibilities in the range of likely values (in-
cluding the endpoints of this range). Then some combinations of simultaneous changes
of parameter values (such as changing an entire functional constraint) may be investigated.
Each time one (or more) of the parameters is changed, the procedure described and il-
lustrated here would be applied. Let us now summarize this procedure.

Summary of Procedure for Sensitivity Analysis

1. Revision of model: Make the desired change or changes in the model to be investigated
next.

2. Revision of final tableau: Use the fundamental insight (as summarized by the formu-
las on the bottom of Table 6.17) to determine the resulting changes in the final sim-
plex tableau. (See Table 6.19 for an illustration.)

3. Conversion to proper form from Gaussian elimination: Convert this tableau to the
proper form for identifying and evaluating the current basic solution by applying (as
necessary) Gaussian elimination. (See Table 6.20 for an illustration.)

4. Feasibility test: Test this solution for feasibility by checking whether all its basic vari-
able values in the right-side column of the tableau still are nonnegative.

5. Optimality test: Test this solution for optimality (if feasible) by checking whether all
its nonbasic variable coefficients in row 0 of the tableau still are nonnegative.

6. Reoptimization: If this solution fails either test, the new optimal solution can be ob-
tained (if desired) by using the current tableau as the initial simplex tableau (and mak-
ing any necessary conversions) for the simplex method or dual simplex method.
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The interactive routine entitled sensitivity analysis in the OR Courseware will enable
you to efficiently practice applying this procedure. In addition, a demonstration in OR Tu-
tor (also entitled sensitivity analysis) provides you with another example.

In the next section, we shall discuss and illustrate the application of this procedure
to each of the major categories of revisions in the original model. This discussion will in-
volve, in part, expanding upon the example introduced in this section for investigating
changes in the Wyndor Glass Co. model. In fact, we shall begin by individually checking
each of the preceding changes. At the same time, we shall integrate some of the applica-
tions of duality theory to sensitivity analysis discussed in Sec. 6.5.
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Sensitivity analysis often begins with the investigation of changes in the values of bi, the
amount of resource i (i � 1, 2, . . . , m) being made available for the activities under con-
sideration. The reason is that there generally is more flexibility in setting and adjusting
these values than there is for the other parameters of the model. As already discussed in
Secs. 4.7 and 6.2, the economic interpretation of the dual variables (the yi) as shadow
prices is extremely useful for deciding which changes should be considered.

Case 1—Changes in bi

Suppose that the only changes in the current model are that one or more of the bi param-
eters (i � 1, 2, . . . , m) has been changed. In this case, the only resulting changes in the
final simplex tableau are in the right-side column. Consequently, the tableau still will be
in proper form from Gaussian elimination and all the nonbasic variable coefficients in row
0 still will be nonnegative. Therefore, both the conversion to proper form from Gaussian
elimination and the optimality test steps of the general procedure can be skipped. After
revising the right-side column of the tableau, the only question will be whether all the ba-
sic variable values in this column still are nonnegative (the feasibility test).

As shown in Table 6.17, when the vector of the bi values is changed from b to b�, the
formulas for calculating the new right-side column in the final tableau are

Right side of final row 0: Z* � y*b�,
Right side of final rows 1, 2, . . . , m: b* � S*b�.

(See the bottom of Table 6.17 for the location of the unchanged vector y* and matrix S*
in the final tableau.)

Example (Variation 2 of the Wyndor Model). Sensitivity analysis is begun for
the original Wyndor Glass Co. problem of Sec. 3.1 by examining the optimal values of
the yi dual variables ( y1* � 0, y2* � �

3
2

�, y3* � 1). These shadow prices give the marginal
value of each resource i for the activities (two new products) under consideration, where
marginal value is expressed in the units of Z (thousands of dollars of profit per week). As
discussed in Sec. 4.7 (see Fig. 4.8), the total profit from these activities can be increased
$1,500 per week ( y2* times $1,000 per week) for each additional unit of resource 2 (hour
of production time per week in Plant 2) that is made available. This increase in profit
holds for relatively small changes that do not affect the feasibility of the current basic so-
lution (and so do not affect the yi* values).
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Consequently, the OR team has investigated the marginal profitability from the other
current uses of this resource to determine if any are less than $1,500 per week. This in-
vestigation reveals that one old product is far less profitable. The production rate for this
product already has been reduced to the minimum amount that would justify its market-
ing expenses. However, it can be discontinued altogether, which would provide an addi-
tional 12 units of resource 2 for the new products. Thus, the next step is to determine the
profit that could be obtained from the new products if this shift were made. This shift
changes b2 from 12 to 24 in the linear programming model. Figure 6.3 shows the graph-
ical effect of this change, including the shift in the final corner-point solution from (2, 6)
to (�2, 12). (Note that this figure differs from Fig. 6.2, which depicts Variation 1 of the
Wyndor model, because the constraint 3x1 � 2x2 � 18 has not been changed here.)

Thus, for Variation 2 of the Wyndor model, the only revision in the original model is
the following change in the vector of the bi values:

b � → b� � .

so only b2 has a new value.
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FIGURE 6.3
Feasible region for Variation
2 of the Wyndor Glass Co.
model where b2 � 12 → 24.



Analysis of Variation 2. When the fundamental insight (Table 6.17) is applied, the
effect of this change in b2 on the original final simplex tableau (middle of Table 6.19) is
that the entries in the right-side column change to the following values:

Z* � y*b� � [0, �
3
2

�, 1] � 54,

b* � S*b� � � , so � .

Equivalently, because the only change in the original model is �b2 � 24 � 12 � 12,
incremental analysis can be used to calculate these same values more quickly. Incremen-
tal analysis involves calculating just the increments in the tableau values caused by the
change (or changes) in the original model, and then adding these increments to the orig-
inal values. In this case, the increments in Z* and b* are

�Z* � y*�b � y* � y* ,

�b* � S* �b � S* � S* .

Therefore, using the second component of y* and the second column of S*, the only cal-
culations needed are

�Z* � �
3
2

�(12) � 18, so Z* � 36 � 18 � 54,

�b1* � �
1
3

�(12) � 4, so b1* � 2 � 4 � 6,

�b2* � �
1
2

�(12) � 6, so b2* � 6 � 6 � 12,

�b3* � ��
1
3

�(12) � �4, so b3* � 2 � 4 � �2,

where the original values of these quantities are obtained from the right-side column in
the original final tableau (middle of Table 6.19). The resulting revised final tableau cor-
responds completely to this original final tableau except for replacing the right-side col-
umn with these new values.

Therefore, the current (previously optimal) basic solution has become

(x1, x2, x3, x4, x5) � (�2, 12, 6, 0, 0),

which fails the feasibility test because of the negative value. The dual simplex method
now can be applied, starting with this revised simplex tableau, to find the new optimal so-
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lution. This method leads in just one iteration to the new final simplex tableau shown in
Table 6.21. (Alternatively, the simplex method could be applied from the beginning, which
also would lead to this final tableau in just one iteration in this case.) This tableau indi-
cates that the new optimal solution is

(x1, x2, x3, x4, x5) � (0, 9, 4, 6, 0),

with Z � 45, thereby providing an increase in profit from the new products of 9 units
($9,000 per week) over the previous Z � 36. The fact that x4 � 6 indicates that 6 of the
12 additional units of resource 2 are unused by this solution.

Based on the results with b2 � 24, the relatively unprofitable old product will be
discontinued and the unused 6 units of resource 2 will be saved for some future use.
Since y3* still is positive, a similar study is made of the possibility of changing the al-
location of resource 3, but the resulting decision is to retain the current allocation. There-
fore, the current linear programming model at this point (Variation 2) has the parame-
ter values and optimal solution shown in Table 6.21. This model will be used as the
starting point for investigating other types of changes in the model later in this section.
However, before turning to these other cases, let us take a broader look at the current
case.

The Allowable Range to Stay Feasible. Although �b2 � 12 proved to be too
large an increase in b2 to retain feasibility (and so optimality) with the basic solution
where x1, x2, and x3 are the basic variables (middle of Table 6.19), the above incre-
mental analysis shows immediately just how large an increase is feasible. In particu-
lar, note that

b1* � 2 � �
1
3

� �b2,

b2* � 6 � �
1
2

� �b2,

b3* � 2 � �
1
3

� �b2,
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TABLE 6.21 Data for Variation 2 of the Wyndor Glass Co. model

Final Simplex Tableau after Reoptimization

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �
9
2

� 0 0 0 �
5
2

� 45

x3 (1) 0 1 0 1 0 0 4

x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 9

x4 (3) 0 �3 0 0 1 �1 6

c1 � 3, c2 � 5 (n � 2)
a11 � 1, a12 � 0, b1 � 4
a21 � 0, a22 � 2, b2 � 24
a31 � 3, a32 � 2, b3 � 18

Model Parameters



where these three quantities are the values of x3, x2, and x1, respectively, for this basic so-
lution. The solution remains feasible, and so optimal, as long as all three quantities re-
main nonnegative.

2 � �
1
3

� �b2 � 0 ⇒ �
1
3

� �b2 � �2 ⇒ �b2 � �6,

6 � �
1
2

� �b2 � 0 ⇒ �
1
2

� �b2 � �6 ⇒ �b2 � �12,

2 � �
1
3

� �b2 � 0 ⇒ 2 � �
1
3

� �b2 ⇒ �b2 � 6.

Therefore, since b2 � 12 � �b2, the solution remains feasible only if

�6 � �b2 � 6, that is, 6 � b2 � 18.

(Verify this graphically in Fig. 6.3.) As introduced in Sec. 4.7, this range of values for b2

is referred to as its allowable range to stay feasible.

For any bi, recall from Sec. 4.7 that its allowable range to stay feasible is the
range of values over which the current optimal BF solution1 (with adjusted val-
ues for the basic variables) remains feasible. Thus, the shadow price for bi re-
mains valid for evaluating the effect on Z of changing bi only as long as bi re-
mains within this allowable range. (It is assumed that the change in this one bi

value is the only change in the model.) The adjusted values for the basic vari-
ables are obtained from the formula b* � S*b�. The calculation of the allowable
range to stay feasible then is based on finding the range of values of bi such that
b* � 0.

Many linear programming software packages use this same technique for automati-
cally generating the allowable range to stay feasible for each bi. (A similar technique, dis-
cussed under Cases 2a and 3, also is used to generate an allowable range to stay optimal
for each cj.) In Chap. 4, we showed the corresponding output for the Excel Solver and
LINDO in Figs. 4.10 and 4.13, respectively. Table 6.22 summarizes this same output with
respect to the bi for the original Wyndor Glass Co. model. For example, both the allow-
able increase and allowable decrease for b2 are 6, that is, �6 � �b2 � 6. The above
analysis shows how these quantities were calculated.
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1When there is more than one optimal BF solution for the current model (before changing bi), we are referring
here to the one obtained by the simplex method.

TABLE 6.22 Typical software output for sensitivity analysis of the right-hand sides
for the original Wyndor Glass Co. model

Constraint Shadow Price Current RHS Allowable Increase Allowable Decrease

Plant 1 0.0 4  2
Plant 2 1.5 12 6 6
Plant 3 1.0 18 6 6



Analyzing Simultaneous Changes in Right-Hand Sides. When multiple bi values
are changed simultaneously, the formula b* � S*b� can again be used to see how the right-
hand sides change in the final tableau. If all these right-hand sides still are nonnegative, the
feasibility test will indicate that the revised solution provided by this tableau still is feasi-
ble. Since row 0 has not changed, being feasible implies that this solution also is optimal.

Although this approach works fine for checking the effect of a specific set of changes in
the bi, it does not give much insight into how far the bi can be simultaneously changed from
their original values before the revised solution will no longer be feasible. As part of postop-
timality analysis, the management of an organization often is interested in investigating the
effect of various changes in policy decisions (e.g., the amounts of resources being made avail-
able to the activities under consideration) that determine the right-hand sides. Rather than
considering just one specific set of changes, management may want to explore directions of
changes where some right-hand sides increase while others decrease. Shadow prices are in-
valuable for this kind of exploration. However, shadow prices remain valid for evaluating the
effect of such changes on Z only within certain ranges of changes. For each bi, the allowable
range to stay feasible gives this range if none of the other bi are changing at the same time.
What do these allowable ranges become when some of the bi are changing simultaneously?

A partial answer to this question is provided by the following 100 percent rule, which
combines the allowable changes (increase or decrease) for the individual bi that are given
by the last two columns of a table like Table 6.22.

The 100 Percent Rule for Simultaneous Changes in Right-Hand Sides: The
shadow prices remain valid for predicting the effect of simultaneously changing
the right-hand sides of some of the functional constraints as long as the changes
are not too large. To check whether the changes are small enough, calculate for
each change the percentage of the allowable change (increase or decrease) for that
right-hand side to remain within its allowable range to stay feasible. If the sum of
the percentage changes does not exceed 100 percent, the shadow prices definitely
will still be valid. (If the sum does exceed 100 percent, then we cannot be sure.)

Example (Variation 3 of the Wyndor Model). To illustrate this rule, consider Vari-
ation 3 of the Wyndor Glass Co. model, which revises the original model by changing the
right-hand side vector as follows:

b � � b� � .

The calculations for the 100 percent rule in this case are

b2: 12 � 15. Percentage of allowable increase � 100 ��15 �
6

12
�� � 50%

b3: 18 � 15. Percentage of allowable decrease � 100��18 �
6

15
�� � 50%

Sum � 100%

Since the sum of 100 percent barely does not exceed 100 percent, the shadow prices
definitely are valid for predicting the effect of these changes on Z. In particular, since
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the shadow prices of b2 and b3 are 1.5 and 1, respectively, the resulting change in Z
would be

�Z � 1.5(3) � 1(�3) � 1.5,

so Z* would increase from 36 to 37.5.
Figure 6.4 shows the feasible region for this revised model. (The dashed lines show

the original locations of the revised constraint boundary lines.) The optimal solution now
is the CPF solution (0, 7.5), which gives

Z � 3x1 � 5x2 � 0 � 5(7.5) � 37.5,

just as predicted by the shadow prices. However, note what would happen if either b2 were
further increased above 15 or b3 were further decreased below 15, so that the sum of the
percentages of allowable changes would exceed 100 percent. This would cause the pre-
viously optimal corner-point solution to slide to the left of the x2 axis (x1 � 0), so this in-
feasible solution would no longer be optimal. Consequently, the old shadow prices would
no longer be valid for predicting the new value of Z*.
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FIGURE 6.4
Feasible region for Variation
3 of the Wyndor Glass Co.
model where b2 � 12 � 15
and b3 � 18 � 15.



Case 2a—Changes in the Coefficients of a Nonbasic Variable

Consider a particular variable xj (fixed j) that is a nonbasic variable in the optimal solu-
tion shown by the final simplex tableau. In Case 2a, the only change in the current model
is that one or more of the coefficients of this variable—cj, a1j , a2j , . . . , amj —have been
changed. Thus, letting c�j and a�ij denote the new values of these parameters, with A�j (col-
umn j of matrix A�) as the vector containing the a�ij, we have

cj → c�j, Aj → A�j

for the revised model.
As described at the beginning of Sec. 6.5, duality theory provides a very convenient

way of checking these changes. In particular, if the complementary basic solution y* in
the dual problem still satisfies the single dual constraint that has changed, then the orig-
inal optimal solution in the primal problem remains optimal as is. Conversely, if y* vio-
lates this dual constraint, then this primal solution is no longer optimal.

If the optimal solution has changed and you wish to find the new one, you can do so
rather easily. Simply apply the fundamental insight to revise the xj column (the only one
that has changed) in the final simplex tableau. Specifically, the formulas in Table 6.17 re-
duce to the following:

Coefficient of xj in final row 0: zj* � c�j � y*A�j � c�j,
Coefficient of xj in final rows 1 to m: Aj* � S*A�j.

