Last time

- · weak duality
- · strong duality
- · Duality Theorem · complementary slackness

- · Reinterpretation of Simplex based on Duality
- · Dual Simplex

Recall the Simplex tableau of current basis B in terms of original data:

Batic var.	XB	Xw	RHS
3	0	CA B-A - C.	CT B-16
XB	I	B-IN	B-16

Q: Can we get a compenentary dual sol-n to the current primal BFS from this tableau

- For complementarity need CTX=by.
- ▼ Obj. f-r value at current BFS X is CBBb.

- * Obj. for value at y'= CBB-1 is $y^Tb = C_B^TB^{-1}b$ too.
- ▼ Thus, y = CBB is a dual complementary sol-n to current primal BFS. Can we read that sol- from current tableau?
 - If X_j is slack and nonbasic

then
$$C_j = 0$$
, $A_j = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ erow of X_j

So the coefficient of
$$X_j$$
 in row 0:
$$C_B^T B^{-1} A_j - C_j = C_B^T B^{-1} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = (C_B^T B^{-1})_j$$

• If X; is slack and basic then based on fundamental insight

$$\mathcal{B}^{-1} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \text{Also} \quad \chi_{j} \\ C_{\mathcal{B}}^{-1} = (\dots 0 \dots 0)$$

So
$$(C_0^T B^{-1})_j = (\dots 0 \dots) \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 =$$

$$= \text{coefficient of } X_j \text{ in row } 0$$

V Summarizing, the coefficients of slack variables in row 0 give a compenentary dual sol-n to the current primal BFS.

▼ Similarly, we can get that the coefficients of original variables in row O give the surplus variables of the compenentary dual soln.

Example:

max X1+X2 min 64,+1242 st $2X_1 + X_2 \le 6$ $2Y_1 + 2Y_2 \ge 1$ (2) $2X_1 + 4X_2 \le 12$ $Y_1 + 4Y_2 \ge 1$ (P) st 2x,+x2 <6 4, 1/2 30 X1, X220

original slack First Tablean: | X1 X2 X3 X4 RHS | 2-1-1000 X3 2 1 1 0 6 X4 2 4* 0 1 12

primal BFS = $\begin{pmatrix} 0 \\ 6 \\ 12 \end{pmatrix}$, complementary dual $50l-k = \begin{pmatrix} 0 \\ 0 \\ 12 \end{pmatrix}$ Z=0 for both

Second Tableau: 2 -1/2 0 0 1/4 3 X3 3/2 0 1 -1/4 3 12 10 14 3

primal BFS = $\begin{pmatrix} 0\\3\\3\\0 \end{pmatrix}$, dual sol-n = $\begin{pmatrix} 0\\4\\-4\\2 \end{pmatrix}$ Z=3 for both

Third Tableau; X1 X2 X3 X4 RHS 200384 X1 1 0 2/3 -1/2 2 X2 0 1 -13 13 2

primal BFS = $\begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, complem. = $\begin{pmatrix} 1/3 \\ 1/4 \\ 0 \end{pmatrix}$, $\frac{1}{2} = \frac{1}{4}$ primal and dual feasible => both of them are optimal

Reinterpretation of Simplex Method

. At each iteration we have primal and dual complementary solutions.

· Keep the primal feasibility and work towards dual feasibility

Dual Simplex Algorithm

Suppose we have a pair of complementary solutions such that • dual is feasible • primal is infeasible.

E.g., this situation might arise when RHS is changed (recall sensitivity analysis)

How to proceed?
 <u>Idea</u>: Maintain dual feasibility and complementarity, while striving for primal feasibility.

How to implement this?
 Apply (implicitly) primal simplex algorithm
to the dual problem, while working
with the primal tableau.

Ex.: min $4y_1 + 7y_2$ st $2y_1 + y_2 \ge 5$ $3y_1 + 2y_2 \ge 2$ $y_1 + 3y_2 \ge 5$ $y_1, y_2 \ge 0$

Standard form: max -44, -742 st -24, -42 <-5 -34, -24 <-2 -4, -342 <-5 4,42≥0

B.v.	4,	42	83	44	45	RHS	1
5	4	7	0	0	0	0	1-5
33	-2	-1	1	0	0	-5	te most neg.
4	-3	-2	0	1	0	-2	ratios:
85	-1	-3	0	0	1	-5	4, 7 -2, -1 Felojut to 0
	u	u	0	LX		1 000	

भा	32	43	34	45	RHS	
0	5	2	0	0	-10	
T	1/2	-1/2	0	0	5/2	ratios:
0	-14	-3/2	1	0	11/2	美"等
0	-5/2	*-1/2	0	1	-5/2	closest to 0
	0 0 0	31 32 0 5 1 1/2 0 -14 0 -5/2	y ₁ y ₂ y ₃ 0 5 2 1 y ₂ -y ₃ 0 -y ₄ -y ₅ 0 -y ₄ -y ₅	0 5 2 0	0 5 2 0 0	0 5 2 0 0 -10

_1	41	72	7;	44	45	RHS	1
2	0	0	1	0	2	-15	Waldy Ti.
4,	1	0	-3/5	0	15	2	primal
44	0	0	-35	1	-15	6	fear
42	0	1	1/4	0	-25	1 4 5	- > done

y= (2), with obj. f-n value -15

Outline of Dual Simplex

Step 1: Optimality test (= feasibility test):

If primal feasible stop.

Step 2: Choice of leaving variable: if not primal featible then choose basic variable with most negative value to leave basis.

Step 3: Infeasibility test: if coefficients of all nonbasic variables in the row of leaving variable are >0, stop.

Primal problem is infeasible.

Step 4: Choice of entering variable: choose as entering variable that with the ratio (row 0 coeff)/(coef. in pivot row) closest to tero, considering only nonbasic variables with (coef. in pivot row) negative.

Step 5: As in primal simplex method, use row operations to get in proper form for new basic variables. Go to Step 1.

Notes: • pivot number negative

• value of entering variable will be

positive

• obj. f-n value will go down (signeracy)

Ex. (cont.):

To get more insight how dual simplex works let's solve the dual problem by primal simplex and draw parallels between corresponding iterations:

	X	X2	X3	X,	Xs	RHS	1
3	-5	-2	-5	0	0	0	1
Xy	2	3	1	T	0	4	1
Xs	1	2	3	0	37	7	1

0	X	X2	X3	Xy	15	RHS
2	0	1/2	-5/2	5/2	0	10
Xı	-1	3/2	1/2	1/2	0	2
Xs	0	1/2	5/2*	1/2	1	5

2	X	Xz	X3	Xy	X=	RHS
2	0	6		2	1	15
XI	1	7/5	0	3/5	-1/5	1
X3	0	15	1	-15	2/5	2