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12
Integer Programming

In Chap. 3 you saw several examples of the numerous and diverse applications of linear
programming. However, one key limitation that prevents many more applications is the
assumption of divisibility (see Sec. 3.3), which requires that noninteger values be per-
missible for decision variables. In many practical problems, the decision variables actu-
ally make sense only if they have integer values. For example, it is often necessary to as-
sign people, machines, and vehicles to activities in integer quantities. If requiring integer
values is the only way in which a problem deviates from a linear programming formula-
tion, then it is an integer programming (IP) problem. (The more complete name is inte-
ger linear programming, but the adjective linear normally is dropped except when this
problem is contrasted with the more esoteric integer nonlinear programming problem,
which is beyond the scope of this book.)

The mathematical model for integer programming is the linear programming model
(see Sec. 3.2) with the one additional restriction that the variables must have integer val-
ues. If only some of the variables are required to have integer values (so the divisibility
assumption holds for the rest), this model is referred to as mixed integer programming
(MIP). When distinguishing the all-integer problem from this mixed case, we call the for-
mer pure integer programming.

For example, the Wyndor Glass Co. problem presented in Sec. 3.1 actually would
have been an IP problem if the two decision variables x1 and x2 had represented the total
number of units to be produced of products 1 and 2, respectively, instead of the produc-
tion rates. Because both products (glass doors and wood-framed windows) necessarily
come in whole units, x1 and x2 would have to be restricted to integer values.

Another example of an IP problem is provided by the prize-winning OR study done
for the San Francisco Police Department that we introduced (and referenced) in Sec.
2.1. As indicated there, this study resulted in the development of a computerized system
for optimally scheduling and deploying police patrol officers. The new system provided
annual savings of $11 million, an annual $3 million increase in traffic citation revenues,
and a 20 percent improvement in response times. The main decision variables in the math-
ematical model were the number of officers to schedule to go on duty at each of the shift
start times. Since this number had to be an integer, these decision variables were restricted
to having integer values.



There have been numerous such applications of integer programming that involve a
direct extension of linear programming where the divisibility assumption must be dropped.
However, another area of application may be of even greater importance, namely, prob-
lems involving a number of interrelated “yes-or-no decisions.” In such decisions, the only
two possible choices are yes and no. For example, should we undertake a particular fixed
project? Should we make a particular fixed investment? Should we locate a facility in a
particular site?

With just two choices, we can represent such decisions by decision variables that are
restricted to just two values, say 0 and 1. Thus, the jth yes-or-no decision would be rep-
resented by, say, xj such that

xj � �
Such variables are called binary variables (or 0–1 variables). Consequently, IP problems
that contain only binary variables sometimes are called binary integer programming
(BIP) problems (or 0–1 integer programming problems).

Section 12.1 presents a miniature version of a typical BIP problem and Sec. 12.2 sur-
veys a variety of other BIP applications. Additional formulation possibilities with binary
variables are discussed in Sec. 12.3, and Sec. 12.4 presents a series of formulation ex-
amples. The remaining sections then deal with ways to solve IP problems, including both
BIP and MIP problems.

if decision j is yes
if decision j is no.

1
0

12.1 PROTOTYPE EXAMPLE 577

The CALIFORNIA MANUFACTURING COMPANY is considering expansion by build-
ing a new factory in either Los Angeles or San Francisco, or perhaps even in both cities.
It also is considering building at most one new warehouse, but the choice of location is
restricted to a city where a new factory is being built. The net present value (total prof-
itability considering the time value of money) of each of these alternatives is shown in
the fourth column of Table 12.1. The rightmost column gives the capital required (already
included in the net present value) for the respective investments, where the total capital
available is $10 million. The objective is to find the feasible combination of alternatives
that maximizes the total net present value.

12.1 PROTOTYPE EXAMPLE

TABLE 12.1 Data for the California Manufacturing Co. example

Decision Yes-or-No Decision Net Present Capital
Number Question Variable Value Required

1 Build factory in Los Angeles? x1 $9 million $6 million
2 Build factory in San Francisco? x2 $5 million $3 million
3 Build warehouse in Los Angeles? x3 $6 million $5 million
4 Build warehouse in San Francisco? x4 $4 million $2 million

Capital available: $10 million



The BIP Model

Although this problem is small enough that it can be solved very quickly by inspection
(build factories in both cities but no warehouse), let us formulate the IP model for illus-
trative purposes. All the decision variables have the binary form

xj � � ( j � 1, 2, 3, 4).

Let

Z � total net present value of these decisions.

If the investment is made to build a particular facility (so that the corresponding decision
variable has a value of 1), the estimated net present value from that investment is given
in the fourth column of Table 12.1. If the investment is not made (so the decision vari-
able equals 0), the net present value is 0. Therefore, using units of millions of dollars,

Z � 9x1 � 5x2 � 6x3 � 4x4.

The rightmost column of Table 12.1 indicates that the amount of capital expended on
the four facilities cannot exceed $10 million. Consequently, continuing to use units of mil-
lions of dollars, one constraint in the model is

6x1 � 3x2 � 5x3 � 2x4 � 10.

Because the last two decisions represent mutually exclusive alternatives (the company
wants at most one new warehouse), we also need the constraint

x3 � x4 � 1.

Furthermore, decisions 3 and 4 are contingent decisions, because they are contingent on de-
cisions 1 and 2, respectively (the company would consider building a warehouse in a city
only if a new factory also were going there). Thus, in the case of decision 3, we require that
x3 � 0 if x1 � 0. This restriction on x3 (when x1 � 0) is imposed by adding the constraint

x3 � x1.

Similarly, the requirement that x4 � 0 if x2 � 0 is imposed by adding the constraint

x4 � x2.

Therefore, after we rewrite these two constraints to bring all variables to the left-hand
side, the complete BIP model is

Maximize Z � 9x1 � 5x2 � 6x3 � 4x4,

subject to

6x1 � 3x2 � 5x3 � 2x4 � 10
x3 � x4 � 1

�x1 � x3 � 0
� x2 � x4 � 0

xj � 1
xj � 0

if decision j is yes,
if decision j is no,

1
0
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and

xj is integer, for j � 1, 2, 3, 4.

Equivalently, the last three lines of this model can be replaced by the single restriction

xj is binary, for j � 1, 2, 3, 4.

Except for its small size, this example is typical of many real applications of integer
programming where the basic decisions to be made are of the yes-or-no type. Like the
second pair of decisions for this example, groups of yes-or-no decisions often constitute
groups of mutually exclusive alternatives such that only one decision in the group can
be yes. Each group requires a constraint that the sum of the corresponding binary vari-
ables must be equal to 1 (if exactly one decision in the group must be yes) or less than
or equal to 1 (if at most one decision in the group can be yes). Occasionally, decisions of
the yes-or-no type are contingent decisions, i.e., decisions that depend upon previous de-
cisions. For example, one decision is said to be contingent on another decision if it is al-
lowed to be yes only if the other is yes. This situation occurs when the contingent deci-
sion involves a follow-up action that would become irrelevant, or even impossible, if the
other decision were no. The form that the resulting constraint takes always is that illus-
trated by the third and fourth constraints in the example.

