Math 4620/5620

Homework 1 Solution

1. There are many different ways of doing these formulations, and here we present just one of them.

Decision Variables:

Let $x_{c i}, y_{c i}$ and $z_{c i}$ represent the number of flights per day made to city c by the i 'th plane of B737, AB321 and ATR-70 respectively.

Constraints:

1. minimum trip constraints

$$
\begin{aligned}
\sum_{i=1}^{10} x_{\mathrm{LA}, i}+\sum_{i=1}^{15} y_{\mathrm{LA}, i} & =2 \text { trips } \\
\sum_{i=1}^{10} x_{\mathrm{BOS}, i}+\sum_{i=1}^{15} y_{\mathrm{BOS}, i}+\sum_{i=1}^{2} z_{\mathrm{BOS}, i} & \geq 4 \text { trips } \\
\sum_{i=1}^{10} x_{\mathrm{DC}, i}+\sum_{i=1}^{15} y_{\mathrm{DC}, i}+\sum_{i=1}^{2} z_{\mathrm{DC}, i} & \geq 4 \text { trips } \\
\sum_{i=1}^{10} x_{\mathrm{MIA}, i}+\sum_{i=1}^{15} y_{\mathrm{MIA}, i} & \geq 4 \text { trips }
\end{aligned}
$$

And of course, non-negativity is important as well.

$$
x_{c i}, y_{c i}, z_{c i} \geq 0 \text { for all city } c \text { and plane } i
$$

2. maximum flying time constraints

$$
\begin{aligned}
x_{B O S, i}+2 x_{D C, i}+4 x_{M I A, i}+6 x_{L A, i} & \leq 15 \text { hours for each } i=1, \cdots, 10 \\
y_{B O S, i}+2 y_{D C, i}+5 y_{M I A, i}+8 y_{L A, i} & \leq 15 \text { hours for each } i=1, \cdots, 15 \\
2 z_{B O S, i}+4 z_{D C, i} & \leq 18 \text { hours for each } i=1,2
\end{aligned}
$$

Objective Functions:

1.

$$
\begin{array}{ll}
\text { Minimize } & 6000 \sum_{i=1}^{10} x_{B O S, i}+7000 \sum_{i=1}^{10} x_{D C, i}+8000 \sum_{i=1}^{10} x_{M I A, i}+10000 \sum_{i=1}^{10} x_{L A, i}+ \\
& 4000 \sum_{i=1}^{15} y_{B O S, i}+3500 \sum_{i=1}^{15} y_{D C, i}+6000 \sum_{i=1}^{15} y_{M I A, i}+10000 \sum_{i=1}^{15} y_{L A, i}+ \\
& 1000 \sum_{i=1}^{2} z_{B O S, i}+2000 \sum_{i=1}^{2} z_{D C, i}
\end{array}
$$

2.

$$
\begin{array}{ll}
\text { Maximize } & -1000 \sum_{i=1}^{10} x_{B O S, i}+2000 \sum_{i=1}^{10} x_{M I A, i}+8000 \sum_{i=1}^{10} x_{L A, i}+ \\
& -1000 \sum_{i=1}^{15} y_{B O S, i}+2000 \sum_{i=1}^{15} y_{D C, i}+2000 \sum_{i=1}^{15} y_{M I A, i}+4000 \sum_{i=1}^{15} y_{L A, i}+ \\
& 2000 \sum_{i=1}^{2} z_{B O S, i}+2000 \sum_{i=1}^{2} z_{D C, i}
\end{array}
$$

3.

$$
\begin{array}{ll}
\text { Minimize } \quad & 1 \sum_{i=1}^{10} x_{B O S, i}+2 \sum_{i=1}^{10} x_{D C, i}+4 \sum_{i=1}^{10} x_{M I A, i}+6 \sum_{i=1}^{10} x_{L A, i}+ \\
& 1 \sum_{i=1}^{15} y_{B O S, i}+2 \sum_{i=1}^{15} y_{D C, i}+5 \sum_{i=1}^{15} y_{M I A, i}+8 \sum_{i=1}^{15} y_{L A, i}+ \\
& 2 \sum_{i=1}^{2} z_{B O S, i}+4 \sum_{i=1}^{2} z_{D C, i}
\end{array}
$$

2. Let $x_{p i}$ where $p=A, B, C$ and $i=1,2,3,4$ be the amount (MG / day) of water treated in plant p using treatment i. Then we want to minimize the total cost

$$
\sum_{i=1}^{4} c_{i}\left(x_{A i}+x_{B i}+x_{C i}\right)
$$

subject to the following set of constraints:
lower bound:

$$
\sum_{i=1}^{4} x_{p i} \geq K_{p} \text { for each } p=A, B, C
$$

upper bound (we cannot treat more water than the flow):

$$
\sum_{i=1}^{4} x_{p i} \leq M_{p} \text { for each } p=A, B, C
$$

where $M_{A}=M_{1}, M_{B}=M_{2}$ and $M_{C}=M_{1}+M_{2}$
permissible pollutant:

