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Network Optimization 
Models

Networks arise in numerous settings and in a variety of guises. Transportation, electrical,
and communication networks pervade our daily lives. Network representations also are
widely used for problems in such diverse areas as production, distribution, project plan-
ning, facilities location, resource management, and financial planning—to name just a few
examples. In fact, a network representation provides such a powerful visual and concep-
tual aid for portraying the relationships between the components of systems that it is used
in virtually every field of scientific, social, and economic endeavor.

One of the most exciting developments in operations research (OR) in recent years
has been the unusually rapid advance in both the methodology and application of network
optimization models. A number of algorithmic breakthroughs have had a major impact,
as have ideas from computer science concerning data structures and efficient data ma-
nipulation. Consequently, algorithms and software now are available and are being used
to solve huge problems on a routine basis that would have been completely intractable
two or three decades ago.

Many network optimization models actually are special types of linear programming
problems. For example, both the transportation problem and the assignment problem dis-
cussed in the preceding chapter fall into this category because of their network represen-
tations presented in Figs. 8.3 and 8.5.

One of the linear programming examples presented in Sec. 3.4 also is a network op-
timization problem. This is the Distribution Unlimited Co. problem of how to distribute
its goods through the distribution network shown in Fig. 3.13. This special type of linear
programming problem, called the minimum cost flow problem, is presented in Sec. 9.6.
We shall return to this specific example in that section and then solve it with network
methodology in the following section.

The third linear programming case study presented in Sec. 3.5 also features an ap-
plication of the minimum cost flow problem. This case study involved planning the sup-
ply, distribution, and marketing of goods at Citgo Petroleum Corp. The OR team at Citgo
developed an optimization-based decision support system, using a minimum cost flow
problem model for each product, and coupled this system with an on-line corporate data-
base. Each product’s model has about 3,000 equations (nodes) and 15,000 variables (arcs),
which is a very modest size by today’s standards for the application of network opti-



mization models. The model takes in all aspects of the business, helping management de-
cide everything from run levels at the various refineries to what prices to pay or charge.
A network representation is essential because of the flow of goods through several stages:
purchase of crude oil from various suppliers, shipping it to refineries, refining it into var-
ious products, and sending the products to distribution centers and product storage ter-
minals for subsequent sale. As discussed in Sec. 3.5, the modeling system enabled the
company to reduce its petroleum products inventory by over $116 million with no drop
in service levels. This resulted in a savings in annual interest of $14 million as well as
improvements in coordination, pricing, and purchasing decisions worth another $2.5 mil-
lion each year, along with many indirect benefits.

In this one chapter we only scratch the surface of the current state of the art of net-
work methodology. However, we shall introduce you to four important kinds of network
problems and some basic ideas of how to solve them (without delving into issues of data
structures that are so vital to successful large-scale implementations). Each of the first three
problem types—the shortest-path problem, the minimum spanning tree problem, and the
maximum flow problem—has a very specific structure that arises frequently in applications.

The fourth type—the minimum cost flow problem—provides a unified approach to
many other applications because of its far more general structure. In fact, this structure is
so general that it includes as special cases both the shortest-path problem and the maxi-
mum flow problem as well as the transportation problem and the assignment problem
from Chap. 8. Because the minimum cost flow problem is a special type of linear pro-
gramming problem, it can be solved extremely efficiently by a streamlined version of the
simplex method called the network simplex method. (We shall not discuss even more gen-
eral network problems that are more difficult to solve.)

The first section introduces a prototype example that will be used subsequently to il-
lustrate the approach to the first three of these problems. Section 9.2 presents some basic
terminology for networks. The next four sections deal with the four problems in turn. Sec-
tion 9.7 then is devoted to the network simplex method.
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SEERVADA PARK has recently been set aside for a limited amount of sightseeing and
backpack hiking. Cars are not allowed into the park, but there is a narrow, winding road
system for trams and for jeeps driven by the park rangers. This road system is shown
(without the curves) in Fig. 9.1, where location O is the entrance into the park; other let-
ters designate the locations of ranger stations (and other limited facilities). The numbers
give the distances of these winding roads in miles.

The park contains a scenic wonder at station T. A small number of trams are used to
transport sightseers from the park entrance to station T and back.

The park management currently faces three problems. One is to determine which route
from the park entrance to station T has the smallest total distance for the operation of the
trams. (This is an example of the shortest-path problem to be discussed in Sec. 9.3.)

A second problem is that telephone lines must be installed under the roads to estab-
lish telephone communication among all the stations (including the park entrance). Be-
cause the installation is both expensive and disruptive to the natural environment, lines
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will be installed under just enough roads to provide some connection between every pair
of stations. The question is where the lines should be laid to accomplish this with a min-
imum total number of miles of line installed. (This is an example of the minimum span-
ning tree problem to be discussed in Sec. 9.4.)

The third problem is that more people want to take the tram ride from the park en-
trance to station T than can be accommodated during the peak season. To avoid unduly
disturbing the ecology and wildlife of the region, a strict ration has been placed on the
number of tram trips that can be made on each of the roads per day. (These limits differ
for the different roads, as we shall describe in detail in Sec. 9.5.) Therefore, during the
peak season, various routes might be followed regardless of distance to increase the num-
ber of tram trips that can be made each day. The question pertains to how to route the
various trips to maximize the number of trips that can be made per day without violating
the limits on any individual road. (This is an example of the maximum flow problem to
be discussed in Sec. 9.5.)
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FIGURE 9.1
The road system for Seervada
Park.

A relatively extensive terminology has been developed to describe the various kinds of
networks and their components. Although we have avoided as much of this special vo-
cabulary as we could, we still need to introduce a considerable number of terms for use
throughout the chapter. We suggest that you read through this section once at the outset
to understand the definitions and then plan to return to refresh your memory as the terms
are used in subsequent sections. To assist you, each term is highlighted in boldface at the
point where it is defined.

A network consists of a set of points and a set of lines connecting certain pairs of the
points. The points are called nodes (or vertices); e.g., the network in Fig. 9.1 has seven
nodes designated by the seven circles. The lines are called arcs (or links or edges or
branches); e.g., the network in Fig. 9.1 has 12 arcs corresponding to the 12 roads in the
road system. Arcs are labeled by naming the nodes at either end; for example, AB is the
arc between nodes A and B in Fig. 9.1.
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The arcs of a network may have a flow of some type through them, e.g., the flow of
trams on the roads of Seervada Park in Sec. 9.1. Table 9.1 gives several examples of flow
in typical networks. If flow through an arc is allowed in only one direction (e.g., a one-
way street), the arc is said to be a directed arc. The direction is indicated by adding an
arrowhead at the end of the line representing the arc. When a directed arc is labeled by
listing two nodes it connects, the from node always is given before the to node; e.g., an
arc that is directed from node A to node B must be labeled as AB rather than BA. Alter-
natively, this arc may be labeled as A � B.

If flow through an arc is allowed in either direction (e.g., a pipeline that can be used
to pump fluid in either direction), the arc is said to be an undirected arc. To help you
distinguish between the two kinds of arcs, we shall frequently refer to undirected arcs by
the suggestive name of links.

Although the flow through an undirected arc is allowed to be in either direction, we do
assume that the flow will be one way in the direction of choice rather than having simulta-
neous flows in opposite directions. (The latter case requires the use of a pair of directed
arcs in opposite directions.) However, in the process of making the decision on the flow
through an undirected arc, it is permissible to make a sequence of assignments of flows in
opposite directions, but with the understanding that the actual flow will be the net flow (the
difference of the assigned flows in the two directions). For example, if a flow of 10 has been
assigned in one direction and then a flow of 4 is assigned in the opposite direction, the ac-
tual effect is to cancel 4 units of the original assignment by reducing the flow in the origi-
nal direction from 10 to 6. Even for a directed arc, the same technique sometimes is used
as a convenient device to reduce a previously assigned flow. In particular, you are allowed
to make a fictional assignment of flow in the “wrong” direction through a directed arc to
record a reduction of that amount in the flow in the “right” direction.

A network that has only directed arcs is called a directed network. Similarly, if all
its arcs are undirected, the network is said to be an undirected network. A network with
a mixture of directed and undirected arcs (or even all undirected arcs) can be converted
to a directed network, if desired, by replacing each undirected arc by a pair of directed
arcs in opposite directions. (You then have the choice of interpreting the flows through
each pair of directed arcs as being simultaneous flows in opposite directions or providing
a net flow in one direction, depending on which fits your application.)

When two nodes are not connected by an arc, a natural question is whether they are
connected by a series of arcs. A path between two nodes is a sequence of distinct arcs
connecting these nodes. For example, one of the paths connecting nodes O and T in Fig.
9.1 is the sequence of arcs OB–BD–DT (O � B � D � T), or vice versa. When some
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TABLE 9.1 Components of typical networks

Nodes Arcs Flow

Intersections Roads Vehicles
Airports Air lanes Aircraft
Switching points Wires, channels Messages
Pumping stations Pipes Fluids
Work centers Materials-handling routes Jobs



of or all the arcs in the network are directed arcs, we then distinguish between directed
paths and undirected paths. A directed path from node i to node j is a sequence of con-
necting arcs whose direction (if any) is toward node j, so that flow from node i to node j
along this path is feasible. An undirected path from node i to node j is a sequence of
connecting arcs whose direction (if any) can be either toward or away from node j. (No-
tice that a directed path also satisfies the definition of an undirected path, but not vice
versa.) Frequently, an undirected path will have some arcs directed toward node j but oth-
ers directed away (i.e., toward node i). You will see in Secs. 9.5 and 9.7 that, perhaps sur-
prisingly, undirected paths play a major role in the analysis of directed networks.

To illustrate these definitions, Fig. 9.2 shows a typical directed network. (Its nodes
and arcs are the same as in Fig. 3.13, where nodes A and B represent two factories, nodes
D and E represent two warehouses, node C represents a distribution center, and the arcs
represent shipping lanes.) The sequence of arcs AB–BC–CE (A � B � C � E) is a di-
rected path from node A to E, since flow toward node E along this entire path is feasible.
On the other hand, BC–AC–AD (B � C � A � D) is not a directed path from node B
to node D, because the direction of arc AC is away from node D (on this path). However,
B � C � A � D is an undirected path from node B to node D, because the sequence of
arcs BC–AC–AD does connect these two nodes (even though the direction of arc AC pre-
vents flow through this path).

As an example of the relevance of undirected paths, suppose that 2 units of flow from
node A to node C had previously been assigned to arc AC. Given this previous assign-
ment, it now is feasible to assign a smaller flow, say, 1 unit, to the entire undirected path
B � C � A � D, even though the direction of arc AC prevents positive flow through 
C � A. The reason is that this assignment of flow in the “wrong” direction for arc AC
actually just reduces the flow in the “right” direction by 1 unit. Sections 9.5 and 9.7 make
heavy use of this technique of assigning a flow through an undirected path that includes
arcs whose direction is opposite to this flow, where the real effect for these arcs is to re-
duce previously assigned positive flows in the “right” direction.

A path that begins and ends at the same node is called a cycle. In a directed network,
a cycle is either a directed or an undirected cycle, depending on whether the path involved
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is a directed or an undirected path. (Since a directed path also is an undirected path, a di-
rected cycle is an undirected cycle, but not vice versa in general.) In Fig. 9.2, for exam-
ple, DE–ED is a directed cycle. By contrast, AB–BC–AC is not a directed cycle, because
the direction of arc AC opposes the direction of arcs AB and BC. On the other hand,
AB–BC–AC is an undirected cycle, because A � B � C � A is an undirected path. In
the undirected network shown in Fig. 9.1, there are many cycles, for example,
OA–AB–BC–CO. However, note that the definition of path (a sequence of distinct arcs)
rules out retracing one’s steps in forming a cycle. For example, OB–BO in Fig. 9.1 does
not qualify as a cycle, because OB and BO are two labels for the same arc (link). On the
other hand, DE–ED is a (directed) cycle in Fig. 9.2, because DE and ED are distinct arcs.

Two nodes are said to be connected if the network contains at least one undirected
path between them. (Note that the path does not need to be directed even if the network
is directed.) A connected network is a network where every pair of nodes is connected.
Thus, the networks in Figs. 9.1 and 9.2 are both connected. However, the latter network
would not be connected if arcs AD and CE were removed.

Consider a connected network with n nodes (e.g., the n � 5 nodes in Fig. 9.2) where
all the arcs have been deleted. A “tree” can then be “grown” by adding one arc (or “branch”)
at a time from the original network in a certain way. The first arc can go anywhere to con-
nect some pair of nodes. Thereafter, each new arc should be between a node that already
is connected to other nodes and a new node not previously connected to any other nodes.
Adding an arc in this way avoids creating a cycle and ensures that the number of con-
nected nodes is 1 greater than the number of arcs. Each new arc creates a larger tree,
which is a connected network (for some subset of the n nodes) that contains no undirected
cycles. Once the (n � 1)st arc has been added, the process stops because the resulting tree
spans (connects) all n nodes. This tree is called a spanning tree, i.e., a connected net-
work for all n nodes that contains no undirected cycles. Every spanning tree has exactly
n � 1 arcs, since this is the minimum number of arcs needed to have a connected network
and the maximum number possible without having undirected cycles.

Figure 9.3 uses the five nodes and some of the arcs of Fig. 9.2 to illustrate this process
of growing a tree one arc (branch) at a time until a spanning tree has been obtained. There
are several alternative choices for the new arc at each stage of the process, so Fig. 9.3
shows only one of many ways to construct a spanning tree in this case. Note, however,
how each new added arc satisfies the conditions specified in the preceding paragraph. We
shall discuss and illustrate spanning trees further in Sec. 9.4.

Spanning trees play a key role in the analysis of many networks. For example, they
form the basis for the minimum spanning tree problem discussed in Sec. 9.4. Another
prime example is that (feasible) spanning trees correspond to the BF solutions for the net-
work simplex method discussed in Sec. 9.7.

Finally, we shall need a little additional terminology about flows in networks. The
maximum amount of flow (possibly infinity) that can be carried on a directed arc is re-
ferred to as the arc capacity. For nodes, a distinction is made among those that are net
generators of flow, net absorbers of flow, or neither. A supply node (or source node or
source) has the property that the flow out of the node exceeds the flow into the node. The
reverse case is a demand node (or sink node or sink), where the flow into the node ex-
ceeds the flow out of the node. A transshipment node (or intermediate node) satisfies
conservation of flow, so flow in equals flow out.
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FIGURE 9.3
Example of growing a tree
one arc at a time for the
network of Fig. 9.2: (a) The
nodes without arcs; (b) a tree
with one arc; (c) a tree with
two arcs; (d) a tree with
three arcs; (e) a spanning
tree.

Although several other versions of the shortest-path problem (including some for directed
networks) are mentioned at the end of the section, we shall focus on the following sim-
ple version. Consider an undirected and connected network with two special nodes called
the origin and the destination. Associated with each of the links (undirected arcs) is a non-
negative distance. The objective is to find the shortest path (the path with the minimum
total distance) from the origin to the destination.

A relatively straightforward algorithm is available for this problem. The essence of
this procedure is that it fans out from the origin, successively identifying the shortest path
to each of the nodes of the network in the ascending order of their (shortest) distances
from the origin, thereby solving the problem when the destination node is reached. We
shall first outline the method and then illustrate it by solving the shortest-path problem
encountered by the Seervada Park management in Sec. 9.1.

Algorithm for the Shortest-Path Problem.

Objective of nth iteration: Find the nth nearest node to the origin (to be repeated for 
n � 1, 2, . . . until the nth nearest node is the destination.

