Math 4620/5620

Homework 3

(Problems 2 and 3(b,c) are due Thursday, March 21)

1. Recall the problem 4 from Homework 2. We are given the following linear program:

$$
\begin{array}{ll}
\text { min } & 2 x_{1}+x_{2}+3 x_{3} \\
\text { s.t. } & 5 x_{1}+2 x_{2}+7 x_{3}
\end{array}=420
$$

After applying Phase 1 we determine that the basis $\left\{x_{4}, x_{3}\right\}$ gives a basic feasible solution for the problem (x_{4} is the surplus variable of the second constraint). Do Phase II with the Revised Simplex.
2. It's late Thursday night, you're sitting in a smoky pub with loud music and you see your roommate doing the latest Math assignment that's due on the next day. You walk over, stumble and spill a glass of good Sam Adams Ale on a sheet with solutions. Besides being sorry for the waste of beer, you feel even more sorry for yourself when your roommate demands the (correct!) solution to the problem from you.

$$
\begin{gathered}
\max 6 x_{1}+x_{2}+2 x_{3} \\
\text { s. t. } \\
2 x_{1}+2 x_{2}+\frac{1}{2} x_{3} \leq 2 \\
-4 x_{1}-2 x_{2}-\frac{3}{2} x_{3} \leq 3 \\
\\
x_{1}+2 x_{2}+\frac{1}{2} x_{3} \leq 1 \\
\\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

After a short and futile argument you give up and sit down to see what can be salvaged from both the sheet and your friendship. You can barely decipher a fraction of the optimal tableau:

Use your fundamental insight of the simplex method to identify the missing numbers in the final simplex tableau.
3. Consider the following linear programming problem:

$$
\begin{array}{lrl}
\max & 3 x_{1}+x_{2}+2 x_{3} & \\
\text { s. t. } & x_{1}-x_{2}+2 x_{3} & \leq 20 \\
& 2 x_{1}+x_{2}-x_{3} & \leq 10 \\
& x & \geq 0
\end{array}
$$

If we apply the simplex method, the final tableau is

	x_{1}	x	x_{3}	x_{4}	x_{5}	
	8	0	0	3	4	100
x_{3}	3	0	1	1	1	30
x_{2}	5	1	0	1	2	40

(a) Perform sensitivity analysis to determine which of c_{j} 's and b_{i} 's are sensitive parameters in the sense that any change in just that parameter's value will change the optimal solution or the optimal value. You do not have to do any computations, simply indicate whether a change in parameter will affect the solution/value and why.
(b) Find the allowable range to stay optimal for each c_{j}
(c) Find the allowable range to stay feasible for each b_{i}