Software Options for Solving Such Models

All the software packages featured in your OR Courseware (Excel, LINGO/LINDO, and
MPL/CPLEX) include an algorithm for solving (pure or mixed) BIP models, as well as
an algorithm for solving general (pure or mixed) IP models where variables need to be
integer but not binary.

When using the Excel Solver, the procedure is basically the same as for linear pro-
gramming. The one difference arises when you click on the “Add” button on the Solver
dialogue box to add the constraints. In addition to the constraints that fit linear program-
ming, you also need to add the integer constraints. In the case of integer variables that are
not binary, this is accomplished in the Add Constraint dialogue box by choosing the range
of integer-restricted variables on the left-hand side and then choosing “int” from the pop-
up menu. In the case of binary variables, choose “bin” from the pop-up menu instead. (In
earlier versions of Excel that do not include the “bin” option, choose “int” and then add
�0 and �1 constraints on these binary variables.)

A LINGO model uses the function @BIN() to specify that the variable named inside
the parentheses is a binary variable. For a general integer variable (one restricted to inte-
ger values but not just binary values), the function @GIN() is used in the same way. In
either case, the function can be embedded inside an @FOR statement to impose this bi-
nary or integer constraint on an entire set of variables.

In a LINDO model, the binary or integer constraints are inserted after the END state-
ment. A variable X is specified to be a general integer variable by entering GIN X. Al-
ternatively, for any positive integer value of n, the statement GIN n specifies that the first
n variables are general integer variables. Binary variables are handled in the same way
except for substituting the word INTEGER for GIN.

For an MPL model, the keyword INTEGER is used to designate general integer vari-
ables, whereas BINARY is used for binary variables. In the variables section of an MPL
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model, all you need to do is add the appropriate adjective (INTEGER or BINARY) in front
of the label VARIABLES to specify that the set of variables listed below the label is of that
type. Alternatively, you can ignore this specification in the variables section and instead place
the integer or binary constraints in the model section anywhere after the other constraints.
In this case, the label over the set of variables becomes just INTEGER or BINARY.

The prime MPL solver CPLEX includes state-of-the-art algorithms for solving pure
or mixed IP or BIP models. By selecting MIP Strategy from the CPLEX Parameters sub-
menu in the Options menu, an experienced practitioner can even choose from a wide va-
riety of options for exactly how to execute the algorithm to best fit the particular problem.

These instructions for how to use the various software packages become clearer when you
see them applied to examples. The Excel, LINGO/LINDO, and MPL/CPLEX files for this
chapter in your OR Courseware show how each of these software options would be applied
to the prototype example introduced in this section, as well as to the subsequent IP examples.

The latter part of the chapter will focus on IP algorithms that are similar to those used
in these software packages. Section 12.6 will use the prototype example to illustrate the
application of the pure BIP algorithm presented there.
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Just as in the California Manufacturing Co. example, managers frequently must face yes-
or-no decisions. Therefore, binary integer programming (BIP) is widely used to aid in
these decisions.

We now will introduce various types of yes-or-no decisions. We also will mention
some examples of actual applications where BIP was used to address these decisions.

Each of these applications is fully described in an article in the journal called Inter-
faces. In each case, we will mention the specific issue in which the article appears in case
you want to read further.

Capital Budgeting with Fixed Investment Proposals

Linear programming sometimes is used to make capital budgeting decisions about how
much to invest in various projects. However, as the California Manufacturing Co. exam-
ple demonstrates, some capital budgeting decisions do not involve how much to invest,
but rather, whether to invest a fixed amount. Specifically, the four decisions in the exam-
ple were whether to invest the fixed amount of capital required to build a certain kind of
facility (factory or warehouse) in a certain location (Los Angeles or San Francisco).

Management often must face decisions about whether to make fixed investments
(those where the amount of capital required has been fixed in advance). Should we ac-
quire a certain subsidiary being spun off by another company? Should we purchase a cer-
tain source of raw materials? Should we add a new production line to produce a certain
input item ourselves rather than continuing to obtain it from a supplier?

In general, capital budgeting decisions about fixed investments are yes-or-no deci-
sions of the following type.

Each yes-or-no decision:
Should we make a certain fixed investment?

Its decision variable � � if yes
if no.

1
0
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The July–August 1990 issue of Interfaces describes how the Turkish Petroleum Re-
fineries Corporation used BIP to analyze capital investments worth tens of millions of
dollars to expand refinery capacity and conserve energy.

A rather different example that still falls somewhat into this category is described in
the January–February 1997 issue of Interfaces. A major OR study was conducted for the
South African National Defense Force to upgrade its capabilities with a smaller budget.
The “investments” under consideration in this case were acquisition costs and ongoing
expenses that would be required to provide specific types of military capabilities. A mixed
BIP model was formulated to choose those specific capabilities that would maximize the
overall effectiveness of the Defense Force while satisfying a budget constraint. The model
had over 16,000 variables (including 256 binary variables) and over 5,000 functional con-
straints. The resulting optimization of the size and shape of the defense force provided
savings of over $1.1 billion per year as well as vital nonmonetary benefits. The impact of
this study won it the prestigious first prize among the 1996 Franz Edelman Awards for
Management Science Achievement.

Site Selection

In this global economy, many corporations are opening up new plants in various parts of
the world to take advantage of lower labor costs, etc. Before selecting a site for a new
plant, many potential sites may need to be analyzed and compared. (The California Man-
ufacturing Co. example had just two potential sites for each of two kinds of facilities.)
Each of the potential sites involves a yes-or-no decision of the following type.

Each yes-or-no decision:
Should a certain site be selected for the location of a certain new facility?

Its decision variable � �
In many cases, the objective is to select the sites so as to minimize the total cost of the
new facilities that will provide the required output.

As described in the January–February 1990 issue of Interfaces, AT&T used a BIP
model to help dozens of their customers select the sites for their telemarketing centers.
The model minimizes labor, communications, and real estate costs while providing the
desired level of coverage by the centers. In one year alone (1988), this approach enabled
46 AT&T customers to make their yes-or-no decisions on site locations swiftly and con-
fidently, while committing to $375 million in annual network services and $31 million in
equipment sales from AT&T.

We next describe an important type of problem for many corporations where site se-
lection plays a key role.

Designing a Production and Distribution Network

Manufacturers today face great competitive pressure to get their products to market more
quickly as well as to reduce their production and distribution costs. Therefore, any cor-
poration that distributes its products over a wide geographical area (or even worldwide)
must pay continuing attention to the design of its production and distribution network.

if yes
if no.