Input for nth iteration: n � 1 nearest nodes to the origin (solved for at the previous iter-
ations), including their shortest path and distance from the origin.
(These nodes, plus the origin, will be called solved nodes; the oth-
ers are unsolved nodes.)
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Candidates for nth nearest node: Each solved node that is directly connected by a link
to one or more unsolved nodes provides one candi-
date—the unsolved node with the shortest connecting
link. (Ties provide additional candidates.)

Calculation of nth nearest node: For each such solved node and its candidate, add the
distance between them and the distance of the shortest
path from the origin to this solved node. The candidate
with the smallest such total distance is the nth nearest
node (ties provide additional solved nodes), and its
shortest path is the one generating this distance.

Applying This Algorithm to the Seervada Park 
Shortest-Path Problem

The Seervada Park management needs to find the shortest path from the park entrance (node
O) to the scenic wonder (node T) through the road system shown in Fig. 9.1. Applying the
above algorithm to this problem yields the results shown in Table 9.2 (where the tie for the
second nearest node allows skipping directly to seeking the fourth nearest node next). The
first column (n) indicates the iteration count. The second column simply lists the solved
nodes for beginning the current iteration after deleting the irrelevant ones (those not con-
nected directly to any unsolved node). The third column then gives the candidates for the
nth nearest node (the unsolved nodes with the shortest connecting link to a solved node).
The fourth column calculates the distance of the shortest path from the origin to each of
these candidates (namely, the distance to the solved node plus the link distance to the can-
didate). The candidate with the smallest such distance is the nth nearest node to the origin,
as listed in the fifth column. The last two columns summarize the information for this newest
solved node that is needed to proceed to subsequent iterations (namely, the distance of the
shortest path from the origin to this node and the last link on this shortest path).
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TABLE 9.2 Applying the shortest-path algorithm to the Seervada Park problem

Solved Nodes Closest Total nth
Directly Connected Connected Distance Nearest Minimum Last

n to Unsolved Nodes Unsolved Node Involved Node Distance Connection

1 O A 2 A 2 OA

O C 4 C 4 OC
2, 3

A B 2 � 2 � 4 B 4 AB

A D 2 � 7 � 9
4 B E 4 � 3 � 7 E 7 BE

C E 4 � 4 � 8

A D 2 � 7 � 9
5 B D 4 � 4 � 8 D 8 BD

E D 7 � 1 � 8 D 8 ED

D T 8 � 5 � 13 T 13 DT
6

E T 7 � 7 � 14



Now let us relate these columns directly to the outline given for the algorithm. The
input for nth iteration is provided by the fifth and sixth columns for the preceding itera-
tions, where the solved nodes in the fifth column are then listed in the second column for
the current iteration after deleting those that are no longer directly connected to unsolved
nodes. The candidates for nth nearest node next are listed in the third column for the cur-
rent iteration. The calculation of nth nearest node is performed in the fourth column, and
the results are recorded in the last three columns for the current iteration.

After the work shown in Table 9.2 is completed, the shortest path from the destination
to the origin can be traced back through the last column of Table 9.2 as either
T � D � E � B � A � O or T � D � B � A � O. Therefore, the two alternates for
the shortest path from the origin to the destination have been identified as O � A � B �
E � D � T and O � A � B � D � T, with a total distance of 13 miles on either path.

Using Excel to Formulate and Solve Shortest-Path Problems

This algorithm provides a particularly efficient way of solving large shortest-path prob-
lems. However, some mathematical programming software packages do not include this
algorithm. If not, they often will include the network simplex method described in Sec.
9.7, which is another good option for these problems.

Since the shortest-path problem is a special type of linear programming problem, the
general simplex method also can be used when better options are not readily available. Al-
though not nearly as efficient as these specialized algorithms on large shortest-path problems,
it is quite adequate for problems of even very substantial size (much larger than the Seervada
Park problem). Excel, which relies on the general simplex method, provides a convenient
way of formulating and solving shortest-path problems with dozens of arcs and nodes.

Figure 9.4 shows an appropriate spreadsheet formulation for the Seervada Park short-
est-path problem. Rather than using the kind of formulation presented in Sec. 3.6 that uses
a separate row for each functional constraint of the linear programming model, this for-
mulation exploits the special structure by listing the nodes in column G and the arcs in
columns B and C, as well as the distance (in miles) along each arc in column E. Since
each link in the network is an undirected arc, whereas travel through the shortest path is
in one direction, each link can be replaced by a pair of directed arcs in opposite direc-
tions. Thus, columns B and C together list both of the nearly vertical links in Fig. 9.1 
(A–B and D–E) twice, once as a downward arc and once as an upward arc, since either
direction might be on the chosen path. However, the other links are only listed as left-to-
right arcs, since this is the only direction of interest for choosing a shortest path from the
origin to the destination.

A trip from the origin to the destination is interpreted to be a “flow” of 1 on the cho-
sen path through the network. The decisions to be made are which arcs should be included
in the path to be traversed. A flow of 1 is assigned to an arc if it is included, whereas the
flow is 0 if it is not included. Thus, the decision variables are

xij � �
for each of the arcs under consideration. The values of these decision variables are en-
tered in the changing cells in column D (cells D4:D17).

if arc i � j is not included
if arc i � j is included

0
1
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Each node can be thought of as having a flow of 1 passing through it if it is on the
selected path, but no flow otherwise. The net flow generated at a node is the flow out mi-
nus the flow in, so the net flow is 1 at the origin, �1 at the destination, and 0 at every
other node. These requirements for the net flows are specified in column J of Fig. 9.4.
Using the equations at the bottom of the figure, each column H cell then calculates the
actual net flow at that node by adding the flow out and subtracting the flow in. The cor-
responding constraints, H4:H10 � J4:J10, are specified in the Solver dialogue box.

The target cell (D19) gives the total distance in miles of the chosen path by using the
equation for this cell given at the bottom of Fig. 9.4. The objective of minimizing this tar-
get cell has been specified in the Solver dialogue box. The solution shown in column D
is an optimal solution obtained after clicking on the Solve button. This solution is, of
course, one of the two shortest paths identified earlier by the algorithm for the shortest-
path algorithm.
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FIGURE 9.4
A spreadsheet formulation for
the Seervada Park shortest-
path problem, where the
changing cells (D4:D17)
show the optimal solution
obtained by the Excel Solver
and the target cell (D19)
gives the total distance (in
miles) of this shortest path.



Other Applications

Not all applications of the shortest-path problem involve minimizing the distance traveled
from the origin to the destination. In fact, they might not even involve travel at all. The
links (or arcs) might instead represent activities of some other kind, so choosing a path
through the network corresponds to selecting the best sequence of activities. The numbers
giving the “lengths” of the links might then be, for example, the costs of the activities, in
which case the objective would be to determine which sequence of activities minimizes
the total cost.

Here are three categories of applications.

1. Minimize the total distance traveled, as in the Seervada Park example.
2. Minimize the total cost of a sequence of activities. (Problem 9.3-2 is of this type.)
3. Minimize the total time of a sequence of activities. (Problems 9.3-5 and 9.3-6 are of

this type.)

It is even possible for all three categories to arise in the same application. For example, sup-
pose you wish to find the best route for driving from one town to another through a num-
ber of intermediate towns. You then have the choice of defining the best route as being the
one that minimizes the total distance traveled or that minimizes the total cost incurred or
that minimizes the total time required. (Problem 9.3-1 illustrates such an application.)

Many applications require finding the shortest directed path from the origin to the
destination through a directed network. The algorithm already presented can be easily
modified to deal just with directed paths at each iteration. In particular, when candidates
for the nth nearest node are identified, only directed arcs from a solved node to an un-
solved node are considered.

Another version of the shortest-path problem is to find the shortest paths from the
origin to all the other nodes of the network. Notice that the algorithm already solves for
the shortest path to each node that is closer to the origin than the destination. Therefore,
when all nodes are potential destinations, the only modification needed in the algorithm
is that it does not stop until all nodes are solved nodes.

An even more general version of the shortest-path problem is to find the shortest paths
from every node to every other node. Another option is to drop the restriction that “dis-
tances” (arc values) be nonnegative. Constraints also can be imposed on the paths that can
be followed. All these variations occasionally arise in applications and so have been stud-
ied by researchers.

The algorithms for a wide variety of combinatorial optimization problems, such as cer-
tain vehicle routing or network design problems, often call for the solution of a large num-
ber of shortest-path problems as subroutines. Although we lack the space to pursue this
topic further, this use may now be the most important kind of application of the shortest-
path problem.
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The minimum spanning tree problem bears some similarities to the main version of the
shortest-path problem presented in the preceding section. In both cases, an undirected and
connected network is being considered, where the given information includes some mea-
sure of the positive length (distance, cost, time, etc.) associated with each link. Both prob-
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lems also involve choosing a set of links that have the shortest total length among all sets
of links that satisfy a certain property. For the shortest-path problem, this property is that
the chosen links must provide a path between the origin and the destination. For the min-
imum spanning tree problem, the required property is that the chosen links must provide
a path between each pair of nodes.

The minimum spanning tree problem can be summarized as follows.

1. You are given the nodes of a network but not the links. Instead, you are given the po-
tential links and the positive length for each if it is inserted into the network. (Alter-
native measures for the length of a link include distance, cost, and time.)

2. You wish to design the network by inserting enough links to satisfy the requirement
that there be a path between every pair of nodes.

3. The objective is to satisfy this requirement in a way that minimizes the total length of
the links inserted into the network.

A network with n nodes requires only (n � 1) links to provide a path between each pair
of nodes. No extra links should be used, since this would needlessly increase the total length
of the chosen links. The (n � 1) links need to be chosen in such a way that the resulting
network (with just the chosen links) forms a spanning tree (as defined in Sec. 9.2). There-
fore, the problem is to find the spanning tree with a minimum total length of the links.

Figure 9.5 illustrates this concept of a spanning tree for the Seervada Park problem
(see Sec. 9.1). Thus, Fig. 9.5a is not a spanning tree because nodes O, A, B, and C are
not connected with nodes D, E, and T. It needs another link to make this connection. This
network actually consists of two trees, one for each of these two sets of nodes. The links
in Fig. 9.5b do span the network (i.e., the network is connected as defined in Sec. 9.2),
but it is not a tree because there are two cycles (O–A–B–C–O and D–T–E–D). It has too
many links. Because the Seervada Park problem has n � 7 nodes, Sec. 9.2 indicates that
the network must have exactly n � 1 � 6 links, with no cycles, to qualify as a spanning
tree. This condition is achieved in Fig. 9.5c, so this network is a feasible solution (with a
value of 24 miles for the total length of the links) for the minimum spanning tree prob-
lem. (You soon will see that this solution is not optimal because it is possible to construct
a spanning tree with only 14 miles of links.)

Some Applications

Here is a list of some key types of applications of the minimum spanning tree problem.

1. Design of telecommunication networks (fiber-optic networks, computer networks,
leased-line telephone networks, cable television networks, etc.)

2. Design of a lightly used transportation network to minimize the total cost of provid-
ing the links (rail lines, roads, etc.)

3. Design of a network of high-voltage electrical power transmission lines
4. Design of a network of wiring on electrical equipment (e.g., a digital computer sys-

tem) to minimize the total length of the wire
5. Design of a network of pipelines to connect a number of locations

In this age of the information superhighway, applications of this first type have be-
come particularly important. In a telecommunication network, it is only necessary to in-
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sert enough links to provide a path between every pair of nodes, so designing such a net-
work is a classic application of the minimum spanning tree problem. Because some
telecommunication networks now cost many millions of dollars, it is very important to
optimize their design by finding the minimum spanning tree for each one.

An Algorithm

The minimum spanning tree problem can be solved in a very straightforward way because
it happens to be one of the few OR problems where being greedy at each stage of the so-
lution procedure still leads to an overall optimal solution at the end! Thus, beginning with
any node, the first stage involves choosing the shortest possible link to another node, with-
out worrying about the effect of this choice on subsequent decisions. The second stage
involves identifying the unconnected node that is closest to either of these connected nodes
and then adding the corresponding link to the network. This process is repeated, per the
following summary, until all the nodes have been connected. (Note that this is the same
process already illustrated in Fig. 9.3 for constructing a spanning tree, but now with a spe-
cific rule for selecting each new link.) The resulting network is guaranteed to be a mini-
mum spanning tree.
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Algorithm for the Minimum Spanning Tree Problem.

1. Select any node arbitrarily, and then connect it (i.e., add a link) to the nearest distinct node.
2. Identify the unconnected node that is closest to a connected node, and then connect

these two nodes (i.e., add a link between them). Repeat this step until all nodes have
been connected.

3. Tie breaking: Ties for the nearest distinct node (step 1) or the closest unconnected node
(step 2) may be broken arbitrarily, and the algorithm must still yield an optimal solu-
tion. However, such ties are a signal that there may be (but need not be) multiple op-
timal solutions. All such optimal solutions can be identified by pursuing all ways of
breaking ties to their conclusion.

The fastest way of executing this algorithm manually is the graphical approach il-
lustrated next.

Applying This Algorithm to the Seervada Park 
Minimum Spanning Tree Problem

The Seervada Park management (see Sec. 9.1) needs to determine under which roads tele-
phone lines should be installed to connect all stations with a minimum total length of line.
Using the data given in Fig. 9.1, we outline the step-by-step solution of this problem.

Nodes and distances for the problem are summarized below, where the thin lines now
represent potential links.
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The unconnected node closest to either node O or node A is node B (closest to A). Con-
nect node B to node A.
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The unconnected node closest to node O, A, or B is node C (closest to B). Connect node
C to node B.

The unconnected node closest to node O, A, B, or C is node E (closest to B). Connect
node E to node B.
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The unconnected node closest to node O, A, B, C, or E is node D (closest to E). Connect
node D to node E.
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The only remaining unconnected node is node T. It is closest to node D. Connect node T
to node D.

All nodes are now connected, so this solution to the problem is the desired (optimal) one.
The total length of the links is 14 miles.

Although it may appear at first glance that the choice of the initial node will affect
the resulting final solution (and its total link length) with this procedure, it really does
not. We suggest you verify this fact for the example by reapplying the algorithm, starting
with nodes other than node O.

The minimum spanning tree problem is the one problem we consider in this chapter
that falls into the broad category of network design. In this category, the objective is to
design the most appropriate network for the given application (frequently involving trans-
portation systems) rather than analyzing an already designed network. Selected Reference
7 provides a survey of this important area.
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Now recall that the third problem facing the Seervada Park management (see Sec. 9.1)
during the peak season is to determine how to route the various tram trips from the park
entrance (station O in Fig. 9.1) to the scenic wonder (station T) to maximize the number
of trips per day. (Each tram will return by the same route it took on the outgoing trip, so
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the analysis focuses on outgoing trips only.) To avoid unduly disturbing the ecology and
wildlife of the region, strict upper limits have been imposed on the number of outgoing
trips allowed per day in the outbound direction on each individual road. For each road,
the direction of travel for outgoing trips is indicated by an arrow in Fig. 9.6. The number
at the base of the arrow gives the upper limit on the number of outgoing trips allowed per
day. Given the limits, one feasible solution is to send 7 trams per day, with 5 using the
route O � B � E � T, 1 using O � B � C � E � T, and 1 using O � B � C �
E � D � T. However, because this solution blocks the use of any routes starting with 
O � C (because the E � T and E � D capacities are fully used), it is easy to find bet-
ter feasible solutions. Many combinations of routes (and the number of trips to assign to
each one) need to be considered to find the one(s) maximizing the number of trips made
per day. This kind of problem is called a maximum flow problem.

