Math 4620/5620

Homework 3 Solution

1. For the Revised Simplex we first need to fix some representation of the problem (with equality constraints!) which we will use to get the data (A, b and c) in each step.

$$
\begin{array}{rccccc}
\max & -2 x_{1} & -x_{2} & -3 x_{3} & & \\
\text { s.t. } & 5 x_{1} & +2 x_{2} & +7 x_{3} & =420 & \\
& 3 x_{1} & +2 x_{2} & +5 x_{3} & -x_{4} & =280 \\
& & & x_{i} & \geq 0 \quad \forall i=1 \ldots 4
\end{array}
$$

Normally, we also have to do phase I, but the problem statements says to start with phase II. So we begin with the feasible basis found at the end of phase $\mathrm{I}: \mathcal{B}=\{4,3\}, \mathcal{N}=\{1,2\}$.
Step 1: Compute $B^{-1}, B^{-1} b, c_{B}^{T} B^{-1} b$. B consists of the 4 th and the 3 rd column of the constraint matrix in the above representation, and so

$$
B=\left(\begin{array}{cc}
0 & 7 \\
-1 & 5
\end{array}\right)
$$

Computing B^{-1}, we get

$$
B^{-1}=\left(\begin{array}{cc}
\frac{5}{7} & -1 \\
\frac{1}{7} & 0
\end{array}\right)
$$

Now

$$
x_{B}=\binom{x_{4}}{x_{3}}=B^{-1} b=\left(\begin{array}{cc}
\frac{5}{7} & -1 \\
\frac{1}{7} & 0
\end{array}\right)\binom{420}{280}=\binom{20}{60}
$$

So the current solution is $x=(0,0,60,20)$ with objective function value

$$
z=c_{B}^{T} B^{-1} b=c_{B}^{T} x_{B}=\left(c_{4}, c_{3}\right)\binom{20}{60}=(0,-3)\binom{20}{60}=-180
$$

Step 2: Test optimality, or find entering basic variable. For this we need to compute the row 0 coefficients:

$$
\begin{aligned}
c_{B}^{T} B^{-1} N-c_{N}^{T} & =\left(c_{4}, c_{3}\right) B^{-1}\left[A_{1}, A_{2}\right]-\left(c_{1}, c_{2}\right) \\
& =(0,-3)\left(\begin{array}{cc}
\frac{5}{7} & -1 \\
\frac{1}{7} & 0
\end{array}\right)\left(\begin{array}{cc}
5 & 2 \\
3 & 2
\end{array}\right)-(-2,-1) \\
& =\left(-\frac{3}{7}, 0\right)\left(\begin{array}{cc}
5 & 2 \\
3 & 2
\end{array}\right)-(-2,-1) \\
& =\left(-\frac{15}{7},-\frac{6}{7}\right)-(-2,-1) \\
& =\left(-\frac{1}{7}, \frac{1}{7}\right)
\end{aligned}
$$

Note that we want to increase x_{1} here.
Step 3: To be able to perform the min-ratio test we need to compute the entering column of the tableau:

$$
B^{-1} A_{1}=\left(\begin{array}{cc}
\frac{5}{7} & -1 \\
\frac{1}{7} & 0
\end{array}\right)\binom{5}{3}=\binom{\frac{4}{7}}{\frac{5}{7}}
$$

Step 4: We do the min-ratio test and determine that x_{4} leaves the basis.
Step 5: We get that $\mathcal{B}=\{1,3\}$ and $\mathcal{N}=\{2,4\}$ and we can move on to the next iteration.
Step 1: Compute $B^{-1}, B^{-1} b, c_{B}^{T} B^{-1} b$. B now consists of the 1 st and the 3 rd columns of the constraint matrix in the above representation, and so

$$
B=\left(\begin{array}{ll}
5 & 7 \\
3 & 5
\end{array}\right)
$$

We can either compute B^{-1} from scratch or just perform the usual pivot operation on the previous B^{-1} to get the new B^{-1} (in this case, multiply the first row with $\frac{7}{4}$ and subtract $\frac{5}{4}$ times the first row from the second row). In any case we get that

$$
B^{-1}=\left(\begin{array}{cc}
\frac{5}{4} & -\frac{7}{4} \\
-\frac{3}{4} & \frac{5}{4}
\end{array}\right)
$$

Now:

$$
x_{B}=\binom{x_{1}}{x_{3}}=B^{-1} b=\left(\begin{array}{cc}
\frac{5}{4} & -\frac{7}{4} \\
-\frac{3}{4} & \frac{5}{4}
\end{array}\right)\binom{420}{280}=\binom{35}{35}
$$

