
Solved Examples for Chapter 13 
 
Example for Section 13.5 

Consider the following unconstrained optimization problem: 
 
 Maximize   f (x) = 2x1x2 ! 2x1

2 ! x2
2 . 
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(a) Starting from the initial trial solution (x1, x2)  = (1, 1), interactively apply the 
gradient search procedure with ε  = 0.5 to obtain an approximate solution. 
 

Since ε = 0.5, we will stop the gradient search procedure if 
jx
f

!
!  ≤ 0.5 for both j = 1 and 

2. Starting from (x1, x2)  = (1, 1), the first iteration proceeds as follows. 
 
 ∇f(x) = (-4x1 + 2x2, 2x1 - 2x2) = (-2, 0)   at x = (1, 1). 
 x + t∇f(x) = (1 + t(-2), 1 + t(0)) = (1 - 2t, 1). 
 f(x + t∇f(x)) = 2(1 - 2t)(1) - 2(1 - 2t)2 - 12 = -8t2 + 4t - 1. 
 
To find the value of t that maximizes f(x + t∇f(x)) for t ≥ 0, we set 
 

 df (x + t!f (x))
dt

 = -16t + 4 = 0, 

 
so 
 
 t* = 0.25. 
 
Therefore,  
 
 x + t*∇f(x) = (1, 1) + 0.25(-2, 0) = (0.5, 1) 
 
is the new trial solution to use for iteration 2. 
 Letting x’ always denote the trial solution being used for the current iteration, the 
following table shows all the iterations of the gradient search procedure, which 
terminates at the beginning of iteration 4 (because of the stopping rule) with (x1, x2) = 
(0.25, 0.5) as the desired approximation of the optimal solution. 
 
 
 



Iteration x’ ∇f(x’) x’ + t∇f(x’) f(x’ + t∇f(x’)) t* x’ + 
t*∇f(x’) 

1 (1, 1) (-2, 0) (1-2t, 1) -8t2 + 4t -1 0.25 (0.5, 1) 
2 (0.5, 1) (0, -1) (0.5, 1-t) -t2 + t - 0.5 0.5 (0.5, 0.5) 
3 (0.5, 0.5) (-1, 0) (0.5-t, 0.5) -2t2 + t – 0.25 0.25 (0.25, 0.5) 
4 (0.25, 0.5) (0, -0.5)     

 
 
(b) Solve the system of linear equations obtained by setting ∇f(x) = 0 to obtain the 
exact solution. 
 
Solving the system,  
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we obtain the exact optimal solution, (x1

*, x2
*) = (0, 0).  

 
(c) Referring to Fig. 13.14 as a sample for a similar problem, draw the path of trial 
solutions you obtained in part (a). Then show the apparent continuation of this path 
with your best guess for the next three trial solutions [based on the pattern in part 
(a) and in Fig. 13.14]. Also show the exact optimal solution from part (b) toward 
which this sequence of trial solutions is converging. 
  
The path of trial solutions from part (a), the guess for the next three trial solutions, and 
the exact optimal solution all are shown in the following figure. 
 



 
(d) Apply the automatic routine for the gradient search procedure (with ε  = 0.01) in 
your IOR Tutorial to this problem. 
 
 As shown next, the IOR Tutorial finds the solution, (x1, x2) = (0.004, 0.008), which is a 
close approximation of the exact optimal solution at (x1, x2) = (0, 0). 
 



 
 

Example for Section 13.6 

Consider the following linearly constrained optimization problem: 
 
 Maximize   f(x) = ln(1+ x1+x2), 
 subject to    
  x1 + 2 x2   ≤  5 
 and 
              x1 ≥ 0,  x2 ≥ 0, 
  
where ln denotes the natural logarithm. 
 
(a) Verify that this problem is a convex programming problem. 
 



 ∇f(x1, x2) = (1/(1+x1+x2), 1/(1+x1+x2))  
 
Using the concavity test for a function of two variables given in Appendix 2 (see Table 
A2.1), since 
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the objective function is concave. Also, it is easy to see that the feasible region is a 
convex set. Hence, this is a convex programming program.  
 
(b) Use the KKT conditions to derive an optimal solution. 
 
The KKT conditions are: 
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     3 .                             x1 + 2 x2 -5  ≤  0 
     4.   u (x1 + 2 x2 –5) = 0 
     5.   x1 ≥ 0,  x2 ≥ 0, 
     6.   u ≥ 0. 
 