1
0
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This design involves addressing the following kinds of yes-or-no decisions.

Should a certain plant remain open?
Should a certain site be selected for a new plant?
Should a certain distribution center remain open?
Should a certain site be selected for a new distribution center?

If each market area is to be served by a single distribution center, then we also have an-
other kind of yes-or-no decision for each combination of a market area and a distribution
center.

Should a certain distribution center be assigned to serve a certain market area?

For each of the yes-or-no decisions of any of these kinds,

Its decision variable � �
Ault Foods Limited (July–August 1994 issue of Interfaces) used this approach to de-

sign its production and distribution center. Management considered 10 sites for plants, 13
sites for distribution centers, and 48 market areas. This application of BIP was credited
with saving the company $200,000 per year.

Digital Equipment Corporation (January–February 1995 issue of Interfaces) provides
another example of an application of this kind. At the time, this large multinational cor-
poration was serving one-quarter million customer sites, with more than half of its $14
billion annual revenues coming from 81 countries outside the United States. Therefore,
this application involved restructuring the corporation’s entire global supply chain, con-
sisting of its suppliers, plants, distribution centers, potential sites, and market areas all
around the world. The restructuring generated annual cost reductions of $500 million in
manufacturing and $300 million in logistics, as well as a reduction of over $400 million
in required capital assets.

Dispatching Shipments

Once a production and distribution network has been designed and put into operation,
daily operating decisions need to be made about how to send the shipments. Some of these
decisions again are yes-or-no decisions.

For example, suppose that trucks are being used to transport the shipments and each
truck typically makes deliveries to several customers during each trip. It then becomes
necessary to select a route (sequence of customers) for each truck, so each candidate for
a route leads to the following yes-or-no decision.

Should a certain route be selected for one of the trucks?

Its decision variable � �
The objective would be to select the routes that would minimize the total cost of making
all the deliveries.

Various complications also can be considered. For example, if different truck sizes
are available, each candidate for selection would include both a certain route and a cer-

if yes
if no.
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if yes
if no.

1
0
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tain truck size. Similarly, if timing is an issue, a time period for the departure also can be
specified as part of the yes-or-no decision. With both factors, each yes-or-no decision
would have the form shown below.

Should all the following be selected simultaneously for a delivery run:

1. A certain route,
2. A certain size of truck, and
3. A certain time period for the departure?

Its decision variable � �
Here are a few of the companies which use BIP to help make these kinds of deci-

sions. A Michigan-based retail chain called Quality Stores (March–April 1987 issue of
Interfaces) makes the routing decisions for its delivery trucks this way, thereby saving
about $450,000 per year. Air Products and Chemicals, Inc. (December 1983 issue of In-
terfaces) saves approximately $2 million annually (about 8 percent of its prior distribu-
tion costs) by using this approach to produce its daily delivery schedules. The Reynolds
Metals Co. (January–February 1991 issue of Interfaces) achieves savings of over $7 mil-
lion annually with an automated dispatching system based partially on BIP for its freight
shipments from over 200 plants, warehouses, and suppliers.

Scheduling Interrelated Activities

We all schedule interrelated activities in our everyday lives, even if it is just scheduling
when to begin our various homework assignments. So too, managers must schedule var-
ious kinds of interrelated activities. When should we begin production for various new or-
ders? When should we begin marketing various new products? When should we make
various capital investments to expand our production capacity?

For any such activity, the decision about when to begin can be expressed in terms of
a series of yes-or-no decisions, with one of these decisions for each of the possible time
periods in which to begin, as shown below.

Should a certain activity begin in a certain time period?

Its decision variable � �
Since a particular activity can begin in only one time period, the choice of the various
time periods provides a group of mutually exclusive alternatives, so the decision variable
for only one time period can have a value of 1.

For example, this approach was used to schedule the building of a series of office
buildings on property adjacent to Texas Stadium (home of the Dallas Cowboys) over a 
7-year planning horizon. In this case, the model had 49 binary decision variables, 7 for
each office building corresponding to each of the 7 years in which its construction could
begin. This application of BIP was credited with increasing the profit by $6.3 million.
(See the October 1983 issue of Interfaces.)

A somewhat similar application on a vastly larger scale occurred in China recently
(January–February 1995 issue of Interfaces). China was facing at least $240 billion in
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new investments over a 15-year horizon to meet the energy needs of its rapidly growing
economy. Shortages of coal and electricity required developing new infrastructure for
transporting coal and transmitting electricity, as well as building new dams and plants for
generating thermal, hydro, and nuclear power. Therefore, the Chinese State Planning Com-
mission and the World Bank collaborated in developing a huge mixed BIP model to guide
the decisions on which projects to approve and when to undertake them over the 15-year
planning period to minimize the total discounted cost. It is estimated that this OR appli-
cation is saving China about $6.4 billion over the 15 years.

Scheduling Asset Divestitures

This next application actually is another example of the preceding one (scheduling inter-
related activities). However, rather than dealing with such activities as constructing office
buildings or investing in hydroelectric plants, the activities now are selling (divesting) as-
sets to generate income. The assets can be either financial assets, such as stocks and bonds,
or physical assets, such as real estate. Given a group of assets, the problem is to deter-
mine when to sell each one to maximize the net present value of total profit from these
assets while generating the desired income stream.

In this case, each yes-or-no decision has the following form.

Should a certain asset be sold in a certain time period?

Its decision variable � �
One company that deals with these kinds of yes-or-no decisions is Homart Develop-

ment Company (January–February 1987 issue of Interfaces), which ranks among the
largest commercial land developers in the United States. One of its most important strate-
gic issues is scheduling divestiture of shopping malls and office buildings. At any partic-
ular time, well over 100 assets will be under consideration for divestiture over the next
10 years. Applying BIP to guide these decisions is credited with adding $40 million of
profit from the divestiture plan.

Airline Applications

The airline industry is an especially heavy user of OR throughout its operations. For ex-
ample, one large consulting firm called SABRE (spun off by American Airlines) employs
several hundred OR professionals solely to focus on the problem of companies involved
with transportation, including especially airlines. We will mention here just two of the ap-
plications which specifically use BIP.

One is the fleet assignment problem. Given several different types of airplanes avail-
able, the problem is to assign a specific type to each flight leg in the schedule so as to
maximize the total profit from meeting the schedule. The basic trade-off is that if the air-
line uses an airplane that is too small on a particular flight leg, it will leave potential cus-
tomers behind, while if it uses an airplane that is too large, it will suffer the greater ex-
pense of the larger airplane to fly empty seats.

For each combination of an airplane type and a flight leg, we have the following yes-
or-no decision.

if yes
if no.
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Should a certain type of airplane be assigned to a certain flight leg?