We get that $x=(35,0,35,0)$ is our current basic feasible solution. The current objective function value is

$$
z=c_{B}^{T} B^{-1} b=c_{B}^{T} x_{B}=\left(c_{1}, c_{3}\right)\binom{35}{35}=(-2,-3)\binom{35}{35}=-175
$$

Step 2: Test optimality, or find entering basic variable. For this we need to compute the row 0 coefficients:

$$
\begin{aligned}
c_{B}^{T} B^{-1} N-c_{N}^{T} & =\left(c_{1}, c_{3}\right) B^{-1}\left[A_{2}, A_{4}\right]-\left(c_{2}, c_{4}\right) \\
& =(-2,-3)\left(\begin{array}{cc}
\frac{5}{4} & -\frac{7}{4} \\
-\frac{3}{4} & \frac{5}{4}
\end{array}\right)\left(\begin{array}{cc}
2 & 0 \\
2 & -1
\end{array}\right)-(-1,0) \\
& =\left(-\frac{1}{4},-\frac{1}{4}\right)\left(\begin{array}{cc}
2 & 0 \\
2 & -1
\end{array}\right)-(-1,0) \\
& =\left(-1, \frac{1}{4}\right)-(-1,0) \\
& =\left(0, \frac{1}{4}\right) .
\end{aligned}
$$

Here we see that our current solution is in fact an optimal one. But since there is a zero non-basic objective function coefficient we can do one more iteration to get an alternative optimal basic feasible solution. To do this, we let x_{2} enter the basis.

Step 3: To be able to perform the min-ratio test we need to compute the entering column of the tableau:

$$
B^{-1} A_{2}=\left(\begin{array}{cc}
\frac{5}{4} & -\frac{7}{4} \\
-\frac{3}{4} & \frac{5}{4}
\end{array}\right)\binom{2}{2}=\binom{4}{6}
$$

Step 4: We do the min-ratio test and determine that x_{3} leaves the basis.
Step 5: We get that $\mathcal{B}=\{1,2\}$ and $\mathcal{N}=\{3,4\}$ and we can move on to the next iteration.
Step 1: Compute $B^{-1}, B^{-1} b, c_{B}^{T} B^{-1} b$. B now consists of the 1 st and the 2 nd columns of the constraint matrix in the above representation, and so

$$
B=\left(\begin{array}{ll}
5 & 2 \\
3 & 2
\end{array}\right)
$$

We compute

$$
B^{-1}=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{3}{4} & \frac{5}{4}
\end{array}\right)
$$

Now:

$$
x_{B}=\binom{x_{1}}{x_{2}}=B^{-1} b=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{3}{4} & \frac{5}{4}
\end{array}\right)\binom{420}{280}=\binom{70}{35}
$$

We get that $x=(70,35,0,0)$ is our current basic feasible solution. The current objective function value is

$$
z=c_{B}^{T} B^{-1} b=c_{B}^{T} x_{B}=\left(c_{1}, c_{2}\right)\binom{70}{35}=(-2,-1)\binom{70}{35}=-175
$$

Step 2: Test optimality, or find entering basic variable. For this we need to compute the row 0 coefficients:

$$
\begin{aligned}
c_{B}^{T} B^{-1} N-c_{N}^{T} & =\left(c_{1}, c_{2}\right) B^{-1}\left[A_{3}, A_{4}\right]-\left(c_{3}, c_{4}\right) \\
& =(-2,-1)\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{3}{4} & \frac{5}{4}
\end{array}\right)\left(\begin{array}{cc}
7 & 0 \\
5 & -1
\end{array}\right)-(-3,0) \\
& =\left(-\frac{1}{4},-\frac{1}{4}\right)\left(\begin{array}{cc}
7 & 0 \\
5 & -1
\end{array}\right)-(-3,0) \\
& =\left(-3, \frac{1}{4}\right)-(-3,0) \\
& =\left(0, \frac{1}{4}\right) .
\end{aligned}
$$

Hence, we have another optimal solution. (Note that the last Step 2 may be skipped since we know that row 0 will not change.)
2. From what is left in the final tableau, we have that the basic variables are $\left\{x_{5}, x_{3}, x_{1}\right\}$ in that order. We can also get B^{-1} from the final tableau.

$$
B^{-1}=\left(\begin{array}{ccc}
1 & 1 & 2 \\
-2 & 0 & 4 \\
1 & 0 & -1
\end{array}\right)
$$

