Math 4620/5620

Homework 2 Solution

1. The standard form of an LP looks like

To add blah

$$
\begin{aligned}
\max c^{T} x & \\
\text { subject to } A x & \leq b \\
x & \geq 0
\end{aligned}
$$

(a) FALSE. An obvious counterexample is given in problem 2 where any solution on the line segment connecting $(5,1)^{T}$ and $(0,6)^{T}$ is optimal, but only the endpoints are CPF.
(b) FALSE. This expression is an upper bound on the number of basic solutions, so there are at most this many CPF solutions (remember that CPF solutions are the same as basic feasible solution).
(c) TRUE. Suppose we have an optimal solution x^{*} which is not a CPF solution. Recall that any LP problem in standard form that has an optimal solution has a CPF solution which is also optimal. Let $x^{* *}$ be an optimal CPF solution to the same problem. Note that any point in the line segment joining x^{*} and $x^{* *}$ will also be optimal.
(d) FALSE. Consider an unbounded LP problem.
2. The initial tableau is the following:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
z	-1	-1	0	0	0	0
x_{3}	1^{*}	0	1	0	0	5
x_{4}	1	1	0	1	0	6
x_{5}	0	1	0	0	1	4

Entering x_{1} and performing the min-ratio test yields that x_{3} will leave the basis. And so, after one pivot, we get the following tableau:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
z	0	-1	1	0	0	5
x_{1}	1	0	1	0	0	5
x_{4}	0	1^{*}	-1	1	0	1
x_{5}	0	1	0	0	1	4

The corresponding solution now is $x=(5,0,0,1,4)^{T}$, the current value is $z=5$. After one more pivot step (in which x_{2} enters the basis and x_{4} leaves), we get the following tableau:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
z	0	0	0	1	0	6
x_{1}	1	0	1	0	0	5
x_{2}	0	1	-1	1	0	1
x_{5}	0	0	1^{*}	-1	1	3

Since all coefficients in row 0 are nonnegative this tableau is an optimal one and we have found an optimal solution $x^{*}=(5,1,0,0,3)$ with optimal value $z^{*}=6$. In terms of the original problem variables, the optimal solution is $\left(x_{1}, x_{2}\right)=(5,1)$.
Looking at this last tableau a bit more carefully we see that there is a non-basic variable x_{3} with an objective function coefficient 0 in row 0 . This means that if we were to increase x_{3} it would have no effect on the objective value, and we would get another solution with the same value as the current one. The min-ratio test yields that x_{5} will leave the basis.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
		0	0	0	1	0

Here we obtain another optimal solution $\left(x_{1}, x_{2}\right)=(2,4)$ with the same optimal value 6 . Then all the points on the line segment connecting $(2,4)$ and $(5,1)$ are feasible and their value is also 6 (the optimal value).
3. The starting tableau should look like this:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	
z	-1	-2	1	0	0	0	0
x_{4}	2	2*	-2	1	0	0	10
x_{5}	3	-2	2	0	1	0	5
x_{6}	1	-4	1	0	0	1	10

The corresponding basis is $\{4,5,6\}$, the basic feasible solution $x=(0,0,0,10,5,10)$ with objective function value $z=0$. Now when we pivot, x_{2} enters the basis and x_{4} leaves:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}		x_{6}	
	1	0	-1	1	0	0	10	
	x_{2}	1	1	-1	$\frac{1}{2}$	0	0	
x_{2}	5							
x_{5}	5	0	0	1	1	0	15	
x_{6}	5	0	-3	2	0	1	30	

From here we see immediately that this problem is unbounded: we can increase x_{3} as much as we want as long as we increase x_{2} and x_{6} correspondingly. More specifically, the ray

$$
\left\{\left(\begin{array}{c}
0 \\
5 \\
0 \\
0 \\
15 \\
30
\end{array}\right)+\alpha\left(\begin{array}{c}
0 \\
1 \\
1 \\
0 \\
0 \\
3
\end{array}\right): \alpha \geq 0\right\}
$$

is a feasible ray on which the objective function can increase infinitely. The objective function value on this ray is $10+\alpha$. To find a solution with value at least 2024:

$$
10+\alpha \geq 2024
$$

$$
\alpha \geq 2014
$$

and one feasible point with objective function value of exactly 2024 is $\left(x_{1}, x_{2}, x_{3}\right)=(0,2019,2014)$.
4. The given problem is

$$
\begin{aligned}
\min & 2 x_{1}+x_{2}+3 x_{3} & \\
\text { s.t. } & 5 x_{1}+2 x_{2}+7 x_{3} & =420 \\
& 3 x_{1}+2 x_{2}+5 x_{3} & \geq 280 \\
& x_{i} & \geq 0 \quad \forall i=1 \ldots 3
\end{aligned}
$$

First we need to get this problem into equality constrained form, so we add a slack variable to the second constraint (after transforming it into a " \leq "-constraint):

$$
\begin{array}{rcccc}
\min & 2 x_{1} & +x_{2} & +3 x_{3} & \\
\text { s.t. } & 5 x_{1}+2 x_{2}+7 x_{3} & =420 \\
& -3 x_{1} & -2 x_{2} & -5 x_{3} \quad+x_{4} & =-280 \\
& & x_{i} & \geq 0 \quad \forall i=1 \ldots 4
\end{array}
$$