Suppose u > 0. This implies that x1 + 2 x2   =  5, from condition 4. Suppose x2 = 0, so  x1   
=  5.  Then u = 1/6 from condition 2 (j=1). It is easy to verify that (x1, x2)  = (5, 0) and u = 
1/6 satisfy the KKT conditions listed above. Hence, (x1, x2)  = (5, 0) is an optimal 
solution. 
 
(c) Use intuitive reasoning to demonstrate that the solution obtained in part (b) is 
indeed optimal. [Hint: Note that ln(1+ x1+x2) is a monotonic strictly increasing 
function of (1+ x1+x2).] 



 
From the hint, the function ln(1+ x1+x2) is a monotonically increasing function of (1+ 
x1+x2). Hence, the original problem is equivalent to the following linear programming 
problem: 
 
 Maximize    Z = 1+ x1+x2, 
 subject to    
   x1 + 2 x2   ≤  5 
 and 
                     x1 ≥ 0,  x2 ≥ 0.  
 
It then is straightforward (e.g., by using the graphical method) to find that (x1, x2) = (5, 0) 
is the optimal solution for this linear programming problem, and so for the original 
problem as well. 
 
Example for Section 13.7 

Jim Matthews, Vice-President for Marketing of the J.R. Nickel Company, is planning 
advertising campaigns for two unrelated products. These two campaigns need to use 
some of the same resources. Therefore, Jim knows that his decisions on the levels of the 
two campaigns need to be made jointly after considering these resource constraints. In 
particular, letting x1 and x2   denote the levels of campaigns 1 and 2, respectively, these 
constraints are 4x1 + x2 ≤ 20 and x1 + 4x2 ≤ 20. 
 In facing these decisions, Jim is well aware that there is a point of diminishing 
returns when raising the level of an advertising campaign too far. At that point, the cost 
of additional advertising becomes larger than the increase in net revenue (excluding 
advertising costs) generated by the advertising. After careful analysis, he and his staff 
estimate that the net profit from the first product (including advertising costs) when 
conducting the first campaign at level  x1 would be  3x1 - ( x1   - 1)2 in millions of dollars. 
The corresponding estimate for the second product is  3x2 - ( x2   - 2)2. 
 This analysis led to the following quadratic programming model for determining 
the levels of the two advertising campaigns: 
 
 Maximize   Z =  3x1 - ( x1   - 1)2 + 3x2 - (x2   - 2)2, 
 subject to 
    4x1 +   x2  ≤ 20 
      x1 + 4x2  ≤ 20 
 and 
    x1 ≥ 0,  x2 ≥ 0. 
 
(a) Obtain the KKT conditions for this problem in the form given in Sec. 13.6. 
 
The KKT conditions of the given quadratic program are 
 
     1(j=1).       -2(x1-1) +3 –4 u1 – u2  ≤ 0, 
     2(j=1).     x1(-2(x1-1) +3 –4 u1 – u2) = 0, 



     1(j=2).     -2(x2-2) +3 – u1 – 4 u2  ≤ 0, 
     2(j=2).     x2(-2(x2-2) +3 – u1 – 4 u2 ) = 0, 
     3(j=1).       4 x1 +   x2 – 20  ≤ 0, 
     3(j=2).         x1 + 4 x2 – 20  ≤ 0, 
     4(j=1).     u1(4 x1 + x2 – 20) = 0, 
     4(j=2).     u2( x1 + 4 x2 – 20) = 0, 
     5.                x1 ≥ 0,   x2 ≥ 0,             
     6.                u1 ≥ 0,   u2 ≥ 0. 
 
(b) You are given the information that the optimal solution does not lie on the 
boundary of the feasible region. Use this information to derive the optimal solution 
from the KKT conditions. 
 
Since the optimal solution does not lie on the boundary of the feasible region, we know 
that  
 
 x1 > 0,   x2 > 0,   4 x1 +   x2 – 20  < 0,   and   x1 +  4 x2 – 20  < 0.  
 
From conditions 2(j=1) and 2(j=2), we then have  
 
 -2(x1-1) +3 –4 u1 – u2 = 0    and   -2(x2-2) +3 – u1 – 4 u2  = 0. 
  
From conditions 4(j=1) and 4(j=2), we also have    
 
 u1 = u2 = 0.        
 
Hence, we obtain 
 
             –2 x1 + 5 = 0, 
                         -2 x2 + 7 = 0. 
  
Solving for x1 and x2, the optimal solution is x1 = 5/2, x2 = 7/2.  
 