In general terms, the maximum flow problem can be described as follows.

1. All flow through a directed and connected network originates at one node, called the
source, and terminates at one other node, called the sink. (The source and sink in the
Seervada Park problem are the park entrance at node O and the scenic wonder at node
T, respectively.)

2. All the remaining nodes are transshipment nodes. (These are nodes A, B, C, D, and E
in the Seervada Park problem.)

3. Flow through an arc is allowed only in the direction indicated by the arrowhead, where
the maximum amount of flow is given by the capacity of that arc. At the source, all
arcs point away from the node. At the sink, all arcs point into the node.

4. The objective is to maximize the total amount of flow from the source to the sink. This
amount is measured in either of two equivalent ways, namely, either the amount leav-
ing the source or the amount entering the sink.

Some Applications

Here are some typical kinds of applications of the maximum flow problem.

1. Maximize the flow through a company’s distribution network from its factories to its
customers.

2. Maximize the flow through a company’s supply network from its vendors to its factories.
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3. Maximize the flow of oil through a system of pipelines.
4. Maximize the flow of water through a system of aqueducts.
5. Maximize the flow of vehicles through a transportation network.

For some of these applications, the flow through the network may originate at more
than one node and may also terminate at more than one node, even though a maximum
flow problem is allowed to have only a single source and a single sink. For example, a
company’s distribution network commonly has multiple factories and multiple customers.
A clever reformulation is used to make such a situation fit the maximum flow problem.
This reformulation involves expanding the original network to include a dummy source,
a dummy sink, and some new arcs. The dummy source is treated as the node that origi-
nates all the flow that, in reality, originates from some of the other nodes. For each of
these other nodes, a new arc is inserted that leads from the dummy source to this node,
where the capacity of this arc equals the maximum flow that, in reality, can originate from
this node. Similarly, the dummy sink is treated as the node that absorbs all the flow that,
in reality, terminates at some of the other nodes. Therefore, a new arc is inserted from
each of these other nodes to the dummy sink, where the capacity of this arc equals the
maximum flow that, in reality, can terminate at this node. Because of all these changes,
all the nodes in the original network now are transshipment nodes, so the expanded net-
work has the required single source (the dummy source) and single sink (the dummy sink)
to fit the maximum flow problem.

An Algorithm

Because the maximum flow problem can be formulated as a linear programming prob-
lem (see Prob. 9.5-2), it can be solved by the simplex method, so any of the linear pro-
gramming software packages introduced in Chaps. 3 and 4 can be used. However, an even
more efficient augmenting path algorithm is available for solving this problem. This al-
gorithm is based on two intuitive concepts, a residual network and an augmenting path.

After some flows have been assigned to the arcs, the residual network shows the re-
maining arc capacities (called residual capacities) for assigning additional flows. For ex-
ample, consider arc O � B in Fig. 9.6, which has an arc capacity of 7. Now suppose that
the assigned flows include a flow of 5 through this arc, which leaves a residual capacity
of 7 � 5 � 2 for any additional flow assignment through O � B. This status is depicted
as follows in the residual network.
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The number on an arc next to a node gives the residual capacity for flow from that node
to the other node. Therefore, in addition to the residual capacity of 2 for flow from O to
B, the 5 on the right indicates a residual capacity of 5 for assigning some flow from B to
O (that is, for canceling some previously assigned flow from O to B).

Initially, before any flows have been assigned, the residual network for the Seervada
Park problem has the appearance shown in Fig. 9.7. Every arc in the original network
(Fig. 9.6) has been changed from a directed arc to an undirected arc. However, the arc

5
O B

2



capacity in the original direction remains the same and the arc capacity in the opposite
direction is zero, so the constraints on flows are unchanged.

Subsequently, whenever some amount of flow is assigned to an arc, that amount is
subtracted from the residual capacity in the same direction and added to the residual ca-
pacity in the opposite direction.

An augmenting path is a directed path from the source to the sink in the residual
network such that every arc on this path has strictly positive residual capacity. The mini-
mum of these residual capacities is called the residual capacity of the augmenting path
because it represents the amount of flow that can feasibly be added to the entire path.
Therefore, each augmenting path provides an opportunity to further augment the flow
through the original network.

The augmenting path algorithm repeatedly selects some augmenting path and adds a
flow equal to its residual capacity to that path in the original network. This process con-
tinues until there are no more augmenting paths, so the flow from the source to the sink
cannot be increased further. The key to ensuring that the final solution necessarily is op-
timal is the fact that augmenting paths can cancel some previously assigned flows in the
original network, so an indiscriminate selection of paths for assigning flows cannot pre-
vent the use of a better combination of flow assignments.

To summarize, each iteration of the algorithm consists of the following three steps.

The Augmenting Path Algorithm for the Maximum Flow Problem.1

1. Identify an augmenting path by finding some directed path from the source to the sink
in the residual network such that every arc on this path has strictly positive residual
capacity. (If no augmenting path exists, the net flows already assigned constitute an
optimal flow pattern.)

2. Identify the residual capacity c* of this augmenting path by finding the minimum of
the residual capacities of the arcs on this path. Increase the flow in this path by c*.

3. Decrease by c* the residual capacity of each arc on this augmenting path. Increase by
c* the residual capacity of each arc in the opposite direction on this augmenting path.
Return to step 1.
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1It is assumed that the arc capacities are either integers or rational numbers.



When step 1 is carried out, there often will be a number of alternative augmenting
paths from which to choose. Although the algorithmic strategy for making this selection
is important for the efficiency of large-scale implementations, we shall not delve into this
relatively specialized topic. (Later in the section, we do describe a systematic procedure
for finding some augmenting path.) Therefore, for the following example (and the prob-
lems at the end of the chapter), the selection is just made arbitrarily.

Applying This Algorithm to the Seervada Park Maximum Flow Problem

Applying this algorithm to the Seervada Park problem (see Fig. 9.6 for the original net-
work) yields the results summarized next. Starting with the initial residual network given
in Fig. 9.7, we give the new residual network after each one or two iterations, where the
total amount of flow from O to T achieved thus far is shown in boldface (next to nodes
O and T).

Iteration 1: In Fig. 9.7, one of several augmenting paths is O � B � E � T, which
has a residual capacity of min{7, 5, 6} � 5. By assigning a flow of 5 to this path, the re-
sulting residual network is

424 9 NETWORK OPTIMIZATION MODELS

Iteration 2: Assign a flow of 3 to the augmenting path O � A � D � T. The re-
sulting residual network is
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Iteration 3: Assign a flow of 1 to the augmenting path O � A � B � D � T.



Iteration 4: Assign a flow of 2 to the augmenting path O � B � D � T. The re-
sulting residual network is
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Iteration 5: Assign a flow of 1 to the augmenting path O � C � E � D � T.
Iteration 6: Assign a flow of 1 to the augmenting path O � C � E � T. The re-

sulting residual network is

Iteration 7: Assign a flow of 1 to the augmenting path O � C � E � B � D � T.
The resulting residual network is
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There are no more augmenting paths, so the current flow pattern is optimal.



The current flow pattern may be identified by either cumulating the flow assignments
or comparing the final residual capacities with the original arc capacities. If we use the
latter method, there is flow along an arc if the final residual capacity is less than the orig-
inal capacity. The magnitude of this flow equals the difference in these capacities. Ap-
plying this method by comparing the residual network obtained from the last iteration
with either Fig. 9.6 or 9.7 yields the optimal flow pattern shown in Fig. 9.8.

This example nicely illustrates the reason for replacing each directed arc i � j in the
original network by an undirected arc in the residual network and then increasing the resid-
ual capacity for j � i by c* when a flow of c* is assigned to i � j. Without this refine-
ment, the first six iterations would be unchanged. However, at that point it would appear
that no augmenting paths remain (because the real unused arc capacity for E � B is zero).
Therefore, the refinement permits us to add the flow assignment of 1 for O � C � E �
B � D � T in iteration 7. In effect, this additional flow assignment cancels 1 unit of
flow assigned at iteration 1 (O � B � E � T) and replaces it by assignments of 1 unit
of flow to both O � B � D � T and O � C � E � T.

Finding an Augmenting Path

The most difficult part of this algorithm when large networks are involved is finding an
augmenting path. This task may be simplified by the following systematic procedure. Be-
gin by determining all nodes that can be reached from the source along a single arc with
strictly positive residual capacity. Then, for each of these nodes that were reached, deter-
mine all new nodes (those not yet reached) that can be reached from this node along an
arc with strictly positive residual capacity. Repeat this successively with the new nodes
as they are reached. The result will be the identification of a tree of all the nodes that can
be reached from the source along a path with strictly positive residual flow capacity. Hence,
this fanning-out procedure will always identify an augmenting path if one exists. The pro-
cedure is illustrated in Fig. 9.9 for the residual network that results from iteration 6 in the
preceding example.

Although the procedure illustrated in Fig. 9.9 is a relatively straightforward one, it
would be helpful to be able to recognize when optimality has been reached without an
exhaustive search for a nonexistent path. It is sometimes possible to recognize this event
because of an important theorem of network theory known as the max-flow min-cut the-
orem. A cut may be defined as any set of directed arcs containing at least one arc from
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every directed path from the source to the sink. There normally are many ways to slice
through a network to form a cut to help analyze the network. For any particular cut, the
cut value is the sum of the arc capacities of the arcs (in the specified direction) of the
cut. The max-flow min-cut theorem states that, for any network with a single source and
sink, the maximum feasible flow from the source to the sink equals the minimum cut value
for all cuts of the network. Thus, if we let F denote the amount of flow from the source
to the sink for any feasible flow pattern, the value of any cut provides an upper bound to
F, and the smallest of the cut values is equal to the maximum value of F. Therefore, if a
cut whose value equals the value of F currently attained by the solution procedure can be
found in the original network, the current flow pattern must be optimal. Eventually, opti-
mality has been attained whenever there exists a cut in the residual network whose value
is zero.

To illustrate, consider the network of Fig. 9.7. One interesting cut through this net-
work is shown in Fig. 9.10. Notice that the value of the cut is 3 � 4 � 1 � 6 � 14, which
was found to be the maximum value of F, so this cut is a minimum cut. Notice also that,
in the residual network resulting from iteration 7, where F � 14, the corresponding cut
has a value of zero. If this had been noticed, it would not have been necessary to search
for additional augmenting paths.
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Using Excel to Formulate and Solve Maximum Flow Problems

Most maximum flow problems that arise in practice are considerably larger, and occa-
sionally vastly larger, than the Seervada Park problem. Some problems have thousands of
nodes and arcs. The augmenting path algorithm just presented is far more efficient than
the general simplex method for solving such large problems. However, for problems of
modest size, a reasonable and convenient alternative is to use Excel and its Solver based
on the general simplex method.

Figure 9.11 shows a spreadsheet formulation for the Seervada Park maximum flow
problem. The format is similar to that for the Seervada Park shortest-path problem dis-
played in Fig. 9.4. The arcs are listed in columns B and C, and the corresponding arc ca-
pacities are given in column F. Since the decision variables are the flows through the re-
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FIGURE 9.11
A spreadsheet formulation for the Seervada Park maximum flow problem, where the
changing cells (D4:D15) show the optimal solution obtained by the Excel Solver and
the target cell (D17) gives the resulting maximum flow through the network.



spective arcs, these quantities are entered in the changing cells in column D (cells D4:D15).
Employing the equations given in the bottom right-hand corner of the figure, these flows
then are used to calculate the net flow generated at each of the nodes (see columns H and
I). These net flows are required to be 0 for the transshipment nodes (A, B, C, D, and E),
as indicated by the second set of constraints (I5:I9 � K5:K9) in the Solver dialogue box.
The first set of constraints (D4:D15 � F4:F15) specifies the arc capacity constraints. The
total amount of flow from the source (node O) to the sink (node T) equals the flow gen-
erated at the source (cell I4), so the target cell (D17) is set equal to I4. After specifying
maximization of the target cell in the Solver dialogue box and then clicking on the Solve
button, the optimal solution shown in cells D4:D15 is obtained.

9.6 THE MINIMUM COST FLOW PROBLEM 429

The minimum cost flow problem holds a central position among network optimization mod-
els, both because it encompasses such a broad class of applications and because it can be
solved extremely efficiently. Like the maximum flow problem, it considers flow through a
network with limited arc capacities. Like the shortest-path problem, it considers a cost (or
distance) for flow through an arc. Like the transportation problem or assignment problem of
Chap. 8, it can consider multiple sources (supply nodes) and multiple destinations (demand
nodes) for the flow, again with associated costs. In fact, all four of these previously studied
problems are special cases of the minimum cost flow problem, as we will demonstrate shortly.

The reason that the minimum cost flow problem can be solved so efficiently is that
it can be formulated as a linear programming problem so it can be solved by a stream-
lined version of the simplex method called the network simplex method. We describe this
algorithm in the next section.

The minimum cost flow problem is described below.

1. The network is a directed and connected network.
2. At least one of the nodes is a supply node.
3. At least one of the other nodes is a demand node.
4. All the remaining nodes are transshipment nodes.
5. Flow through an arc is allowed only in the direction indicated by the arrowhead, where

the maximum amount of flow is given by the capacity of that arc. (If flow can occur in
both directions, this would be represented by a pair of arcs pointing in opposite directions.)

6. The network has enough arcs with sufficient capacity to enable all the flow generated
at the supply nodes to reach all the demand nodes.

7. The cost of the flow through each arc is proportional to the amount of that flow, where
the cost per unit flow is known.

8. The objective is to minimize the total cost of sending the available supply through the
network to satisfy the given demand. (An alternative objective is to maximize the to-
tal profit from doing this.)

Some Applications

Probably the most important kind of application of minimum cost flow problems is to the
operation of a company’s distribution network. As summarized in the first row of Table
9.3, this kind of application always involves determining a plan for shipping goods from
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its sources (factories, etc.) to intermediate storage facilities (as needed) and then on to
the customers.

For example, consider the distribution network for the International Paper Company
(as described in the March–April 1988 issue of Interfaces). This company is the world’s
largest manufacturer of pulp, paper, and paper products, as well as a major producer of
lumber and plywood. It also either owns or has rights over about 20 million acres of wood-
lands. The supply nodes in its distribution network are these woodlands in their various
locations. However, before the company’s goods can eventually reach the demand nodes
(the customers), the wood must pass through a long sequence of transshipment nodes. A
typical path through the distribution network is

Woodlands � woodyards � sawmills
� paper mills � converting plants
� warehouses � customers.

Another example of a complicated distribution network is the one for the Citgo Pe-
troleum Corporation described in Sec. 3.5. Applying a minimum cost flow problem for-
mulation to improve the operation of this distribution network saved Citgo at least $16.5
million annually.

For some applications of minimum cost flow problems, all the transshipment nodes
are processing facilities rather than intermediate storage facilities. This is the case for
solid waste management, as indicated in the second row of Table 9.3. Here, the flow of
materials through the network begins at the sources of the solid waste, then goes to the
facilities for processing these waste materials into a form suitable for landfill, and then
sends them on to the various landfill locations. However, the objective still is to deter-
mine the flow plan that minimizes the total cost, where the cost now is for both ship-
ping and processing.