With the current basic solution no longer optimal, the new value of zj* � cj now will be
the one negative coefficient in row 0, so restart the simplex method with xj as the initial
entering basic variable.

Note that this procedure is a streamlined version of the general procedure summa-
rized at the end of Sec. 6.6. Steps 3 and 4 (conversion to proper form from Gaussian elim-
ination and the feasibility test) have been deleted as irrelevant, because the only column
being changed in the revision of the final tableau (before reoptimization) is for the non-
basic variable xj. Step 5 (optimality test) has been replaced by a quicker test of optimal-
ity to be performed right after step 1 (revision of model). It is only if this test reveals that
the optimal solution has changed, and you wish to find the new one, that steps 2 and 6
(revision of final tableau and reoptimization) are needed.

Example (Variation 4 of the Wyndor Model). Since x1 is nonbasic in the current
optimal solution (see Table 6.21) for Variation 2 of the Wyndor Glass Co. model, the next
step in its sensitivity analysis is to check whether any reasonable changes in the estimates
of the coefficients of x1 could still make it advisable to introduce product 1. The set of
changes that goes as far as realistically possible to make product 1 more attractive would
be to reset c1 � 4 and a31 � 2. Rather than exploring each of these changes independently
(as is often done in sensitivity analysis), we will consider them together. Thus, the changes
under consideration are

c1 � 3 → c�1 � 4, A1 � → A�1 � .
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These two changes in Variation 2 give us Variation 4 of the Wyndor model. Variation
4 actually is equivalent to Variation 1 considered in Sec. 6.6 and depicted in Fig. 6.2, since
Variation 1 combined these two changes with the change in the original Wyndor model
(b2 � 12 � 24) that gave Variation 2. However, the key difference from the treatment of
Variation 1 in Sec. 6.6 is that the analysis of Variation 4 treats Variation 2 as being the
original model, so our starting point is the final simplex tableau given in Table 6.21 where
x1 now is a nonbasic variable.

The change in a31 revises the feasible region from that shown in Fig. 6.3 to the 
corresponding region in Fig. 6.5. The change in c1 revises the objective function from 
Z � 3x1 � 5x2 to Z � 4x1 � 5x2. Figure 6.5 shows that the optimal objective function
line Z � 45 � 4x1 � 5x2 still passes through the current optimal solution (0, 9), so this
solution remains optimal after these changes in a31 and c1.

To use duality theory to draw this same conclusion, observe that the changes in c1

and a31 lead to a single revised constraint for the dual problem, namely, the constraint
that a11y1 � a21y2 � a31y3 � c1. Both this revised constraint and the current y* (coeffi-
cients of the slack variables in row 0 of Table 6.21) are shown below.

y1* � 0, y2* � 0, y3* � �
5
2

�,

y1 � 3y3 � 3 → y1 � 2y3 � 4,

0 � 2��
5
2

�� � 4.

Since y* still satisfies the revised constraint, the current primal solution (Table 6.21) is
still optimal.

Because this solution is still optimal, there is no need to revise the xj column in the
final tableau (step 2). Nevertheless, we do so below for illustrative purposes.

z1* � c�1 � y*A�1 � c1 � [0, 0, �
5
2

�] � 4 � 1.

A1* � S*A�1 � � .

The fact that z1* � c�1 � 0 again confirms the optimality of the current solution. Since 
z1* � c1 is the surplus variable for the revised constraint in the dual problem, this way of
testing for optimality is equivalent to the one used above.

This completes the analysis of the effect of changing the current model (Variation 2)
to Variation 4. Because any larger changes in the original estimates of the coefficients of
x1 would be unrealistic, the OR team concludes that these coefficients are insensitive pa-
rameters in the current model. Therefore, they will be kept fixed at their best estimates
shown in Table 6.21—c1 � 3 and a31 � 3—for the remainder of the sensitivity analysis.

The Allowable Range to Stay Optimal. We have just described and illustrated how
to analyze simultaneous changes in the coefficients of a nonbasic variable xj. It is com-
mon practice in sensitivity analysis to also focus on the effect of changing just one param-
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eter, cj. As introduced in Sec. 4.7, this involves streamlining the above approach to find
the allowable range to stay optimal for cj.

For any cj, recall from Sec. 4.7 that its allowable range to stay optimal is the range
of values over which the current optimal solution (as obtained by the simplex method
for the current model before cj is changed) remains optimal. (It is assumed that the
change in this one cj is the only change in the current model.) When xj is a nonba-
sic variable for this solution, the solution remains optimal as long as zj* � cj � 0,
where zj* � y*Aj is a constant unaffected by any change in the value of cj. There-
fore, the allowable range to stay optimal for cj can be calculated as cj � y*Aj.

For example, consider the current model (Variation 2) for the Wyndor Glass Co. prob-
lem summarized on the left side of Table 6.21, where the current optimal solution (with
c1 � 3) is given on the right side. When considering only the decision variables, x1 and
x2, this optimal solution is (x1, x2) = (0, 9), as displayed in Fig. 6.3. When just c1 is
changed, this solution remains optimal as long as

c1 � y*A1 � [0, 0, �
5
2

�] � 7�
1
2

�,

so c1 � 7�
1
2

� is the allowable range to stay optimal.
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FIGURE 6.5
Feasible region for Variation
4 of the Wyndor model
where Variation 2 (Fig. 6.3)
has been revised so 
a31 � 3 � 2 and 
c1 � 3 � 4.



An alternative to performing this vector multiplication is to note in Table 6.21 that
z1* � c1 � �

9
2

� (the coefficient of x1 in row 0) when c1 � 3, so z1* � 3 � �
9
2

� � 7�
1
2

�. Since 
z1* � y*A1, this immediately yields the same allowable range.

Figure 6.3 provides graphical insight into why c1 � 7�
1
2

� is the allowable range. At 
c1 � 7�

1
2

�, the objective function becomes Z � 7.5x1 � 5x2 � 2.5(3x1 � 2x2), so the opti-
mal objective line will lie on top of the constraint boundary line 3x1 � 2x2 � 18 shown
in the figure. Thus, at this endpoint of the allowable range, we have multiple optimal so-
lutions consisting of the line segment between (0, 9) and (4, 3). If c1 were to be increased
any further (c1 	 7�

1
2

� ), only (4, 3) would be optimal. Consequently, we need c1 � 7�
1
2

� for
(0, 9) to remain optimal.

For any nonbasic decision variable xj, the value of zj* � cj sometimes is referred to
as the reduced cost for xj, because it is the minimum amount by which the unit cost of
activity j would have to be reduced to make it worthwhile to undertake activity j (increase
xj from zero). Interpreting cj as the unit profit of activity j (so reducing the unit cost in-
creases cj by the same amount), the value of zj* � cj thereby is the maximum allowable
increase in cj to keep the current BF solution optimal.

The sensitivity analysis information generated by linear programming software pack-
ages normally includes both the reduced cost and the allowable range to stay optimal for
each coefficient in the objective function (along with the types of information displayed
in Table 6.22). This was illustrated in Figs. 4.10, 4.12, and 4.13 for the Excel Solver and
LINDO. Table 6.23 displays this information in a typical form for our current model (Vari-
ation 2 of the Wyndor Glass Co. model). The last three columns are used to calculate the
allowable range to stay optimal for each coefficient, so these allowable ranges are

c1 � 3 � 4.5 � 7.5,
c2 � 5 � 3 � 2.

As was discussed in Sec. 4.7, if any of the allowable increases or decreases had turned
out to be zero, this would have been a signpost that the optimal solution given in the table
is only one of multiple optimal solutions. In this case, changing the corresponding coef-
ficient a tiny amount beyond the zero allowed and re-solving would provide another op-
timal CPF solution for the original model.

Thus far, we have described how to calculate the type of information in Table 6.23
for only nonbasic variables. For a basic variable like x2, the reduced cost automatically is
0. We will discuss how to obtain the allowable range to stay optimal for cj when xj is a
basic variable under Case 3.
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TABLE 6.23 Typical software output for sensitivity analysis of the objective
function coefficients for Variation 2 of the Wyndor Glass Co. model

Reduced Current Allowable Allowable
Variable Value Cost Coefficient Increase Decrease

x1 0 4.5 3 4.5 

x2 9 0.0 5  3



Analyzing Simultaneous Changes in Objective Function Coefficients. Regard-
less of whether xj is a basic or nonbasic variable, the allowable range to stay optimal for
cj is valid only if this objective function coefficient is the only one being changed. How-
ever, when simultaneous changes are made in the coefficients of the objective function, a
100 percent rule is available for checking whether the original solution must still be opti-
mal. Much like the 100 percent rule for simultaneous changes in right-hand sides, this 100
percent rule combines the allowable changes (increase or decrease) for the individual cj

that are given by the last two columns of a table like Table 6.23, as described below.

The 100 Percent Rule for Simultaneous Changes in Objective Function Co-
efficients: If simultaneous changes are made in the coefficients of the objective
function, calculate for each change the percentage of the allowable change (in-
crease or decrease) for that coefficient to remain within its allowable range to
stay optimal. If the sum of the percentage changes does not exceed 100 percent,
the original optimal solution definitely will still be optimal. (If the sum does ex-
ceed 100 percent, then we cannot be sure.)

Using Table 6.23 (and referring to Fig. 6.3 for visualization), this 100 percent rule
says that (0, 9) will remain optimal for Variation 2 of the Wyndor Glass Co. model even
if we simultaneously increase c1 from 3 and decrease c2 from 5 as long as these changes
are not too large. For example, if c1 is increased by 1.5 (33�

1
3

� percent of the allowable
change), then c2 can be decreased by as much as 2 (66�

2
3

� percent of the allowable change).
Similarly, if c1 is increased by 3 (66�

2
3

� percent of the allowable change), then c2 can only
be decreased by as much as 1 (33�

1
3

� percent of the allowable change). These maximum
changes revise the objective function to either Z � 4.5x1 � 3x2 or Z � 6x1 � 4x2, which
causes the optimal objective function line in Fig. 6.3 to rotate clockwise until it coincides
with the constraint boundary equation 3x1 � 2x2 � 18.

In general, when objective function coefficients change in the same direction, it is
possible for the percentages of allowable changes to sum to more than 100 percent with-
out changing the optimal solution. We will give an example at the end of the discussion
of Case 3.

Case 2b—Introduction of a New Variable

After solving for the optimal solution, we may discover that the linear programming for-
mulation did not consider all the attractive alternative activities. Considering a new ac-
tivity requires introducing a new variable with the appropriate coefficients into the ob-
jective function and constraints of the current model—which is Case 2b.

The convenient way to deal with this case is to treat it just as if it were Case 2a! This
is done by pretending that the new variable xj actually was in the original model with all
its coefficients equal to zero (so that they still are zero in the final simplex tableau) and
that xj is a nonbasic variable in the current BF solution. Therefore, if we change these
zero coefficients to their actual values for the new variable, the procedure (including any
reoptimization) does indeed become identical to that for Case 2a.

In particular, all you have to do to check whether the current solution still is op-
timal is to check whether the complementary basic solution y* satisfies the one new
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dual constraint that corresponds to the new variable in the primal problem. We already
have described this approach and then illustrated it for the Wyndor Glass Co. problem
in Sec. 6.5.

Case 3—Changes in the Coefficients of a Basic Variable

Now suppose that the variable xj (fixed j) under consideration is a basic variable in the
optimal solution shown by the final simplex tableau. Case 3 assumes that the only changes
in the current model are made to the coefficients of this variable.

Case 3 differs from Case 2a because of the requirement that a simplex tableau be in
proper form from Gaussian elimination. This requirement allows the column for a non-
basic variable to be anything, so it does not affect Case 2a. However, for Case 3, the ba-
sic variable xj must have a coefficient of 1 in its row of the simplex tableau and a coeffi-
cient of 0 in every other row (including row 0). Therefore, after the changes in the xj

column of the final simplex tableau have been calculated,1 it probably will be necessary
to apply Gaussian elimination to restore this form, as illustrated in Table 6.20. In turn,
this step probably will change the value of the current basic solution and may make it ei-
ther infeasible or nonoptimal (so reoptimization may be needed). Consequently, all the
steps of the overall procedure summarized at the end of Sec. 6.6 are required for Case 3.

Before Gaussian elimination is applied, the formulas for revising the xj column are
the same as for Case 2a, as summarized below.

Coefficient of xj in final row 0: zj* � c�j � y*A�j � c�j.
Coefficient of xj in final rows 1 to m: Aj* � S*A�j.

Example (Variation 5 of the Wyndor Model). Because x2 is a basic variable in Table
6.21 for Variation 2 of the Wyndor Glass Co. model, sensitivity analysis of its coefficients fits
Case 3. Given the current optimal solution (x1 � 0, x2 � 9), product 2 is the only new prod-
uct that should be introduced, and its production rate should be relatively large. Therefore,
the key question now is whether the initial estimates that led to the coefficients of x2 in the
current model (Variation 2) could have overestimated the attractiveness of product 2 so much
as to invalidate this conclusion. This question can be tested by checking the most pessimistic
set of reasonable estimates for these coefficients, which turns out to be c2 � 3, a22 � 3, and
a32 � 4. Consequently, the changes to be investigated (Variation 5 of the Wyndor model) are

c2 � 5 → c�2 � 3, A2 � → A�2 � .

The graphical effect of these changes is that the feasible region changes from the one
shown in Fig. 6.3 to the one in Fig. 6.6. The optimal solution in Fig. 6.3 is (x1, x2) �
(0, 9), which is the corner-point solution lying at the intersection of the x1 � 0 and 
3x1 � 2x2 � 18 constraint boundaries. With the revision of the constraints, the corre-
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1For the relatively sophisticated reader, we should point out a possible pitfall for Case 3 that would be discov-
ered at this point. Specifically, the changes in the initial tableau can destroy the linear independence of the
columns of coefficients of basic variables. This event occurs only if the unit coefficient of the basic variable xj

in the final tableau has been changed to zero at this point, in which case more extensive simplex method cal-
culations must be used for Case 3.



sponding corner-point solution in Fig. 6.6 is (0, �
9
2

� ). However, this solution no longer is op-
timal, because the revised objective function of Z � 3x1 � 3x2 now yields a new optimal
solution of (x1, x2) � (4, �

3
2

� ).

Analysis of Variation 5. Now let us see how we draw these same conclusions alge-
braically. Because the only changes in the model are in the coefficients of x2, the only re-
sulting changes in the final simplex tableau (Table 6.21) are in the x2 column. Therefore,
the above formulas are used to recompute just this column.

z2 � c�2 � y*A�2 � c�2 � [0, 0, �
5
2

�] � 3 � 7.

A2* � S*A�2 � � .
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FIGURE 6.6
Feasible region for Variation
5 of the Wyndor model
where Variation 2 (Fig. 6.3)
has been revised so 
c2 � 5 � 3, a22 � 2 � 3,
and a32 � 2 � 4.



(Equivalently, incremental analysis with �c2 � �2, �a22 � 1, and �a32 � 2 can be used
in the same way to obtain this column.)

The resulting revised final tableau is shown at the top of Table 6.24. Note that the
new coefficients of the basic variable x2 do not have the required values, so the conver-
sion to proper form from Gaussian elimination must be applied next. This step involves
dividing row 2 by 2, subtracting 7 times the new row 2 from row 0, and adding the new
row 2 to row 3.