(c) Now suppose that this problem is to be solved by the modified simplex method. 
Formulate the linear programming problem that is to be addressed explicitly, and 
then identify the additional complementarity constraint that is enforced 
automatically by the algorithm. 
 
 After introducing nonnegative slack variables (denoted by y1, y2, v1, and v2, 
respectively), conditions 1 and 3 of the KKT conditions can be reexpressed as 
 
  1(j = 1). -2x1  - 4u1   - u2     + y1   = -5 
  1(j = 2).  - 2x2    -u1 -4u2         + y2  = -7 
  3(j = 1). 4x1 +  x2        +  v1  = 20 
  3(j = 2).   x1 + 4x2     +v2 = 20. 
 



Thus, conditions 2 and 4 can be reexpressed as 
 
  2(j = 1). x1y1 = 0 
  2(j = 2). x2y2 = 0 
  4(j = 1). u1v1 = 0 
  4(j = 2). u2v2 = 0 
 
These conditions 2 and 4 are equivalent to 
 
 x1y1 + x2y2 + u1v1 + u2v2 = 0. 
 
 To find an optimal solution for the original problem, we need to find a feasible 
solution for the KKT conditions, including this last equation, the new expressions for 
conditions 1 and 3, and conditions 5 and 6, plus nonnegativity constraints on y1, y2, v1, 
and v2. However, the new expressions for conditions 1 and 3 are in the form of linear 
programming constraints, so we can use a procedure for finding an initial BF solution for 
these constraints. Using phase 1 of the two-phase method (presented in Sec. 4.6), we need 
to multiply through the expressions for condition 1 by (-1) and introduce artificial 
variables (denoted by z1 and z2) in order to obtain positive right-hand sides. 
 
 2x1    + 4u1    +   u2     -y1        +z1  = 5 
        2x2  +    u1     + 4u2  -y2   + z2 = 7 
 
Phase 1 then involves minimizing the sum of the artificial variables, subject to the  linear 
programming constraints. 
 Therefore, the linear programming problem that is to be addressed explicitly by 
the modified simplex method is  
 
Minimize      Z =                                                         z1    +  z2,  
subject to:     
  2x1           + 4 u1  +    u2  –    y1         + z1                            =  5 
                                  2x2 +    u1  + 4 u2            – y2           +  z2                     =  7 
                        4x1  +  x2                                                             + v1            = 20 
                       x1  +  4 x2                                                                     + v2    = 20 
and 
           x1 ≥ 0,  x2 ≥ 0,  u1 ≥ 0,  u2 ≥ 0,  y1 ≥ 0,  y2 ≥ 0,  z1 ≥ 0,  z2 ≥ 0,  v1 ≥ 0,  v2 ≥ 0. 
 
The additional complementarity constraint is x1 y1 + x2 y2 + u1 v1 + u2 v2 = 0. 
 
(d) Apply the modified simplex method to the problem as formulated in part (c). 
 
Applying the modified simplex algorithm to the linear programming problem in part (c), 
after restoring proper form from Gaussian elimination to the initial system of equations 
by algebraically eliminating z1 and z2 from Eq. (0), we obtain the following simplex 
tableaux: 
 



Basic 
Variable 

 
Eq 

Coefficient of: Right  
Side Z x1 x2 u1 u2 y1 y2 z1 z2 v1 v2 

Z (0) -1 -2 -2 -5 -5 1 1 0 0 0 0 -12 
z1 (1) 0 2 0 4 1 -1 0 1 0 0 0 5 
z2 (2) 0 0 2 1 4 0 -1 0 1 0 0 7 
v1 (3) 0 4 1 0 0 0 0 0 0 1 0 20 
v2 (4) 0 1 4 0 0 0 0 0 0 0 1 20 
Z (0) -1 0 -2 -1 -4 0 1 1 0 0 0 -7 
x1 (1) 0 1 0 2 0.5 -0.5 0 0.5 0 0 0 2.5 
z2 (2) 0 0 2 1 4 0 -1 0 1 0 0 7 
v1 (3) 0 0 1 -8 -2 2 0 -2 0 1 0 10 
v2 (4) 0 0 4 -2 -0.5 0.5 0 -0.5 0 0 1 17.5 
Z (0) -1 0 0 0 0 0 0 1 1 0 0 0 
x1 (1) 0 1 0 2 0.5 -0.5 0 0.5 0 0 0 2.5 
x2 (2) 0 0 1 0.5 2 0 -0.5 0 0.5 0 0 3.5 
v1 (3) 0 0 0 -8.5 -4 2 0.5 -2 -0.5 1 0 6.5 
v2 (4) 0 0 0 -4 -8.5 0.5 2 -0.5 -2 0 1 3.5 

 
 Note that x1 (or x2) is the initial entering basic variable instead of u1 or u2 because 
the latter variables are prohibited from playing this role by the restricted-entry rule since 
v1  and v2 already are basic variables. In the second tableau, x2 is the entering basic 
variable instead of u2 for the same reason. 
 