In other applications, the demand nodes might be processing facilities. For example,
in the third row of Table 9.3, the objective is to find the minimum cost plan for obtain-
ing supplies from various possible vendors, storing these goods in warehouses (as needed),
and then shipping the supplies to the company’s processing facilities (factories, etc.). Since
the total amount that could be supplied by all the vendors is more than the company needs,
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TABLE 9.3 Typical kinds of applications of minimum cost flow problems

Kind of Application Supply Nodes Transshipment Nodes Demand Nodes

Operation of a Sources of goods Intermediate storage Customers
distribution network facilities

Solid waste Sources of solid Processing facilities Landfill locations
management waste

Operation of a supply Vendors Intermediate warehouses Processing
network facilities

Coordinating product Plants Production of a specific Market for a
mixes at plants product specific product

Cash flow Sources of cash at Short-term investment Needs for cash at
management a specific time options a specific time



the network includes a dummy demand node that receives (at zero cost) all the unused
supply capacity at the vendors.

The July–August 1987 issue of Interfaces describes how, even back then, microcom-
puters were being used by Marshalls, Inc. (an off-price retail chain) to deal with a mini-
mum cost flow problem this way. In this application, Marshalls was optimizing the flow
of freight from vendors to processing centers and then on to retail stores. Some of their
networks had over 20,000 arcs.

The next kind of application in Table 9.3 (coordinating product mixes at plants) illus-
trates that arcs can represent something other than a shipping lane for a physical flow of
materials. This application involves a company with several plants (the supply nodes) that
can produce the same products but at different costs. Each arc from a supply node repre-
sents the production of one of the possible products at that plant, where this arc leads to
the transshipment node that corresponds to this product. Thus, this transshipment node has
an arc coming in from each plant capable of producing this product, and then the arcs lead-
ing out of this node go to the respective customers (the demand nodes) for this product.
The objective is to determine how to divide each plant’s production capacity among the
products so as to minimize the total cost of meeting the demand for the various products.

The last application in Table 9.3 (cash flow management) illustrates that different nodes
can represent some event that occurs at different times. In this case, each supply node rep-
resents a specific time (or time period) when some cash will become available to the com-
pany (through maturing accounts, notes receivable, sales of securities, borrowing, etc.). The
supply at each of these nodes is the amount of cash that will become available then. Sim-
ilarly, each demand node represents a specific time (or time period) when the company will
need to draw on its cash reserves. The demand at each such node is the amount of cash
that will be needed then. The objective is to maximize the company’s income from in-
vesting the cash between each time it becomes available and when it will be used. There-
fore, each transshipment node represents the choice of a specific short-term investment op-
tion (e.g., purchasing a certificate of deposit from a bank) over a specific time interval. The
resulting network will have a succession of flows representing a schedule for cash becoming
available, being invested, and then being used after the maturing of the investment.

Formulation of the Model

Consider a directed and connected network where the n nodes include at least one sup-
ply node and at least one demand node. The decision variables are

xij � flow through arc i � j,

and the given information includes

cij � cost per unit flow through arc i � j,
uij � arc capacity for arc i � j,
bi � net flow generated at node i.

The value of bi depends on the nature of node i, where

bi � 0 if node i is a supply node,
bi � 0 if node i is a demand node,
bi � 0 if node i is a transshipment node.
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The objective is to minimize the total cost of sending the available supply through the
network to satisfy the given demand.

By using the convention that summations are taken only over existing arcs, the lin-
ear programming formulation of this problem is

Minimize Z � �
n

i�1
�
n

j�1
cijxij,

subject to

�
n

j�1
xij � �

n

j�1
xji � bi, for each node i,

and

0 � xij � uij, for each arc i � j.

The first summation in the node constraints represents the total flow out of node i, whereas
the second summation represents the total flow into node i, so the difference is the net
flow generated at this node.

In some applications, it is necessary to have a lower bound Lij � 0 for the flow through
each arc i � j. When this occurs, use a translation of variables x�ij � xij � Lij, with x�ij �
Lij substituted for xij throughout the model, to convert the model back to the above for-
mat with nonnegativity constraints.

It is not guaranteed that the problem actually will possess feasible solutions, depending
partially upon which arcs are present in the network and their arc capacities. However,
for a reasonably designed network, the main condition needed is the following.

Feasible solutions property: A necessary condition for a minimum cost flow
problem to have any feasible solutions is that

�
n

i�1
bi � 0.

That is, the total flow being generated at the supply nodes equals the total flow
being absorbed at the demand nodes.

If the values of bi provided for some application violate this condition, the usual interpreta-
tion is that either the supplies or the demands (whichever are in excess) actually represent up-
per bounds rather than exact amounts. When this situation arose for the transportation prob-
lem in Sec. 8.1, either a dummy destination was added to receive the excess supply or a
dummy source was added to send the excess demand. The analogous step now is that either
a dummy demand node should be added to absorb the excess supply (with cij � 0 arcs added
from every supply node to this node) or a dummy supply node should be added to generate
the flow for the excess demand (with cij � 0 arcs added from this node to every demand node).

For many applications, bi and uij will have integer values, and implementation will
require that the flow quantities xij also be integer. Fortunately, just as for the transporta-
tion problem, this outcome is guaranteed without explicitly imposing integer constraints
on the variables because of the following property.
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Integer solutions property: For minimum cost flow problems where every bi

and uij have integer values, all the basic variables in every basic feasible (BF)
solution (including an optimal one) also have integer values.

An Example

An example of a minimum cost flow problem is shown in Fig. 9.12. This network actu-
ally is the distribution network for the Distribution Unlimited Co. problem presented in
Sec. 3.4 (see Fig. 3.13). The quantities given in Fig. 3.13 provide the values of the bi, cij,
and uij shown here. The bi values in Fig. 9.12 are shown in square brackets by the nodes,
so the supply nodes (bi � 0) are A and B (the company’s two factories), the demand nodes
(bi � 0) are D and E (two warehouses), and the one transshipment node (bi � 0) is C (a
distribution center). The cij values are shown next to the arcs. In this example, all but two
of the arcs have arc capacities exceeding the total flow generated (90), so uij � � for all
practical purposes. The two exceptions are arc A � B, where uAB � 10, and arc C � E,
which has uCE � 80.

The linear programming model for this example is

Minimize Z � 2xAB � 4xAC � 9xAD � 3xBC � xCE � 3xDE � 2xED,

subject to

xAB � xAC � xAD � 50
�xAB � xBC � 40

� xAC � xBC � xCE � 0
� xAD � xDE � xED � �30

� xCE � xDE � xED � �60

and

xAB � 10, xCE � 80, all xij 	 0.
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Now note the pattern of coefficients for each variable in the set of five node constraints
(the equality constraints). Each variable has exactly two nonzero coefficients, where one
is �1 and the other is �1. This pattern recurs in every minimum cost flow problem, and
it is this special structure that leads to the integer solutions property.

Another implication of this special structure is that (any) one of the node constraints
is redundant. The reason is that summing all these constraint equations yields nothing but
zeros on both sides (assuming feasible solutions exist, so the bi values sum to zero), so
the negative of any one of these equations equals the sum of the rest of the equations.
With just n � 1 nonredundant node constraints, these equations provide just n � 1 basic
variables for a BF solution. In the next section, you will see that the network simplex
method treats the xij � uij constraints as mirror images of the nonnegativity constraints,
so the total number of basic variables is n � 1. This leads to a direct correspondence be-
tween the n � 1 arcs of a spanning tree and the n � 1 basic variables—but more about
that story later.

Using Excel to Formulate and Solve Minimum Cost Flow Problems

Excel provides a convenient way of formulating and solving small minimum cost flow
problems like this one, as well as somewhat larger problems. Figure 9.13 shows how this
can be done. The format is almost the same as displayed in Fig. 9.11 for a maximum flow
problem. One difference is that the unit costs (cij) now need to be included (in column

434 9 NETWORK OPTIMIZATION MODELS

FIGURE 9.13
A spreadsheet formulation for
the Distribution Unlimited
Co. minimum cost flow
problem, where the
changing cells (D4:D10)
show the optimal solution
obtained by the Excel Solver
and the target cell (D12)
gives the resulting total cost
of the flow of shipments
through the network.



G). Because bi values are specified for every node, net flow constraints are needed for all
the nodes. However, only two of the arcs happen to need arc capacity constraints. The tar-
get cell (D12) now gives the total cost of the flow (shipments) through the network (see
its equation at the bottom of the figure), so the objective specified in the Solver dialogue
box is to minimize this quantity. The changing cells (D4:D10) in this spreadsheet show
the optimal solution obtained after clicking on the Solve button.

For much larger minimum cost flow problems, the network simplex method described
in the next section provides a considerably more efficient solution procedure. It also is an
attractive option for solving various special cases of the minimum cost flow problem out-
lined below. This algorithm is commonly included in mathematical programming soft-
ware packages. For example, it is one of the options with CPLEX.

We shall soon solve this same example by the network simplex method. However, let
us first see how some special cases fit into the network format of the minimum cost flow
problem.

Special Cases

The Transportation Problem. To formulate the transportation problem presented in
Sec. 8.1 as a minimum cost flow problem, a supply node is provided for each source, as
well as a demand node for each destination, but no transshipment nodes are included in the
network. All the arcs are directed from a supply node to a demand node, where distributing
xij units from source i to destination j corresponds to a flow of xij through arc i � j. The
cost cij per unit distributed becomes the cost cij per unit of flow. Since the transportation
problem does not impose upper bound constraints on individual xij, all the uij � �.

Using this formulation for the P & T Co. transportation problem presented in Table
8.2 yields the network shown in Fig. 8.2. The corresponding network for the general trans-
portation problem is shown in Fig. 8.3.

The Assignment Problem. Since the assignment problem discussed in Sec. 8.3 is a
special type of transportation problem, its formulation as a minimum cost flow problem
fits into the same format. The additional factors are that (1) the number of supply nodes
equals the number of demand nodes, (2) bi � 1 for each supply node, and (3) bi � �1
for each demand node.

Figure 8.5 shows this formulation for the general assignment problem.

The Transshipment Problem. This special case actually includes all the general fea-
tures of the minimum cost flow problem except for not having (finite) arc capacities. Thus,
any minimum cost flow problem where each arc can carry any desired amount of flow is
also called a transshipment problem.

For example, the Distribution Unlimited Co. problem shown in Fig. 9.13 would be a
transshipment problem if the upper bounds on the flow through arcs A � B and C � E
were removed.

Transshipment problems frequently arise as generalizations of transportation prob-
lems where units being distributed from each source to each destination can first pass
through intermediate points. These intermediate points may include other sources and des-
tinations, as well as additional transfer points that would be represented by transshipment
nodes in the network representation of the problem. For example, the Distribution Un-
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limited Co. problem can be viewed as a generalization of a transportation problem with
two sources (the two factories represented by nodes A and B in Fig. 9.13), two destina-
tions (the two warehouses represented by nodes D and E), and one additional intermedi-
ate transfer point (the distribution center represented by node C ).

(Chapter 23 on our website includes a further discussion of the transshipment problem.)

The Shortest-Path Problem. Now consider the main version of the shortest-path
problem presented in Sec. 9.3 (finding the shortest path from one origin to one destina-
tion through an undirected network). To formulate this problem as a minimum cost flow
problem, one supply node with a supply of 1 is provided for the origin, one demand node
with a demand of 1 is provided for the destination, and the rest of the nodes are trans-
shipment nodes. Because the network of our shortest-path problem is undirected, whereas
the minimum cost flow problem is assumed to have a directed network, we replace each
link by a pair of directed arcs in opposite directions (depicted by a single line with ar-
rowheads at both ends). The only exceptions are that there is no need to bother with arcs
into the supply node or out of the demand node. The distance between nodes i and j be-
comes the unit cost cij or cji for flow in either direction between these nodes. As with the
preceding special cases, no arc capacities are imposed, so all uij � �.

Figure 9.14 depicts this formulation for the Seervada Park shortest-path problem
shown in Fig. 9.1, where the numbers next to the lines now represent the unit cost of flow
in either direction.

The Maximum Flow Problem. The last special case we shall consider is the maxi-
mum flow problem described in Sec. 9.5. In this case a network already is provided with
one supply node (the source), one demand node (the sink), and various transshipment
nodes, as well as the various arcs and arc capacities. Only three adjustments are needed
to fit this problem into the format for the minimum cost flow problem. First, set cij � 0
for all existing arcs to reflect the absence of costs in the maximum flow problem. Sec-
ond, select a quantity F�, which is a safe upper bound on the maximum feasible flow
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through the network, and then assign a supply and a demand of F� to the supply node and
the demand node, respectively. (Because all other nodes are transshipment nodes, they au-
tomatically have bi � 0.) Third, add an arc going directly from the supply node to the de-
mand node and assign it an arbitrarily large unit cost of cij � M as well as an unlimited
arc capacity (uij � �). Because of this positive unit cost for this arc and the zero unit cost
for all the other arcs, the minimum cost flow problem will send the maximum feasible
flow through the other arcs, which achieves the objective of the maximum flow problem.

Applying this formulation to the Seervada Park maximum flow problem shown in
Fig. 9.6 yields the network given in Fig. 9.15, where the numbers given next to the orig-
inal arcs are the arc capacities.

Final Comments. Except for the transshipment problem, each of these special cases
has been the focus of a previous section in either this chapter or Chap. 8. When each was
first presented, we talked about a special-purpose algorithm for solving it very efficiently.
Therefore, it certainly is not necessary to reformulate these special cases to fit the format
of the minimum cost flow problem in order to solve them. However, when a computer
code is not readily available for the special-purpose algorithm, it is very reasonable to use
the network simplex method instead. In fact, recent implementations of the network sim-
plex method have become so powerful that it now provides an excellent alternative to the
special-purpose algorithm.

The fact that these problems are special cases of the minimum cost flow problem is
of interest for other reasons as well. One reason is that the underlying theory for the min-
imum cost flow problem and for the network simplex method provides a unifying theory
for all these special cases. Another reason is that some of the many applications of the
minimum cost flow problem include features of one or more of the special cases, so it is
important to know how to reformulate these features into the broader framework of the
general problem.
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The network simplex method is a highly streamlined version of the simplex method for
solving minimum cost flow problems. As such, it goes through the same basic steps at
each iteration—finding the entering basic variable, determining the leaving basic variable,
and solving for the new BF solution—in order to move from the current BF solution to a
better adjacent one. However, it executes these steps in ways that exploit the special net-
work structure of the problem without ever needing a simplex tableau.

You may note some similarities between the network simplex method and the trans-
portation simplex method presented in Sec. 8.2. In fact, both are streamlined versions of
the simplex method that provide alternative algorithms for solving transportation prob-
lems in similar ways. The network simplex method extends these ideas to solving other
types of minimum cost flow problems as well.

In this section, we provide a somewhat abbreviated description of the network sim-
plex method that focuses just on the main concepts. We omit certain details needed for a
full computer implementation, including how to construct an initial BF solution and how
to perform certain calculations (such as for finding the entering basic variable) in the most
efficient manner. These details are provided in various more specialized textbooks, such
as Selected References 1, 2, 3, 5, and 8.

Incorporating the Upper Bound Technique

The first concept is to incorporate the upper bound technique described in Sec. 7.3 to deal
efficiently with the arc capacity constraints xij � uij. Thus, rather than these constraints
being treated as functional constraints, they are handled just as nonnegativity constraints
are. Therefore, they are considered only when the leaving basic variable is determined. In
particular, as the entering basic variable is increased from zero, the leaving basic variable
is the first basic variable that reaches either its lower bound (0) or its upper bound (uij).
A nonbasic variable at its upper bound xij � uij is replaced by xij � uij � yij, so yij � 0
becomes the nonbasic variable. See Sec. 7.3 for further details.