Now we multiply the second constraint with -1 and add artificial variables \bar{x}_{5} and \bar{x}_{6} since we don't have a "natural" basic variable in the first constraint and since the second r.h.s component is negative. Our phase-I problem now becomes

$$
\begin{array}{cccccccl}
\min & & & \bar{x}_{5} & +\bar{x}_{6} & \\
\text { s.t. } & 5 x_{1} & +2 x_{2} & +7 x_{3} & & +\bar{x}_{5} & & =420 \\
& 3 x_{1} & +2 x_{2} & +5 x_{3} & -x_{4} & & +\bar{x}_{6} & =280 \\
& x_{1}, & x_{2}, & x_{3}, & x_{4}, & \bar{x}_{5}, & \bar{x}_{6} & \geq 0
\end{array}
$$

Using the equality constraints to re-express the objective function in terms of the non-basic variables we get that $-\bar{x}_{5}-\bar{x}_{6}=-700+8 x_{1}+4 x_{2}+12 x_{3}-x_{4}$. Here's the corresponding phase-I tableau:

	x_{1}	x_{2}	x_{3}	x_{4}	\bar{x}_{5}	\bar{x}_{6}	
z	-8	-4	-12	1	0	0	-700
	\bar{x}_{5}	5	2	7	0	1	0
	420						
\bar{x}_{6}	3	2	5^{*}	-1	0	1	280

We choose x_{3} to enter the basis, the min-ratio test yields that \bar{x}_{6} should leave the basis:

	x_{1}	x_{2}	x_{3}	x_{4}	\bar{x}_{5}	\bar{x}_{6}	
	$-\frac{4}{5}$	$\frac{4}{5}$	0	$-\frac{7}{5}$	0	$\frac{12}{5}$	-28
	\bar{x}_{5}	$\frac{4}{5}$	$-\frac{4}{5}$	0	$\frac{7}{5}^{*}$	1	$-\frac{7}{5}$
x_{3}	$\frac{3}{5}$	$\frac{2}{5}$	1	$-\frac{1}{5}$	0	$\frac{1}{5}$	56

Now x_{4} enters and \bar{x}_{5} leaves the basis:

	x_{1}	x_{2}	x_{3}	x_{4}	\bar{x}_{5}	\bar{x}_{6}	
	0	0	0	0	1	1	0
	x_{4}	$\frac{4}{7}$	$-\frac{4}{7}$	0	1	$\frac{5}{7}$	-1
20							
x_{3}	$\frac{5}{7}$	$\frac{2}{7}$	1	0	$\frac{1}{7}$	$\frac{1}{5}$	60

This is an optimal phase-I tableau: the artificial variables are non-basic and hence 0 . Now we cross the artificial columns out of the tableau and re-express the original objective function in terms of the current basis: maximize $z=-2 x_{1}-x_{2}-3 x_{3}=-2 x_{1}-x_{2}-3\left(60-\frac{5}{7} x_{1}-\frac{2}{7} x_{2}\right)=\frac{1}{7} x_{1}-\frac{1}{7} x_{2}-180$. So the first phase-II tableau becomes:

	x_{1}		x_{2}	x_{3}	x_{4}
z	$-\frac{1}{7}$	$\frac{1}{7}$	0	0	-180
	x_{4}	$\frac{4}{7}^{*}$	$-\frac{4}{7}$	0	1
	20				
x_{3}	$\frac{5}{7}$	$\frac{2}{7}$	1	0	60

Now x_{1} enters the basis and x_{4} leaves:

	x_{1}	x_{2}	x_{3}	x_{4}	
z	0	0	0	$\frac{1}{4}$	-175
x_{1}	1	-1	0	$\frac{7}{4}$	35
x_{3}	0	$\frac{3}{7}$	1	$-\frac{5}{4}$	35

This is an optimal tableau, the corresponding optimal solution is $x^{*}=(35,0,35,0)$ with value $z^{*}=$ -175 (for the original minimization problem the optimal value is 175).
5. We add slacks, multiply all inequalities with -1 and then add artificial variables to get

$$
\begin{array}{rccccccc}
-3 x_{1} & -2 x_{2} & +x_{3} & -x_{4} & & +\bar{x}_{6} & & =3 \\
x_{1} & +x_{2} & -2 x_{3} & & -x_{5} & & +\bar{x}_{7} & =1 \\
x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}, & \bar{x}_{6}, & \bar{x}_{7} & \geq 0
\end{array}
$$

The phase I objective is now to max $-\bar{x}_{6}-\bar{x}_{7}$, which, re-expressed in terms of the non-basics is just $\max -4-2 x_{1}-x_{2}-x_{3}-x_{4}-x_{5}$. From this we see immediately that the current representation is optimal for phase I and we conclude that the system is infeasible.
6. (a) FALSE. The objective function of the phase I problem is clearly bounded below by 0 .
(b) FALSE. The phase I problem is constructed in a way so that we start with a bfs for it.
(c) TRUE. In fact, all feasible solutions for the original problem are optimal for the phase 1 problem (if you add 0's for the artificial variables).
(d) TRUE. This is exactly the purpose of the min-ratio rule. See your lecture notes.
(e) FALSE. The LP $\min x_{1}$ subject to $x_{1}, x_{2} \geq 0$ is a trivial counterexample.