Its decision variable � �
Delta Air Lines (January–February 1994 issue of Interfaces) flies over 2,500 domes-

tic flight legs every day, using about 450 airplanes of 10 different types. They use a huge
integer programming model (about 40,000 functional constraints, 20,000 binary variables,
and 40,000 general integer variables) to solve their fleet assignment problem each time a
change is needed. This application saves Delta approximately $100 million per year.

A fairly similar application is the crew scheduling problem. Here, rather than assigning
airplane types to flight legs, we are instead assigning sequences of flight legs to crews of
pilots and flight attendants. Thus, for each feasible sequence of flight legs that leaves from
a crew base and returns to the same base, the following yes-or-no decision must be made.

Should a certain sequence of flight legs be assigned to a crew?

Its decision variable � �
The objective is to minimize the total cost of providing crews that cover each flight leg
in the schedule.

American Airlines (July–August 1989 and January–February 1991 issues of Inter-
faces) achieves annual savings of over $20 million by using BIP to solve its crew sched-
uling problem on a monthly basis.

A full-fledged formulation example of this type will be presented at the end of
Sec. 12.4.
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You have just seen a number of examples where the basic decisions of the problem are
of the yes-or-no type, so that binary variables are introduced to represent these deci-
sions. We now will look at some other ways in which binary variables can be very use-
ful. In particular, we will see that these variables sometimes enable us to take a prob-
lem whose natural formulation is intractable and reformulate it as a pure or mixed IP
problem.

This kind of situation arises when the original formulation of the problem fits either
an IP or a linear programming format except for minor disparities involving combinator-
ial relationships in the model. By expressing these combinatorial relationships in terms of
questions that must be answered yes or no, auxiliary binary variables can be introduced
to the model to represent these yes-or-no decisions. Introducing these variables reduces
the problem to an MIP problem (or a pure IP problem if all the original variables also are
required to have integer values).

Some cases that can be handled by this approach are discussed next, where the xj

denote the original variables of the problem (they may be either continuous or integer
variables) and the yi denote the auxiliary binary variables that are introduced for the
reformulation.

12.3 INNOVATIVE USES OF BINARY VARIABLES 
IN MODEL FORMULATION



Either-Or Constraints

Consider the important case where a choice can be made between two constraints, so that
only one (either one) must hold (whereas the other one can hold but is not required to do
so). For example, there may be a choice as to which of two resources to use for a certain
purpose, so that it is necessary for only one of the two resource availability constraints to
hold mathematically. To illustrate the approach to such situations, suppose that one of the
requirements in the overall problem is that

Either 3x1 � 2x2 � 18
or x1 � 4x2 � 16,

i.e., at least one of these two inequalities must hold but not necessarily both. This re-
quirement must be reformulated to fit it into the linear programming format where all
specified constraints must hold. Let M be a very large positive number. Then this re-
quirement can be rewritten as

3x1 � 2x2 � 18
Either

x1 � 4x2 � 16 � M

3x1 � 2x2 � 18 � M
or

x1 � 4x2 � 16.

The key is that adding M to the right-hand side of such constraints has the effect of elim-
inating them, because they would be satisfied automatically by any solutions that satisfy
the other constraints of the problem. (This formulation assumes that the set of feasible so-
lutions for the overall problem is a bounded set and that M is large enough that it will not
eliminate any feasible solutions.) This formulation is equivalent to the set of constraints

3x1 � 2x2 � 18 � My
x1 � 4x2 � 16 � M(1 � y).

Because the auxiliary variable y must be either 0 or 1, this formulation guarantees that
one of the original constraints must hold while the other is, in effect, eliminated. This new
set of constraints would then be appended to the other constraints in the overall model to
give a pure or mixed IP problem (depending upon whether the xj are integer or continu-
ous variables).

This approach is related directly to our earlier discussion about expressing combina-
torial relationships in terms of questions that must be answered yes or no. The combina-
torial relationship involved concerns the combination of the other constraints of the model
with the first of the two alternative constraints and then with the second. Which of these
two combinations of constraints is better (in terms of the value of the objective function
that then can be achieved)? To rephrase this question in yes-or-no terms, we ask two com-
plementary questions:

1. Should x1 � 4x2 � 16 be selected as the constraint that must hold?
2. Should 3x1 � 2x2 � 18 be selected as the constraint that must hold?

Because exactly one of these questions is to be answered affirmatively, we let the binary
terms y and 1 � y, respectively, represent these yes-or-no decisions. Thus, y � 1 if the an-
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swer is yes to the first question (and no to the second), whereas 1 � y � 1 (that is, y � 0)
if the answer is yes to the second question (and no to the first). Since y � 1 � y � 1 (one
yes) automatically, there is no need to add another constraint to force these two decisions
to be mutually exclusive. (If separate binary variables y1 and y2 had been used instead to
represent these yes-or-no decisions, then an additional constraint y1 � y2 � 1 would have
been needed to make them mutually exclusive.)

A formal presentation of this approach is given next for a more general case.

K out of N Constraints Must Hold

Consider the case where the overall model includes a set of N possible constraints such
that only some K of these constraints must hold. (Assume that K � N.) Part of the opti-
mization process is to choose the combination of K constraints that permits the objective
function to reach its best possible value. The N � K constraints not chosen are, in effect,
eliminated from the problem, although feasible solutions might coincidentally still satisfy
some of them.

This case is a direct generalization of the preceding case, which had K � 1 and N � 2.
Denote the N possible constraints by

f1(x1, x2, . . . , xn) � d1

f2(x1, x2, . . . , xn) � d2

�

fN (x1, x2, . . . , xn) � dN.

Then, applying the same logic as for the preceding case, we find that an equivalent for-
mulation of the requirement that some K of these constraints must hold is

f1(x1, x2, . . . , xn) � d1 � My1

f2(x1, x2, . . . , xn) � d2 � My2

�

fN (x1, x2, . . . , xn) � dN � MyN

�
N

i�1
yi � N � K,

and

yi is binary, for i � 1, 2, . . . , N,

where M is an extremely large positive number. For each binary variable yi (i � 1, 2, . . . ,
N), note that yi � 0 makes Myi � 0, which reduces the new constraint i to the original con-
straint i. On the other hand, yi � 1 makes (di � Myi) so large that (again assuming a bounded
feasible region) the new constraint i is automatically satisfied by any solution that satisfies
the other new constraints, which has the effect of eliminating the original constraint i. There-
fore, because the constraints on the yi guarantee that K of these variables will equal 0 and
those remaining will equal 1, K of the original constraints will be unchanged and the other
(N � K) original constraints will, in effect, be eliminated. The choice of which K constraints
should be retained is made by applying the appropriate algorithm to the overall problem so
it finds an optimal solution for all the variables simultaneously.
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Functions with N Possible Values

Consider the situation where a given function is required to take on any one of N given
values. Denote this requirement by

f(x1, x2, . . . , xn) � d1 or d2, . . . , or dN.