In our current context, yij has an interesting network interpretation. Whenever yij be-
comes a basic variable with a strictly positive value (� uij), this value can be thought of
as flow from node j to node i (so in the “wrong” direction through arc i � j) that, in ac-
tuality, is canceling that amount of the previously assigned flow (xij � uij) from node i to
node j. Thus, when xij � uij is replaced by xij � uij � yij, we also replace the real arc 
i � j by the reverse arc j � i, where this new arc has arc capacity uij (the maximum
amount of the xij � uij flow that can be canceled) and unit cost � cij (since each unit of
flow canceled saves cij). To reflect the flow of xij � uij through the deleted arc, we shift
this amount of net flow generated from node i to node j by decreasing bi by uij and in-
creasing bj by uij. Later, if yij becomes the leaving basic variable by reaching its upper
bound, then yij � uij is replaced by yij � uij � xij with xij � 0 as the new nonbasic vari-
able, so the above process would be reversed (replace arc j � i by arc i � j, etc.) to the
original configuration.

To illustrate this process, consider the minimum cost flow problem shown in Fig.
9.12. While the network simplex method is generating a sequence of BF solutions, sup-
pose that xAB has become the leaving basic variable for some iteration by reaching its up-
per bound of 10. Consequently, xAB � 10 is replaced by xAB � 10 � yAB, so yAB � 0 
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becomes the new nonbasic variable. At the same time, we replace arc A � B by arc 
B � A (with yAB as its flow quantity), and we assign this new arc a capacity of 10 and a
unit cost of �2. To take xAB � 10 into account, we also decrease bA from 50 to 40 and
increase bB from 40 to 50. The resulting adjusted network is shown in Fig. 9.16.

We shall soon illustrate the entire network simplex method with this same example,
starting with yAB � 0 (xAB � 10) as a nonbasic variable and so using Fig. 9.16. A later it-
eration will show xCE reaching its upper bound of 80 and so being replaced by xCE �
80 � yCE, and so on, and then the next iteration has yAB reaching its upper bound of 10.
You will see that all these operations are performed directly on the network, so we will
not need to use the xij or yij labels for arc flows or even to keep track of which arcs are
real arcs and which are reverse arcs (except when we record the final solution). Using the
upper bound technique leaves the node constraints (flow out minus flow in � bi) as the
only functional constraints. Minimum cost flow problems tend to have far more arcs than
nodes, so the resulting number of functional constraints generally is only a small fraction
of what it would have been if the arc capacity constraints had been included. The com-
putation time for the simplex method goes up relatively rapidly with the number of func-
tional constraints, but only slowly with the number of variables (or the number of bound-
ing constraints on these variables). Therefore, incorporating the upper bound technique
here tends to provide a tremendous saving in computation time.

However, this technique is not needed for uncapacitated minimum cost flow prob-
lems (including all but the last special case considered in the preceding section), where
there are no arc capacity constraints.

Correspondence between BF Solutions and Feasible Spanning Trees

The most important concept underlying the network simplex method is its network rep-
resentation of BF solutions. Recall from Sec. 9.6 that with n nodes, every BF solution has
(n � 1) basic variables, where each basic variable xij represents the flow through arc 
i � j. These (n � 1) arcs are referred to as basic arcs. (Similarly, the arcs corresponding
to the nonbasic variables xij � 0 or yij � 0 are called nonbasic arcs.)

A key property of basic arcs is that they never form undirected cycles. (This property
prevents the resulting solution from being a weighted average of another pair of feasible
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solutions, which would violate one of the general properties of BF solutions.) However,
any set of n � 1 arcs that contains no undirected cycles forms a spanning tree. Therefore,
any complete set of n � 1 basic arcs forms a spanning tree.

Thus, BF solutions can be obtained by “solving” spanning trees, as summarized below.
A spanning tree solution is obtained as follows:

1. For the arcs not in the spanning tree (the nonbasic arcs), set the corresponding vari-
ables (xij or yij) equal to zero.

2. For the arcs that are in the spanning tree (the basic arcs), solve for the corresponding
variables (xij or yij) in the system of linear equations provided by the node constraints.

(The network simplex method actually solves for the new BF solution from the current
one much more efficiently, without solving this system of equations from scratch.) Note
that this solution process does not consider either the nonnegativity constraints or the arc
capacity constraints for the basic variables, so the resulting spanning tree solution may or
may not be feasible with respect to these constraints—which leads to our next definition.

A feasible spanning tree is a spanning tree whose solution from the node constraints also
satisfies all the other constraints (0 � xij � uij or 0 � yij � uij).

With these definitions, we now can summarize our key conclusion as follows:

The fundamental theorem for the network simplex method says that basic solutions
are spanning tree solutions (and conversely) and that BF solutions are solutions for fea-
sible spanning trees (and conversely).

To begin illustrating the application of this fundamental theorem, consider the net-
work shown in Fig. 9.16 that results from replacing xAB � 10 by xAB � 10 � yAB for our
example in Fig. 9.12. One spanning tree for this network is the one shown in Fig. 9.3e,
where the arcs are A � D, D � E, C � E, and B � C. With these as the basic arcs, the
process of finding the spanning tree solution is shown below. On the left is the set of node
constraints given in Sec. 9.6 after 10 � yAB is substituted for xAB, where the basic vari-
ables are shown in boldface. On the right, starting at the top and moving down, is the se-
quence of steps for setting or calculating the values of the variables.

yAB � 0, xAC � 0, xED � 0

�yAB � xAC � xAD � xBC � xCE � xDE � xED � �40 xAD � 40.
�yAB � xAC � xAD � xBC � �50 xBC � 50.
�yAB � xAC �xAD � xBC � xCE � � 0 so xCE � 50.
�yAB � xAC� xAD � xBC � xCE � xDE � xED � �30 so xDE � 10.
�yAB � xAC � xAD � xBC � xCE � xDE � xED � �60 Redundant.

Since the values of all these basic variables satisfy the nonnegativity constraints and the
one relevant arc capacity constraint (xCE � 80), the spanning tree is a feasible spanning
tree, so we have a BF solution.

We shall use this solution as the initial BF solution for demonstrating the network
simplex method. Figure 9.17 shows its network representation, namely, the feasible span-
ning tree and its solution. Thus, the numbers given next to the arcs now represent flows
(values of xij) rather than the unit costs cij previously given. (To help you distinguish, we
shall always put parentheses around flows but not around costs.)
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Selecting the Entering Basic Variable

To begin an iteration of the network simplex method, recall that the standard simplex
method criterion for selecting the entering basic variable is to choose the nonbasic vari-
able which, when increased from zero, will improve Z at the fastest rate. Now let us see
how this is done without having a simplex tableau.

To illustrate, consider the nonbasic variable xAC in our initial BF solution, i.e., the
nonbasic arc A � C. Increasing xAC from zero to some value � means that the arc 
A � C with flow � must be added to the network shown in Fig. 9.17. Adding a nonba-
sic arc to a spanning tree always creates a unique undirected cycle, where the cycle in this
case is seen in Fig. 9.18 to be AC–CE–DE–AD. Figure 9.18 also shows the effect of adding
the flow � to arc A � C on the other flows in the network. Specifically, the flow is thereby
increased by � for other arcs that have the same direction as A � C in the cycle (arc 
C � E), whereas the net flow is decreased by � for other arcs whose direction is oppo-
site to A � C in the cycle (arcs D � E and A � D). In the latter case, the new flow is,
in effect, canceling a flow of � in the opposite direction. Arcs not in the cycle (arc 
B � C ) are unaffected by the new flow. (Check these conclusions by noting the effect of
the change in xAC on the values of the other variables in the solution just derived for the
initial feasible spanning tree.)
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Now what is the incremental effect on Z (total flow cost) from adding the flow � to
arc A � C? Figure 9.19 shows most of the answer by giving the unit cost times the change
in the flow for each arc of Fig. 9.18. Therefore, the overall increment in Z is

�Z � cAC� � cCE� � cDE(��) � cAD(��)
� 4� � � � 3� � 9�
� �7�.

Setting � � 1 then gives the rate of change of Z as xAC is increased, namely,

�Z � �7, when � � 1.

Because the objective is to minimize Z, this large rate of decrease in Z by increasing xAC

is very desirable, so xAC becomes a prime candidate to be the entering basic variable.
We now need to perform the same analysis for the other nonbasic variables before

we make the final selection of the entering basic variable. The only other nonbasic vari-
ables are yAB and xED, corresponding to the two other nonbasic arcs B � A and E � D
in Fig. 9.16.

Figure 9.20 shows the incremental effect on costs of adding arc B � A with flow �
to the initial feasible spanning tree given in Fig. 9.17. Adding this arc creates the undi-
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costs of adding arc B � A
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rected cycle BA–AD–DE–CE–BC, so the flow increases by � for arcs A � D and 
D � E but decreases by � for the two arcs in the opposite direction on this cycle,
C � E and B � C. These flow increments, � and ��, are the multiplicands for the cij

values in the figure. Therefore,

�Z � �2� � 9� � 3� � 1(��) � 3(��) � 6�
� 6, when � � 1.

The fact that Z increases rather than decreases when yAB (flow through the reverse arc 
B � A) is increased from zero rules out this variable as a candidate to be the entering ba-
sic variable. (Remember that increasing yAB from zero really means decreasing xAB, flow
through the real arc A � B, from its upper bound of 10.)

A similar result is obtained for the last nonbasic arc E � D. Adding this arc with
flow � to the initial feasible spanning tree creates the undirected cycle ED–DE shown in
Fig. 9.21, so the flow also increases by � for arc D � E, but no other arcs are affected.
Therefore,

�Z � 2� � 3� � 5�
� 5, when � � 1,

so xED is ruled out as a candidate to be the entering basic variable.
To summarize,

�7, if �xAC � 1
�Z � � 6, if �yAB � 1

�5, if �xED � 1

so the negative value for xAC implies that xAC becomes the entering basic variable for the
first iteration. If there had been more than one nonbasic variable with a negative value of
�Z, then the one having the largest absolute value would have been chosen. (If there had
been no nonbasic variables with a negative value of �Z, the current BF solution would
have been optimal.)

Rather than identifying undirected cycles, etc., the network simplex method actually
obtains these �Z values by an algebraic procedure that is considerably more efficient (es-
pecially for large networks). The procedure is analogous to that used by the transporta-
tion simplex method (see Sec. 8.2) to solve for ui and vj in order to obtain the value of
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cij � ui � vj for each nonbasic variable xij. We shall not describe this procedure further,
so you should just use the undirected cycles method when you are doing problems at the
end of the chapter.

Finding the Leaving Basic Variable and the Next BF Solution

After selection of the entering basic variable, only one more quick step is needed to si-
multaneously determine the leaving basic variable and solve for the next BF solution. For
the first iteration of the example, the key is Fig. 9.18. Since xAC is the entering basic vari-
able, the flow � through arc A � C is to be increased from zero as far as possible until
one of the basic variables reaches either its lower bound (0) or its upper bound (uij). For
those arcs whose flow increases with � in Fig. 9.18 (arcs A � C and C � E), only the
upper bounds (uAC � � and uCE � 80) need to be considered:

xAC � � � �.
xCE � 50 � � � 80, so � � 30.

For those arcs whose flow decreases with � (arcs D � E and A � D), only the lower
bound of 0 needs to be considered:

xDE � 10 � � 	 0, so � � 10.
xAD � 40 � � 	 0, so � � 40.

Arcs whose flow is unchanged by � (i.e., those not part of the undirected cycle), which is
just arc B � C in Fig. 9.18, can be ignored since no bound will be reached as � is increased.

For the five arcs in Fig. 9.18, the conclusion is that xDE must be the leaving basic
variable because it reaches a bound for the smallest value of � (10). Setting � � 10 in this
figure thereby yields the flows through the basic arcs in the next BF solution:

xAC � � � 10,
xCE � 50 � � � 60,
xAD � 40 � � � 30,
xBC � 50.

The corresponding feasible spanning tree is shown in Fig. 9.22.
If the leaving basic variable had reached its upper bound, then the adjustments dis-

cussed for the upper bound technique would have been needed at this point (as you will
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see illustrated during the next two iterations). However, because it was the lower bound
of 0 that was reached, nothing more needs to be done.

Completing the Example. For the two remaining iterations needed to reach the op-
timal solution, the primary focus will be on some features of the upper bound technique
they illustrate. The pattern for finding the entering basic variable, the leaving basic vari-
able, and the next BF solution will be very similar to that described for the first iteration,
so we only summarize these steps briefly.

Iteration 2: Starting with the feasible spanning tree shown in Fig. 9.22 and referring
to Fig. 9.16 for the unit costs cij, we arrive at the calculations for selecting the entering
basic variable in Table 9.4. The second column identifies the unique undirected cycle that
is created by adding the nonbasic arc in the first column to this spanning tree, and the
third column shows the incremental effect on costs because of the changes in flows on
this cycle caused by adding a flow of � � 1 to the nonbasic arc. Arc E � D has the largest
(in absolute terms) negative value of �Z, so xED is the entering basic variable.

We now make the flow � through arc E � D as large as possible, while satisfying
the following flow bounds:

xED � � � uED � �, so � � �.
xAD � 30 � � 	 0, so � � 30.
xAC � 10 � � � uAC � �, so � � �.
xCE � 60 � � � uCE � 80, so � � 20. � Minimum

Because xCE imposes the smallest upper bound (20) on �, xCE becomes the leaving basic
variable. Setting � � 20 in the above expressions for xED, xAD, and xAC then yields the
flow through the basic arcs for the next BF solution (with xBC � 50 unaffected by �), as
shown in Fig. 9.23.
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TABLE 9.4 Calculations for selecting the entering basic variable for iteration 2

Nonbasic Arc Cycle Created �Z When � � 1

B � A BA–AC–BC 2 �2 � 4 � 3 � �1
D � E DE–CE–AC–AD 3 � 1 � 4 � 9 � �7
E � D ED–AD–AC–CE 2 � 9 � 4 � 1 � �2 � Minimum
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(xAD � 10)

C

E

(30)

FIGURE 9.23
The third feasible spanning
tree and its solution for the
example.



What is of special interest here is that the leaving basic variable xCE was obtained by
the variable reaching its upper bound (80). Therefore, by using the upper bound technique,
xCE is replaced by 80 � yCE, where yCE � 0 is the new nonbasic variable. At the same
time, the original arc C � E with cCE � 1 and uCE � 80 is replaced by the reverse arc 
E � C with cEC � �1 and uEC � 80. The values of bE and bC also are adjusted by adding
80 to bE and subtracting 80 from bC. The resulting adjusted network is shown in Fig. 9.24,
where the nonbasic arcs are shown as dashed lines and the numbers by all the arcs are
unit costs.

Iteration 3: If Figs. 9.23 and 9.24 are used to initiate the next iteration, Table 9.5
shows the calculations that lead to selecting yAB (reverse arc B � A) as the entering ba-
sic variable. We then add as much flow � through arc B � A as possible while satisfying
the flow bounds below:

yAB � � � uBA � 10, so � � 10. � Minimum
xAC � 30 � � � uAC � �, so � � �.
xBC � 50 � � 	 0, so � � 50.

The smallest upper bound (10) on � is imposed by yAB, so this variable becomes the leav-
ing basic variable. Setting � � 10 in these expressions for xAC and xBC (along with the
unchanged values of xAC � 10 and xED � 20) then yields the next BF solution, as shown
in Fig. 9.25.