  The final tableau shows that x1 = 2.5, x2 = 3.5 is optimal with u1 = u2 = 0. 
 
(e) Use the computer to solve the quadratic programming problem directly. 
 
Using IOR Tutorial to solve the quadratic programming problem obtains the optimal 
solution, (x1, x2) = (2.5, 3.5). 
 
Example for Section 13.8 

Reconsider the scenario described in the preceding example. This description is repeated 
below. 
 Jim Matthews, Vice-President for Marketing of the J.R. Nickel Company, is 
planning advertising campaigns for two unrelated products. These two campaigns need to 
use some of the same resources. Therefore, Jim knows that his decisions on the levels of 
the two campaigns need to be made jointly after considering these resource constraints. In 
particular, letting x1 and x2   denote the levels of campaigns 1 and 2, respectively, these 
constraints are 4x1 + x2   ≤ 20 and x1 + 4x2   ≤ 20. 
 In facing these decisions, Jim is well aware that there is a point of diminishing 
returns when raising the level of an advertising campaign too far. At that point, the cost 
of additional advertising becomes larger than the increase in net revenue (excluding 
advertising costs) generated by the advertising. After careful analysis, he and his staff 
estimate that the net profit from the first product (including advertising costs) when 



conducting the first campaign at level  x1 would be  3x1 - ( x1   - 1)2 in millions of dollars. 
The corresponding estimate for the second product is  3x2 - ( x2   - 2)2. 
 This analysis led to the following quadratic programming model for determining 
the levels of the two advertising campaigns: 
 
 Maximize   Z =  3x1 - ( x1   - 1)2 + 3x2 - ( x2   - 2)2, 
 subject to 
    4x1 +   x2  ≤ 20 
      x1 + 4x2  ≤ 20 
 and 
    x1 ≥ 0,  x2 ≥ 0. 
 
(a) Use the separable programming formulation presented in Sec. 13.8 to formulate 
an approximate linear programming model for this problem. Use  0, 2.5,  and 5 as 
the breakpoints for both x1  and x2  for the piecewise linear functions. 
 
The objective function can be written as 
 
 Z = f1(x1) + f2(x2), 
 
where 
 
 f1(x1) = 3x1 - (x1 - 1)2, 
 f2(x2) = 3x2 - (x2 - 2)2.  
 
Then,  
 
 f1(0) = !1,  f1(2.5) = 5.25 ,  f1(5) = !1,  
 f2 (0) = !4 ,  f2 (2.5) = 7.25 ,  and  f2 (5) = 6 . 
 
      Hence, the slopes of the respective segments of the piecewise linear functions are 
 

  s11 =
5.25 ! (!1)
2.5 ! 0

= 2.5 ,            s12 =
!1! 5.25
5 ! 2.5

= !2.5, 

 
                   s21 =

7.25 ! (!4)
2.5 ! 0

= 4.5 ,           s22 =
6 ! 7.25
5

! 2.5 = !0.5 . 

 
Let x11, x12, x21, and x22 be the variables that correspond to the respective segments of the 
piecewise linear functions, so that 
 
 x1 = x11 + x12, 
 x2 = x21 + x22. 
 
Then the approximate linear programming model is 
 



 Maximize   Z = 2.5 x11 - 2.5 x12 +  4.5 x21  -  0.5 x22, 
 subject to 
              4 x11 +    4 x12   +      x21   +        x22  ≤  20 
                            x11 +       x12   +   4  x21   +  4   x22  ≤  20 
 and 
                                   0 ≤ xij  ≤  2.5,      for i, j = 1, 2. 
 
(b)  Use the computer to solve the model formulated in part (a). Then reexpress  this 
solution in terms of the original variables of the problem. 
 
We use Solver to find the optimal solution, (x11, x12, x21, x22) = (2.5, 0, 2.5, 0) with Z = 
17.5. In terms of the original variables, we have  
 
 x1 = x11+ x12 = 2.5,  
 x2 = x21+ x22 = 2.5.  
 
