Last time

- weak duality
- strong duality
- Duality Theorem
- complementary slackness

Today

- Reinterpretation of Simplex based on Duality
- Dual Simplex

Recall the Simplex tableau of current basis B in terms of original data:

Bate	X_{B}	X_{N}	$R_{H S}$
Z	0	$C_{B}^{\top} B^{-1} A-C_{N}^{\top}$	$C_{B}^{T} B^{-1} b$
X_{B}	I	$B^{-1} N$	$B^{-1} b$

Q: Can we get a complementary dual sol-n. to the current primal BFS from this tableain

- For complementarity need $C^{\top} x=b^{\top} y$.
- Obj. $f \rightarrow$ value at current BFS X is $C_{B}^{\dagger} B^{-1} b$.
$y^{\top} b=C_{B}^{\top} B^{-1} b$ too.
- Thus, $y^{\top}=C_{B}^{\top} B^{-1}$ is a dual complementary sol-n to current primal BFS. Can we read that solan from current tableau?
- If X_{j} is slack and nonbasic then $c_{j}=0, A_{j}=\left(\begin{array}{l}0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right)$-row of x_{j}
So the coefficint of X_{j} in row 0 :

$$
C_{B}^{\top} B^{-1} A_{j}-C_{j}=C_{B}^{\top} B^{-1}\left(\begin{array}{c}
0 \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{array}\right)=\left(C_{B}^{\top} B^{-1}\right)_{J}
$$

- If X_{j} is slack and basic then based on fundamental insight

$$
\left.B^{-1}=\left[\begin{array}{c}
x_{j} \\
0 \\
\vdots \\
x_{j} \\
\cdots \\
0
\end{array}\right] \begin{array}{l}
A l_{s_{0}} \\
x_{j}
\end{array}\right], \begin{aligned}
& C_{B}^{T}=(\ldots .0 \ldots
\end{aligned}
$$

So

$$
\begin{array}{r}
\left(C_{B}^{\top} B^{-1}\right)_{j}=(\ldots . O \\
=\text { coefficient of } X_{j} \text { in row } 0
\end{array}
$$

Second Tableau:

	x_{1}	x_{2}	x_{3}	x_{4}	RUS
Z	$-1 / 2$	0	0	$1 / 4$	3
x_{3}	$3 / 2$	0	1	$-1 / 4$	3
x_{2}	$1 / 2$	1	0	$1 / 4$	3

$$
\begin{aligned}
& \text { primal } B F S=\left(\begin{array}{l}
0 \\
3 \\
3 \\
0
\end{array}\right) \text {, complimentary } \begin{array}{l}
\text { dual sol-h }
\end{array}=\left(\begin{array}{c}
0 \\
1 \\
1 / 1 / 2 \\
-1 / 2 \\
0
\end{array}\right) \text { infers. } \\
& Z=3 \text { for both }
\end{aligned}
$$

primal BFS $=\left(\begin{array}{l}0 \\ 0 \\ 6 \\ 12\end{array}\right)$, complementary dual $\mathrm{sol}-\mathrm{h}=\left(\begin{array}{c}0 \\ 0 \\ -1 \\ -1\end{array}\right)$ Kinfeasible

Third Tableau:

	x_{1}	x_{2}	x_{3}	x_{1}	RUs
z	0	0	$1 / 3$	$1 / 6$	4
x_{1}	1	0	$2 / 3$	$-1 / 6$	2
x_{2}	0	1	$-1 / 3$	$1 / 3$	2

primal BFS $=\left(\begin{array}{l}2 \\ 2 \\ 0 \\ 0\end{array}\right)$, dual sol-n $=\left(\begin{array}{c}1 / 3 \\ 1 / 3 \\ 0 \\ 0\end{array}\right), z=4$
primal and dual feasible \Rightarrow, primal and dual feasible \Rightarrow both of them are
Reinterpretation of Simplex Method

- At each iteration we have primal and dual complementary solutions.
- Keep the primal feasibility and work towards dual feasibility

Dual Simplex Algorithm

- Suppose we have a pair of complementary solutions such that - dual is feasible
- primal is infeasible.
E.g., this situation might arise when RHS is changed (recall sensitivity analysis)
- How to proceed?

Idea: Maintain dual feasibility and complementarity, while striving for primal feasibility.

- How to implement this?

Apply (implicitly) primal simplex algorithm to the dial problem, while working with the primal tableau.

Ex: $\quad \min$

$$
\begin{array}{ll}
4 y_{1}+7 y_{2} & \\
2 y_{1}+y_{2} \geqslant 5 & \tag{p}\\
3 y_{1}+2 y_{2} \geqslant 2 & \\
y_{1}+3 y_{2} \geqslant 5 & y_{1} y_{2} \geqslant 0
\end{array}
$$

B.V.	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	RUS
z	4	7	0	0	0	0
y_{3}	-2^{*}	-1	1	0	0	-5
y_{4}	-3	-2	0	1	0	-2
y_{5}	-1	-3	0	0	1	-5

$$
\text { st } \quad 2 y_{1}+y_{2}=5
$$

Standard form: $\max -4 y_{1}-7 y_{2}$

$$
-2
$$

$$
a x-4 y-1
$$

$$
\text { it } \begin{array}{ll}
-2 y_{1}-y_{2} \leqslant-5 \\
& -3 y_{1}-2 y_{2} \leqslant-2 \\
& -y_{1}-3 y_{2} \leqslant-5 \quad y_{1}, y_{2} \geq 0
\end{array}
$$

	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	$R H S$
z	0	5	2	0	0	-10
y_{1}	1	$1 / 2$	$-1 / 2$	0	0	$5 / 2$
y_{4}	0	$-1 / 2$	$-3 / 2$	1	0	$11 / 2$
y_{5}	0	$-5 / 2$	$-1 / 2$	0	1	$-5 / 2$

ratios:

	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	RUS
z	0	0	1	0	2	-15
y_{1}	1	0	$-3 / 5$	0	$1 / 5$	2
y_{4}	0	0	$-7 / 5$	1	$-1 / 5$	6
y_{2}	0	1	$1 / 5$	0	$-2 / 5$	1
y_{2}	primal					
feasible						
fo ne						

$y^{\dot{\prime}}=\left(\begin{array}{l}2 \\ 1 \\ 6\end{array}\right)$, with obj. $f-n$ value -15

Outline of Dual Simplex
Step 1: Optimality test (= feasibility test):
If primal feasible stop.
Step 2: Choice of leaving variable: if not primal feasible then choose basic variable with most negative value to leave basis. Step 3: Infeasibility test: if coefficients of all nonbasic variables in the row of leavis. variable are $\geqslant 0$, stop.
Primal problem is infeasible.
Step 4: Choice of entering variable: choose as entering variable that with the ratio (row 0 coeff)/(coef. in pivot row) closest to zero, considering only nonbasic variables with (coff. in pivot row) negative.
Step 5: A_{s} in primal simplex method, use row operations to get in proper form for new basic variables. Go to step 1.

Notes: - pivot number negative

- value of entering variable will be positive
- obj. fin value will go down (if no dual)

Ex. (cont):
To get more insight how dual simplex works let', solve the dual problem by primal simplex. and draw parallels between corresponding iterations:

$$
\max 5 x_{1}+2 x_{2}+5 x_{3}
$$

$$
2 x_{1}+3 x_{2}+x_{3} \leqslant 4
$$

$$
x_{1}+2 x_{2}+3 x_{3} \leqslant 7 \quad x_{1} \geqslant 0 \quad v_{c}
$$