As with iteration 2, the leaving basic variable (yAB) was obtained here by the vari-
able reaching its upper bound. In addition, there are two other points of special interest
concerning this particular choice. One is that the entering basic variable yAB also became
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TABLE 9.5 Calculations for selecting the entering basic variable for iteration 3

Nonbasic Arc Cycle Created �Z When � � 1

B � A BA–AC–BC �1 �2 � 4 � 3 � �1 � Minimum
D � E DE–ED �1 �2 � 3 � 2 � �5
E � C EC–AC–AD–ED �1 � 4 � 9 � 2 � �2

FIGURE 9.24
The adjusted network with
unit costs at the completion
of iteration 2.



the leaving basic variable on the same iteration! This event occurs occasionally with the
upper bound technique whenever increasing the entering basic variable from zero causes
its upper bound to be reached first before any of the other basic variables reach a bound.

The other interesting point is that the arc B � A that now needs to be replaced by a
reverse arc A � B (because of the leaving basic variable reaching an upper bound) al-
ready is a reverse arc! This is no problem, because the reverse arc for a reverse arc is sim-
ply the original real arc. Therefore, the arc B � A (with cBA � �2 and uBA � 10) in Fig.
9.24 now is replaced by arc A � B (with cAB � 2 and uAB � 10), which is the arc be-
tween nodes A and B in the original network shown in Fig. 9.12, and a generated net flow
of 10 is shifted from node B (bB � 50 � 40) to node A (bA � 40 � 50). Simultaneously,
the variable yAB � 10 is replaced by 10 � xAB, with xAB � 0 as the new nonbasic vari-
able. The resulting adjusted network is shown in Fig. 9.26.

Passing the Optimality Test: At this point, the algorithm would attempt to use Figs.
9.25 and 9.26 to find the next entering basic variable with the usual calculations shown
in Table 9.6. However, none of the nonbasic arcs gives a negative value of �Z, so an im-
provement in Z cannot be achieved by introducing flow through any of them. This means
that the current BF solution shown in Fig. 9.25 has passed the optimality test, so the al-
gorithm stops.

To identify the flows through real arcs rather than reverse arcs for this optimal solu-
tion, the current adjusted network (Fig. 9.26) should be compared with the original net-
work (Fig. 9.12). Note that each of the arcs has the same direction in the two networks
with the one exception of the arc between nodes C and E. This means that the only re-
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TABLE 9.6 Calculations for the optimality test at the end of iteration 3

Nonbasic Arc Cycle Created �Z When � � 1

A � B AB–BC–AC 2 � 3 � 4 � 1
D � E DE–EC–AC–AD 3 � 1 � 4 � 9 � 7
E � C EC–AC–AD–ED �1 � 4 � 9 � 2 � 2

FIGURE 9.25
The fourth (and final) feasible
spanning tree and its
solution for the example.



verse arc in Fig. 9.26 is arc E � C, where its flow is given by the variable yCE. There-
fore, calculate xCE � uCE � yCE � 80 � yCE. Arc E � C happens to be a nonbasic arc,
so yCE � 0 and xCE � 80 is the flow through the real arc C � E. All the other flows
through real arcs are the flows given in Fig. 9.25. Therefore, the optimal solution is the
one shown in Fig. 9.27.

Another complete example of applying the network simplex method is provided by
the demonstration in the Network Analysis Area of your OR Tutor. Also included in your
OR Courseware is an interactive routine for the network simplex method.
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Networks of some type arise in a wide variety of contexts. Network representations are
very useful for portraying the relationships and connections between the components of
systems. Frequently, flow of some type must be sent through a network, so a decision needs
to be made about the best way to do this. The kinds of network optimization models and
algorithms introduced in this chapter provide a powerful tool for making such decisions.

9.8 CONCLUSIONS

FIGURE 9.27
The optimal flow pattern in
the original network for the
Distribution Unlimited Co.
example.
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The minimum cost flow problem plays a central role among these network opti-
mization models, both because it is so broadly applicable and because it can be solved
extremely efficiently by the network simplex method. Two of its special cases included
in this chapter, the shortest-path problem and the maximum flow problem, also are basic
network optimization models, as are additional special cases discussed in Chap. 8 (the
transportation problem and the assignment problem).

Whereas all these models are concerned with optimizing the operation of an existing
network, the minimum spanning tree problem is a prominent example of a model for op-
timizing the design of a new network.

This chapter has only scratched the surface of the current state of the art of network
methodology. Because of their combinatorial nature, network problems often are extremely
difficult to solve. However, great progress is being made in developing powerful model-
ing techniques and solution methodologies that are opening up new vistas for important
applications. In fact, recent algorithmic advances are enabling us to solve successfully
some complex network problems of enormous size.
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The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.
I: We suggest that you use the interactive routine listed above (the

printout records your work).
C: Use the computer with any of the software options available to

you (or as instructed by your instructor) to solve the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

9.2-1. Consider the following directed network.

PROBLEMS

shows the mileage along each road that directly connects two
towns without any intervening towns. These numbers are sum-
marized in the following table, where a dash indicates that there
is no road directly connecting these two towns without going
through any other towns.

Miles between Adjacent Towns

Town A B C D E Destination

Origin 40 60 50 — — —
A 10 — 70 — —
B 20 55 40 —
C — 50 —
D 10 60
E 80

(a) Find a directed path from node A to node F, and then identify
three other undirected paths from node A to node F.

(b) Find three directed cycles. Then identify an undirected cycle
that includes every node.

(c) Identify a set of arcs that forms a spanning tree.
(d) Use the process illustrated in Fig. 9.3 to grow a tree one arc

at a time until a spanning tree has been formed. Then repeat
this process to obtain another spanning tree. [Do not duplicate
the spanning tree identified in part (c).]

9.3-1. You need to take a trip by car to another town that you
have never visited before. Therefore, you are studying a map to
determine the shortest route to your destination. Depending on
which route you choose, there are five other towns (call them A,
B, C, D, E) that you might pass through on the way. The map

A

B

C

D

E

F
(a) Formulate this problem as a shortest-path problem by drawing

a network where nodes represent towns, links represent roads,
and numbers indicate the length of each link in miles.

(b) Use the algorithm described in Sec. 9.3 to solve this shortest-
path problem.

C (c) Formulate and solve a spreadsheet model for this problem.
(d) If each number in the table represented your cost (in dollars)

for driving your car from one town to the next, would the an-
swer in part (b) or (c) now give your minimum cost route?

(e) If each number in the table represented your time (in minutes)
for driving your car from one town to the next, would the an-
swer in part (b) or (c) now give your minimum time route?

9.3-2. At a small but growing airport, the local airline company is
purchasing a new tractor for a tractor-trailer train to bring luggage
to and from the airplanes. A new mechanized luggage system will
be installed in 3 years, so the tractor will not be needed after that.
However, because it will receive heavy use, so that the running and



(Origin) (Destination)T

E

D

O B

C

A

4

6

5
2

5

7

5

4

6

8

1

(a)

1

maintenance costs will increase rapidly as the tractor ages, it may
still be more economical to replace the tractor after 1 or 2 years.
The following table gives the total net discounted cost associated
with purchasing a tractor (purchase price minus trade-in allowance,
plus running and maintenance costs) at the end of year i and trad-
ing it in at the end of year j (where year 0 is now).
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The problem is to determine at what times (if any) the tractor should
be replaced to minimize the total cost for the tractors over 3 years.
(Continue at the top of the next column.)

j

1 2 3

0 $8,000 $18,000 $31,000
i 1 $10,000 $21,000

2 $12,000

T(Origin) (Destination)O

B E I

A D G

HFC

4

3 4

2 225

6

3
4 5

2

1 2

5 8

4
3

7
2

6 5

(a)

(a) Formulate this problem as a shortest-path problem.
(b) Use the algorithm described in Sec. 9.3 to solve this shortest-

path problem.
C (c) Formulate and solve a spreadsheet model for this problem.

9.3-3.* Use the algorithm described in Sec. 9.3 to find the short-
est path through each of the following networks, where the num-
bers represent actual distances between the corresponding nodes.

9.3-4. Formulate the shortest-path problem as a linear program-
ming problem.

9.3-5. One of Speedy Airlines’ flights is about to take off from
Seattle for a nonstop flight to London. There is some flexibility in
choosing the precise route to be taken, depending upon weather
conditions. The following network depicts the possible routes un-
der consideration, where SE and LN are Seattle and London, re-

(b)

spectively, and the other nodes represent various intermediate lo-
cations. The winds along each arc greatly affect the flying time
(and so the fuel consumption). Based on current meteorological re-
ports, the flying times (in hours) for this particular flight are shown
next to the arcs. Because the fuel consumed is so expensive, the
management of Speedy Airlines has established a policy of choos-
ing the route that minimizes the total flight time.

LNSE B E

C F

A D

4.2 3.8

4.7 3.6

4.6
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3.2

3.4

3.4



9.4-1.* Reconsider the networks shown in Prob. 9.3-3. Use the al-
gorithm described in Sec. 9.4 to find the minimum spanning tree
for each of these networks.

9.4-2. The Wirehouse Lumber Company will soon begin logging
eight groves of trees in the same general area. Therefore, it must
develop a system of dirt roads that makes each grove accessible
from every other grove. The distance (in miles) between every pair
of groves is as follows:

(a) What plays the role of “distances” in interpreting this problem
to be a shortest-path problem?

(b) Use the algorithm described in Sec. 9.3 to solve this shortest-
path problem.

C (c) Formulate and solve a spreadsheet model for this problem.

9.3-6. The Quick Company has learned that a competitor is plan-
ning to come out with a new kind of product with a great sales po-
tential. Quick has been working on a similar product that had been
scheduled to come to market in 20 months. However, research is
nearly complete and Quick’s management now wishes to rush the
product out to meet the competition.

There are four nonoverlapping phases left to be accomplished,
including the remaining research that currently is being conducted
at a normal pace. However, each phase can instead be conducted at
a priority or crash level to expedite completion, and these are the
only levels that will be considered for the last three phases. The times
required at these levels are given in the following table. (The times
in parentheses at the normal level have been ruled out as too long.)
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Management has allocated $30 million for these four phases.
The cost of each phase at the different levels under consideration
is as follows:

Cost

Initiate
Design of Production 

Remaining Manufacturing and
Level Research Development System Distribution

Normal $3 million — — —
Priority $6 million $6 million $9 million $3 million
Crash $9 million $9 million $12 million $6 million

Time

Initiate
Design of Production 

Remaining Manufacturing and
Level Research Development System Distribution

Normal 5 months (4 months) (7 months) (4 months)
Priority 4 months 3 months 5 months 2 months
Crash 2 months 2 months 3 months 1 month

Management wishes to determine at which level to conduct each
of the four phases to minimize the total time until the product can
be marketed subject to the budget restriction of $30 million.
(a) Formulate this problem as a shortest-path problem.
(b) Use the algorithm described in Sec. 9.3 to solve this shortest-

path problem.

Distance between Pairs of Groves

1 2 3 4 5 6 7 8

1 — 1.3 2.1 0.9 0.7 1.8 2.0 1.5
2 1.3 — 0.9 1.8 1.2 2.6 2.3 1.1
3 2.1 0.9 — 2.6 1.7 2.5 1.9 1.0

Grove 4 0.9 1.8 2.6 — 0.7 1.6 1.5 0.9
5 0.7 1.2 1.7 0.7 — 0.9 1.1 0.8
6 1.8 2.6 2.5 1.6 0.9 — 0.6 1.0
7 2.0 2.3 1.9 1.5 1.1 0.6 — 0.5
8 1.5 1.1 1.0 0.9 0.8 1.0 0.5 —

Management now wishes to determine between which pairs
of groves the roads should be constructed to connect all groves
with a minimum total length of road.
(a) Describe how this problem fits the network description of the

minimum spanning tree problem.
(b) Use the algorithm described in Sec. 9.4 to solve the problem.

9.4-3. The Premiere Bank soon will be hooking up computer ter-
minals at each of its branch offices to the computer at its main of-
fice using special phone lines with telecommunications devices.
The phone line from a branch office need not be connected directly
to the main office. It can be connected indirectly by being con-
nected to another branch office that is connected (directly or indi-
rectly) to the main office. The only requirement is that every branch
office be connected by some route to the main office.

The charge for the special phone lines is $100 times the num-
ber of miles involved, where the distance (in miles) between every
pair of offices is as follows:

Distance between Pairs of Offices

Main B.1 B.2 B.3 B.4 B.5

Main office — 190 70 115 270 160
Branch 1 190 — 100 110 215 50
Branch 2 70 100 — 140 120 220
Branch 3 115 110 140 — 175 80
Branch 4 270 215 120 175 — 310
Branch 5 160 50 220 80 310 —
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Management wishes to determine which pairs of offices should be
directly connected by special phone lines in order to connect every
branch office (directly or indirectly) to the main office at a mini-
mum total cost.
(a) Describe how this problem fits the network description of the

minimum spanning tree problem.
(b) Use the algorithm described in Sec. 9.4 to solve the problem.
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(b)

9.5-2. Formulate the maximum flow problem as
a linear programming problem.

9.5-3. The diagram to the right depicts a system
of aqueducts that originate at three rivers (nodes
R1, R2, and R3) and terminate at a major city
(node T), where the other nodes are junction points
in the system.

Using units of thousands of acre feet, the fol-
lowing tables show the maximum amount of wa-
ter that can be pumped through each aqueduct per
day.

(a)

9.5-1.* For networks (a) and (b), use the augmenting path algo-
rithm described in Sec. 9.5 to find the flow pattern giving the max-
imum flow from the source to the sink, given that the arc capacity
from node i to node j is the number nearest node i along the arc
between these nodes.

A

C
F

R3

R1 D

B
E

T

R2



(a) Draw a rough map that shows the location of Texago’s oil
fields, refineries, and distribution centers. Add arrows to show
the flow of crude oil and then petroleum products through this
distribution network.

(b) Redraw this distribution network by lining up all the nodes
representing oil fields in one column, all the nodes represent-
ing refineries in a second column, and all the nodes repre-
senting distribution centers in a third column. Then add arcs
to show the possible flow.

(c) Modify the network in part (b) as needed to formulate this
problem as a maximum flow problem with a single source, a
single sink, and a capacity for each arc.

(d) Use the augmenting path algorithm described in Sec. 9.5 to
solve this maximum flow problem.

C (e) Formulate and solve a spreadsheet model for this problem.

9.5-5. One track of the Eura Railroad system runs from the major
industrial city of Faireparc to the major port city of Portstown. This
track is heavily used by both express passenger and freight trains.
The passenger trains are carefully scheduled and have priority over
the slow freight trains (this is a European railroad), so that the
freight trains must pull over onto a siding whenever a passenger
train is scheduled to pass them soon. It is now necessary to in-
crease the freight service, so the problem is to schedule the freight
trains so as to maximize the number that can be sent each day with-
out interfering with the fixed schedule for passenger trains.

Consecutive freight trains must maintain a schedule differen-
tial of at least 0.1 hour, and this is the time unit used for schedul-
ing them (so that the daily schedule indicates the status of each
freight train at times 0.0, 0.1, 0.2, . . . , 23.9). There are S sidings
between Faireparc and Portstown, where siding i is long enough
to hold ni freight trains (i � 1, . . . , S ). It requires ti time units
(rounded up to an integer) for a freight train to travel from siding
i to siding i � 1 (where t0 is the time from the Faireparc station to
siding 1 and ts is the time from siding S to the Portstown station).
A freight train is allowed to pass or leave siding i (i � 0, 1, . . . ,
S ) at time j ( j � 0.0, 0.1, . . . , 23.9) only if it would not be over-
taken by a scheduled passenger train before reaching siding i � 1
(let ij � 1 if it would not be overtaken, and let ij � 0 if it would
be). A freight train also is required to stop at a siding if there will
not be room for it at all subsequent sidings that it would reach be-
fore being overtaken by a passenger train.