The resulting second tableau in Table 6.24 gives the new value of the current basic
solution, namely, x3 � 4, x2 � �

9
2

�, x4 � �
2
2
1
� (x1 � 0, x5 � 0). Since all these variables are non-

negative, the solution is still feasible. However, because of the negative coefficient of x1

in row 0, we know that it is no longer optimal. Therefore, the simplex method would be
applied to this tableau, with this solution as the initial BF solution, to find the new opti-
mal solution. The initial entering basic variable is x1, with x3 as the leaving basic vari-
able. Just one iteration is needed in this case to reach the new optimal solution x1 � 4,
x2 � �

3
2

�, x4 � �
3
2
9
� (x3 � 0, x5 � 0), as shown in the last tableau of Table 6.24.

All this analysis suggests that c2, a22, and a32 are relatively sensitive parameters. How-
ever, additional data for estimating them more closely can be obtained only by conduct-
ing a pilot run. Therefore, the OR team recommends that production of product 2 be ini-
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New final tableau
after reoptimization
(only one iteration of
the simplex method
needed in this case)

TABLE 6.24 Sensitivity analysis procedure applied to Variation 5 of the 
Wyndor Glass Co. model

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �
9
2

� 7 0 0 �
5
2

� 45

Revised final tableau
x3 (1) 0 1 0 1 0 0 4

x2 (2) 0 �
3
2

� 2 0 0 �
1
2

� 9

x4 (3) 0 �3 �1 0 1 �1 6

Z (0) 1 ��
3
4

� 0 0 0 �
3
4

� �
2
2
7
�

Converted to proper form
x3 (1) 0 1 0 1 0 0 4

x2 (2) 0 �
3
4

� 1 0 0 �
1
4

� �
9
2

�

x4 (3) 0 ��
9
4

� 0 0 1 ��
3
4

� �
2
2
1
�

Z (0) 1 0 0 �
3
4

� 0 �
3
4

� �
3
2
3
�

x1 (1) 0 1 0 1 0 0 4

x2 (2) 0 0 1 ��
3
4

� 0 �
1
4

� �
3
2

�

x4 (3) 0 0 0 �
9
4

� 1 ��
3
4

� �
3
2
9
�



tiated immediately on a small scale (x2 � �
3
2

�) and that this experience be used to guide the
decision on whether the remaining production capacity should be allocated to product 2
or product 1.

The Allowable Range to Stay Optimal. For Case 2a, we described how to find the
allowable range to stay optimal for any cj such that xj is a nonbasic variable for the cur-
rent optimal solution (before cj is changed). When xj is a basic variable instead, the pro-
cedure is somewhat more involved because of the need to convert to proper form from
Gaussian elimination before testing for optimality.

To illustrate the procedure, consider Variation 5 of the Wyndor Glass Co. model (with
c2 � 3, a22 � 3, a23 � 4) that is graphed in Fig. 6.6 and solved in Table 6.24. Since x2 is
a basic variable for the optimal solution (with c2 � 3) given at the bottom of this table,
the steps needed to find the allowable range to stay optimal for c2 are the following:

1. Since x2 is a basic variable, note that its coefficient in the new final row 0 (see the bot-
tom tableau in Table 6.24) is automatically z2* � c2 � 0 before c2 is changed from its
current value of 3.

2. Now increment c2 � 3 by �c2 (so c2 � 3 � �c2). This changes the coefficient noted
in step 1 to z2* � c2 � ��c2, which changes row 0 to

Row 0 � �0, ��c2, �
3
4

�, 0, �
3
4

� �
3
2
3
��.

3. With this coefficient now not zero, we must perform elementary row operations to re-
store proper form from Gaussian elimination. In particular, add to row 0 the product,
�c2 times row 2, to obtain the new row 0, as shown below.

�0, ��c2, ��
3
4

�,�c2 0, �
3
4

��c2 �
3
2
3
��

� �0, ��c2, ��
3
4

��c2, 0, �
1
4

��c2 �
3
2

��c2�
New row 0 � �0, 0, �

3
4

� � �
3
4

��c2, 0, �
3
4

� � �
1
4

��c2 �
3
2
3
� � �

3
2

��c2�
4. Using this new row 0, solve for the range of values of �c2 that keeps the coefficients

of the nonbasic variables (x3 and x5) nonnegative.

�
3
4

� � �
3
4

� �c2 � 0 ⇒ �
3
4

� � �
3
4

� �c2 ⇒ �c2 � 1.

�
3
4

� � �
1
4

� �c2 � 0 ⇒ �
1
4

� �c2 � ��
3
4

� ⇒ �c2 � �3.

Thus, the range of values is �3 � �c2 � 1.
5. Since c2 � 3 � �c2, add 3 to this range of values, which yields

0 � c2 � 4

as the allowable range to stay optimal for c2.
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With just two decision variables, this allowable range can be verified graphically by us-
ing Fig. 6.6 with an objective function of Z � 3x1 � c2x2. With the current value of 
c2 � 3, the optimal solution is (4, �

3
2

�). When c2 is increased, this solution remains optimal only
for c2 � 4. For c2 � 4, (0, �

9
2

�) becomes optimal (with a tie at c2 � 4), because of the constraint
boundary 3x1 � 4x2 � 18. When c2 is decreased instead, (4, �

3
2

�) remains optimal only for 
c2 � 0. For c2 � 0, (4, 0) becomes optimal because of the constraint boundary x1 � 4.

In a similar manner, the allowable range to stay optimal for c1 (with c2 fixed at 3)
can be derived either algebraically or graphically to be c1 � �

9
4

�. (Problem 6.7-13 asks you
to verify this both ways.)

Thus, the allowable decrease for c1 from its current value of 3 is only �
3
4

�. However, it
is possible to decrease c1 by a larger amount without changing the optimal solution if c2

also decreases sufficiently. For example, suppose that both c1 and c2 are decreased by 1
from their current value of 3, so that the objective function changes from Z � 3x1 � 3x2

to Z � 2x1 � 2x2. According to the 100 percent rule for simultaneous changes in objec-
tive function coefficients, the percentages of allowable changes are 133�

1
3

� percent and 33�
1
3

�

percent, respectively, which sum to far over 100 percent. However, the slope of the ob-
jective function line has not changed at all, so (4, �

3
2

�) still is optimal.

Case 4—Introduction of a New Constraint

In this case, a new constraint must be introduced to the model after it has already been
solved. This case may occur because the constraint was overlooked initially or because
new considerations have arisen since the model was formulated. Another possibility is that
the constraint was deleted purposely to decrease computational effort because it appeared
to be less restrictive than other constraints already in the model, but now this impression
needs to be checked with the optimal solution actually obtained.

To see if the current optimal solution would be affected by a new constraint, all you
have to do is to check directly whether the optimal solution satisfies the constraint. If it
does, then it would still be the best feasible solution (i.e., the optimal solution), even if
the constraint were added to the model. The reason is that a new constraint can only elim-
inate some previously feasible solutions without adding any new ones.

If the new constraint does eliminate the current optimal solution, and if you want to
find the new solution, then introduce this constraint into the final simplex tableau (as an
additional row) just as if this were the initial tableau, where the usual additional variable
(slack variable or artificial variable) is designated to be the basic variable for this new
row. Because the new row probably will have nonzero coefficients for some of the other
basic variables, the conversion to proper form from Gaussian elimination is applied next,
and then the reoptimization step is applied in the usual way.

Just as for some of the preceding cases, this procedure for Case 4 is a streamlined ver-
sion of the general procedure summarized at the end of Sec. 6.6. The only question to be
addressed for this case is whether the previously optimal solution still is feasible, so step
5 (optimality test) has been deleted. Step 4 (feasibility test) has been replaced by a much
quicker test of feasibility (does the previously optimal solution satisfy the new constraint?)
to be performed right after step 1 (revision of model). It is only if this test provides a neg-
ative answer, and you wish to reoptimize, that steps 2, 3, and 6 are used (revision of final
tableau, conversion to proper form from Gaussian elimination, and reoptimization).
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Example (Variation 6 of the Wyndor Model). To illustrate this case, we consider
Variation 6 of the Wyndor Glass Co. model, which simply introduces the new constraint

2x1 � 3x2 � 24

into the Variation 2 model given in Table 6.21. The graphical effect is shown in Fig. 6.7.
The previous optimal solution (0, 9) violates the new constraint, so the optimal solution
changes to (0, 8).

To analyze this example algebraically, note that (0, 9) yields 2x1 � 3x2 � 27 	 24,
so this previous optimal solution is no longer feasible. To find the new optimal solution,
add the new constraint to the current final simplex tableau as just described, with the slack
variable x6 as its initial basic variable. This step yields the first tableau shown in Table
6.25. The conversion to proper form from Gaussian elimination then requires subtracting
from the new row the product, 3 times row 2, which identifies the current basic solution
x3 � 4, x2 � 9, x4 � 6, x6 � �3 (x1 � 0, x5 � 0), as shown in the second tableau. Ap-
plying the dual simplex method (described in Sec. 7.1) to this tableau then leads in just
one iteration (more are sometimes needed) to the new optimal solution in the last tableau
of Table 6.25.
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FIGURE 6.7
Feasible region for Variation
6 of the Wyndor model
where Variation 2 (Fig. 6.3)
has been revised by adding
the new constraint, 
2x1 � 3x2 � 24.



Systematic Sensitivity Analysis—Parametric Programming

So far we have described how to test specific changes in the model parameters. Another
common approach to sensitivity analysis is to vary one or more parameters continuously
over some interval(s) to see when the optimal solution changes.

For example, with Variation 2 of the Wyndor Glass Co. model, rather than beginning
by testing the specific change from b2 � 12 to b�2 � 24, we might instead set

b�2 � 12 � �

and then vary � continuously from 0 to 12 (the maximum value of interest). The geo-
metric interpretation in Fig. 6.3 is that the 2x2 � 12 constraint line is being shifted up-
ward to 2x2 � 12 � �, with � being increased from 0 to 12. The result is that the origi-
nal optimal CPF solution (2, 6) shifts up the 3x1 � 2x2 � 18 constraint line toward 
(�2, 12). This corner-point solution remains optimal as long as it is still feasible (x1 � 0),
after which (0, 9) becomes the optimal solution.

The algebraic calculations of the effect of having �b2 � � are directly analogous to
those for the Case 1 example where �b2 � 12. In particular, we use the expressions for
Z* and b* given for Case 1,
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TABLE 6.25 Sensitivity analysis procedure applied to Variation 6 of the 
Wyndor Glass Co. model

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 �
9
2

� 0 0 0 �
5
2

� 0 45

x3 (1) 0 1 0 1 0 0 0 4

Revised final tableau x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 0 9

x4 (3) 0 �3 0 0 1 �1 0 6
x6 New 0 2 3 0 0 0 1 24

Z (0) 1 �
9
2

� 0 0 0 �
5
2

� 0 45

x3 (1) 0 1 0 1 0 0 0 4

Converted to proper form x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 0 9

x4 (3) 0 �3 0 0 1 �1 0 6

x6 New 0 ��
5
2

� 0 0 0 ��
3
2

� 1 �3

Z (0) 1 �
1
3

� 0 0 0 0 �
5
3

� 40

x3 (1) 0 1 0 1 0 0 0 4

x2 (2) 0 �
2
3

� 1 0 0 0 �
1
3

� 8

x4 (3) 0 ��
4
3

� 0 0 1 0 ��
2
3

� 8

x5 New 0 �
5
3

� 0 0 0 1 ��
2
3

� 2

New final tableau
after reoptimization
(only one iteration of
dual simplex method
needed in this case)



Z* � y*b�
b* � S*b�

where b� now is

b� �

and where y* and S* are given in the boxes in the middle tableau in Table 6.19. These
equations indicate that the optimal solution is

Z* � 36 � �
3
2

��

x3 � 2 � �
1
3

��

x2 � 6 � �
1
2

��

(x4 � 0, x5 � 0)

x1 � 2 � �
1
3

��

for � small enough that this solution still is feasible, i.e., for � � 6. For � 	 6, the dual
simplex method (described in Sec. 7.1) yields the tableau shown in Table 6.21 except for
the value of x4. Thus, Z � 45, x3 � 4, x2 � 9 (along with x1 � 0, x5 � 0), and the ex-
pression for b* yields

x4 � b3* � 0(4) � 1(12 � �) � 1(18) � �6 � �.

This information can then be used (along with other data not incorporated into the model
on the effect of increasing b2) to decide whether to retain the original optimal solution
and, if not, how much to increase b2.

In a similar way, we can investigate the effect on the optimal solution of varying sev-
eral parameters simultaneously. When we vary just the bi parameters, we express the new
value bi in terms of the original value bi as follows:

b�i � bi � �i�, for i � 1, 2, . . . , m,

where the �i values are input constants specifying the desired rate of increase (positive or
negative) of the corresponding right-hand side as � is increased.

For example, suppose that it is possible to shift some of the production of a current
Wyndor Glass Co. product from Plant 2 to Plant 3, thereby increasing b2 by decreasing
b3. Also suppose that b3 decreases twice as fast as b2 increases. Then

b�2 � 12 � �
b�3 � 18 � 2�,

where the (nonnegative) value of � measures the amount of production shifted. (Thus,
�1 � 0, �2 � 1, and �3 � �2 in this case.) In Fig. 6.3, the geometric interpretation is that
as � is increased from 0, the 2x2 � 12 constraint line is being pushed up to 2x2 � 12 � �
(ignore the 2x2 � 24 line) and simultaneously the 3x1 � 2x2 � 18 constraint line is being







4

12��

18
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pushed down to 3x1 � 2x2 � 18 � 2�. The original optimal CPF solution (2, 6) lies at the
intersection of the 2x2 � 12 and 3x1 � 2x2 � 18 lines, so shifting these lines causes this
corner-point solution to shift. However, with the objective function of Z � 3x1 � 5x2, this
corner-point solution will remain optimal as long as it is still feasible (x1 � 0).

An algebraic investigation of simultaneously changing b2 and b3 in this way again
involves using the formulas for Case 1 (treating � as representing an unknown number)
to calculate the resulting changes in the final tableau (middle of Table 6.19), namely,

Z* � y*b� � [0, �
3
2

�, 1] � 36 � �
1
2

��,

b* � S*b� � � .

Therefore, the optimal solution becomes

Z* � 36 � �
1
2

��

x3 � 2 � �
(x4 � 0, x5 � 0)

x2 � 6 � �
1
2

��

x1 � 2 � �

for � small enough that this solution still is feasible, i.e., for � � 2. (Check this conclu-
sion in Fig. 6.3.) However, the fact that Z decreases as � increases from 0 indicates that
the best choice for � is � � 0, so none of the possible shifting of production should be
done.

The approach to varying several cj parameters simultaneously is similar. In this case,
we express the new value c�j in terms of the original value of cj as

c�j � cj � �j�, for j � 1, 2, . . . , n,

where the �j are input constants specifying the desired rate of increase (positive or neg-
ative) of cj as � is increased.

To illustrate this case, reconsider the sensitivity analysis of c1 and c2 for the Wyndor
Glass Co. problem that was performed earlier in this section. Starting with Variation 2 of
the Wyndor model presented in Table 6.21 and Fig. 6.3, we separately considered the ef-
fect of changing c1 from 3 to 4 (its most optimistic estimate) and c2 from 5 to 3 (its most
pessimistic estimate). Now we can simultaneously consider both changes, as well as var-
ious intermediate cases with smaller changes, by setting

c�1 � 3 � � and c�2 � 5 � 2�,

where the value of � measures the fraction of the maximum possible change that is made.
The result is to replace the original objective function Z � 3x1 � 5x2 by a function of �

Z(�) � (3 � �)x1 � (5 � 2�)x2,
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6 � �
1
2

��

2 � �
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so the optimization now can be performed for any desired (fixed) value of � between 0
and 1. By checking the effect as � increases from 0 to 1, we can determine just when and
how the optimal solution changes as the error in the original estimates of these parame-
ters increases.