One special case is where this function is

f(x1, x2, . . . , xn) � �
n

j�1
ajxj,

as on the left-hand side of a linear programming constraint. Another special case is where
f(x1, x2, . . . , xn) � xj for a given value of j, so the requirement becomes that xj must take
on any one of N given values.

The equivalent IP formulation of this requirement is the following:

f(x1, x2, . . . , xn) � �
N

i�1
diyi

�
N

i�1
yi � 1

and

yi is binary, for i � 1, 2, . . . , N.

so this new set of constraints would replace this requirement in the statement of the over-
all problem. This set of constraints provides an equivalent formulation because exactly one
yi must equal 1 and the others must equal 0, so exactly one di is being chosen as the value
of the function. In this case, there are N yes-or-no questions being asked, namely, should
di be the value chosen (i � 1, 2, . . . , N)? Because the yi respectively represent these yes-
or-no decisions, the second constraint makes them mutually exclusive alternatives.

To illustrate how this case can arise, reconsider the Wyndor Glass Co. problem pre-
sented in Sec. 3.1. Eighteen hours of production time per week in Plant 3 currently is un-
used and available for the two new products or for certain future products that will be
ready for production soon. In order to leave any remaining capacity in usable blocks for
these future products, management now wants to impose the restriction that the produc-
tion time used by the two current new products be 6 or 12 or 18 hours per week. Thus,
the third constraint of the original model (3x1 � 2x2 � 18) now becomes

3x1 � 2x2 � 6 or 12 or 18.

In the preceding notation, N � 3 with d1 � 6, d2 � 12, and d3 � 18. Consequently, man-
agement’s new requirement should be formulated as follows:

3x1 � 2x2 � 6y1 � 12y2 � 18y3

y1 � y2 � y3 � 1

and

y1, y2, y3 are binary.
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The overall model for this new version of the problem then consists of the original model
(see Sec. 3.1) plus this new set of constraints that replaces the original third constraint.
This replacement yields a very tractable MIP formulation.

The Fixed-Charge Problem

It is quite common to incur a fixed charge or setup cost when undertaking an activity. For
example, such a charge occurs when a production run to produce a batch of a particular
product is undertaken and the required production facilities must be set up to initiate the
run. In such cases, the total cost of the activity is the sum of a variable cost related to the
level of the activity and the setup cost required to initiate the activity. Frequently the vari-
able cost will be at least roughly proportional to the level of the activity. If this is the case,
the total cost of the activity (say, activity j) can be represented by a function of the form

fj(xj) � �
where xj denotes the level of activity j (xj � 0), kj denotes the setup cost, and cj denotes
the cost for each incremental unit. Were it not for the setup cost kj, this cost structure would
suggest the possibility of a linear programming formulation to determine the optimal lev-
els of the competing activities. Fortunately, even with the kj, MIP can still be used.

To formulate the overall model, suppose that there are n activities, each with the pre-
ceding cost structure (with kj � 0 in every case and kj � 0 for some j � 1, 2, . . . , n), and
that the problem is to

Minimize Z � f1(x1) � f2(x2) � 			 � fn(xn),

subject to

given linear programming constraints.

To convert this problem to an MIP format, we begin by posing n questions that must
be answered yes or no; namely, for each j � 1, 2, . . . , n, should activity j be undertaken
(xj � 0)? Each of these yes-or-no decisions is then represented by an auxiliary binary vari-
able yj, so that

Z � �
n

j�1
(cjxj � kjyj),

where

yj � �
Therefore, the yj can be viewed as contingent decisions similar to (but not identical to)
the type considered in Sec. 12.1. Let M be an extremely large positive number that ex-
ceeds the maximum feasible value of any xj ( j � 1, 2, . . . , n). Then the constraints

xj � Myj for j � 1, 2, . . . , n

will ensure that yj � 1 rather than 0 whenever xj � 0. The one difficulty remaining is that
these constraints leave yj free to be either 0 or 1 when xj � 0. Fortunately, this difficulty

if xj � 0
if xj � 0.

1
0

if xj � 0
if xj � 0,

kj � cjxj

0
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is automatically resolved because of the nature of the objective function. The case where
kj � 0 can be ignored because yj can then be deleted from the formulation. So we con-
sider the only other case, namely, where kj � 0. When xj � 0, so that the constraints per-
mit a choice between yj � 0 and yj � 1, yj � 0 must yield a smaller value of Z than 
yj � 1. Therefore, because the objective is to minimize Z, an algorithm yielding an opti-
mal solution would always choose yj � 0 when xj � 0.

To summarize, the MIP formulation of the fixed-charge problem is

Minimize Z � �
n

j�1
(cjxj � kjyj),

subject to

the original constraints, plus
xj � Myj � 0

and

yj is binary, for j � 1, 2, . . . , n.

If the xj also had been restricted to be integer, then this would be a pure IP problem.
To illustrate this approach, look again at the Nori & Leets Co. air pollution problem

described in Sec. 3.4. The first of the abatement methods considered—increasing the height
of the smokestacks—actually would involve a substantial fixed charge to get ready for any
increase in addition to a variable cost that would be roughly proportional to the amount of
increase. After conversion to the equivalent annual costs used in the formulation, this fixed
charge would be $2 million each for the blast furnaces and the open-hearth furnaces, whereas
the variable costs are those identified in Table 3.14. Thus, in the preceding notation, k1 � 2,
k2 � 2, c1 � 8, and c2 � 10, where the objective function is expressed in units of millions
of dollars. Because the other abatement methods do not involve any fixed charges, kj � 0
for j � 3, 4, 5, 6. Consequently, the new MIP formulation of this problem is

Minimize Z � 8x1 � 10x2 � 7x3 � 6x4 � 11x5 � 9x6 � 2y1 � 2y2,

subject to

the constraints given in Sec. 3.4, plus
x1 � My1 � 0,
x2 � My2 � 0,

and

y1, y2 are binary.

Binary Representation of General Integer Variables

Suppose that you have a pure IP problem where most of the variables are binary vari-
ables, but the presence of a few general integer variables prevents you from solving the
problem by one of the very efficient BIP algorithms now available. A nice way to cir-
cumvent this difficulty is to use the binary representation for each of these general inte-
ger variables. Specifically, if the bounds on an integer variable x are

0 � x � u
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and if N is defined as the integer such that

2N � u � 2N�1,

then the binary representation of x is

x � �
N

i�0
2iyi,

where the yi variables are (auxiliary) binary variables. Substituting this binary represen-
tation for each of the general integer variables (with a different set of auxiliary binary
variables for each) thereby reduces the entire problem to a BIP model.

