Handout 2 Solution

Problem 1. Linear regression.

The difficulty here lies in the fact that he optimization problem as it is stated in the problem set is not linear: the absolute value or the maximum functions are not linear. So we need to reformulate these somehow using simple tricks that make the problems linear.
a) Note that our goal is to find values for a_{1} and a a which minimize $\sum_{i=1}^{n}\left|y_{i}-\left(a_{1} x_{i}+a_{0}\right)\right|$.

Thus, a_{1} and a_{0} are variables, and x_{i} 's and y_{i} 's are given data. However, the above function is not linear. To make it linear, we need to introduce new variables. For $\mathrm{i}=1, \ldots, \mathrm{n}$, let $z_{i}=\left|y_{i}-\left(a_{1} x_{i}+a_{0}\right)\right|$. Then the new model is:
Minimize $\sum_{i=1}^{n} z_{i}$
subject to $z_{i}=\left|y_{i}-\left(a_{1} x_{i}+a_{0}\right)\right|, \quad$ for each $\mathrm{i}=1, \ldots, \mathrm{n}$

However, now we have non-linear functions in the constraints.
Suppose for each $\mathrm{i}=1, \ldots \mathrm{n}$, we substitute $z_{i}=\left|y_{i}-\left(a_{1} x_{i}+a_{0}\right)\right|$ by a pair of related constraints:
$z_{i} \geq y_{i}-\left(a_{1} x_{i}+a_{0}\right)$
and $z_{i} \geq-y_{i}+\left(a_{1} x_{i}+a_{0}\right)$
Note that (1) and (2) provide that $z_{i} \geq\left|y_{i}-\left(a_{1} x_{i}+a_{0}\right)\right|$. But since our model is trying to minimize zi_{i} 's, in the optimal solution the value of each zi_{i} will be taken all the way down to $\left|y_{i}-\left(a_{1} x_{i}+a_{0}\right)\right|$. Summarizing, the linear program is:
Minimize $\sum_{i=1}^{n} z_{i}$
subject to $z_{i} \geq y_{i}-\left(a_{1} x_{i}+a_{0}\right), \quad$ for each $\mathrm{i}=1, \ldots, \mathrm{n}$
$z_{i} \geq-y_{i}+\left(a_{1} x_{i}+a_{0}\right), \quad$ for each $\mathrm{i}=1, \ldots, \mathrm{n}$
b) We want to $\min _{a} \max _{i}\left|y_{i}-\left(a_{1} x_{i}+a_{0}\right)\right|$. a_{1} and a_{0} are variables, and xi^{\prime} 's and y_{i} 's are given data. But the maximum of absolute values is not a linear function. To make it linear, we need to introduce a new variable. Let $z=\max _{i}\left|y_{i}-\left(a_{1} x_{i}+a_{0}\right)\right|$. Then the new model is:

Minimize z
subject to $z=\max _{i}\left|y_{i}-\left(a_{1} x_{i}+a_{0}\right)\right|$

Now we have a non-linear function in the constraint. However, the following equivalent formulation takes care of that problem.

Minimize z

$$
\begin{array}{rlr}
\text { subject to } & z \geq y_{i}-\left(a_{1} x_{i}+a_{0}\right), & \text { for each } \mathrm{i}=1, \ldots, \mathrm{n} \\
z \geq-y_{i}+\left(a_{1} x_{i}+a_{0}\right), & \text { for each } \mathrm{i}=1, \ldots, \mathrm{n} \tag{2}
\end{array}
$$

Note that (1) and (2) provide that $z \geq \max _{i}\left|y_{i}-\left(a_{1} x_{i}+a_{0}\right)\right|$. But since our model is trying to minimize z , in the optimal solution the value of each z will be taken all the way down to $\max _{i}\left|y_{i}-\left(a_{1} x_{i}+a_{0}\right)\right|$.
c) Just replace $\left(a_{1} X_{i}+a_{0}\right)$ above with $\left(a_{k} X_{i}{ }^{k}+a_{k-1} X^{k-1}{ }_{i}+\ldots+a_{1} x_{i}+a_{0}\right)$.