Considering these changes simultaneously is especially appropriate if there are fac-
tors that cause the parameters to change together. Are the two products competitive in
some sense, so that a larger-than-expected unit profit for one implies a smaller-than-
expected unit profit for the other? Are they both affected by some exogenous factor, such
as the advertising emphasis of a competitor? Is it possible to simultaneously change both
unit profits through appropriate shifting of personnel and equipment?

In the feasible region shown in Fig. 6.3, the geometric interpretation of changing the
objective function from Z � 3x1 � 5x2 to Z(�) � (3 � �)x1 � (5 � 2�)x2 is that we are
changing the slope of the original objective function line (Z � 45 � 3x1 � 5x2) that passes
through the optimal solution (0, 9). If � is increased enough, this slope will change suf-
ficiently that the optimal solution will switch from (0, 9) to another CPF solution (4, 3).
(Check graphically whether this occurs for � � 1.)

The algebraic procedure for dealing simultaneously with these two changes (�c1 � �
and �c2 � �2�) is shown in Table 6.26. Although the changes now are expressed in terms
of � rather than specific numerical amounts, � is treated just as an unknown number. The
table displays just the relevant rows of the tableaux involved (row 0 and the row for the
basic variable x2). The first tableau shown is just the final tableau for the current version
of the model (before c1 and c2 are changed) as given in Table 6.21. Refer to the formu-
las in Table 6.17. The only changes in the revised final tableau shown next are that �c1

and �c2 are subtracted from the row 0 coefficients of x1 and x2, respectively. To convert
this tableau to proper form from Gaussian elimination, we subtract 2� times row 2 from
row 0, which yields the last tableau shown. The expressions in terms of � for the coeffi-

6.7 APPLYING SENSITIVITY ANALYSIS 283

TABLE 6.26 Dealing with �c1 � � and �c2 � �2� for Variation 2 of the 
Wyndor model as given in Table 6.21

Coefficient of:

Basic Right
Variable Eq. Z x1 x2 x3 x4 x5 Side

Final tableau
Z (0) 1 �

9
2

� 0 0 0 �
5
2

� 45

x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 9

Revised final tableau when
Z(�) (0) 1 �

9
2

� � � 2� 0 0 �
5
2

� 45

�c1 � � and �c2 � �2�
x2 (2) 0 �

3
2

� 1 0 0 �
1
2

� 9

Converted to proper form
Z(�) (0) 1 �

9
2

� � 4� 0 0 0 �
5
2

� � � 45 � 18�

x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 9



cients of nonbasic variables x1 and x5 in row 0 of this tableau show that the current BF
solution remains optimal for � � �

9
8

�. Because � � 1 is the maximum realistic value of �,
this indicates that c1 and c2 together are insensitive parameters with respect to the Varia-
tion 2 model in Table 6.21. There is no need to try to estimate these parameters more
closely unless other parameters change (as occurred for Variation 5 of the Wyndor model).

As we discussed in Sec. 4.7, this way of continuously varying several parameters
simultaneously is referred to as parametric linear programming. Section 7.2 presents
the complete parametric linear programming procedure (including identifying new op-
timal solutions for larger values of �) when just the cj parameters are being varied and
then when just the bi parameters are being varied. Some linear programming software
packages also include routines for varying just the coefficients of a single variable or
just the parameters of a single constraint. In addition to the other applications discussed
in Sec. 4.7, these procedures provide a convenient way of conducting sensitivity analy-
sis systematically.
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Every linear programming problem has associated with it a dual linear programming prob-
lem. There are a number of very useful relationships between the original (primal) prob-
lem and its dual problem that enhance our ability to analyze the primal problem. For ex-
ample, the economic interpretation of the dual problem gives shadow prices that measure
the marginal value of the resources in the primal problem and provides an interpretation
of the simplex method. Because the simplex method can be applied directly to either prob-
lem in order to solve both of them simultaneously, considerable computational effort some-
times can be saved by dealing directly with the dual problem. Duality theory, including
the dual simplex method for working with superoptimal basic solutions, also plays a ma-
jor role in sensitivity analysis.

The values used for the parameters of a linear programming model generally are just
estimates. Therefore, sensitivity analysis needs to be performed to investigate what hap-
pens if these estimates are wrong. The fundamental insight of Sec. 5.3 provides the key
to performing this investigation efficiently. The general objectives are to identify the sen-
sitive parameters that affect the optimal solution, to try to estimate these sensitive param-
eters more closely, and then to select a solution that remains good over the range of likely
values of the sensitive parameters. This analysis is a very important part of most linear
programming studies.

6.8 CONCLUSIONS
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A Demonstration Example in OR Tutor:

Sensitivity Analysis

Interactive Routines:

Enter or Revise a General Linear Programming Model
Solve Interactively by the Simplex Method
Sensitivity Analysis

An Excel Add-In:

Premium Solver

Files (Chapter 3) for Solving the Wyndor Example:

Excel File
LINGO/LINDO File
MPL/CPLEX File

See Appendix 1 for documentation of the software.

LEARNING AIDS FOR THIS CHAPTER IN YOUR OR COURSEWARE

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.
I: We suggest that you use the corresponding interactive routine

listed above (the printout records your work).
C: Use the computer with any of the software options available to

you (or as instructed by your instructor) to solve the problem
automatically.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

6.1-1. Construct the primal-dual table and the dual problem for
each of the following linear programming models fitting our stan-
dard form.
(a) Model in Prob. 4.1-6
(b) Model in Prob. 4.7-8

6.1-2.* Construct the dual problem for each of the following lin-
ear programming models fitting our standard form.
(a) Model in Prob. 3.1-5
(b) Model in Prob. 4.7-6

PROBLEMS

6.1-3. Consider the linear programming model in Prob. 4.5-4.
(a) Construct the primal-dual table and the dual problem for this

model.
(b) What does the fact that Z is unbounded for this model imply

about its dual problem?

6.1-4. For each of the following linear programming models, give
your recommendation on which is the more efficient way (proba-
bly) to obtain an optimal solution: by applying the simplex method
directly to this primal problem or by applying the simplex method
directly to the dual problem instead. Explain.
(a) Maximize Z � 10x1 � 4x2 � 7x3,

subject to

3x1 � x2 � 2x3 � 25
x1 � 2x2 � 3x3 � 25

5x1 � x2 � 2x3 � 40
x1 � x2 � x3 � 90

2x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.



6.1-8. Consider the following problem.

Maximize Z � x1 � 2x2,

subject to

�x1 � x2 � �2
4x1 � x2 � �4

and

x1 � 0, x2 � 0.

(a) Demonstrate graphically that this problem has no feasible so-
lutions.

(b) Construct the dual problem.
(c) Demonstrate graphically that the dual problem has an un-

bounded objective function.

6.1-9. Construct and graph a primal problem with two decision
variables and two functional constraints that has feasible solutions
and an unbounded objective function. Then construct the dual prob-
lem and demonstrate graphically that it has no feasible solutions.

6.1-10. Construct a pair of primal and dual problems, each with
two decision variables and two functional constraints, such that
both problems have no feasible solutions. Demonstrate this prop-
erty graphically.

6.1-11. Construct a pair of primal and dual problems, each with
two decision variables and two functional constraints, such that the
primal problem has no feasible solutions and the dual problem has
an unbounded objective function.

6.1-12. Use the weak duality property to prove that if both the pri-
mal and the dual problem have feasible solutions, then both must
have an optimal solution.

6.1-13. Consider the primal and dual problems in our standard
form presented in matrix notation at the beginning of Sec. 6.1. Use
only this definition of the dual problem for a primal problem in
this form to prove each of the following results.
(a) The weak duality property presented in Sec. 6.1.
(b) If the primal problem has an unbounded feasible region that

permits increasing Z indefinitely, then the dual problem has no
feasible solutions.

6.1-14. Consider the primal and dual problems in our standard
form presented in matrix notation at the beginning of Sec. 6.1. Let
y* denote the optimal solution for this dual problem. Suppose that
b is then replaced by b�. Let x� denote the optimal solution for the
new primal problem. Prove that

cx� � y*b�.

(b) Maximize Z � 2x1 � 5x2 � 3x3 � 4x4 � x5,

subject to

x1 � 3x2 � 2x3 � 3x4 � x5 � 6
4x1 � 6x2 � 5x3 � 7x4 � x5 � 15

and

xj � 0, for j � 1, 2, 3, 4, 5.

6.1-5. Consider the following problem.

Maximize Z � �x1 � 2x2 � x3,

subject to

x1 � x2 � 2x3 � 12
x1 � x2 � x3 � 1

and

x1 � 0, x2 � 0, x3 � 0.

(a) Construct the dual problem.
(b) Use duality theory to show that the optimal solution for the

primal problem has Z � 0.

6.1-6. Consider the following problem.

Maximize Z � 2x1 � 6x2 � 9x3,

subject to

x1x1 � x3 � 3 (resource 1)
x1x2 � 2x3 � 5 (resource 2)

and

x1 � 0, x2 � 0, x3 � 0.

(a) Construct the dual problem for this primal problem.
(b) Solve the dual problem graphically. Use this solution to identify

the shadow prices for the resources in the primal problem.
C (c) Confirm your results from part (b) by solving the primal

problem automatically by the simplex method and then iden-
tifying the shadow prices.

6.1-7. Follow the instructions of Prob. 6.1-6 for the following 
problem.

Maximize Z � x1 � 3x2 � 2x3,

subject to

2x1 � 2x2 � 2x3 � 6 (resource 1)
2x1 �x2 � 2x3 � 4 (resource 2)

and

x1 � 0, x2 � 0, x3 � 0.
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6.3-3. Consider the primal and dual problems for the Wyndor Glass
Co. example given in Table 6.1. Using Tables 5.5, 5.6, 6.8, and 6.9,
construct a new table showing the eight sets of nonbasic variables
for the primal problem in column 1, the corresponding sets of as-
sociated variables for the dual problem in column 2, and the set of
nonbasic variables for each complementary basic solution in the
dual problem in column 3. Explain why this table demonstrates the
complementary slackness property for this example.

6.3-4. Suppose that a primal problem has a degenerate BF solu-
tion (one or more basic variables equal to zero) as its optimal so-
lution. What does this degeneracy imply about the dual problem?
Why? Is the converse also true?

6.3-5. Consider the following problem.

Maximize Z � 2x1 � 4x2,

subject to

x1 � x2 � 1

and

x1 � 0, x2 � 0.

(a) Construct the dual problem, and then find its optimal solution
by inspection.

(b) Use the complementary slackness property and the optimal so-
lution for the dual problem to find the optimal solution for the
primal problem.

(c) Suppose that c1, the coefficient of x1 in the primal objective
function, actually can have any value in the model. For what
values of c1 does the dual problem have no feasible solutions?
For these values, what does duality theory then imply about
the primal problem?

6.3-6. Consider the following problem.

Maximize Z � 2x1 � 7x2 � 4x3,

subject to

x1 � 2x2 � x3 � 10
3x1 � 3x2 � 2x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

(a) Construct the dual problem for this primal problem.
(b) Use the dual problem to demonstrate that the optimal value of

Z for the primal problem cannot exceed 25.
(c) It has been conjectured that x2 and x3 should be the basic vari-

ables for the optimal solution of the primal problem. Directly
derive this basic solution (and Z) by using Gaussian elimina-
tion. Simultaneously derive and identify the complementary ba-

6.1-15. For any linear programming problem in our standard form
and its dual problem, label each of the following statements as true
or false and then justify your answer.
(a) The sum of the number of functional constraints and the num-

ber of variables (before augmenting) is the same for both the
primal and the dual problems.

(b) At each iteration, the simplex method simultaneously identi-
fies a CPF solution for the primal problem and a CPF solution
for the dual problem such that their objective function values
are the same.

(c) If the primal problem has an unbounded objective function,
then the optimal value of the objective function for the dual
problem must be zero.

6.2-1. Consider the simplex tableaux for the Wyndor Glass Co.
problem given in Table 4.8. For each tableau, give the economic
interpretation of the following items:
(a) Each of the coefficients of the slack variables (x3, x4, x5) in

row 0
(b) Each of the coefficients of the decision variables (x1, x2) in 

row 0
(c) The resulting choice for the entering basic variable (or the de-

cision to stop after the final tableau)

6.3-1.* Consider the following problem.

Maximize Z � 6x1 � 8x2,

subject to

5x1 � 2x2 � 20
x1 � 2x2 � 10

and

x1 � 0, x2 � 0.

(a) Construct the dual problem for this primal problem.
(b) Solve both the primal problem and the dual problem graphi-

cally. Identify the CPF solutions and corner-point infeasible
solutions for both problems. Calculate the objective function
values for all these solutions.

(c) Use the information obtained in part (b) to construct a table
listing the complementary basic solutions for these problems.
(Use the same column headings as for Table 6.9.)

I (d) Work through the simplex method step by step to solve the
primal problem. After each iteration (including iteration 0),
identify the BF solution for this problem and the comple-
mentary basic solution for the dual problem. Also identify
the corresponding corner-point solutions.

6.3-2. Consider the model with two functional constraints and two
variables given in Prob. 4.1-5. Follow the instructions of Prob. 
6.3-1 for this model.
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(a) How would you identify the optimal solution for the dual 
problem?

(b) After obtaining the BF solution at each iteration, how would you
identify the complementary basic solution in the dual problem?

6.4-1. Consider the following problem.

Maximize Z � x1 � x2,

subject to

x1 � 2x2 � 10
2x1 � x2 � 2

and

x2 � 0 (x1 unconstrained in sign).

(a) Use the SOB method to construct the dual problem.
(b) Use Table 6.12 to convert the primal problem to our standard

form given at the beginning of Sec. 6.1, and construct the cor-
responding dual problem. Then show that this dual problem is
equivalent to the one obtained in part (a).

6.4-2. Consider the primal and dual problems in our standard form
presented in matrix notation at the beginning of Sec. 6.1. Use only
this definition of the dual problem for a primal problem in this
form to prove each of the following results.
(a) If the functional constraints for the primal problem Ax � b

are changed to Ax � b, the only resulting change in the dual
problem is to delete the nonnegativity constraints, y � 0. (Hint:
The constraints Ax � b are equivalent to the set of constraints
Ax � b and Ax � b.)

(b) If the functional constraints for the primal problem Ax � b
are changed to Ax � b, the only resulting change in the dual
problem is that the nonnegativity constraints y � 0 are re-
placed by nonpositivity constraints y � 0, where the current
dual variables are interpreted as the negative of the original
dual variables. (Hint: The constraints Ax � b are equivalent
to �Ax � �b.)

(c) If the nonnegativity constraints for the primal problem x � 0
are deleted, the only resulting change in the dual problem is
to replace the functional constraints yA � c by yA � c. (Hint:
A variable unconstrained in sign can be replaced by the dif-
ference of two nonnegative variables.)

6.4-3.* Construct the dual problem for the linear programming
problem given in Prob. 4.6-4.

6.4-4. Consider the following problem.

Minimize Z � x1 � 2x2,

subject to

�2x1 � x2 � 1
�2x1 � 2x2 � 1

sic solution for the dual problem by using Eq. (0) for the pri-
mal problem. Then draw your conclusions about whether these
two basic solutions are optimal for their respective problems.

I (d) Solve the dual problem graphically. Use this solution to iden-
tify the basic variables and the nonbasic variables for the op-
timal solution of the primal problem. Directly derive this so-
lution, using Gaussian elimination.

