
Math 4620/5620

Homework 2 Solution

1. The standard form of an LP looks like

max cTx

subject to Ax ≤ b

x ≥ 0

(a) FALSE. An obvious counterexample is given in problem 2 where any solution on the line segment
connecting (5, 1)T and (0, 6)T is optimal, but only the endpoints are CPF.

(b) FALSE. This expression is an upper bound on the number of basic solutions, so there are at most
this many CPF solutions (remember that CPF solutions are the same as basic feasible solution).

(c) TRUE. Suppose we have an optimal solution x∗ which is not a CPF solution. Recall that any LP
problem in standard form that has an optimal solution has a CPF solution which is also optimal.
Let x∗∗ be an optimal CPF solution to the same problem. Note that any point in the line segment
joining x∗ and x∗∗ will also be optimal.

(d) FALSE. Consider an unbounded LP problem.

2. The initial tableau is the following:

x1 x2 x3 x4 x5

z −1 −1 0 0 0 0

x3 1∗ 0 1 0 0 5

x4 1 1 0 1 0 6

x5 0 1 0 0 1 4

Entering x1 and performing the min-ratio test yields that x3 will leave the basis. And so, after one
pivot, we get the following tableau:

x1 x2 x3 x4 x5

z 0 −1 1 0 0 5

x1 1 0 1 0 0 5

x4 0 1∗ −1 1 0 1

x5 0 1 0 0 1 4

The corresponding solution now is x = (5, 0, 0, 1, 4)T , the current value is z = 5. After one more pivot
step (in which x2 enters the basis and x4 leaves), we get the following tableau:

To add blah



x1 x2 x3 x4 x5

z 0 0 0 1 0 6

x1 1 0 1 0 0 5

x2 0 1 −1 1 0 1

x5 0 0 1∗ −1 1 3

Since all coefficients in row 0 are nonnegative this tableau is an optimal one and we have found an
optimal solution x∗ = (5, 1, 0, 0, 3) with optimal value z∗ = 6. In terms of the original problem
variables, the optimal solution is (x1, x2) = (5, 1).

Looking at this last tableau a bit more carefully we see that there is a non-basic variable x3 with an
objective function coefficient 0 in row 0. This means that if we were to increase x3 it would have no
effect on the objective value, and we would get another solution with the same value as the current
one. The min-ratio test yields that x5 will leave the basis.

x1 x2 x3 x4 x5

z 0 0 0 1 0 6

x1 1 0 0 1 −1 2

x2 0 1 0 0 1 4

x3 0 0 1 −1 1 3

Here we obtain another optimal solution (x1, x2) = (2, 4) with the same optimal value 6. Then all the
points on the line segment connecting (2, 4) and (5, 1) are feasible and their value is also 6 (the optimal
value).

3. The starting tableau should look like this:

x1 x2 x3 x4 x5 x6

z −1 −2 1 0 0 0 0

x4 2 2∗ −2 1 0 0 10

x5 3 −2 2 0 1 0 5

x6 1 −4 1 0 0 1 10

The corresponding basis is {4, 5, 6}, the basic feasible solution x = (0, 0, 0, 10, 5, 10) with objective
function value z = 0. Now when we pivot, x2 enters the basis and x4 leaves:

x1 x2 x3 x4 x5 x6

z 1 0 −1 1 0 0 10

x2 1 1 −1 1
2 0 0 5

x5 5 0 0 1 1 0 15

x6 5 0 −3 2 0 1 30
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From here we see immediately that this problem is unbounded: we can increase x3 as much as we want
as long as we increase x2 and x6 correspondingly. More specifically, the ray
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: α ≥ 0


,

10 +    α ≥     2024
α ≥    2014

and one feasible point with objective function value of exactly 2024 is (x1, x2, x3) = (0, 2019, 2014).

