Math 4620/5620

Solution to Min Cost Flow practice problems

1. The min-cost flow problem is represented by the following network.

The linear programming formulation:

$$
\begin{aligned}
& \min 7 x_{F W}+3 x_{F D}+2 x_{D W}+4 x_{G D}+4 x_{D V}+9 x_{G V} \\
& \text { s. t. } x_{F W}+x_{F D}=80 \quad \text { (Factory 1) }
\end{aligned}
$$

2. (a) We assume that there is no capacity on any arc. We obtain a complementary dual solution w to the initial primal feasible solution by solving the following system:

$$
\begin{aligned}
0 & =c_{F W}-w_{F}+w_{W}=7-w_{F}+w_{W} \\
0 & =c_{F D}-w_{F}+w_{D}=3-w_{F}+w_{D} \\
0 & =c_{D V}-w_{D}+w_{V}=4-w_{D}+w_{V} \\
0 & =c_{G V}-w_{G}+w_{V}=9-w_{G}+w_{V}
\end{aligned}
$$

By setting $w_{D}=0$, we obtain $\left(w_{F}, w_{G}, w_{D}, w_{W}, w_{V}\right)=(3,5,0,-4,-4)$. The initial primal and dual solutions are given below:

(b) We notice that the arc $G D$ does not satisfy dual feasibility since $c_{G D}-\left(w_{G}-w_{D}\right)=4-(5-0)$ is negative. Then arc $G D$ becomes basic and we augment along the cycle $D V G$. Since $G V$ is the only backward arc in this cycle, it leaves the basis and we can increase th flow on GD by 70 units to obtain a new primal basic feasible solution. To find the dual feasible solution, we solve:

$$
\begin{aligned}
0 & =c_{F W}-w_{F}+w_{W}=7-w_{F}+w_{W} \\
0 & =c_{F D}-w_{F}+w_{D}=3-w_{F}+w_{D} \\
0 & =c_{D V}-w_{D}+w_{V}=4-w_{D}+w_{V} \\
0 & =c_{G D}-w_{G}+w_{D}=4-w_{G}+w_{V}
\end{aligned}
$$

So we obtain a dual solution $\left(w_{F}, w_{G}, w_{D}, w_{W}, w_{V}\right)=(3,4,0,-4,-4)$.

Now, do we have dual feasibility? Not yet. We observe $c_{D W}-\left(w_{D}-w_{W}\right)=2-(0-(-4))$ is negative, and so arc $D W$ enters the basis. Since $F W$ is the only backward arc in the cycle $D W F$, we augment 60 units in the cycle, and $F W$ leaves the basis. After some calculation, we get $\left(w_{F}, w_{G}, w_{D}, w_{W}, w_{V}\right)=(3,4,0,-2,-4)$.

Can we find any more entering arc? We check all nonbasic arcs:

$$
\begin{aligned}
c_{F W}-\left(w_{F}-w_{W}\right) & =7-(3-(-2)) \geq 0 \\
c_{G V}-\left(w_{G}-w_{V}\right) & =9-(4-(-4)) \geq 0
\end{aligned}
$$

The current dual solution is feasible and so we found a primal-dual pair of optimal solutions.