Formulate this problem as a maximum flow problem by iden-
tifying each node (including the supply node and the demand node)
as well as each arc and its arc capacity for the network represen-
tation of the problem. (Hint: Use a different set of nodes for each
of the 240 times.)

9.5-6. Consider the maximum flow problem shown next, where
the source is node A, the sink is node F, and the arc capacities are
the numbers shown next to these directed arcs.
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FromTo FromTo FromTo

From A B C From D E F From T

R1 75 65 — A 60 45 — D 120
R2 40 50 60 B 70 55 45 E 190
R3 — 80 70 C — 70 90 F 130

The city water manager wants to determine a flow plan that will
maximize the flow of water to the city.
(a) Formulate this problem as a maximum flow problem by iden-

tifying a source, a sink, and the transshipment nodes, and
then drawing the complete network that shows the capacity
of each arc.

(b) Use the augmenting path algorithm described in Sec. 9.5 to
solve this problem.

C (c) Formulate and solve a spreadsheet model for this problem.

9.5-4. The Texago Corporation has four oil fields, four refineries,
and four distribution centers. A major strike involving the trans-
portation industries now has sharply curtailed Texago’s capacity to
ship oil from the oil fields to the refineries and to ship petroleum
products from the refineries to the distribution centers. Using units
of thousands of barrels of crude oil (and its equivalent in refined
products), the following tables show the maximum number of units
that can be shipped per day from each oil field to each refinery,
and from each refinery to each distribution center.

Refinery

Oil Field New Orleans Charleston Seattle St. Louis

Texas 11 7 2 8
California 5 4 8 7
Alaska 7 3 12 6
Middle East 8 9 4 15

Distribution Center

Refinery Pittsburgh Atlanta Kansas City San Francisco

New Orleans 5 9 6 4
Charleston 8 7 9 5
Seattle 4 6 7 8
St. Louis 12 11 9 7

The Texago management now wants to determine a plan for
how many units to ship from each oil field to each refinery and
from each refinery to each distribution center that will maximize
the total number of units reaching the distribution centers.



9.6-4. The Makonsel Company is a fully integrated company that
both produces goods and sells them at its retail outlets. After pro-
duction, the goods are stored in the company’s two warehouses un-
til needed by the retail outlets. Trucks are used to transport the
goods from the two plants to the warehouses, and then from the
warehouses to the three retail outlets.

Using units of full truckloads, the following table shows each
plant’s monthly output, its shipping cost per truckload sent to each
warehouse, and the maximum amount that it can ship per month
to each warehouse.

(a) Use the augmenting path algorithm described in
Sec. 9.5 to solve this problem.

C (b) Formulate and solve a spreadsheet model for
this problem.

9.6-1. Reconsider the maximum flow problem shown
in Prob. 9.5-6. Formulate this problem as a minimum
cost flow problem, including adding the arc A � F.
Use F� � 20.

9.6-2. A company will be producing the same new product at two
different factories, and then the product must be shipped to two
warehouses. Factory 1 can send an unlimited amount by rail to
warehouse 1 only, whereas factory 2 can send an unlimited amount
by rail to warehouse 2 only. However, independent truckers can be
used to ship up to 50 units from each factory to a distribution cen-
ter, from which up to 50 units can be shipped to each warehouse.
The shipping cost per unit for each alternative is shown in the fol-
lowing table, along with the amounts to be produced at the facto-
ries and the amounts needed at the warehouses.
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For each retail outlet (RO), the next table shows its monthly
demand, its shipping cost per truckload from each warehouse, and
the maximum amount that can be shipped per month from each
warehouse.

Unit Shipping Cost

To Warehouse
Distribution

From Center 1 2 Output

Factory 1 3 7 — 80
Factory 2 4 — 9 70

Distribution center 2 4

Allocation 60 90

(a) Formulate the network representation of this problem as a min-
imum cost flow problem.

(b) Formulate the linear programming model for this problem.

9.6-3. Reconsider Prob. 9.3-1. Now formulate this problem as a
minimum cost flow problem by showing the appropriate network
representation.

To Unit Shipping Cost Shipping Capacity

From RO1 RO2 RO3 RO1 RO2 RO3

Warehouse 1 $470 $505 $490 100 150 100
Warehouse 2 $390 $410 $440 125 150 75

Demand $150 $200 $150 150 200 150

Management now wants to determine a distribution plan
(number of truckloads shipped per month from each plant to each
warehouse and from each warehouse to each retail outlet) that will
minimize the total shipping cost.
(a) Draw a network that depicts the company’s distribution net-

work. Identify the supply nodes, transshipment nodes, and de-
mand nodes in this network.

(b) Formulate this problem as a minimum cost flow problem by
inserting all the necessary data into this network.

C (c) Formulate and solve a spreadsheet model for this problem.
C (d) Use the computer to solve this problem without using Excel.

9.6-5. The Audiofile Company produces boomboxes. However,
management has decided to subcontract out the production of the
speakers needed for the boomboxes. Three vendors are available
to supply the speakers. Their price for each shipment of 1,000
speakers is shown on the next page.

To Unit Shipping Cost Shipping Capacity

From Warehouse 1 Warehouse 2 Warehouse 1 Warehouse 2 Output

Plant 1 $425 $560 125 150 200
Plant 2 $510 $600 175 200 300



In addition, each vendor would charge a shipping cost. Each ship-
ment would go to one of the company’s two warehouses. Each ven-
dor has its own formula for calculating this shipping cost based on
the mileage to the warehouse. These formulas and the mileage data
are shown below.
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Vendor Price

1 $22,500
2 $22,700
3 $22,300

Vendor Charge per Shipment

1 $300 � 40¢/mile
2 $200 � 50¢/mile
3 $500 � 20¢/mile

Vendor Warehouse 1 Warehouse 2

1 1,600 miles 1,400 miles
2 1,500 miles 1,600 miles
3 2,000 miles 1,000 miles

Unit Shipping Cost

Factory 1 Factory 2

Warehouse 1 $200 $700
Warehouse 2 $400 $500

Monthly demand 10 6
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Arc capacities

A � C: 10
B � C: 25
Others: 


Each vendor is able to supply as many as 10 shipments per
month. However, because of shipping limitations, each vendor is
able to send a maximum of only 6 shipments per month to each
warehouse. Similarly, each warehouse is able to send a maximum
of only 6 shipments per month to each factory.

Management now wants to develop a plan for each month re-
garding how many shipments (if any) to order from each vendor,
how many of those shipments should go to each warehouse, and
then how many shipments each warehouse should send to each fac-
tory. The objective is to minimize the sum of the purchase costs
(including the shipping charge) and the shipping costs from the
warehouses to the factories.
(a) Draw a network that depicts the company’s supply network.

Identify the supply nodes, transshipment nodes, and demand
nodes in this network.

(b) Formulate this problem as a minimum cost flow problem by
inserting all the necessary data into this network. Also include
a dummy demand node that receives (at zero cost) all the un-
used supply capacity at the vendors.

C (c) Formulate and solve a spreadsheet model for this problem.
C (d) Use the computer to solve this problem without using 

Excel.

Whenever one of the company’s two factories needs a ship-
ment of speakers to assemble into the boomboxes, the company
hires a trucker to bring the shipment in from one of the warehouses.
The cost per shipment is given in the next column, along with the
number of shipments needed per month at each factory.

D 9.7-1. Consider the minimum cost flow problem shown above,
where the bi values (net flows generated) are given by the nodes,
the cij values (costs per unit flow) are given by the arcs, and the
uij values (arc capacities) are given to the right of the network. Do
the following work manually.

(a) Obtain an initial BF solution by solving the feasible spanning
tree with basic arcs A � B, C � E, D � E, and C � A (a
reverse arc), where one of the nonbasic arcs (C � B) also is
a reverse arc. Show the resulting network (including bi, cij, and
uij) in the same format as the above one (except use dashed



9.7-6. Consider the Metro Water District transportation problem
presented in Table 8.12.
(a) Formulate the network representation of this problem as a min-

imum cost flow problem. (Hint: Arcs where flow is prohibited
should be deleted.)

D,I (b) Starting with the initial BF solution given in Table 8.19,
use the network simplex method yourself (without an au-
tomatic computer routine) to solve this problem. Compare
the sequence of BF solutions obtained with the sequence
obtained by the transportation simplex method in Table
8.23.

D,I 9.7-7. Consider the transportation problem having the follow-
ing parameter table:

lines to draw the nonbasic arcs), and add the flows in paren-
theses next to the basic arcs.

(b) Use the optimality test to verify that this initial BF solution is
optimal and that there are multiple optimal solutions. Apply
one iteration of the network simplex method to find the other
optimal BF solution, and then use these results to identify the
other optimal solutions that are not BF solutions.

(c) Now consider the following BF solution.
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Starting from this BF solution, apply one iteration of the network
simplex method. Identify the entering basic arc, the leaving basic
arc, and the next BF solution, but do not proceed further.

9.7-2. Reconsider the minimum cost flow problem formulated in
Prob. 9.6-1.
(a) Obtain an initial BF solution by solving the feasible spanning

tree with basic arcs A � B, A � C, A � F, B � D, and E �
F, where two of the nonbasic arcs (E � C and F � D) are
reverse arcs.

D,I (b) Use the network simplex method yourself (without an au-
tomatic computer routine) to solve this problem.

9.7-3. Reconsider the minimum cost flow problem formulated in
Prob. 9.6-2.
(a) Obtain an initial BF solution by solving the feasible spanning

tree that corresponds to using just the two rail lines plus fac-
tory 1 shipping to warehouse 2 via the distribution center.

D,I (b) Use the network simplex method yourself (without an au-
tomatic computer routine) to solve this problem.

D,I 9.7-4. Reconsider the minimum cost flow problem formulated
in Prob. 9.6-3. Starting with the initial BF solution that corre-
sponds to replacing the tractor every year, use the network sim-
plex method yourself (without an automatic computer routine) to
solve this problem.

D,I 9.7-5. For the P & T Co. transportation problem given in
Table 8.2, consider its network representation as a minimum cost
flow problem presented in Fig. 8.2. Use the northwest corner rule
to obtain an initial BF solution from Table 8.2. Then use the net-
work simplex method yourself (without an automatic computer
routine) to solve this problem (and verify the optimal solution
given in Sec. 8.1).

Formulate the network representation of this problem as a mini-
mum cost flow problem. Use the northwest corner rule to obtain
an initial BF solution. Then use the network simplex method your-
self (without an automatic computer routine) to solve the problem.

D,I 9.7-8. Consider the minimum cost flow problem shown below,
where the bi values are given by the nodes, the cij values are given
by the arcs, and the finite uij values are given in parentheses by the
arcs. Obtain an initial BF solution by solving the feasible spanning
tree with basic arcs A � C, B � A, C � D, and C � E, where
one of the nonbasic arcs (D � A) is a reverse arc. Then use the
network simplex method yourself (without an automatic computer
routine) to solve this problem.

Basic Arc Flow Nonbasic Arc

A � D 20 A � B
B � C 10 A � C
C � E 10 B � D
D � E 20

Destination

1 2 3 Supply

1 6 7 4 40
Source

2 5 8 6 60

Demand 30 40 30
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5

[50]

[80]

A
6 (uAD � 40)
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Commander Votachev steps into the cold October night and deeply inhales the smoke
from his cigarette, savoring its warmth. He surveys the destruction surrounding him—
shattered windows, burning buildings, torn roads—and smiles. His two years of work
training revolutionaries east of the Ural Mountains has proved successful; his troops
now occupy seven strategically important cities in the Russian Federation: Kazan, Perm,
Yekaterinburg, Ufa, Samara, Saratov, and Orenburg. His siege is not yet over, however.
He looks to the west. Given the political and economic confusion in the Russian Fed-
eration at this time, he knows that his troops will be able to conquer Saint Petersburg
and Moscow shortly. Commander Votachev will then be able to rule with the wisdom
and control exhibited by his communist predecessors Lenin and Stalin.

Across the Pacific Ocean, a meeting of the top security and foreign policy advis-
ers of the United States is in progress at the White House. The President has recently
been briefed about the communist revolution masterminded by Commander Votachev
and is determining a plan of action. The President reflects upon a similar October long
ago in 1917, and he fears the possibility of a new age of radical Communist rule ac-
companied by chaos, bloodshed, escalating tensions, and possibly nuclear war. He there-
fore decides that the United States needs to respond and to respond quickly. Moscow
has requested assistance from the United States military, and the President plans to
send troops and supplies immediately.

The President turns to General Lankletter and asks him to describe the prepara-
tions being taken in the United States to send the necessary troops and supplies to the
Russian Federation.

General Lankletter informs the President that along with troops, weapons, ammu-
nition, fuel, and supplies, aircraft, ships, and vehicles are being assembled at two port
cities with airfields: Boston and Jacksonville. The aircraft and ships will transfer all
troops and cargo across the Atlantic Ocean to the Eurasian continent. The general hands
the President a list of the types of aircraft, ships, and vehicles being assembled along
with a description of each type. The list is shown below.
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Transportation Type Name Capacity Speed

Aircraft C-141 Starlifter 150 tons 400 miles per hour
Ship Transport 240 tons 35 miles per hour
Vehicle Palletized Load 16,000 kilograms 60 miles per hour

System Truck

All aircraft, ships, and vehicles are able to carry both troops and cargo. Once an
aircraft or ship arrives in Europe, it stays there to support the armed forces.

The President then turns to Tabitha Neal, who has been negotiating with the NATO
countries for the last several hours to use their ports and airfields as stops to refuel and
resupply before heading to the Russian Federation. She informs the President that the
following ports and airfields in the NATO countries will be made available to the United
States military.
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The President stands and walks to the map of the world projected on a large screen
in the middle of the room. He maps the progress of troops and cargo from the United
States to three strategic cities in the Russian Federation that have not yet been seized
by Commander Votachev. The three cities are Saint Petersburg, Moscow, and Rostov.
He explains that the troops and cargo will be used both to defend the Russian cities
and to launch a counterattack against Votachev to recapture the cities he currently oc-
cupies. (The map is shown at the end of the case.)

The President also explains that all Starlifters and transports leave Boston or Jack-
sonville. All transports that have traveled across the Atlantic must dock at one of the
NATO ports to unload. Palletized load system trucks brought over in the transports will
then carry all troops and materials unloaded from the ships at the NATO ports to the
three strategic Russian cities not yet seized by Votachev. All Starlifters that have trav-
eled across the Atlantic must land at one of the NATO airfields for refueling. The planes
will then carry all troops and cargo from the NATO airfields to the three Russian cities.

(a) Draw a network showing the different routes troops and supplies may take to reach the Russ-
ian Federation from the United States.

(b) Moscow and Washington do not know when Commander Votachev will launch his next at-
tack. Leaders from the two countries have therefore agreed that troops should reach each of
the three strategic Russian cities as quickly as possible. The President has determined that
the situation is so dire that cost is no object—as many Starlifters, transports, and trucks as
are necessary will be used to transfer troops and cargo from the United States to Saint Pe-
tersburg, Moscow, and Rostov. Therefore, no limitations exist on the number of troops and
amount of cargo that can be transferred between any cities.