(For the original model, Z = 12.5, where the difference arises from the fact that the 
approximate model drops constants, f1(0) = -1 and f2(0) = -4, from the objective function.) 
 
 
(c) To improve the approximation, now use  0, 1, 2, 3, 4, and 5 as the breakpoints for 
both x1  and x2 for the piecewise linear functions and repeat parts (a) and (b). 
 
As before, 
 
 Z = f1(x1) + f2(x2). 
 
The values of these functions at the breakpoints are 
 
 f1(0) = !1,  f1(1) = 3 ,  f1(2) = 5 ,  f1(3) = 5 ,  f1(4) = 3,  f1(5) = !1, 
 
f2 (0) = !4 ,  f2 (1) = 2 ,  f2 (2) = 6 ,  f2 (3) = 8,  f2 (4) = 8,  and  f2 (5) = 6 . 

 
Hence, the slopes of the respective segments of the piecewise linear functions are 
 
 s11 = 4,        s12 = 2,  s13 = 0,  s14 = -2, s15 = -4, 
 s21 = 6,  s22 = 4,  s23 = 2,  s24 = 0,  s25 = -2. 
 
Introducing a new variable xij (i = 1, 2; j = 1, 2, 3, 4, 5) for each of these segments, we 
have 
 
 x1 = x11 + x12 + x13 + x14 + x15, 
 x2 = x21 +x22 + x23 + x24 + x25. 
 
Then the approximate linear programming model is 
 



Maximize   Z = 4x11 + 2x12  + 0x13 - 2 x14 - 4 x15  + 6x21 + 4 x22  + 2x23 + 0x24 - 2x25,   
subject to 
     4x11 +  4x12  + 4x13 + 4x14 + 4x15  +   x21  +   x22  +   x23  +   x24  +   x25  ≤  20 
       x11 +    x12  +   x13 +   x14 +   x15  + 4x21  + 4x22  + 4x23  + 4x24  + 4x25  ≤  20 
and 
                                  0 ≤ xij  ≤  1,      for i = 1, 2  and   j = 1, 2, 3, 4, 5. 
 
 
 We next use Solver to find the optimal solution, (x11, x12, x15, x14, x15, x21, x22, x23, x24, 
x25) = (1, 1, 0, 0, 0, 1, 1, 1, 0, 0) with Z = 18. In terms of the original variables, we have 
  
 x1 = x11+x12 + x13+x14 +x15 = 2, 
 x2 = x21+x22 + x23+x24 +x25 = 3. 
 
Note that we improve Z from 17.5 to 18 (or from 12.5 to 13 for the original model). 
 
 
Example 1 for Section 13.9 

Consider the following constrained optimization problem: 
 
 Maximize   f(x) = ln(1+ x1+x2) 
 subject to   
    x1 + 2 x2  ≤  5 
 and 
                    x1 ≥ 0,  x2 ≥ 0.  
 
While analyzing this same problem in the Solved Example for Section 13.6, we found 
that it is, in fact, a convex programming problem and that the optimal solution is 
 
 (x1, x2) = (5, 0). 
 
 Starting from the initial trial solution (x1 , x2) = (1, 1), use one iteration of the 
Frank-Wolfe algorithm to obtain the optimal solution, (x1 , x2) = (5, 0). Then use a 
second iteration to verify that it is an optimal solution (because it is replicated 
exactly). Explain why exactly the same results would be obtained on these two 
iterations with any other initial trial solution.  
 
 To start each iteration, we will need to evaluate 
 

 !f x( )  =  1
1 + x1 + x2

,
1

1+ x1 + x2

! 

" 
# # 

$ 

% 
& &   

 
at the current trial solution x, and then set (c1, c2) = !f x( ) , before proceeding as 
described in Sec. 13.9. 



 
Iteration 1: 
 
At the initial trial solution x(0) = (1, 1), we have  
 
 ∇f(1, 1) = (1/3, 1/3) = (c1, c2). 
 
We then solve the following linear programming problem: 
 
 Maximize   Z = (1/3) x1 + (1/3) x2,  
 subject to 
         x1 + 2 x2  ≤  5 
 and 
                    x1 ≥ 0,  x2 ≥ 0.  
 
The optimal solution is x(1)

LP = (5, 0). 
 