6.3-7.* Reconsider the model of Prob. 6.1-4b.
(a) Construct its dual problem.
(b) Solve this dual problem graphically.
(c) Use the result from part (b) to identify the nonbasic variables

and basic variables for the optimal BF solution for the primal
problem.

(d) Use the results from part (c) to obtain the optimal solution for
the primal problem directly by using Gaussian elimination to
solve for its basic variables, starting from the initial system of
equations [excluding Eq. (0)] constructed for the simplex
method and setting the nonbasic variables to zero.

(e) Use the results from part (c) to identify the defining equations
(see Sec. 5.1) for the optimal CPF solution for the primal prob-
lem, and then use these equations to find this solution.

6.3-8. Consider the model given in Prob. 5.3-13.
(a) Construct the dual problem.
(b) Use the given information about the basic variables in the op-

timal primal solution to identify the nonbasic variables and ba-
sic variables for the optimal dual solution.

(c) Use the results from part (b) to identify the defining equations
(see Sec. 5.1) for the optimal CPF solution for the dual prob-
lem, and then use these equations to find this solution.

(d) Solve the dual problem graphically to verify your results from
part (c).

6.3-9. Consider the model given in Prob. 3.1-4.
(a) Construct the dual problem for this model.
(b) Use the fact that (x1, x2) � (13, 5) is optimal for the primal

problem to identify the nonbasic variables and basic variables
for the optimal BF solution for the dual problem.

(c) Identify this optimal solution for the dual problem by directly
deriving Eq. (0) corresponding to the optimal primal solution
identified in part (b). Derive this equation by using Gaussian
elimination.

(d) Use the results from part (b) to identify the defining equations
(see Sec. 5.1) for the optimal CPF solution for the dual prob-
lem. Verify your optimal dual solution from part (c) by check-
ing to see that it satisfies this system of equations.

6.3-10. Suppose that you also want information about the dual
problem when you apply the revised simplex method (see Sec. 5.2)
to the primal problem in our standard form.
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and

x1 � 0, x2 � 0.

(a) Demonstrate graphically that this problem has an unbounded
objective function.

(b) Construct the dual problem.
(c) Demonstrate graphically that the dual problem has no feasible

solutions.

6.5-1. Consider the model of Prob. 6.7-1. Use duality theory di-
rectly to determine whether the current basic solution remains op-
timal after each of the following independent changes.
(a) The change in part (e) of Prob. 6.7-1
(b) The change in part (g) of Prob. 6.7-1

6.5-2. Consider the model of Prob. 6.7-3. Use duality theory di-
rectly to determine whether the current basic solution remains op-
timal after each of the following independent changes.
(a) The change in part (c) of Prob. 6.7-3
(b) The change in part ( f ) of Prob. 6.7-3

6.5-3. Consider the model of Prob. 6.7-4. Use duality theory di-
rectly to determine whether the current basic solution remains op-
timal after each of the following independent changes.
(a) The change in part (b) of Prob. 6.7-4
(b) The change in part (d ) of Prob. 6.7-4

6.5-4. Reconsider part (d) of Prob. 6.7-6. Use duality theory directly
to determine whether the original optimal solution is still optimal.

6.6-1.* Consider the following problem.

Maximize Z � 3x1 � x2 � 4x3,

subject to

6x1 � 3x2 � 5x3 � 25
3x1 � 4x2 � 5x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

The corresponding final set of equations yielding the optimal so-
lution is

(0) Z � 2x2 � �
1
5

�x4 � �
3
5

�x5 � 17

(1) x1 � �
1
3

�x2 � �
1
3

�x4 � �
1
3

�x5 � �
5
3

�

(2) x2 � x3 � �
1
5

�x4 � �
2
5

�x5 � 3.

(a) Identify the optimal solution from this set of equations.
(b) Construct the dual problem.

and

x1 � 0, x2 � 0.

(a) Construct the dual problem.
(b) Use graphical analysis of the dual problem to determine

whether the primal problem has feasible solutions and, if so,
whether its objective function is bounded.

6.4-5. Consider the two versions of the dual problem for the radi-
ation therapy example that are given in Tables 6.15 and 6.16. Re-
view in Sec. 6.4 the general discussion of why these two versions
are completely equivalent. Then fill in the details to verify this equiv-
alency by proceeding step by step to convert the version in Table
6.15 to equivalent forms until the version in Table 6.16 is obtained.

6.4-6. For each of the following linear programming models, use
the SOB method to construct its dual problem.
(a) Model in Prob. 4.6-3
(b) Model in Prob. 4.6-8
(c) Model in Prob. 4.6-18

6.4-7. Consider the model with equality constraints given in Prob.
4.6-2.
(a) Construct its dual problem.
(b) Demonstrate that the answer in part (a) is correct (i.e., equality

constraints yield dual variables without nonnegativity constraints)
by first converting the primal problem to our standard form (see
Table 6.12), then constructing its dual problem, and next con-
verting this dual problem to the form obtained in part (a).

6.4-8.* Consider the model without nonnegativity constraints
given in Prob. 4.6-16.
(a) Construct its dual problem.
(b) Demonstrate that the answer in part (a) is correct (i.e., vari-

ables without nonnegativity constraints yield equality con-
straints in the dual problem) by first converting the primal prob-
lem to our standard form (see Table 6.12), then constructing
its dual problem, and finally converting this dual problem to
the form obtained in part (a).

6.4-9. Consider the dual problem for the Wyndor Glass Co. ex-
ample given in Table 6.1. Demonstrate that its dual problem is the
primal problem given in Table 6.1 by going through the conver-
sion steps given in Table 6.13.

6.4-10. Consider the following problem.

Minimize Z � �x1 � 3x2,

subject to

�x1 � 2x2 � 2
�x1 � x2 � 4
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D,I 6.6-3. Consider the following problem.

Minimize W � 5y1 � 4y2,

subject to

4y1 � 3y2 � 4
2y1 � y2 � 3
y1 � 2y2 � 1
y1 � y2 � 2

and

y1 � 0, y2 � 0.

Because this primal problem has more functional constraints than
variables, suppose that the simplex method has been applied di-
rectly to its dual problem. If we let x5 and x6 denote the slack vari-
ables for this dual problem, the resulting final simplex tableau is

(c) Identify the optimal solution for the dual problem from the fi-
nal set of equations. Verify this solution by solving the dual
problem graphically.

(d) Suppose that the original problem is changed to

Maximize Z � 3x1 � 3x2 � 4x3,

subject to

6x1 � 2x2 � 5x3 � 25
3x1 � 3x2 � 5x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

Use duality theory to determine whether the previous optimal
solution is still optimal.

(e) Use the fundamental insight presented in Sec. 5.3 to identify
the new coefficients of x2 in the final set of equations after it
has been adjusted for the changes in the original problem given
in part (d ).

(f) Now suppose that the only change in the original problem is
that a new variable xnew has been introduced into the model as
follows:

Maximize Z � 3x1 � x2 � 4x3 � 2xnew,

subject to

6x1 � 3x2 � 5x3 � 3xnew � 25
3x1 � 4x2 � 5x3 � 2xnew � 20

and

x1 � 0, x2 � 0, x3 � 0, xnew � 0.

Use duality theory to determine whether the previous optimal
solution, along with xnew � 0, is still optimal.

(g) Use the fundamental insight presented in Sec. 5.3 to identify
the coefficients of xnew as a nonbasic variable in the final set
of equations resulting from the introduction of xnew into the
original model as shown in part ( f ).

D,I 6.6-2. Reconsider the model of Prob. 6.6-1. You are now to
conduct sensitivity analysis by independently investigating each of
the following six changes in the original model. For each change,
use the sensitivity analysis procedure to revise the given final set
of equations (in tableau form) and convert it to proper form from
Gaussian elimination. Then test this solution for feasibility and for
optimality. (Do not reoptimize.)
(a) Change the right-hand side of constraint 1 to b1 � 15.
(b) Change the right-hand side of constraint 2 to b2 � 5.
(c) Change the coefficient of x2 in the objective function to c2 � 4.
(d) Change the coefficient of x3 in the objective function to c3 � 3.
(e) Change the coefficient of x2 in constraint 2 to a22 � 1.
(f) Change the coefficient of x1 in constraint 1 to a11 � 10.
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For each of the following independent changes in the original pri-
mal model, you now are to conduct sensitivity analysis by directly
investigating the effect on the dual problem and then inferring the
complementary effect on the primal problem. For each change, ap-
ply the procedure for sensitivity analysis summarized at the end of
Sec. 6.6 to the dual problem (do not reoptimize), and then give
your conclusions as to whether the current basic solution for the
primal problem still is feasible and whether it still is optimal. Then
check your conclusions by a direct graphical analysis of the pri-
mal problem.
(a) Change the objective function to W � 3y1 � 5y2.
(b) Change the right-hand sides of the functional constraints to 3,

5, 2, and 3, respectively.
(c) Change the first constraint to 2y1 � 4y2 � 7.
(d) Change the second constraint to 5y1 � 2y2 � 10.

D,I 6.7-1.* Consider the following problem.

Maximize Z � �5x1 � 5x2 � 13x3,

subject to

�x1 � x2 � 3x3 � 20
12x1 � 4x2 � 10x3 � 90

and

xj � 0 ( j � 1, 2, 3).

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 3 0 2 0 1 1 9
x2 (1) 0 1 1 �1 0 1 �1 1
x4 (2) 0 2 0 3 1 �1 2 3



6.7-2.* Reconsider the model of Prob. 6.7-1. Suppose that we now
want to apply parametric linear programming analysis to this prob-
lem. Specifically, the right-hand sides of the functional constraints
are changed to

20 � 2� (for constraint 1)

and

90 � � (for constraint 2),

where � can be assigned any positive or negative values.
Express the basic solution (and Z) corresponding to the orig-

inal optimal solution as a function of �. Determine the lower and
upper bounds on � before this solution would become infeasible.

D,I 6.7-3. Consider the following problem.

Maximize Z � 2x1 � x2 � x3,

subject to

3x1 � x2 � x3 � 60
x1 � x2 � 2x3 � 10
x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

Let x4, x5, and x6 denote the slack variables for the respective con-
straints. After we apply the simplex method, the final simplex
tableau is

If we let x4 and x5 be the slack variables for the respective con-
straints, the simplex method yields the following final set of equa-
tions:

(0) Z � 2x3 � 5x4 � 100.
(1) �x1 � x2 � 3x3 � x4 � 20.
(2) 16x1 � 2x3 � 4x4 � x5 = 10.

Now you are to conduct sensitivity analysis by independently in-
vestigating each of the following nine changes in the original
model. For each change, use the sensitivity analysis procedure to
revise this set of equations (in tableau form) and convert it to proper
form from Gaussian elimination for identifying and evaluating the
current basic solution. Then test this solution for feasibility and for
optimality. (Do not reoptimize.)
(a) Change the right-hand side of constraint 1 to

b1 � 30.

(b) Change the right-hand side of constraint 2 to

b2 � 70.

(c) Change the right-hand sides to

� � � � �.

(d) Change the coefficient of x3 in the objective function to

c3 � 8.

(e) Change the coefficients of x1 to

� .

(f) Change the coefficients of x2 to

� .

(g) Introduce a new variable x6 with coefficients

� .

(h) Introduce a new constraint 2x1 � 3x2 � 5x3 � 50. (Denote its
slack variable by x6.)

(i) Change constraint 2 to

10x1 � 5x2 � 10x3 � 100.
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Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 0 0 �
3
2

� 0 �
3
2

� �
1
2

� 25

x4 (1) 0 0 0 1 1 �1 �2 10

x1 (2) 0 1 0 �
1
2

� 0 �
1
2

� �
1
2

� 15

x2 (3) 0 0 1 ��
3
2

� 0 ��
1
2

� �
1
2

� 5

Now you are to conduct sensitivity analysis by independently in-
vestigating each of the following six changes in the original model.
For each change, use the sensitivity analysis procedure to revise
this final tableau and convert it to proper form from Gaussian elim-
ination for identifying and evaluating the current basic solution.
Then test this solution for feasibility and for optimality. If either
test fails, reoptimize to find a new optimal solution.



form from Gaussian elimination for identifying and evaluating the
current basic solution. Then test this solution for feasibility and for
optimality. If either test fails, reoptimize to find a new optimal so-
lution.
(a) Change the right-hand sides to

� � � � �.

(b) Change the coefficients of x3 to

� .

(c) Change the coefficients of x1 to

� .

(d) Introduce a new variable x6 with coefficients

� .

(e) Change the objective function to Z � x1 � 5x2 � 2x3.
(f) Introduce a new constraint 3x1 � 2x2 � 3x3 � 25.
(g) Change constraint 2 to x1 � 2x2 � 2x3 � 35.

6.7-5. Reconsider the model of Prob. 6.7-4. Suppose that we now
want to apply parametric linear programming analysis to this prob-
lem. Specifically, the right-hand sides of the functional constraints
are changed to

30 � 3� (for constraint 1)

and

10 � � (for constraint 2),

where � can be assigned any positive or negative values.
Express the basic solution (and Z) corresponding to the orig-

inal optimal solution as a function of �. Determine the lower and
upper bounds on � before this solution would become infeasible.

D,I 6.7-6. Consider the following problem.

Maximize Z � 2x1 � x2 � x3,

subject to

3x1 � 2x2 � 2x3 � 15
�x1 � x2 � x3 � 3

x1 � x2 � x3 � 4
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(a) Change the right-hand sides

from � to � .

(b) Change the coefficients of x1

from � to � .

(c) Change the coefficients of x3

from � to � .

(d) Change the objective function to Z � 3x1 � 2x2 � 3x3.
(e) Introduce a new constraint 3x1 � 2x2 � x3 � 30. (Denote its

slack variable by x7.)
(f) Introduce a new variable x8 with coefficients

� .

D,I 6.7-4. Consider the following problem.

Maximize Z � 2x1 � 7x2 � 3x3,

subject to

x1 � 3x2 � 4x3 � 30
x1 � 4x2 � x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

By letting x4 and x5 be the slack variables for the respective con-
straints, the simplex method yields the following final set of equa-
tions:

(0) Z � x2 � x3 � 2x5 � 20,
(1) � x2 � 5x3 � x4 � x5 � 20,
(2) x1 � 4x2 � x3 � x5 � 10.

Now you are to conduct sensitivity analysis by independently in-
vestigating each of the following seven changes in the original
model. For each change, use the sensitivity analysis procedure to
revise this set of equations (in tableau form) and convert it to proper
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of type A, but the vendor providing these subassemblies would only
be able to increase its supply rate from the current 2,000 per day
to a maximum of 3,000 per day. Each toy requires only one sub-
assembly of type B, but the vendor providing these subassemblies
would be unable to increase its supply rate above the current level
of 1,000 per day.

Because no other vendors currently are available to provide
these subassemblies, management is considering initiating a new
production process internally that would simultaneously produce
an equal number of subassemblies of the two types to supplement
the supply from the two vendors. It is estimated that the company’s
cost for producing one subassembly of each type would be $2.50
more than the cost of purchasing these subassemblies from the two
vendors. Management wants to determine both the production rate
of the toy and the production rate of each pair of subassemblies
(one A and one B) that would maximize the total profit.

The following table summarizes the data for the problem.

and

x1 � 0, x2 � 0, x3 � 0.

If we let x4, x5, and x6 be the slack variables for the respective con-
straints, the simplex method yields the following final set of equa-
tions:

(0) Z � 2x3 � x4 � x5 � 18,
(1) x2 � 5x3 � x4 � 3x5 � 24,
(2) 2x3 � x5 � x6 � 7,
(3) x1 � 4x3 � x4 � 2x5 � 21.