For example, suppose that an IP problem has just two general integer variables x1 and
x2 along with many binary variables. Also suppose that the problem has nonnegativity
constraints for both x1 and x2 and that the functional constraints include

x1 � 5
2x1 � 3x2 � 30.

These constraints imply that u � 5 for x1 and u � 10 for x2, so the above definition of N
gives N � 2 for x1 (since 22 � 5 � 23) and N � 3 for x2 (since 23 � 10 � 24). Therefore,
the binary representations of these variables are

x1 � y0 � 2y1 � 4y2

x2 � y3 � 2y4 � 4y5 � 8y6.

After we substitute these expressions for the respective variables throughout all the functional
constraints and the objective function, the two functional constraints noted above become

y0 � 2y1 � 4y2 � 5
2y0 � 4y1 � 8y2 � 3y3 � 6y4 � 12y5 � 24y6 � 30.

Observe that each feasible value of x1 corresponds to one of the feasible values of the
vector (y0, y1, y2), and similarly for x2 and (y3, y4, y5, y6). For example, x1 � 3 corre-
sponds to (y0, y1, y2) � (1, 1, 0), and x2 � 5 corresponds to (y3, y4, y5, y6) � (1, 0, 1, 0).

For an IP problem where all the variables are (bounded) general integer variables, it
is possible to use this same technique to reduce the problem to a BIP model. However,
this is not advisable for most cases because of the explosion in the number of variables
involved. Applying a good IP algorithm to the original IP model generally should be more
efficient than applying a good BIP algorithm to the much larger BIP model.

In general terms, for all the formulation possibilities with auxiliary binary variables
discussed in this section, we need to strike the same note of caution. This approach some-
times requires adding a relatively large number of such variables, which can make the
model computationally infeasible. (Section 12.5 will provide some perspective on the sizes
of IP problems that can be solved.)
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We now present a series of examples that illustrate a variety of formulation techniques
with binary variables, including those discussed in the preceding sections. For the sake of
clarity, these examples have been kept very small. In actual applications, these formula-
tions typically would be just a small part of a vastly larger model.
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EXAMPLE 1 Making Choices When the Decision Variables Are Continuous.

The Research and Development Division of the GOOD PRODUCTS COMPANY has de-
veloped three possible new products. However, to avoid undue diversification of the com-
pany’s product line, management has imposed the following restriction.

Restriction 1: From the three possible new products, at most two should be cho-
sen to be produced.

Each of these products can be produced in either of two plants. For administrative rea-
sons, management has imposed a second restriction in this regard.

Restriction 2: Just one of the two plants should be chosen to be the sole pro-
ducer of the new products.

The production cost per unit of each product would be essentially the same in the two
plants. However, because of differences in their production facilities, the number of hours
of production time needed per unit of each product might differ between the two plants.
These data are given in Table 12.2, along with other relevant information, including mar-
keting estimates of the number of units of each product that could be sold per week if it
is produced. The objective is to choose the products, the plant, and the production rates
of the chosen products so as to maximize total profit.

In some ways, this problem resembles a standard product mix problem such as the
Wyndor Glass Co. example described in Sec. 3.1. In fact, if we changed the problem by
dropping the two restrictions and by requiring each unit of a product to use the production
hours given in Table 12.2 in both plants (so the two plants now perform different opera-
tions needed by the products), it would become just such a problem. In particular, if we
let x1, x2, x3 be the production rates of the respective products, the model then becomes

Maximize Z � 5x1 � 7x2 � 3x3,

subject to

3x1 � 4x2 � 2x3 � 30
4x1 � 6x2 � 2x3 � 40
x1 � 7

x2 � 5
x3 � 9

TABLE 12.2 Data for Example 1 (the Good Products Co. problem)

Production Time Used
Production Timefor Each Unit Produced

Available
Product 1 Product 2 Product 3 per Week

Plant 1 3 hours 4 hours 2 hours 30 hours
Plant 2 4 hours 6 hours 2 hours 40 hours

Unit profit 5 7 3 (thousands of dollars)

Sales potential 7 5 9 (units per week)



and

x1 � 0, x2 � 0, x3 � 0.

For the real problem, however, restriction 1 necessitates adding to the model the
constraint

The number of strictly positive decision variables (x1, x2, x3) must be � 2.

This constraint does not fit into a linear or an integer programming format, so the key
question is how to convert it to such a format so that a corresponding algorithm can be
used to solve the overall model. If the decision variables were binary variables, then the
constraint would be expressed in this format as x1 � x2 � x3 � 2. However, with con-
tinuous decision variables, a more complicated approach involving the introduction of aux-
iliary binary variables is needed.

Requirement 2 necessitates replacing the first two functional constraints (3x1 �
4x2 � 2x3 � 30 and 4x1 � 6x2 � 2x3 � 40) by the restriction

Either 3x1 � 4x2 � 2x3 � 30
Or 4x1 � 6x2 � 2x3 � 40

must hold, where the choice of which constraint must hold corresponds to the choice of
which plant will be used to produce the new products. We discussed in the preceding sec-
tion how such an either-or constraint can be converted to a linear or an integer program-
ming format, again with the help of an auxiliary binary variable.

Formulation with Auxiliary Binary Variables. To deal with requirement 1, we in-
troduce three auxiliary binary variables (y1, y2, y3) with the interpretation

yj � �
for j � 1, 2, 3. To enforce this interpretation in the model with the help of M (an ex-
tremely large positive number), we add the constraints

x1 � My1

x2 � My2

x3 � My3

y1 � y2 � y3 � 2
yj is binary, for j � 1, 2, 3.

The either-or constraint and nonnegativity constraints give a bounded feasible region 
for the decision variables (so each xj � M throughout this region). Therefore, in each 
xj � Myj constraint, yj � 1 allows any value of xj in the feasible region, whereas yj � 0
forces xj � 0. (Conversely, xj � 0 forces yj � 1, whereas xj � 0 allows either value of yj.)
Consequently, when the fourth constraint forces choosing at most two of the yj to equal 1,
this amounts to choosing at most two of the new products as the ones that can be produced.

To deal with requirement 2, we introduce another auxiliary binary variable y4 with
the interpretation

y4 � � if 4x1 � 6x2 � 2x3 � 40 must hold (choose Plant 2)
if 3x1 � 4x2 � 2x3 � 30 must hold (choose Plant 1).

1
0

if xj � 0 can hold (can produce product j)
if xj � 0 must hold (cannot produce product j),

1
0
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As discussed in Sec. 12.3, this interpretation is enforced by adding the constraints,

3x1 � 4x2 � 2x3 � 30 � My4

4x1 � 6x2 � 2x3 � 40 � M(1 � y4)
y4 is binary.