We can now get the constraint coefficients of the final tableau by calculating

$$
B^{-1} \cdot A=\left(\begin{array}{ccc}
1 & 1 & 2 \\
-2 & 0 & 4 \\
1 & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{cccccc}
2 & 2 & \frac{1}{2} & 1 & 0 & 0 \\
-4 & -2 & -\frac{3}{2} & 0 & 1 & 0 \\
1 & 2 & \frac{1}{2} & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccccc}
0 & 4 & 0 & 1 & 1 & 2 \\
0 & 4 & 1 & -2 & 0 & 4 \\
1 & 0 & 0 & 1 & 0 & -1
\end{array}\right)
$$

The right hand side is

$$
B^{-1} \cdot b=\left(\begin{array}{ccc}
1 & 1 & 2 \\
-2 & 0 & 4 \\
1 & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)=\left(\begin{array}{l}
7 \\
0 \\
1
\end{array}\right)
$$

In the original problem (and using the optimal basis),

$$
c_{B}=\left(c_{5}, c_{3}, c_{1}\right)=(0,2,6)
$$

So the final objective function coefficient for x_{2} will be

$$
c_{B} \cdot B^{-1} \cdot A_{2}-c_{2}=(0,2,6) \cdot\left(\begin{array}{l}
4 \\
4 \\
0
\end{array}\right)-1=7
$$

Finally, the optimal objective function value is

$$
c_{b} \cdot B^{-1} \cdot b=(0,2,6) \cdot\left(\begin{array}{c}
7 \\
0 \\
1
\end{array}\right)=6
$$

Summarizing, the optimal and final tableau is as follows:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}		x_{6}	
	0	7	0	2	0	2	6	
	0							
x_{5}	0	4	0	1	1	2	7	
x_{3}	0	4	1	-2	0	4	0	
x_{1}	1	0	0	1	0	-1	1	

3. (a) Any change in the r.h.s will change the values of the basic variables and hence change the objective function value, so both b_{1} and b_{2} are sensitive parameters. If c_{1} changes by a small amount, $\bar{c}_{1}=c_{B}^{T} B^{-1} A_{1}-c_{1}$ will still be positive so x_{1} will still be nonbasic. So a change in c_{1} will not affect the optimal solution or its value. On the other hand any change in c_{2} or c_{3} will have an effect on the objective function value.
(b) We saw earlier that a change in c_{1} does not affect the current basis, so we only need to make sure that the change does not make \bar{c}_{1} negative. So we need

$$
\begin{aligned}
\bar{c}_{1} & =c_{B}^{T} B^{-1} A_{1}-c_{1} \\
& =(2,1)\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)\binom{1}{2}-c_{1} \\
& =(2,1)\binom{3}{5}-c_{1}=11-c_{1} \geq 0
\end{aligned}
$$

So as long as $c_{1} \leq 11$, the current tableau is optimal.
The analysis for the other c_{j} 's is a bit more complicated. A change in c_{2} or c_{3} affects all coefficients of nonbasic variables, so we have to make sure that they all are nonnegative:

$$
\begin{aligned}
\bar{c}_{N} & =c_{B}^{T} B^{-1} N-c_{N} \\
& =\left(c_{3}, c_{2}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)-(3,0,0) \\
& =\left(3 c_{3}+5 c_{2}-3, c_{3}+c_{2}, c_{3}+2 c_{2}\right) \geq 0
\end{aligned}
$$

So we need to make sure the following inequalities are fulfilled:

$$
\begin{aligned}
3 c_{3}+5 c_{2} & \geq 3 \\
c_{3}+c_{2} & \geq 0 \\
c_{3}+2 c_{2} & \geq 0
\end{aligned}
$$

Holding c_{2} at 1 , we get that $c_{3} \geq \max \{(3-5) / 3,-1,-2\}=-2 / 3$. Similarly, keeping c_{3} at 2 we get that $c_{2} \geq \max \{(3-6) / 5,-2,-1\}=-3 / 5$.
(c) Finally, changes in the right hand side only affect the final right hand side and the objective function value. We require that $\bar{b} \geq 0$ (for feasibility). So we need

$$
B^{-1} b \geq 0
$$

which is the same as saying

$$
\begin{array}{r}
b_{1}+b_{2} \geq 0 \\
b_{1}+2 b_{2} \geq 0
\end{array}
$$

Keeping b_{1} at its current value 20, we see that b_{2} must be greater than or equal to $\max \{-20,-10\}=$ -10 and similarly, with b_{2} fixed at $10, b_{1}$ must be greater than or equal to $\max \{-10,-20\}=-10$.