Now you are to conduct sensitivity analysis by independently in-
vestigating each of the following eight changes in the original
model. For each change, use the sensitivity analysis procedure to
revise this set of equations (in tableau form) and convert it to proper
form from Gaussian elimination for identifying and evaluating the
current basic solution. Then test this solution for feasibility and for
optimality. If either test fails, reoptimize to find a new optimal so-
lution.
(a) Change the right-hand sides to

� .

(b) Change the coefficient of x3 in the objective function to c3 � 2.
(c) Change the coefficient of x1 in the objective function to c1 � 3.
(d) Change the coefficients of x3 to

� .

(e) Change the coefficients of x1 and x2 to

� and � ,

respectively.
(f) Change the objective function to Z � 5x1 � x2 � 3x3.
(g) Change constraint 1 to 2x1 � x2 � 4x3 � 12.
(h) Introduce a new constraint 2x1 � x2 � 3x3 � 60.

6.7-7. One of the products of the G. A. Tanner Company is a spe-
cial kind of toy that provides an estimated unit profit of $3. Be-
cause of a large demand for this toy, management would like to
increase its production rate from the current level of 1,000 per day.
However, a limited supply of two subassemblies (A and B) from
vendors makes this difficult. Each toy requires two subassemblies
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(a) Formulate a linear programming model for this problem and
use the graphical method to obtain its optimal solution.

C (b) Use a software package based on the simplex method to
solve for an optimal solution.

C (c) Since the stated unit profits for the two activities are only
estimates, management wants to know how much each of
these estimates can be off before the optimal solution would
change. Begin exploring this question for the first activity
(producing toys) by using the same software package to re-
solve for an optimal solution and total profit as the unit profit
for this activity increases in 50-cent increments from $2.00
to $4.00. What conclusion can be drawn about how much
the estimate of this unit profit can differ in each direction
from its original value of $3.00 before the optimal solution
would change?

C (d) Repeat part (c) for the second activity (producing sub-
assemblies) by re-solving as the unit profit for this activity
increases in 50-cent increments from �$3.50 to �$1.50
(with the unit profit for the first activity fixed at $3).

C (e) Use the same software package to generate the usual output
(as in Table 6.23) for sensitivity analysis of the unit profits.

Resource Usage per 
Unit of Each Activity

Produce Produce Amount of Resource
Resource Toys Subassemblies Available

Subassembly A $2 .00$�1 3,000
Subassembly B $1 .00$�1 1,000

Unit profit $3 �$2.50



C (g) Use the same software package to generate the usual output
(as in Table 6.23) for sensitivity analysis of the supplies be-
ing made available of the subassemblies. Use this output to
obtain the allowable range to stay feasible for each sub-
assembly supply.

(h) Use graphical analysis to verify the allowable ranges obtained
in part (g).

(i) For each of the four combinations where the maximum sup-
ply of subassembly A is either 3,500 or 4,000 and the maxi-
mum supply of subassembly B is either 1,500 or 2,000, use
the 100 percent rule for simultaneous changes in right-hand
sides to determine whether the original shadow prices defi-
nitely will still be valid.

(j) For each of the combinations considered in part (i) where it
was found that the original shadow prices are not guaranteed
to still be valid, use graphical analysis to determine whether
these shadow prices actually are still valid for predicting the
effect of changing the right-hand sides.

C 6.7-9 Consider the Distribution Unlimited Co. problem pre-
sented in Sec. 3.4 and summarized in Fig. 3.13.

Although Fig. 3.13 gives estimated unit costs for shipping
through the various shipping lanes, there actually is some uncer-
tainty about what these unit costs will turn out to be. Therefore,
before adopting the optimal solution given at the end of Sec. 3.4,
management wants additional information about the effect of in-
accuracies in estimating these unit costs.

Use a computer package based on the simplex method to gen-
erate sensitivity analysis information preparatory to addressing the
following questions.
(a) Which of the unit shipping costs given in Fig. 3.13 has the

smallest margin for error without invalidating the optimal so-
lution given in Sec. 3.4? Where should the greatest effort be
placed in estimating the unit shipping costs?

(b) What is the allowable range to stay optimal for each of the unit
shipping costs?

(c) How should these allowable ranges be interpreted to manage-
ment?

(d) If the estimates change for more than one of the unit shipping
costs, how can you use the generated sensitivity analysis in-
formation to determine whether the optimal solution might
change?

C 6.7-10. Consider the Union Airways problem presented in Sec.
3.4, including the data given in Table 3.19.

Management is about to begin negotiations on a new contract
with the union that represents the company’s customer service
agents. This might result in some small changes in the daily costs
per agent given in Table 3.19 for the various shifts. Several possi-
ble changes listed below are being considered separately. In each
case, management would like to know whether the change might

Use this output to obtain the allowable range to stay opti-
mal for each unit profit.

(f) Use graphical analysis to verify the allowable ranges obtained
in part (e).

(g) For each of the 16 combinations of unit profits considered in
parts (c) and (d ) where both unit profits differ from their orig-
inal estimates, use the 100 percent rule for simultaneous
changes in objective function coefficients to determine if the
original optimal solution must still be optimal.

(h) For each of the combinations of unit profits considered in part
(g) where it was found that the original optimal solution is not
guaranteed to still be optimal, use graphical analysis to deter-
mine whether this solution is still optimal.

6.7-8. Reconsider Prob. 6.7-7. After further negotiations with each
vendor, management of the G. A. Tanner Co. has learned that ei-
ther of them would be willing to consider increasing their supply
of their respective subassemblies over the previously stated max-
ima (3,000 subassemblies of type A per day and 1,000 of type B
per day) if the company would pay a small premium over the reg-
ular price for the extra subassemblies. The size of the premium for
each type of subassembly remains to be negotiated. The demand
for the toy being produced is sufficiently high that 2,500 per day
could be sold if the supply of subassemblies could be increased
enough to support this production rate. Assume that the original
estimates of unit profits given in Prob. 6.7-7 are accurate.
(a) Formulate a linear programming model for this problem with

the original maximum supply levels and the additional con-
straint that no more than 2,500 toys should be produced per
day. Then use the graphical method to obtain its optimal so-
lution.

C (b) Use a software package based on the simplex method to
solve for an optimal solution.

C (c) Without considering the premium, use the same software
package to determine the shadow price for the subassembly
A constraint by solving the model again after increasing the
maximum supply by 1. Use this shadow price to determine
the maximum premium that the company should be willing
to pay for each subassembly of this type.

C (d) Repeat part (c) for the subassembly B constraint.
C (e) Estimate how much the maximum supply of subassemblies

of type A could be increased before the shadow price (and
the corresponding premium) found in part (c) would no
longer be valid by using the same software package to re-
solve for an optimal solution and the total profit (excluding
the premium) as the maximum supply increases in incre-
ments of 100 from 3,000 to 4,000.

C (f) Repeat part (e) for subassemblies of type B by re-solving as
the maximum supply increases in increments of 100 from
1,000 to 2,000.
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6.7-13. Consider Variation 5 of the Wyndor Glass Co. model (see
Fig. 6.6 and Table 6.24), where the changes in the parameter val-
ues given in Table 6.21 are c�2 � 3, a�22 � 3, and a�32 � 4. Verify
both algebraically and graphically that the allowable range to stay
optimal for c1 is c1 � �

9
4

�.

6.7-14. Consider the following problem.

Maximize Z � 3x1 � x2 � 2x3,

subject to

x1 � x2 � 2x3 � 20
2x1 � x2 � x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x5 denote the slack variables for the respective func-
tional constraints. After we apply the simplex method, the final
simplex tableau is

result in the original optimal solution (given in Sec. 3.4) no longer
being optimal. Answer this question in parts (a) to (e) by using a
software package based on the simplex method to generate sensi-
tivity analysis information. If the optimal solution might change,
use the software package to re-solve for the optimal solution.
(a) The daily cost per agent for Shift 2 changes from $160 to $165.
(b) The daily cost per agent for Shift 4 changes from $180 to $170.
(c) The changes in parts (a) and (b) both occur.
(d) The daily cost per agent increases by $4 for shifts 2, 4, and 5,

but decreases by $4 for shifts 1 and 3.
(e) The daily cost per agent increases by 2 percent for each shift.

6.7-11. Consider the following problem.

Maximize Z � c1x1 � c2x2,

subject to

2x1 � x2 � b1

x1 � x2 � b2

and

x1 � 0, x2 � 0.

Let x3 and x4 denote the slack variables for the respective func-
tional constraints. When c1 � 3, c2 � �2, b1 � 30, and b2 � 10,
the simplex method yields the following final simplex tableau.
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(a) Use graphical analysis to determine the allowable range to stay
optimal for c1 and c2.

(b) Use algebraic analysis to derive and verify your answers in
part (a).

(c) Use graphical analysis to determine the allowable range to stay
feasible for b1 and b2.

(d) Use algebraic analysis to derive and verify your answers in
part (c)

C (e) Use a software package based on the simplex method to find
these allowable ranges.

6.7-12. Consider Variation 5 of the Wyndor Glass Co. model (see
Fig. 6.6 and Table 6.24), where the changes in the parameter val-
ues given in Table 6.21 are c�2 � 3, a�22 � 3, and a�32 � 4. Use the
formula b* � S*b� to find the allowable range to stay feasible for
each bi. Then interpret each allowable range graphically.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 Side

Z (0) 1 0 0 1 1 40
x2 (1) 0 0 1 1 �2 10
x1 (2) 0 1 0 1 �1 20

(a) Perform sensitivity analysis to determine which of the 11 pa-
rameters of the model are sensitive parameters in the sense that
any change in just that parameter’s value will change the op-
timal solution.

(b) Use algebraic analysis to find the allowable range to stay op-
timal for each cj.

(c) Use algebraic analysis to find the allowable range to stay fea-
sible for each bi.

C (d) Use a software package based on the simplex method to find
these allowable ranges.

6.7-15. For the problem given in Table 6.21, find the allowable
range to stay optimal for c2. Show your work algebraically, using
the tableau given in Table 6.21. Then justify your answer from a
geometric viewpoint, referring to Fig. 6.3.

6.7-16.* For the original Wyndor Glass Co. problem, use the last
tableau in Table 4.8 to do the following.
(a) Find the allowable range to stay feasible for each bi.
(b) Find the allowable range to stay optimal for c1 and c2.
C (c) Use a software package based on the simplex method to find

these allowable ranges.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 8 0 0 3 4 100
x3 (1) 0 3 0 1 1 1 30
x2 (2) 0 5 1 0 1 2 40



gallons of cream left in its inventory. The linear programming for-
mulation for this problem is shown below in algebraic form.

Let C � gallons of chocolate ice cream produced,
V � gallons of vanilla ice cream produced,
B � gallons of banana ice cream produced.

Maximize profit � 1.00 C � 0.90 V � 0.95 B,

subject to

Milk: 0.45 C � 0.50 V � 0.40 B � 200 gallons
Sugar: 0.50 C � 0.40 V � 0.40 B � 150 pounds
Cream: 0.10 C � 0.15 V � 0.20 B � 60 gallons

and

C � 0, V � 0, B � 0.

This problem was solved using the Excel Solver. The spread-
sheet (already solved) and the sensitivity report are shown below.
[Note: The numbers in the sensitivity report for the milk constraint
are missing on purpose, since you will be asked to fill in these
numbers in part ( f ).]

6.7-17. For Variation 6 of the Wyndor Glass Co. model presented
in Sec. 6.7, use the last tableau in Table 6.25 to do the following.
(a) Find the allowable range to stay feasible for each bi.
(b) Find the allowable range to stay optimal for c1 and c2.
C (c) Use a software package based on the simplex method to find

these allowable ranges.

6.7-18. Ken and Larry, Inc., supplies its ice cream parlors with
three flavors of ice cream: chocolate, vanilla, and banana. Be-
cause of extremely hot weather and a high demand for its prod-
ucts, the company has run short of its supply of ingredients: milk,
sugar, and cream. Hence, they will not be able to fill all the or-
ders received from their retail outlets, the ice cream parlors. 
Owing to these circumstances, the company has decided to
choose the amount of each flavor to produce that will maximize
total profit, given the constraints on supply of the basic 
ingredients.

The chocolate, vanilla, and banana flavors generate, respec-
tively, $1.00, $0.90, and $0.95 of profit per gallon sold. The com-
pany has only 200 gallons of milk, 150 pounds of sugar, and 60
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(a) Formulate a linear programming model for this problem.
(b) Use the graphical method to solve the model.
C (c) Use a software package based on the simplex method to

solve the model.
C (d) Use this same software package to generate sensitivity

analysis information.
(e) Use this sensitivity analysis information to determine whether

the optimal solution must remain optimal if the estimate of the
unit profit for grandfather clocks is changed from $300 to $375
(with no other changes in the model).

(f) Repeat part (e) if, in addition to this change in the unit profit
for grandfather clocks, the estimated unit profit for wall clocks
also changes from $200 to $175.

(g) Use graphical analysis to verify your answers in parts (e) 
and ( f ).

(h) To increase the total profit, the three partners have agreed that
one of them will slightly increase the maximum number of
hours available to work per week. The choice of which one
will be based on which one would increase the total profit the
most. Use the sensitivity analysis information to make this
choice. (Assume no change in the original estimates of the unit
profits.)

(i) Explain why one of the shadow prices is equal to zero.
(j) Can the shadow prices given in the sensitivity analysis infor-

mation be validly used to determine the effect if Lydia were
to change her maximum number of hours available to work
per week from 20 to 25? If so, what would be the increase in
the total profit?

(k) Repeat part ( j) if, in addition to the change for Lydia, David
also were to change his maximum number of hours available
to work per week from 40 to 35.

(l) Use graphical analysis to verify your answer in part (k).

C 6.7-20. Consider the Union Airways problem presented in Sec.
3.4, including the data given in Table 3.19.

Management now is considering increasing the level of ser-
vice provided to customers by increasing one or more of the num-
bers in the rightmost column of Table 3.19 for the minimum num-
ber of agents needed in the various time periods. To guide them in
making this decision, they would like to know what impact this
change would have on total cost.

Use a software package based on the simplex method to gen-
erate sensitivity analysis information in preparation for addressing
the following questions.
(a) Which of the numbers in the rightmost column of Table 3.19

can be increased without increasing total cost? In each case,
indicate how much it can be increased (if it is the only one be-
ing changed) without increasing total cost.

(b) For each of the other numbers, how much would the total cost
increase per increase of 1 in the number? For each answer, in-

For each of the following parts, answer the question as specif-
ically and completely as is possible without solving the problem
again on the Excel Solver. Note: Each part is independent (i.e., any
change made to the model in one part does not apply to any other
parts).
(a) What is the optimal solution and total profit?
(b) Suppose the profit per gallon of banana changes to $1.00. Will

the optimal solution change, and what can be said about the
effect on total profit?

(c) Suppose the profit per gallon of banana changes to 92 cents.
Will the optimal solution change, and what can be said about
the effect on total profit?

(d) Suppose the company discovers that 3 gallons of cream have
gone sour and so must be thrown out. Will the optimal solu-
tion change, and what can be said about the effect on total
profit?

(e) Suppose the company has the opportunity to buy an additional
15 pounds of sugar at a total cost of $15. Should they? Ex-
plain.

(f) Fill in all the sensitivity report information for the milk con-
straint, given just the optimal solution for the problem. Explain
how you were able to deduce each number.

6.7-19. David, LaDeana, and Lydia are the sole partners and work-
ers in a company which produces fine clocks. David and LaDeana
each are available to work a maximum of 40 hours per week at the
company, while Lydia is available to work a maximum of 20 hours
per week.