Consequently, after we move all variables to the left-hand side of the constraints, the
complete model is

Maximize Z � 5x1 � 7x2 � 3x3,

subject to

x1 � 7
x2 � 5
x3 � 9

x1 � My1 � 0
x2 � My2 � 0
x3 � My3 � 0

y1 � y2 � y3 � 2
3x1 � 4x2 � 2x3 � My4 � 30
4x1 � 6x2 � 2x3 � My4 � 40 � M

and

x1 � 0, x2 � 0, x3 � 0
yj is binary, for j � 1, 2, 3, 4.

This now is an MIP model, with three variables (the xj) not required to be integer and
four binary variables, so an MIP algorithm can be used to solve the model. When this is
done (after substituting a large numerical value for M),1 the optimal solution is y1 � 1,
y2 � 0, y3 � 1, y4 � 1, x1 � 5


1
2


, x2 � 0, and x3 � 9; that is, choose products 1 and 3 to
produce, choose Plant 2 for the production, and choose the production rates of 5


1
2


 units
per week for product 1 and 9 units per week for product 3. The resulting total profit is
$54,500 per week.
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1In practice, some care is taken to choose a value for M that definitely is large enough to avoid eliminating any
feasible solutions, but as small as possible otherwise in order to avoid unduly enlarging the feasible region for
the LP-relaxation (and to avoid numerical instability). For this example, a careful examination of the constraints
reveals that the minimum feasible value of M is M � 9.

EXAMPLE 2 Violating Proportionality.

The SUPERSUDS CORPORATION is developing its marketing plans for next year’s new
products. For three of these products, the decision has been made to purchase a total of
five TV spots for commercials on national television networks. The problem we will fo-
cus on is how to allocate the five spots to these three products, with a maximum of three
spots (and a minimum of zero) for each product.



Table 12.3 shows the estimated impact of allocating zero, one, two, or three spots to
each product. This impact is measured in terms of the profit (in units of millions of dol-
lars) from the additional sales that would result from the spots, considering also the cost
of producing the commercial and purchasing the spots. The objective is to allocate five
spots to the products so as to maximize the total profit.

This small problem can be solved easily by dynamic programming (Chap. 10) or even
by inspection. (The optimal solution is to allocate two spots to product 1, no spots to prod-
uct 2, and three spots to product 3.) However, we will show two different BIP formula-
tions for illustrative purposes. Such a formulation would become necessary if this small
problem needed to be incorporated into a larger IP model involving the allocation of re-
sources to marketing activities for all the corporation’s new products.

One Formulation with Auxiliary Binary Variables. A natural formulation would
be to let x1, x2, x3 be the number of TV spots allocated to the respective products. The
contribution of each xj to the objective function then would be given by the correspond-
ing column in Table 12.3. However, each of these columns violates the assumption of pro-
portionality described in Sec. 3.3. Therefore, we cannot write a linear objective function
in terms of these integer decision variables.

Now see what happens when we introduce an auxiliary binary variable yij for each
positive integer value of xi � j ( j � 1, 2, 3), where yij has the interpretation

yij � �
(For example, y21 � 0, y22 � 0, and y23 � 1 mean that x2 � 3.) The resulting linear BIP
model is

Maximize Z � y11 � 3y12 � 3y13 � 2y22 � 3y23 � y31 � 2y32 � 4y33,

subject to

y11 � y12 � y13 � 1
y21 � y22 � y23 � 1
y31 � y32 � y33 � 1

y11 � 2y12 � 3y13 � y21 � 2y22 � 3y23 � y31 � 2y32 � 3y33 � 5

if xi � j
otherwise.

1
0
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TABLE 12.3 Data for Example 2 (the 
Supersuds Corp. problem)

Profit

Product
Number of
TV Spots 1 2 3

0 0 0 �0
1 1 0 �1
2 3 2 �2
3 3 3 �4



and

each yij is binary.

Note that the first three functional constraints ensure that each xi will be assigned just
one of its possible values. (Here yi1 � yi2 � yi3 � 0 corresponds to xi � 0, which con-
tributes nothing to the objective function.) The last functional constraint ensures that 
x1 � x2 � x3 � 5. The linear objective function then gives the total profit according to
Table 12.3.

Solving this BIP model gives an optimal solution of

y11 � 0, y12 � 1, y13 � 0, so x1 � 2
y21 � 0, y22 � 0, y23 � 0, so x2 � 0
y31 � 0, y32 � 0, y33 � 1, so x3 � 3.

Another Formulation with Auxiliary Binary Variables. We now redefine the above
auxiliary binary variables yij as follows:

yij � �
Thus, the difference is that yij � 1 now if xi � j instead of xi � j. Therefore,

xi � 0 ⇒ yi1 � 0, yi2 � 0, yi3 � 0,
xi � 1 ⇒ yi1 � 1, yi2 � 0, yi3 � 0,
xi � 2 ⇒ yi1 � 1, yi2 � 1, yi3 � 0,
xi � 3 ⇒ yi1 � 1, yi2 � 1, yi3 � 1,
so xi � yi1 � yi2 � yi3

for i � 1, 2, 3. Because allowing yi2 � 1 is contingent upon yi1 � 1 and allowing yi3 �
1 is contingent upon yi2 � 1, these definitions are enforced by adding the constraints

yi2 � yi1 and yi3 � yi2, for i � 1, 2, 3.

The new definition of the yij also changes the objective function, as illustrated in Fig.
12.1 for the product 1 portion of the objective function. Since y11, y12, y13 provide the suc-
cessive increments (if any) in the value of x1 (starting from a value of 0), the coefficients
of y11, y12, y13 are given by the respective increments in the product 1 column of Table
12.3 (1 � 0 � 1, 3 � 1 � 2, 3 � 3 � 0). These increments are the slopes in Fig. 12.1,
yielding 1y11 � 2y12 � 0y13 for the product 1 portion of the objective function. Note that
applying this approach to all three products still must lead to a linear objective function.

After we bring all variables to the left-hand side of the constraints, the resulting com-
plete BIP model is

Maximize Z � y11 � 2y12 � 2y22 � y23 � y31 � 3y32 � 2y33,

subject to

y12 � y11 � 0
y13 � y12 � 0
y22 � y21 � 0
y23 � y22 � 0

if xi � j
otherwise.

1
0
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y32 � y31 � 0
y33 � y32 � 0
y11 � y12 � y13 � y21 � y22 � y23 � y31 � y32 � y33 � 5

and

each yij is binary.

Solving this BIP model gives an optimal solution of

y11 � 1, y12 � 1, y13 � 0, so x1 � 2
y21 � 0, y22 � 0, y23 � 0, so x2 � 0
y31 � 1, y32 � 1, y33 � 1, so x3 � 3.