4. The given problem is

min 2x1 +x2 +3x3

s.t. 5x1 +2x2 +7x3 = 420

3x1 +2x2 +5x3 ≥ 280

xi ≥ 0 ∀i = 1 . . . 3

First we need to get this problem into equality constrained form, so we add a slack variable to the
second constraint (after transforming it into a “≤”-constraint):

min 2x1 +x2 +3x3

s.t. 5x1 +2x2 +7x3 = 420

−3x1 −2x2 −5x3 +x4 = −280

xi ≥ 0 ∀i = 1 . . . 4

Now we multiply the second constraint with −1 and add artificial variables x̄5 and x̄6 since we don’t
have a “natural” basic variable in the first constraint and since the second r.h.s component is negative.
Our phase-I problem now becomes

min x̄5 +x̄6

s.t. 5x1 +2x2 +7x3 +x̄5 = 420

3x1 +2x2 +5x3 −x4 +x̄6 = 280

x1, x2, x3, x4, x̄5, x̄6 ≥ 0

Using the equality constraints to re-express the objective function in terms of the non-basic variables
we get that −x̄5 − x̄6 = −700 + 8x1 + 4x2 + 12x3 − x4. Here’s the corresponding phase-I tableau:
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is a feasible ray on which the objective function can increase infinitely. The objective function value on this 
ray is 10 + α.  To find a solution with value at least 2024:



x1 x2 x3 x4 x̄5 x̄6

z −8 −4 −12 1 0 0 −700

x̄5 5 2 7 0 1 0 420

x̄6 3 2 5∗ −1 0 1 280

We choose x3 to enter the basis, the min-ratio test yields that x̄6 should leave the basis:

x1 x2 x3 x4 x̄5 x̄6

z − 4
5

4
5 0 − 7

5 0 12
5 −28

x̄5
4
5 − 4

5 0 7
5

∗
1 − 7

5 28

x3
3
5

2
5 1 − 1

5 0 1
5 56

Now x4 enters and x̄5 leaves the basis:

x1 x2 x3 x4 x̄5 x̄6

z 0 0 0 0 1 1 0

x4
4
7 − 4

7 0 1 5
7 −1 20

x3
5
7

2
7 1 0 1

7
1
5 60

This is an optimal phase-I tableau: the artificial variables are non-basic and hence 0. Now we cross
the artificial columns out of the tableau and re-express the original objective function in terms of the
current basis: maximize z = −2x1 − x2 − 3x3 = −2x1 − x2 − 3(60 − 5

7x1 −
2
7x2) = 1

7x1 −
1
7x2 − 180.

So the first phase-II tableau becomes:

x1 x2 x3 x4

z − 1
7

1
7 0 0 −180

x4
4
7

∗ − 4
7 0 1 20

x3
5
7

2
7 1 0 60

Now x1 enters the basis and x4 leaves:

x1 x2 x3 x4

z 0 0 0 1
4 −175

x1 1 −1 0 7
4 35

x3 0 3
7 1 − 5

4 35

This is an optimal tableau, the corresponding optimal solution is x∗ = (35, 0, 35, 0) with value z∗ =
−175 (for the original minimization problem the optimal value is 175).

5. We add slacks, multiply all inequalities with −1 and then add artificial variables to get

−3x1 −2x2 +x3 −x4 +x̄6 = 3

x1 +x2 −2x3 −x5 +x̄7 = 1

x1, x2, x3, x4, x5, x̄6, x̄7 ≥ 0
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The phase I objective is now to max−x̄6 − x̄7, which, re-expressed in terms of the non-basics is just
max−4 − 2x1 − x2 − x3 − x4 − x5. From this we see immediately that the current representation is
optimal for phase I and we conclude that the system is infeasible.

6. (a) FALSE. The objective function of the phase I problem is clearly bounded below by 0.

(b) FALSE. The phase I problem is constructed in a way so that we start with a bfs for it.

(c) TRUE. In fact, all feasible solutions for the original problem are optimal for the phase 1 problem
(if you add 0’s for the artificial variables).

(d) TRUE. This is exactly the purpose of the min-ratio rule. See your lecture notes.

(e) FALSE. The LP minx1 subject to x1, x2 ≥ 0 is a trivial counterexample.
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