Applications of Linear Programming

1. Fair representation in electoral systems.

Suppose that a state sends R persons to the U.S. House of Representatives. There are D counties in the state ($D>R$), and the state legislature wants to group these counties into R distinct electoral districts, each of which sends a delegate to Congress. The total population of the state is P, and the legislature wants to form districts whose population approximates $p=P / R$. Suppose that the appropriate legislative committee studying the electoral districting problem generates a long list of N candidates to be districts ($N>R$). Each of these candidates contains contiguous counties and a total population $p_{j}(j=1,2$, $\ldots, N)$ that is acceptably close to p. Define $c_{j}=\left|p_{j}-p\right|$. Each county $i(i=1,2, \ldots, D)$ is included in at least one candidate and typically will be included in a considerable number of candidates (in order to provide many feasible ways of selecting a set of R candidates that includes each county exactly once). Define

$$
a_{i j}= \begin{cases}1 & \text { if county } i \text { is included in candidate } j, \\ 0 & \text { if not } .\end{cases}
$$

Given the values of the c_{j} and the $a_{i j}$, the objective is to select R of these N possible districts such that each county is contained in a single district and such that the largest of the associated c_{j} is as small as possible.
Formulate an LP model for this problem (integer variables are allowed).