The President has been given the following information about the length of the avail-
able routes between cities:

Ports Airfields

Napoli London
Hamburg Berlin
Rotterdam Istanbul

From To Length of route in kilometers

Boston Berlin 7,250 km
Boston Hamburg 8,250 km
Boston Istanbul 8,300 km
Boston London 6,200 km
Boston Rotterdam 6,900 km
Boston Napoli 7,950 km
Jacksonville Berlin 9,200 km
Jacksonville Hamburg 9,800 km
Jacksonville Istanbul 10,100 km
Jacksonville London 7,900 km
Jacksonville Rotterdam 8,900 km
Jacksonville Napoli 9,400 km
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Given the distance and the speed of the transportation used between each pair of cities,
how can the President most quickly move troops from the United States to each of the three
strategic Russian cities? Highlight the path(s) on the network. How long will it take troops and
supplies to reach Saint Petersburg? Moscow? Rostov?

(c) The President encounters only one problem with his first plan: he has to sell the military de-
ployment to Congress. Under the War Powers Act, the President is required to consult with
Congress before introducing troops into hostilities or situations where hostilities will occur.
If Congress does not give authorization to the President for such use of troops, the President
must withdraw troops after 60 days. Congress also has the power to decrease the 60-day
time period by passing a concurrent resolution.

The President knows that Congress will not authorize significant spending for another
country’s war, especially when voters have paid so much attention to decreasing the national
debt. He therefore decides that he needs to find a way to get the needed troops and supplies
to Saint Petersburg, Moscow, and Rostov at the minimum cost.

Each Russian city has contacted Washington to communicate the number of troops and
supplies the city needs at a minimum for reinforcement. After analyzing the requests, General
Lankletter has converted the requests from numbers of troops, gallons of gasoline, etc., to tons
of cargo for easier planning. The requirements are listed below.

City Requirements

Saint Petersburg 320,000 tons
Moscow 440,000 tons
Rostov 240,000 tons

From To Length of route in kilometers

Berlin Saint Petersburg 1,280 km
Hamburg Saint Petersburg 1,880 km
Istanbul Saint Petersburg 2,040 km
London Saint Petersburg 1,980 km
Rotterdam Saint Petersburg 2,200 km
Napoli Saint Petersburg 2,970 km
Berlin Moscow 1,600 km
Hamburg Moscow 2,120 km
Istanbul Moscow 1,700 km
London Moscow 2,300 km
Rotterdam Moscow 2,450 km
Napoli Moscow 2,890 km
Berlin Rostov 1,730 km
Hamburg Rostov 2,470 km
Istanbul Rostov 990 km
London Rostov 2,860 km
Rotterdam Rostov 2,760 km
Napoli Rostov 2,800 km



Both in Boston and Jacksonville there are 500,000 tons of the necessary cargo avail-
able. When the United States decides to send a plane, ship, or truck between two cities, sev-
eral costs occur—fuel costs, labor costs, maintenance costs, and appropriate port or airfield
taxes and tariffs. These costs are listed below.
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The President faces a number of restrictions when trying to satisfy the requirements.
Early winter weather in northern Russia has brought a deep freeze with much snow. There-
fore, General Lankletter is opposed to sending truck convoys in the area. He convinces the
President to supply Saint Petersburg only through the air. Moreover, the truck routes into
Rostov are quite limited, so that from each port at most 2,500 trucks can be sent to Rostov.
The Ukrainian government is very sensitive about American airplanes flying through their
air space. It restricts the U.S. military to at most 200 flights from Berlin to Rostov and to at
most 200 flights from London to Rostov. (The U.S. military does not want to fly around the
Ukraine and is thus restricted by the Ukrainian limitations.)

How does the President satisfy each Russian city’s military requirements at minimum
cost? Highlight the path to be used between the United States and Russian Federation on the
network.

From To Cost

Boston Berlin $50,000 per Starlifter
Boston Hamburg $30,000 per transport
Boston Istanbul $55,000 per Starlifter
Boston London $45,000 per Starlifter
Boston Rotterdam $30,000 per transport
Boston Napoli $32,000 per transport
Jacksonville Berlin $57,000 per Starlifter
Jacksonville Hamburg $48,000 per transport
Jacksonville Istanbul $61,000 per Starlifter
Jacksonville London $49,000 per Starlifter
Jacksonville Rotterdam $44,000 per transport
Jacksonville Napoli $56,000 per transport
Berlin Saint Petersburg $24,000 per Starlifter
Hamburg Saint Petersburg $ 3,000 per truck
Istanbul Saint Petersburg $28,000 per Starlifter
London Saint Petersburg $22,000 per Starlifter
Rotterdam Saint Petersburg $ 3,000 per truck
Napoli Saint Petersburg $ 5,000 per truck
Berlin Moscow $22,000 per Starlifter
Hamburg Moscow $ 4,000 per truck
Istanbul Moscow $25,000 per Starlifter
London Moscow $19,000 per Starlifter
Rotterdam Moscow $ 5,000 per truck
Napoli Moscow $ 5,000 per truck
Berlin Rostov $23,000 per Starlifter
Hamburg Rostov $ 7,000 per truck
Istanbul Rostov $ 2,000 per Starlifter
London Rostov $ 4,000 per Starlifter
Rotterdam Rostov $ 8,000 per truck
Napoli Rostov $ 9,000 per truck



(d) Once the President releases the number of planes, ships, and trucks that will travel between
the United States and the Russian Federation, Tabitha Neal contacts each of the American
cities and NATO countries to indicate the number of planes to expect at the airfields, the
number of ships to expect at the docks, and the number of trucks to expect traveling across
the roads. Unfortunately, Tabitha learns that several additional restrictions exist which can-
not be immediately eliminated. Because of airfield congestion and unalterable flight sched-
ules, only a limited number of planes may be sent between any two cities. These plane lim-
itations are given below.
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In addition, because some countries fear that citizens will become alarmed if too many
military trucks travel the public highways, they object to a large number of trucks traveling
through their countries. These objections mean that a limited number of trucks are able to
travel between certain ports and Russian cities. These limitations are listed below.

From To Maximum

Rotterdam Moscow 600 trucks
Rotterdam Rostov 750 trucks
Hamburg Moscow 700 trucks
Hamburg Rostov 500 trucks
Napoli Moscow 1,500 trucks
Napoli Rostov 1,400 trucks

Tabitha learns that all shipping lanes have no capacity limits, owing to the American
control of the Atlantic Ocean.

The President realizes that because of all the restrictions he will not be able to satisfy
all the reinforcement requirements of the three Russian cities. He decides to disregard the

From To Maximum

Boston Berlin 300 airplanes
Boston Istanbul 500 airplanes
Boston London 500 airplanes
Jacksonville Berlin 500 airplanes
Jacksonville Istanbul 700 airplanes
Jacksonville London 600 airplanes
Berlin Saint Petersburg 500 airplanes
Istanbul Saint Petersburg 0 airplanes
London Saint Petersburg 1,000 airplanes
Berlin Moscow 300 airplanes
Istanbul Moscow 100 airplanes
London Moscow 200 airplanes
Berlin Rostov 0 airplanes
Istanbul Rostov 900 airplanes
London Rostov 100 airplanes



cost issue and instead to maximize the total amount of cargo he can get to the Russian cities.
How does the President maximize the total amount of cargo that reaches the Russian Fed-
eration? Highlight the path(s) used between the United States and the Russian Federation
on the network.

(e) Even before all American troops and supplies had reached Saint Petersburg, Moscow, and
Rostov, infighting among Commander Votachev’s troops about whether to make the next at-
tack against Saint Petersburg or against Moscow split the revolutionaries. Troops from
Moscow easily overcame the vulnerable revolutionaries. Commander Votachev was impris-
oned, and the next step became rebuilding the seven cities razed by his armies.

The President’s top priority is to help the Russian government to reestablish commu-
nications between the seven Russian cities and Moscow at minimum cost. The price of in-
stalling communication lines between any two Russian cities varies given the cost of ship-
ping wire to the area, the level of destruction in the area, and the roughness of the terrain.
Luckily, a city is able to communicate with all others if it is connected only indirectly to
every other city. Saint Petersburg and Rostov are already connected to Moscow, so if any of
the seven cities is connected to Saint Petersburg or Rostov, it will also be connected to
Moscow. The cost of replacing communication lines between two given cities for which this
is possible is shown below.
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Where should communication lines be installed to minimize the total cost of reestab-
lishing communications between Moscow and all seven Russian cities?

Between Cost to Reestablish Communication Lines

Saint Petersburg and Kazan $210,000
Saint Petersburg and Perm $185,000
Saint Petersburg and Ufa $225,000
Moscow and Ufa $310,000
Moscow and Samara $195,000
Moscow and Orenburg $440,000
Moscow and Saratov $140,000
Rostov and Saratov $200,000
Rostov and Orenburg $120,000
Kazan and Perm $150,000
Kazan and Ufa $105,000
Kazan and Samara $ 95,000
Perm and Yekaterinburg $ 85,000
Perm and Ufa $125,000
Yekaterinburg and Ufa $125,000
Ufa and Samara $100,000
Ufa and Orenburg $ 75,000
Saratov and Samara $100,000
Saratov and Orenburg $ 95,000
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Jake Nguyen runs a nervous hand through his once finely combed hair. He loosens his
once perfectly knotted silk tie. And he rubs his sweaty hands across his once immac-
ulately pressed trousers.

Today has certainly not been a good day.
Over the past few months, Jake had heard whispers circulating from Wall Street—

whispers from the lips of investment bankers and stockbrokers famous for their out-
spokenness. They had whispered about a coming Japanese economic collapse—whis-
pered because they had believed that publicly vocalizing their fears would hasten the
collapse.

And today, their very fears have come true. Jake and his colleagues gather round
a small television dedicated exclusively to the Bloomberg channel. Jake stares in dis-
belief as he listens to the horrors taking place in the Japanese market. And the Japan-
ese market is taking the financial markets in all other East Asian countries with it on
its tailspin. He goes numb. As manager of Asian foreign investment for Grant Hill As-
sociates, a small West Coast investment boutique specializing in currency trading, Jake
bears personal responsibility for any negative impacts of the collapse.

And Grant Hill Associates will experience negative impacts.
Jake had not heeded the whispered warnings of a Japanese collapse. Instead, he

had greatly increased the stake Grant Hill Associates held in the Japanese market. Be-
cause the Japanese market had performed better than expected over the past year, Jake
had increased investments in Japan from 2.5 million to 15 million dollars only 1 month
ago. At that time, 1 dollar was worth 80 yen.

No longer. Jake realizes that today’s devaluation of the yen means that 1 dollar is
worth 125 yen. He will be able to liquidate these investments without any loss in yen,
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but now the dollar loss when converting back into U.S. currency would be huge. He
takes a deep breath, closes his eyes, and mentally prepares himself for serious damage
control.

Jake’s meditation is interrupted by a booming voice calling for him from a large
corner office. Grant Hill, the president of Grant Hill Associates, yells, “Nguyen, get
the hell in here!”

Jake jumps and looks reluctantly toward the corner office hiding the furious Grant
Hill. He smooths his hair, tightens his tie, and walks briskly into the office.

Grant Hill meets Jake’s eyes upon his entrance and continues yelling, “I don’t want
one word out of you, Nguyen! No excuses; just fix this debacle! Get all of our money
out of Japan! My gut tells me this is only the beginning! Get the money into safe U.S.
bonds! NOW! And don’t forget to get our cash positions out of Indonesia and Malaysia
ASAP with it!”

Jake has enough common sense to say nothing. He nods his head, turns on his heel,
and practically runs out of the office.

Safely back at his desk, Jake begins formulating a plan to move the investments
out of Japan, Indonesia, and Malaysia. His experiences investing in foreign markets
have taught him that when playing with millions of dollars, how he gets money out of
a foreign market is almost as important as when he gets money out of the market. The
banking partners of Grant Hill Associates charge different transaction fees for con-
verting one currency into another one and wiring large sums of money around the globe.

And now, to make matters worse, the governments in East Asia have imposed very
tight limits on the amount of money an individual or a company can exchange from
the domestic currency into a particular foreign currency and withdraw it from the coun-
try. The goal of this dramatic measure is to reduce the outflow of foreign investments
out of those countries to prevent a complete collapse of the economies in the region.
Because of Grant Hill Associates’ cash holdings of 10.5 billion Indonesian rupiahs and
28 million Malaysian ringgits, along with the holdings in yen, it is not clear how these
holdings should be converted back into dollars.

Jake wants to find the most cost-effective method to convert these holdings into
dollars. On his company’s website he always can find on-the-minute exchange rates
for most currencies in the world (Table 1).

The table states that, for example, 1 Japanese yen equals 0.008 U.S. dollars. By
making a few phone calls he discovers the transaction costs his company must pay for
large currency transactions during these critical times (Table 2).

Jake notes that exchanging one currency for another one results in the same trans-
action cost as a reverse conversion. Finally, Jake finds out the maximum amounts of
domestic currencies his company is allowed to convert into other currencies in Japan,
Indonesia, and Malaysia (Table 3).

(a) Formulate Jake’s problem as a minimum cost flow problem, and draw the network for his
problem. Identify the supply and demand nodes for the network.

(b) Which currency transactions must Jake perform in order to convert the investments from
yen, rupiah, and ringgit into U.S. dollars to ensure that Grant Hill Associates has the max-
imum dollar amount after all transactions have occurred? How much money does Jake have
to invest in U.S. bonds?



(c) The World Trade Organization forbids transaction limits because they promote protection-
ism. If no transaction limits exist, what method should Jake use to convert the Asian hold-
ings from the respective currencies into dollars?

(d) In response to the World Trade Organization’s mandate forbidding transaction limits, the In-
donesian government introduces a new tax that leads to an increase of transaction costs for
transaction of rupiah by 500 percent to protect their currency. Given these new transaction
costs but no transaction limits, what currency transactions should Jake perform in order to
convert the Asian holdings from the respective currencies into dollars?
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TABLE 1 Currency exchange rates

To U.S. Canadian
From Yen Rupiah Ringgit Dollar Dollar Euro Pound Peso

Japanese yen 1 50 0.04 0.008 0.01 0.0064 0.0048 0.0768

Indonesian rupiah 1 0.0008 0.00016 0.0002 0.000128 0.000096 0.001536

Malaysian ringgit 1 0.2 0.25 0.16 0.12 1.92

U.S. dollar 1 1.25 0.8 0.6 9.6

Canadian dollar 1 0.64 0.48 7.68

European euro 1 0.75 12

English pound 1 16

Mexican peso 1

TABLE 2 Transaction cost, percent

To U.S. Canadian
From Yen Rupiah Ringgit Dollar Dollar Euro Pound Peso

Yen — 0.5 0.5 0.4 0.4 0.4 0.25 0.5

Rupiah — 0.7 0.5 0.3 0.3 0.75 0.75

Ringgit — 0.7 0.7 0.4 0.45 0.5

U.S. dollar — 0.05 0.1 0.1 0.1

Canadian dollar — 0.2 0.1 0.1

Euro — 0.05 0.5

Pound — 0.5

Peso —



(e) Jake realizes that his analysis is incomplete because he has not included all aspects that might
influence his planned currency exchanges. Describe other factors that Jake should examine
before he makes his final decision.
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TABLE 3 Transaction limits in equivalent of 1,000 dollars

To U.S. Canadian
From Yen Rupiah Ringgit Dollar Dollar Euro Pound Peso

Yen — 5,000 5,000 2,000 2,000 2,000 2,000 4,000

Rupiah 5,000 — 2,000 200 200 1,000 500 200

Ringgit 3,000 4,500 — 1,500 1,500 2,500 1,000 1,000
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