$$
\begin{aligned}
\sum_{i=1}^{4} x_{A i} \cdot P_{i} & \leq P_{S} \cdot M_{1}(\text { Phenol at A) } \\
\sum_{i=1}^{4} x_{A i} \cdot N_{i} & \leq N_{S} \cdot M_{1}(\text { Nitrogen at A) } \\
\sum_{i=1}^{4} x_{B i} \cdot P_{i} & \leq P_{B} \cdot M_{2}(\text { Phenol at B) } \\
\sum_{i=1}^{4} x_{B i} \cdot N_{i} & \leq N_{B} \cdot M_{2}(\text { Nitrogen at B) } \\
\sum_{i=1}^{4}\left(x_{A i}+x_{B i}+x_{C i}\right) \cdot P_{i} & \leq P_{S} \cdot\left(M_{1}+M_{2}\right)(\text { Phenol at C }) \\
\sum_{i=1}^{4}\left(x_{A i}+x_{B i}+x_{C i}\right) \cdot N_{i} & \leq N_{S} \cdot\left(M_{1}+M_{2}\right)(\text { Nitrogen at C) }
\end{aligned}
$$

nonnegativity:

$$
x_{p i} \geq 0 \text { for each } p=A, B, C, \text { and } i=1,2,3,4
$$

3. Let x, y and z denote the number of kilograms of corn, tankage and alfalfa respectively. Then we have the following LP:

$$
\begin{aligned}
\text { Minimize } 84 x+72 y+60 z & \\
\text { subject to } 90 x+20 y+40 z & \geq 200 \text { (carbohydrates) } \\
30 x+80 y+60 z & \geq 180 \text { (protein) } \\
10 x+20 y+60 z & \geq 150 \text { (vitamins) } \\
x, y, z & \geq 0
\end{aligned}
$$

4. (a) TRUE. Consider the isoprofit line through $(0,2)$, the isoprofit line through $(3,3)$, and the isoprofit line through $(6,3)$. Recall that these lines are all parallel to each other. Since $(3,3)$ produces a larger value of the objective function than $(0,2)$ and $(6,3)$, it follows that the isoprofit line through $(3,3)$ cannot coincide with the isoprofit line through $(0,2)$ or $(6,3)$, and moreover, it can be obtained by shifting (while maintaining the slope) the isoprofit line through $(0,2)$ or $(6,3)$ in the direction of increasing z. This means that $(3,3)$ corresponds to the isoprofit line with maximum z.
An example of objective function: $Z=6 x_{2}-x_{1}$.
(b) TRUE. Since $(3,3)$ is an optimal solution, it is clear from the graph that multiple optimal solutions will only exist if the isoprofit line through $(3,3)$ coincides with either one of the boundaries (of the feasible region) containing $(3,3)$. Hence, either $(0,2)$ or $(6,3)$ are also optimal.
Examples of objective functions: $Z=3 x_{2}-x_{1}$ (makes $(0,2)$ optimal), $Z=x_{2}$ (makes $(6,3)$ optimal).
(c) FALSE. Consider the objective function $z=-x_{1}-x_{2}$.
5. (a) The LP is:

$$
\begin{array}{rll}
\max & 16 x_{1}+20 x_{2} & \\
\text { s. t. } & 3 x_{1}+4 x_{2} & \leq 12 \text { (skilled labor) } \\
& 4 x_{1}+2 x_{2} & \leq 8 \text { (unskilled labor) } \\
2 x_{1}+x_{2} & \leq 16 \text { (raw material) } \\
& x_{2} & \geq 2 \text { (marketing consideration) } \\
& x_{1}, x_{2} & \geq 0
\end{array}
$$

(b) The feasible region is the quadrangle with the vertices at $(0,2),(0,3),(1,2)$ and $(0.8,2.4)$. The optimal solution is $(0.8,2.4)$ with optimal value 60.8 .
6.

Decision variables.
Let
x_{t} be the number of calculators produced in time period t during regular shift $\mathrm{t}=1, \ldots, 6$
y_{t} be the number of calculators produced in time period t during overtime hours $t=1, \ldots, 6$
i_{t} be the number of calculators stored at the end of period t

$$
t=0, \ldots, 6
$$

Objective function:

$$
\operatorname{Min} \sum_{t=1}^{6}\left(10 x_{t}+12 y_{t}+0.5 i_{t}\right)
$$

Subject to
Production capacity constraints:

$$
\begin{aligned}
& x_{t} \leq 100 \quad \text { for } t=1, \ldots, 6 \\
& y_{t} \leq 75
\end{aligned} \quad \text { for } t=1, \ldots, 6
$$

No inventory at the beginning of time period 1 :

$$
\mathrm{i}_{0}=0
$$

Balance constraints:

$$
i_{t-1}+x_{t}+y_{t}=d_{t}+i_{t} \quad \text { for } t=1, \ldots, 6
$$

(i.e.,
inventory from previous time period + total number produced in this time period $=$ demand in current time period + inventory at the end of current time period)

Nonnegativity constraints:

$$
\mathrm{x}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}}, \mathrm{i}_{\mathrm{t}} \geq 0 \quad \text { for } \mathrm{t}=1, \ldots, 6
$$