 For the variable t  (0 ≤ t ≤ 1), we then define the function h(t) as  
h(t) = f(x) where 
 
 x = x(0) + t ( xLP

(1)
 - x(0) ) = (1, 1) + t (4, -1) = (1+4t, 1-t),   for  0 ≤ t ≤ 1.  

 
Hence,  
 
 h(t) = ln(1+1+4t+1-t) = ln(3+3t),   for  0 ≤ t ≤ 1. 
 
To choose the value of t, we solve the following problem: 
 
 Maximize    h(t) = ln (3 + 3t), 
 subject to    
    0 ≤ t ≤ 1, 
 
which yields  t* = 1. Hence,  
 
 x(1) = x(0) + t* ( xLP

(1)
 - x(0) ) = (5, 0), 

 
which happens to be the optimal solution. 
 
Iteration 2: 
  
At the new trial solution, x(1) = (5, 0),  we have  
 
 ∇f(5, 0) = (1/6, 1/6) = (c1, c2). 
 
 
We then solve the following linear programming problem: 



 
 Maximize   Z = (1/6) x1 + (1/6) x2,  
 subject to      
   x1 + 2 x2  ≤  5 
 and 
                          x1 ≥ 0,  x2 ≥ 0.  
 
The optimal solution is x(2)

LP = (5, 0). Since x(2)
LP – x(1) = (0, 0), this implies that  

x(2) = (5, 0) = x(k) for all k =  2, 3, .…Hence, (x1, x2) =  (5, 0) is indeed the optimal 
solution.  
 
Results for Any Other Initial Trial Solution: 
 
Now consider any other initial trial solution x(0) ≠ (1, 1).  Since x1 ≥ 0, x2 ≥ 0, 
 

  !f
!x1

=
!f
!x2

 = 1
1 + x1 + x2

 > 0. 

 
Therefore, the beginning of iteration 1 immediately leads to 
 
 c1 = c2 > 0, 
 
so the resulting linear programming problem, 
 
 Maximize Z = c1x1 + c2x2, 
 subject to 
   x1 + 2x2 ≤ 5 
 and 
   x1 ≥ 0,   x2 ≥ 0, 
 
has the optimal solution xLP

(1)  = (5, 0), just as above, so the algorithm thereafter proceeds 
as outlined above. Consequently, the results obtained at the end of the two iterations are 
exactly the same as above when the initial trial solution was (x1, x2) = (1, 1). 
 
Example 2 for Section 13.9 

Consider the following convex programming problem: 
 

 Minimize    f(x) = 
x1 +1( )3
3

 + x2, 

 subject to 
   x1 ≥ 1   and x2 ≥ 0. 
 
(a) If SUMT were applied directly to this problem, what would be the unconstrained 
function P(x; r) to be minimized at each iteration? 



 
Since minimizing f(x) is equivalent to maximizing –f(x),  the formula for P(x; r) given in 
Sec. 13.9 yields 
 

  P(x;r) = ! f (x) ! r(
1

x1 !1
+
1
x2
) = !

(x1 + 1)3

3
! x2 ! r(

1
x1 !1

+
1
x2
) . 

 
(b) Derive the minimizing solution of P(x; r) analytically, and then give this solution 
for r = 1, 10-2, 10-4, 10-6.  
 
The optimal solution x* of P(x; r) satisfies ∇x P(x; r) = 0.  
In particular, we are solving these two equations: 
 

 !P(x;r )
!x1

= " (x1 + 1)
2 + r

1
(x1 "1)2

= 0 ,    

 !P(x;r )
!x2

= "1 + r
x2
2 = 0 . 

 
The solution is  
 
 ( x1*, x2* ) = ),1( rr+ .  
 
The solution for various r is given in the table below.  
 

r x1*  x2*  
1 1.4142 1 

10-2 1.0488 0.1 
10-4 1.0050 0.01 
10-6 1.0005 0.001 

 
 Note that (x1, x2) → (1, 0) as r → 0, so (x1, x2) = (1, 0) is optimal. 
 
(c) Beginning with the initial trial solution (x1 , x2 ) = (2, 1), use the automatic 
procedure in your IOR Tutorial to apply SUMT to this problem (in maximization 
form) with r = 1, 10-2, 10-4, 10-6. 
 
Using IOR Tutorial to solve when starting with (x1, x2) = (2,1) results in the following: 
 



r x1 x2 f(x) 
 2 1 10 
1 1.4142 1 5.69 

10-2 1.0488 0.1 2.967 
10-4 1.0050 0.01 2.697 
10-6 1.0005 0.001 2.67 

 
 
 