The company makes two different types of clocks: a grand-
father clock and a wall clock. To make a clock, David (a mechan-
ical engineer) assembles the inside mechanical parts of the clock
while LaDeana (a woodworker) produces the hand-carved wood
casings. Lydia is responsible for taking orders and shipping the
clocks. The amount of time required for each of these tasks is
shown below.
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Each grandfather clock built and shipped yields a profit of $300,
while each wall clock yields a profit of $200.

The three partners now want to determine how many clocks
of each type should be produced per week to maximize the total
profit.

Time Required

Task Grandfather Clock Wall Clock

Assemble clock mechanism 6 hours 4 hours
Carve wood casing 8 hours 4 hours
Shipping 3 hours 3 hours



(b) Now perform this sensitivity analysis as described and illus-
trated in Sec. 6.7 for b1 and c1.

(c) Repeat part (b) for b2.
(d) Repeat part (b) for c2.

6.7-22. Reconsider Prob. 6.7-21. Now use a software package
based on the simplex method to generate sensitivity analysis in-
formation preparatory to doing parts (a) and (c) below.
C (a) Suppose that the estimates for c1 and c2 are correct but the

estimates for both b1 and b2 are incorrect. Consider the fol-
lowing four cases where the true values of b1 and b2 differ
from their estimates by the same percentage: (1) both b1 and
b2 are smaller than their estimates, (2) both b1 and b2 are
larger than their estimates, (3) b1 is smaller and b2 is larger
than their estimates, and (4) b1 is larger and b2 is smaller
than their estimates. For each of these cases, use the 100
percent rule for simultaneous changes in right-hand sides to
determine how large the percentage error can be while guar-
anteeing that the original shadow prices still will be valid.

(b) For each of the four cases considered in part (a), start with the
final simplex tableau given in Prob. 6.7-21 and use algebraic
analysis based on the fundamental insight presented in Sec. 5.3
to determine how large the percentage error can be without in-
validating the original shadow prices.

C (c) Suppose that the estimates for b1 and b2 are correct but the
estimates for both c1 and c2 are incorrect. Consider the fol-
lowing four cases where the true values of c1 and c2 differ
from their estimates by the same percentage: (1) both c1 and
c2 are smaller than their estimates, (2) both c1 and c2 are larger
than their estimates, (3) c1 is smaller and c2 is larger than their
estimates, and (4) c1 is larger and c2 is smaller than their es-
timates. For each of these cases, use the 100 percent rule for
simultaneous changes in objective function coefficients to de-
termine how large the percentage error can be while guaran-
teeing that the original optimal solution must still be optimal.

(d) For each of the four cases considered in part (c), start with the
final simplex tableau given in Prob. 6.7-21 and use algebraic
analysis based on the fundamental insight presented in Sec. 5.3
to determine how large the percentage error can be without in-
validating the original optimal solution.

6.7-23. Consider the following problem.

Maximize Z � 3x1 � 4x2 � 8x3,

subject to

2x1 � 3x2 � 5x3 � 9
x1 � 2x2 � 3x3 � 5

and

x1 � 0, x2 � 0, x3 � 0.

dicate how much the number can be increased (if it is the only
one being changed) before the answer is no longer valid.

(c) Do your answers in part (b) definitely remain valid if all the
numbers considered in part (b) are simultaneously increased
by 1?

(d) Do your answers in part (b) definitely remain valid if all 10
numbers are simultaneously increased by 1?

(e) How far can all 10 numbers be simultaneously increased by
the same amount before your answers in part (b) may no longer
be valid?

6.7-21. Consider the following problem.

Maximize Z � 2x1 � 5x2,

subject to

x1 � 2x2 � 10
x1 � 3x2 � 12

and

x1 � 0, x2 � 0.

Let x3 and x4 denote the slack variables for the respective func-
tional constraints. After we apply the simplex method, the final
simplex tableau is
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While doing postoptimality analysis, you learn that all four bi and
cj values used in the original model just given are accurate only to
within �50 percent. In other words, their ranges of likely values
are 5 � b1 � 15, 6 � b2 � 18, 1 � c1 � 3, and 2.5 � c2 � 7.5.
Your job now is to perform sensitivity analysis to determine for
each parameter individually (assuming the other three parameters
equal their values in the original model) whether this uncertainty
might affect either the feasibility or the optimality of the above ba-
sic solution (perhaps with new values for the basic variables).
Specifically, determine the allowable range to stay feasible for each
bi and the allowable range to stay optimal for each cj. Then, for
each parameter and its range of likely values, indicate which part
of this range lies within the allowable range and which parts cor-
respond to values for which the current basic solution will no longer
be both feasible and optimal.
(a) Perform this sensitivity analysis graphically on the original

model.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 Side

Z (0) 1 0 0 1 1 22
x1 (1) 0 1 0 3 �2 6
x2 (2) 0 0 1 �1 1 2



Construct a table like Table 6.26 to perform parametric linear
programming analysis on this problem. Determine the upper bound
on � before the original optimal solution would become nonopti-
mal. Then determine the best choice of � over this range.

6.7-26. Consider the following parametric linear programming
problem.

Maximize Z(�) � (10 � 4�)x1 � (4 � �)x2 � (7 � �)x3,

subject to

3x1 � x2 � 2x3 � 7 (resource 1),
2x1 � x2 � 3x3 � 5 (resource 2),

and

x1 � 0, x2 � 0, x3 � 0,

where � can be assigned any positive or negative values. Let x4 and
x5 be the slack variables for the respective constraints. After we
apply the simplex method with � � 0, the final simplex tableau is

Let x4 and x5 denote the slack variables for the respective func-
tional constraints. After we apply the simplex method, the final
simplex tableau is
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While doing postoptimality analysis, you learn that some of the pa-
rameter values used in the original model just given are just rough
estimates, where the range of likely values in each case is within
�50 percent of the value used here. For each of these following pa-
rameters, perform sensitivity analysis to determine whether this un-
certainty might affect either the feasibility or the optimality of the
above basic solution. Specifically, for each parameter, determine the
allowable range of values for which the current basic solution (per-
haps with new values for the basic variables) will remain both fea-
sible and optimal. Then, for each parameter and its range of likely
values, indicate which part of this range lies within the allowable
range and which parts correspond to values for which the current
basic solution will no longer be both feasible and optimal.
(a) Parameter b2

(b) Parameter c2

(c) Parameter a22

(d) Parameter c3

(e) Parameter a12

(f) Parameter b1

6.7-24. Consider Variation 5 of the Wyndor Glass Co. model pre-
sented in Sec. 6.7, where c�2 � 3, a�22 � 3, a�32 � 4, and where the
other parameters are given in Table 6.21. Starting from the resulting
final tableau given at the bottom of Table 6.24, construct a table like
Table 6.26 to perform parametric linear programming analysis, where

c1 � 3 � � and c2 � 3 � 2�.

How far can � be increased above 0 before the current basic solu-
tion is no longer optimal?

6.7-25. Reconsider the model of Prob. 6.7-6. Suppose that you now
have the option of making trade-offs in the profitability of the first
two activities, whereby the objective function coefficient of x1 can
be increased by any amount by simultaneously decreasing the ob-
jective function coefficient of x2 by the same amount. Thus, the al-
ternative choices of the objective function are

Z(�) � (2 � �)x1 � (1 � �)x2 � x3,

where any nonnegative value of � can be chosen.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 0 1 0 1 1 14
x1 (1) 0 1 �1 0 3 �5 2
x3 (2) 0 0 1 1 �1 2 1

(a) Determine the range of values of � over which the above BF
solution will remain optimal. Then find the best choice of �
within this range.

(b) Given that � is within the range of values found in part (a),
find the allowable range to stay feasible for b1 (the available
amount of resource 1). Then do the same for b2 (the available
amount of resource 2).

(c) Given that � is within the range of values found in part (a),
identify the shadow prices (as a function of �) for the two re-
sources. Use this information to determine how the optimal
value of the objective function would change (as a function of
�) if the available amount of resource 1 were decreased by 1
and the available amount of resource 2 simultaneously were
increased by 1.

(d) Construct the dual of this parametric linear programming prob-
lem. Set � � 0 and solve this dual problem graphically to find
the corresponding shadow prices for the two resources of the
primal problem. Then find these shadow prices as a function
of � [within the range of values found in part (a)] by alge-
braically solving for this same optimal CPF solution for the
dual problem as a function of �.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 0 0 3 2 2 24
x1 (1) 0 1 0 �1 1 �1 2
x2 (2) 0 0 1 5 �2 3 1



(a) Use the fundamental insight (Sec. 5.3) to revise this tableau to
reflect the inclusion of the parameter � in the original model.
Show the complete tableau needed to apply the feasibility test
and the optimality test for any value of �. Express the corre-
sponding basic solution (and Z) as a function of �.

(b) Determine the range of nonnegative values of � over which
this basic solution is feasible.

(c) Determine the range of nonnegative values of � over which
this basic solution is both feasible and optimal. Determine the
best choice of � over this range.

6.7-29. Consider the following problem.

Maximize Z � 10x1 � 4x2,

subject to

3x1 � x2 � 30
2x1 � x2 � 25

and

x1 � 0, x2 � 0.

Let x3 and x4 denote the slack variables for the respective func-
tional constraints. After we apply the simplex method, the final
simplex tableau is

6.7-27. Consider the following parametric linear programming
problem.

Maximize Z(�) � 2x1 � 4x2 � 5x3,

subject to

x1 � 3x2 � 2x3 � 5 � �
x1 � 2x2 � 3x3 � 6 � 2�

and

x1 � 0, x2 � 0, x3 � 0,

where � can be assigned any positive or negative values. Let x4 and
x5 be the slack variables for the respective functional constraints.
After we apply the simplex method with � � 0, the final simplex
tableau is
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(a) Express the BF solution (and Z ) given in this tableau as a func-
tion of �. Determine the lower and upper bounds on � before
this optimal solution would become infeasible. Then determine
the best choice of � between these bounds.

(b) Given that � is between the bounds found in part (a), deter-
mine the allowable range to stay optimal for c1 (the coefficient
of x1 in the objective function).

6.7-28. Consider the following parametric linear programming
problem, where the parameter � must be nonnegative:

Maximize Z(�) � (5 � 2�)x1 � (2 � �)x2 � (3 � �)x3,

subject to

4x1 � x2 � 2x3 � 5 � 5�
3x1 � x2 � 2x3 � 10 � 10�

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 be the surplus variable for the first functional constraint, and
let x�5 and x�6 be the artificial variables for the respective functional
constraints. After we apply the simplex method with the Big M
method and with � � 0, the final simplex tableau is

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x�5 x�6 Side

Z (0) 1 1 0 1 0 M M � 2 20
x2 (1) 0 3 1 2 0 0 1 10
x4 (2) 0 �1 0 2 1 �1 1 5

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 Side

Z (0) 1 0 0 2 2 110
x2 (1) 0 0 1 �2 3 15
x1 (2) 0 1 0 1 �1 5

Now suppose that both of the following changes are made si-
multaneously in the original model:

1. The first constraint is changed to 4x1 � x2 � 40.
2. Parametric programming is introduced to change the objective

function to the alternative choices of

Z(�) � (10 � 2�)x1 � (4 � �)x2,

where any nonnegative value of � can be chosen.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 0 0 1 0 1 1 11
x1 (1) 1 1 5 0 3 �2 3
x3 (2) 2 0 �1 1 �1 1 1



nology, so 0 � � � 1. Given �, the coefficients of x1 in the
model become

� .

Construct the resulting revised final tableau (as a function of
�), and convert this tableau to proper form from Gaussian elim-
ination. Use this tableau to identify the current basic solution
as a function of �. Over the allowable values of 0 � � � 1,
give the range of values of � for which this solution is both fea-
sible and optimal. What is the best choice of � within this range?

6.7-31. Consider the following problem.

Maximize Z � 3x1 � 5x2 � 2x3,

subject to

�2x1 � 2x2 � x3 � 5
�3x1 � x2 � x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x5 be the slack variables for the respective functional
constraints. After we apply the simplex method, the final simplex
tableau is
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2 � �
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(a) Construct the resulting revised final tableau (as a function of
�), and then convert this tableau to proper form from Gauss-
ian elimination. Use this tableau to identify the new optimal
solution that applies for either � � 0 or sufficiently small val-
ues of �.

(b) What is the upper bound on � before this optimal solution
would become nonoptimal?

(c) Over the range of � from zero to this upper bound, which choice
of � gives the largest value of the objective function?

6.7-30. Consider the following problem.

Maximize Z � 9x1 � 8x2 � 5x3,

subject to

2x1 � 3x2 � x3 � 4
5x1 � 4x2 � 3x3 � 11

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x5 denote the slack variables for the respective func-
tional constraints. After we apply the simplex method, the final
simplex tableau is
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D,I (a) Suppose that a new technology has become available for
conducting the first activity considered in this problem. If
the new technology were adopted to replace the existing
one, the coefficients of x1 in the model would change

from � to � .

Use the sensitivity analysis procedure to investigate the
potential effect and desirability of adopting the new tech-
nology. Specifically, assuming it were adopted, construct
the resulting revised final tableau, convert this tableau to
proper form from Gaussian elimination, and then reopti-
mize (if necessary) to find the new optimal solution.

(b) Now suppose that you have the option of mixing the old and
new technologies for conducting the first activity. Let � denote
the fraction of the technology used that is from the new tech-
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Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 0 2 0 2 1 19
x1 (1) 0 1 5 0 3 �1 1
x3 (2) 0 0 �7 1 �5 2 2

Parametric linear programming analysis now is to be applied si-
multaneously to the objective function and right-hand sides, where
the model in terms of the new parameter is the following:

Maximize Z(�) � (3 � 2�)x1 � (5 � �)x2 � (2 � �)x3,

subject to

�2x1 � 2x2 � x3 � 5 � 6�
�3x1 � x2 � x3 � 10 � 8�

and

x1 � 0, x2 � 0, x3 � 0.

Construct the resulting revised final tableau (as a function of �),
and convert this tableau to proper form from Gaussian elimination.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 0 20 0 9 7 115
x1 (1) 0 1 3 0 1 1 15
x3 (2) 0 0 8 1 3 2 35



(d) If the unit profit is below this breakeven point, how much can
the old product’s production rate be decreased (assuming its
previous rate was larger than this decrease) before the final BF
solution would become infeasible?

6.7-33. Consider the following problem.

Maximize Z � 2x1 � x2 � 3x3,

subject to

x1 � x2 � x3 � 3
x1 � 2x2 � x3 � 1
x1 � 2x2 � x3 � 2

and

x1 � 0, x2 � 0, x3 � 0.

Suppose that the Big M method (see Sec. 4.6) is used to obtain the
initial (artificial) BF solution. Let x�4 be the artificial slack variable
for the first constraint, x5 the surplus variable for the second con-
straint, x�6 the artificial variable for the second constraint, and x7

the slack variable for the third constraint. The corresponding final
set of equations yielding the optimal solution is

(0) Z � 5x2 � (M � 2)x�4 � Mx�6 � x7 � 8,
(1) x1 � x2 � x�4 � x7 � 1,
(2) 2x2 � x3 � x7 � 2,
(3) 3x2 � x�4 � x5 � x�6 � 2.

Suppose that the original objective function is changed to 
Z � 2x1 � 3x2 � 4x3 and that the original third constraint is
changed to 2x2 � x3 � 1. Use the sensitivity analysis procedure to
revise the final set of equations (in tableau form) and convert it to
proper form from Gaussian elimination for identifying and evalu-
ating the current basic solution. Then test this solution for feasi-
bility and for optimality. (Do not reoptimize.)

Use this tableau to identify the current basic solution as a function
of �. For � � 0, give the range of values of � for which this solu-
tion is both feasible and optimal. What is the best choice of � within
this range?

