\# IP model of Consultant Hiring problem on AMPL
set I; \# set of projects
param profit $\{\mathrm{i}$ in I $\}$; \#profits from projects excluding consulting costs
set J; \# set of consultants
param $\operatorname{cost}\{\mathrm{j}$ in J$\}$; \# weekly cost of consultant j
set ATTR; \# set of K attributes
param cons_attr $\{\mathrm{j}$ in J, k in ATTR $\}$;
\# is 1 if consultant j possesses attribute $\mathrm{k}, 0$ otherwise
param proj_attr\{ i in I , k in ATTR $\}$;
\# number of consultants needed to possess attribute k in project i
param $b\{i$ in I $\}$; \# first week of project i
param e\{i in I $\}$; \# last week of project i
set WEEKS:= $\min \{\mathrm{i}$ in I$\} \mathrm{b}[\mathrm{i}] . . \max \{\mathrm{i}$ in I$\} \mathrm{e}[\mathrm{i}]$;
\# the range of the weeks when the projects are planned
param up $\{\mathrm{w}$ in WEEKS, i in I$\}:=$ if $\mathrm{b}[\mathrm{i}]<=\mathrm{w}<=\mathrm{e}[\mathrm{i}]$ then 1 else 0 ;
\# this parameter is 1 if project i is planned to be up in week w
var $\operatorname{proj}\{\mathrm{i}$ in I$\}$ binary; \# is 1 if project i is pursued
var assign $\{\mathrm{j}$ in J, i in I$\}$ binary; \# is 1 if consultant j is assigned to project i
maximize Profit: \# profit from projects - consultant costs
sum\{i in I\}profit[i]*proj[i]
$-\operatorname{sum}\{\mathrm{j}$ in J, i in I $\} \operatorname{cost}[\mathrm{j}] *(\mathrm{e}[\mathrm{i}]-\mathrm{b}[\mathrm{i}]+1) * \operatorname{assign}[\mathrm{j}, \mathrm{i}]$;
subject to Number_of_Consultants \{i in I, k in ATTR \}:
$\operatorname{sum}\{\mathrm{j}$ in J$\}$ cons_attr[j,k]*assign[j,i] >= proj_attr[i,k]*proj[i];
\# number of consultants possessing attribute k in project i should be at least proj_attr[i,k] \# if project i is pursued
subject to one_project_at_a_time $\{\mathrm{j}$ in J, w in WEEKS $\}$: $\operatorname{sum}\{\mathrm{i}$ in I$\} \mathrm{up}[\mathrm{w}, \mathrm{i}] * \operatorname{assign}[\mathrm{j}, \mathrm{i}]<=1$;
\# consultant j can work only on one project in any week w
subject to only_pursued_projects $\{\mathrm{i}$ in I, j in J$\}$:
assign[j,i] <= proj[i];
\# consultants can work only on projects that are pursued
data;
set $\mathrm{I}:=\mathrm{A}$ B C D;
param profit[*] :=
A 250
B 300
C 200
D 400 ;
set $\mathrm{J}:=$ Tom Jim Ann Tony;
param cost[*] :=
Tom 25
Jim 36
Ann 28
Tony 30;
set ATTR: $=\mathrm{C}++\quad$ IP Linux;
param cons_attr[*,*]
: C++ IP Linux :=
$\begin{array}{llll}\text { Tom } & 1 & 0 & 1\end{array}$
$\begin{array}{llll}\operatorname{Jim} & 1 & 1 & 0\end{array}$
Ann $0 \quad 1 \quad 1$
Tony 101 ;
param proj_attr[*,*]

:	C++	IP	Linux $:=$
A	2	1	2
B	1	1	1
C	2	0	1
D	2	1	$0 ;$

param $\mathrm{b}[$ * $]:=$
A 2
B $\quad 1$
C 3
D 2;
param e[*] :=
A 4
B 3
C 5
D 3 ;