6.7-32. Consider the Wyndor Glass Co. problem described in Sec.
3.1. Suppose that, in addition to considering the introduction of
two new products, management now is considering changing the
production rate of a certain old product that is still profitable. Re-
fer to Table 3.1. The number of production hours per week used
per unit production rate of this old product is 1, 4, and 3 for Plants
1, 2, and 3, respectively. Therefore, if we let � denote the change
(positive or negative) in the production rate of this old product, the
right-hand sides of the three functional constraints in Sec. 3.1 be-
come 4 � �, 12 � 4�, and 18 � 3�, respectively. Thus, choosing
a negative value of � would free additional capacity for producing
more of the two new products, whereas a positive value would have
the opposite effect.
(a) Use a parametric linear programming formulation to determine

the effect of different choices of � on the optimal solution for
the product mix of the two new products given in the final
tableau of Table 4.8. In particular, use the fundamental insight
of Sec. 5.3 to obtain expressions for Z and the basic variables
x3, x2, and x1 in terms of �, assuming that � is sufficiently close
to zero that this “final” basic solution still is feasible and thus
optimal for the given value of �.

(b) Now consider the broader question of the choice of � along
with the product mix for the two new products. What is the
breakeven unit profit for the old product (in comparison with
the two new products) below which its production rate should
be decreased (� � 0) in favor of the new products and above
which its production rate should be increased (� 	 0)?

(c) If the unit profit is above this breakeven point, how much can
the old product’s production rate be increased before the final
BF solution would become infeasible?
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Refer to Sec. 3.4 (subsection entitled “Controlling Air Pollution”) for the Nori & Leets
Co. problem. After the OR team obtained an optimal solution, we mentioned that the
team then conducted sensitivity analysis. We now continue this story by having you
retrace the steps taken by the OR team, after we provide some additional background.

The values of the various parameters in the original formulation of the model are
given in Tables 3.12, 3.13, and 3.14. Since the company does not have much prior ex-
perience with the pollution abatement methods under consideration, the cost estimates
given in Table 3.14 are fairly rough, and each one could easily be off by as much as
10 percent in either direction. There also is some uncertainty about the parameter val-

CASE 6.1 CONTROLLING AIR POLLUTION



ues given in Table 3.13, but less so than for Table 3.14. By contrast, the values in Table
3.12 are policy standards, and so are prescribed constants.

However, there still is considerable debate about where to set these policy standards
on the required reductions in the emission rates of the various pollutants. The numbers
in Table 3.12 actually are preliminary values tentatively agreed upon before learning
what the total cost would be to meet these standards. Both the city and company offi-
cials agree that the final decision on these policy standards should be based on the trade-
off between costs and benefits. With this in mind, the city has concluded that each 10
percent increase in the policy standards over the current values (all the numbers in Table
3.12) would be worth $3.5 million to the city. Therefore, the city has agreed to reduce
the company’s tax payments to the city by $3.5 million for each 10 percent reduction
in the policy standards (up to 50 percent) that is accepted by the company.

Finally, there has been some debate about the relative values of the policy stan-
dards for the three pollutants. As indicated in Table 3.12, the required reduction for
particulates now is less than half of that for either sulfur oxides or hydrocarbons. Some
have argued for decreasing this disparity. Others contend that an even greater dispar-
ity is justified because sulfur oxides and hydrocarbons cause considerably more dam-
age than particulates. Agreement has been reached that this issue will be reexamined
after information is obtained about which trade-offs in policy standards (increasing one
while decreasing another) are available without increasing the total cost.

(a) Use any available linear programming software to solve the model for this problem as for-
mulated in Sec. 3.4. In addition to the optimal solution, obtain the additional output pro-
vided for performing postoptimality analysis (e.g., the Sensitivity Report when using Excel).
This output provides the basis for the following steps.

(b) Ignoring the constraints with no uncertainty about their parameter values (namely, xj � 1
for j � 1, 2, . . . , 6), identify the parameters of the model that should be classified as sen-
sitive parameters. (Hint: See the subsection “Sensitivity Analysis” in Sec. 4.7.) Make a re-
sulting recommendation about which parameters should be estimated more closely, if 
possible.

(c) Analyze the effect of an inaccuracy in estimating each cost parameter given in Table 3.14.
If the true value is 10 percent less than the estimated value, would this alter the optimal so-
lution? Would it change if the true value were 10 percent more than the estimated value?
Make a resulting recommendation about where to focus further work in estimating the cost
parameters more closely.

(d) Consider the case where your model has been converted to maximization form before apply-
ing the simplex method. Use Table 6.14 to construct the corresponding dual problem, and use
the output from applying the simplex method to the primal problem to identify an optimal so-
lution for this dual problem. If the primal problem had been left in minimization form, how
would this affect the form of the dual problem and the sign of the optimal dual variables?

(e) For each pollutant, use your results from part (d ) to specify the rate at which the total cost
of an optimal solution would change with any small change in the required reduction in the
annual emission rate of the pollutant. Also specify how much this required reduction can be
changed (up or down) without affecting the rate of change in the total cost.

(f) For each unit change in the policy standard for particulates given in Table 3.12, determine
the change in the opposite direction for sulfur oxides that would keep the total cost of an
optimal solution unchanged. Repeat this for hydrocarbons instead of sulfur oxides. Then do
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it for a simultaneous and equal change for both sulfur oxides and hydrocarbons in the op-
posite direction from particulates.

(g) Letting � denote the percentage increase in all the policy standards given in Table 3.12, for-
mulate the problem of analyzing the effect of simultaneous proportional increases in these
standards as a parametric linear programming problem. Then use your results from part (e)
to determine the rate at which the total cost of an optimal solution would increase with a
small increase in � from zero.

(h) Use the simplex method to find an optimal solution for the parametric linear programming
problem formulated in part (g) for each � � 10, 20, 30, 40, 50. Considering the tax incen-
tive offered by the city, use these results to determine which value of � (including the op-
tion of � � 0) should be chosen to minimize the company’s total cost of both pollution abate-
ment and taxes.

(i) For the value of � chosen in part (h), repeat parts (e) and ( f ) so that the decision makers can
make a final decision on the relative values of the policy standards for the three pollutants.
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The Ploughman family owns and operates a 640-acre farm that has been in the family
for several generations. The Ploughmans always have had to work hard to make a de-
cent living from the farm and have had to endure some occasional difficult years. Sto-
ries about earlier generations overcoming hardships due to droughts, floods, etc., are
an important part of the family history. However, the Ploughmans enjoy their self-
reliant lifestyle and gain considerable satisfaction from continuing the family tradition
of successfully living off the land during an era when many family farms are being
abandoned or taken over by large agricultural corporations.

John Ploughman is the current manager of the farm while his wife Eunice runs
the house and manages the farm’s finances. John’s father, Grandpa Ploughman, lives
with them and still puts in many hours working on the farm. John and Eunice’s older
children, Frank, Phyllis, and Carl, also are given heavy chores before and after school.

The entire famiy can produce a total of 4,000 person-hours worth of labor during
the winter and spring months and 4,500 person-hours during the summer and fall. If
any of these person-hours are not needed, Frank, Phyllis, and Carl will use them to
work on a neighboring farm for $5 per hour during the winter and spring months and
$5.50 per hour during the summer and fall.

The farm supports two types of livestock: dairy cows and laying hens, as well as
three crops: soybeans, corn, and wheat. (All three are cash crops, but the corn also is
a feed crop for the cows and the wheat also is used for chicken feed.) The crops are
harvested during the late summer and fall. During the winter months, John, Eunice,
and Grandpa make a decision about the mix of livestock and crops for the coming year.

Currently, the family has just completed a particularly successful harvest which
has provided an investment fund of $20,000 that can be used to purchase more live-
stock. (Other money is available for ongoing expenses, including the next planting of
crops.) The family currently has 30 cows valued at $35,000 and 2,000 hens valued at
$5,000. They wish to keep all this livestock and perhaps purchase more. Each new cow
would cost $1,500, and each new hen would cost $3.
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Over a year’s time, the value of a herd of cows will decrease by about 10 percent
and the value of a flock of hens will decrease by about 25 percent due to aging.

Each cow will require 2 acres of land for grazing and 10 person-hours of work per
month, while producing a net annual cash income of $850 for the family. The corre-
sponding figures for each hen are: no significant acreage, 0.05 person-hour per month,
and an annual net cash income of $4.25. The chicken house can accommodate a max-
imum of 5,000 hens, and the size of the barn limits the herd to a maximum of 42 cows.

For each acre planted in each of the three crops, the following table gives the num-
ber of person-hours of work that will be required during the first and second halves of
the year, as well as a rough estimate of the crop’s net value (in either income or sav-
ings in purchasing feed for the livestock).
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Data per acre planted

Soybeans Corn Wheat

Winter and spring, person-hours 1.0 0.9 0.6
Summer and fall, person-hours 1.4 1.2 0.7
Net value $70 $60 $40

To provide much of the feed for the livestock, John wants to plant at least 1 acre
of corn for each cow in the coming year’s herd and at least 0.05 acre of wheat for each
hen in the coming year’s flock.

John, Eunice, and Grandpa now are discussing how much acreage should be planted
in each of the crops and how many cows and hens to have for the coming year. Their
objective is to maximize the family’s monetary worth at the end of the coming year
(the sum of the net income from the livestock for the coming year plus the net value
of the crops for the coming year plus what remains from the investment fund plus the
value of the livestock at the end of the coming year plus any income from working on
a neighboring farm, minus living expenses of $40,000 for the year).

(a) Identify verbally the components of a linear programming model for this problem.
(b) Formulate this model. (Either an algebraic or a spreadsheet formulation is acceptable.)
(c) Obtain an optimal solution and generate the additional output provided for performing postop-

timality analysis (e.g., the Sensitivity Report when using Excel). What does the model pre-
dict regarding the family’s monetary worth at the end of the coming year?

(d) Find the allowable range to stay optimal for the net value per acre planted for each of the
three crops.

The above estimates of the net value per acre planted in each of the three crops
assumes good weather conditions. Adverse weather conditions would harm the crops
and greatly reduce the resulting value. The scenarios particularly feared by the family
are a drought, a flood, an early frost, both a drought and an early frost, and both a
flood and an early frost. The estimated net values for the year under these scenarios
are shown on the next page.



(e) Find an optimal solution under each scenario after making the necessary adjustments to the
linear programming model formulated in part (b). In each case, what is the prediction re-
garding the family’s monetary worth at the end of the year?

(f) For the optimal solution obtained under each of the six scenarios [including the good weather
scenario considered in parts (a) to (d )], calculate what the family’s monetary worth would
be at the end of the year if each of the other five scenarios occur instead. In your judgment,
which solution provides the best balance between yielding a large monetary worth under
good weather conditions and avoiding an overly small monetary worth under adverse weather
conditions.

Grandpa has researched what the weather conditions were in past years as far back
as weather records have been kept, and obtained the following data.
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With these data, the family has decided to use the following approach to making
its planting and livestock decisions. Rather than the optimistic approach of assuming
that good weather conditions will prevail [as done in parts (a) to (d )], the average net
value under all weather conditions will be used for each crop (weighting the net val-
ues under the various scenarios by the frequencies in the above table).

(g) Modify the linear programming model formulated in part (b) to fit this new approach.
(h) Repeat part (c) for this modified model.
(i) Use a shadow price obtained in part (h) to analyze whether it would be worthwhile for the

family to obtain a bank loan with a 10 percent interest rate to purchase more livestock now
beyond what can be obtained with the $20,000 from the investment fund.

(j) For each of the three crops, use the postoptimality analysis information obtained in part (h)
to identify how much latitude for error is available in estimating the net value per acre planted
for that crop without changing the optimal solution. Which two net values need to be esti-
mated most carefully? If both estimates are incorrect simultaneously, how close do the esti-
mates need to be to guarantee that the optimal solution will not change?

Scenario Frequency

Good weather 40%
Drought 20%
Flood 10%
Early frost 15%
Drought and early frost 10%
Flood and early frost 5%

Net Value per Acre Planted

Scenario Soybeans Corn Wheat

Drought �$10 �$15 0
Flood $15 $20 $10
Early frost $50 $40 $30
Drought and early frost �$15 �$20 �$10
Flood and early frost $10 $10 $ 5



This problem illustrates a kind of situation that is frequently faced by various kinds
of organizations. To describe the situation in general terms, an organization faces an
uncertain future where any one of a number of scenarios may unfold. Which one will
occur depends on conditions that are outside the control of the organization. The or-
ganization needs to choose the levels of various activities, but the unit contribution of
each activity to the overall measure of performance is greatly affected by which sce-
nario unfolds. Under these circumstances, what is the best mix of activities?

(k) Think about specific situations outside of farm management that fit this description. De-
scribe one.
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Reconsider Case 4.3.
The Springfield School Board still has the policy of providing bussing for all mid-

dle school students who must travel more than approximately 1 mile. Another current
policy is to allow splitting residential areas among multiple schools if this will reduce
the total bussing cost. (This latter policy will be reversed in Case 12.4.) However, be-
fore adopting a bussing plan based on parts (a) and (b) of Case 4.3, the school board
now wants to conduct some postoptimality analysis.

(a) If you have not already done so for parts (a) and (b) of Case 4.3, formulate and solve a lin-
ear programming model for this problem. (Either an algebraic or a spreadsheet formulation
is acceptable.)

(b) Generate a sensitivity analysis report with the same software package as used in part (a).

One concern of the school board is the ongoing road construction in area 6. These
construction projects have been delaying traffic considerably and are likely to affect the
cost of bussing students from area 6, perhaps increasing them as much as 10 percent.

(c) Use the report from part (b) to check how much the bussing cost from area 6 to school 1
can increase (assuming no change in the costs for the other schools) before the current op-
timal solution would no longer be optimal. If the allowable increase is less than 10 percent,
re-solve to find the new optimal solution with a 10 percent increase.

(d) Repeat part (c) for school 2 (assuming no change in the costs for the other schools).
(e) Now assume that the bussing cost from area 6 would increase by the same percentage for

all the schools. Use the report from part (b) to determine how large this percentage can be
before the current optimal solution might no longer be optimal. If the allowable increase is
less than 10 percent, re-solve to find the new optimal solution with a 10 percent increase.

The school board has the option of adding portable classrooms to increase the ca-
pacity of one or more of the middle schools for a few years. However, this is a costly
move that the board would consider only if it would significantly decrease bussing
costs. Each portable classroom holds 20 students and has a leasing cost of $2,500 per
year. To analyze this option, the school board decides to assume that the road con-
struction in area 6 will wind down without significantly increasing the bussing costs
from that area.
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(f) For each school, use the corresponding shadow price from the report obtained in part (b) to
determine whether it would be worthwhile to add any portable classrooms.

(g) For each school where it is worthwhile to add any portable classrooms, use the report from
part (b) to determine how many could be added before the shadow price would no longer
be valid (assuming this is the only school receiving portable classrooms).

(h) If it would be worthwhile to add portable classrooms to more than one school, use the re-
port from part (b) to determine the combinations of the number to add for which the shadow
prices definitely would still be valid. Then use the shadow prices to determine which of these
combinations is best in terms of minimizing the total cost of bussing students and leasing
portable classrooms. Re-solve to find the corresponding optimal solution for assigning stu-
dents to schools.

(i) If part (h) was applicable, modify the best combination of portable classrooms found there
by adding one more to the school with the most favorable shadow price. Find the corre-
sponding optimal solution for assigning students to schools and generate the corresponding
sensitivity analysis report. Use this information to assess whether the plan developed in part
(h) is the best one available for minimizing the total cost of bussing students and leasing
portable classrooms. If not, find the best plan.
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