There is little to choose between this BIP model and the preceding one other than
personal taste. They have the same number of binary variables (the prime consideration
in determining computational effort for BIP problems). They also both have some special
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Profit from product 1 � 1y11 � 2y12 � 0y13

1 2 3 x1

4

3

2

1

0

Slope � 1

Slope � 2

Slope � 0

y11 y12 y13

FIGURE 12.1
The profit from the
additional sales of product 1
that would result from x1
TV spots, where the slopes
give the corresponding
coefficients in the objective
function for the second BIP
formulation for Example 2
(the Supersuds Corp.
problem).



structure (constraints for mutually exclusive alternatives in the first model and constraints
for contingent decisions in the second) that can lead to speedup. The second model does
have more functional constraints than the first.
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EXAMPLE 3 Covering All Characteristics.

SOUTHWESTERN AIRWAYS needs to assign its crews to cover all its upcoming flights.
We will focus on the problem of assigning three crews based in San Francisco to the
flights listed in the first column of Table 12.4. The other 12 columns show the 12 feasi-
ble sequences of flights for a crew. (The numbers in each column indicate the order of
the flights.) Exactly three of the sequences need to be chosen (one per crew) in such a
way that every flight is covered. (It is permissible to have more than one crew on a flight,
where the extra crews would fly as passengers, but union contracts require that the extra
crews would still need to be paid for their time as if they were working.) The cost of as-
signing a crew to a particular sequence of flights is given (in thousands of dollars) in the
bottom row of the table. The objective is to minimize the total cost of the three crew as-
signments that cover all the flights.

Formulation with Binary Variables. With 12 feasible sequences of flights, we have
12 yes-or-no decisions:

Should sequence j be assigned to a crew? ( j � 1, 2, . . . , 12)

Therefore, we use 12 binary variables to represent these respective decisions:

xj � �
The most interesting part of this formulation is the nature of each constraint that en-

sures that a corresponding flight is covered. For example, consider the last flight in Table

if sequence j is assigned to a crew
otherwise.

1
0

TABLE 12.4 Data for Example 3 (the Southwestern Airways problem)

Feasible Sequence of Flights

Flight 1 2 3 4 5 6 7 8 9 10 11 12

1. San Francisco to Los Angeles 1 1 1 1
2. San Francisco to Denver 1 1 1 1
3. San Francisco to Seattle 1 1 1 1
4. Los Angeles to Chicago 2 2 3 2 3
5. Los Angeles to San Francisco 2 3 5 5
6. Chicago to Denver 3 3 4
7. Chicago to Seattle 3 3 3 3 4
8. Denver to San Francisco 2 4 4 5
9. Denver to Chicago 2 2 2

10. Seattle to San Francisco 2 4 4 5
11. Seattle to Los Angeles 2 2 4 4 2

Cost, $1,000’s 2 3 4 6 7 5 7 8 9 9 8 9



12.4 [Seattle to Los Angeles (LA)]. Five sequences (namely, sequences 6, 9, 10, 11, and
12) include this flight. Therefore, at least one of these five sequences must be chosen. The
resulting constraint is

x6 � x9 � x10 � x11 � x12 � 1.

Using similar constraints for the other 10 flights, the complete BIP model is

Minimize Z � 2x1 � 3x2 � 4x3 � 6x4 � 7x5 � 5x6 � 7x7 � 8x8 � 9x9

� 9x10 � 8x11 � 9x12,

subject to

x1 � x4 � x7 � x10 � 1 (SF to LA)
x2 � x5 � x8 � x11 � 1 (SF to Denver)
x3 � x6 � x9 � x12 � 1 (SF to Seattle)

x4 � x7 � x9 � x10 � x12 � 1 (LA to Chicago)
x1 � x6 � x10 � x11 � 1 (LA to SF)

x4 � x5 � x9 � 1 (Chicago to Denver)
x7 � x8 � x10 � x11 � x12 � 1 (Chicago to Seattle)

x2 � x4 � x5 � x9 � 1 (Denver to SF)
x5 � x8 � x11 � 1 (Denver to Chicago)

x3 � x7 � x8 � x12 � 1 (Seattle to SF)
x6 � x9 � x10 � x11 � x12 � 1 (Seattle to LA)

�
12

j�1
xj � 3 (assign three crews)

and

xj is binary, for j � 1, 2, . . . , 12.

One optimal solution for this BIP model is

x3 � 1 (assign sequence 3 to a crew)
x4 � 1 (assign sequence 4 to a crew)

x11 � 1 (assign sequence 11 to a crew)

and all other xj � 0, for a total cost of $18,000. (Another optimal solution is x1 � 1,
x5 � 1, x12 � 1, and all other xj � 0.)

This example illustrates a broader class of problems called set covering problems.1

Any set covering problem can be described in general terms as involving a number of po-
tential activities (such as flight sequences) and characteristics (such as flights). Each ac-
tivity possesses some but not all of the characteristics. The objective is to determine the
least costly combination of activities that collectively possess (cover) each characteristic
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1Strictly speaking, a set covering problem does not include any other functional constraints such as the last func-
tional constraint in the above crew scheduling example. It also is sometimes assumed that every coefficient in
the objective function being minimized equals one, and then the name weighted set covering problem is used
when this assumption does not hold.



at least once. Thus, let Si be the set of all activities that possess characteristic i. At least
one member of the set Si must be included among the chosen activities, so a constraint,

�
j�Si

xj � 1,

is included for each characteristic i.
A related class of problems, called set partitioning problems, changes each such

constraint to

�
j�Si

xj � 1,

so now exactly one member of each set Si must be included among the chosen activities.
For the crew scheduling example, this means that each flight must be included exactly
once among the chosen flight sequences, which rules out having extra crews (as passen-
gers) on any flight.
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It may seem that IP problems should be relatively easy to solve. After all, linear pro-
gramming problems can be solved extremely efficiently, and the only difference is that IP
problems have far fewer solutions to be considered. In fact, pure IP problems with a
bounded feasible region are guaranteed to have just a finite number of feasible solutions.

Unfortunately, there are two fallacies in this line of reasoning. One is that having a
finite number of feasible solutions ensures that the problem is readily solvable. Finite num-
bers can be astronomically large. For example, consider the simple case of BIP problems.
With n variables, there are 2n solutions to be considered (where some of these solutions
can subsequently be discarded because they violate the functional constraints). Thus, each
time n is increased by 1, the number of solutions is doubled. This pattern is referred to
as the exponential growth of the difficulty of the problem. With n � 10, there are more
than 1,000 solutions (1,024); with n � 20, there are more than 1,000,000; with n � 30,
there are more than 1 billion; and so forth. Therefore, even the fastest computers are in-
capable of performing exhaustive enumeration (checking each solution for feasibility and,
if it is feasible, calculating the value of the objective value) for BIP problems with more
than a few dozen variables, let alone for general IP problems with the same number of
integer variables. Sophisticated algorithms, such as those described in subsequent sec-
tions, can do somewhat better. In fact, Sec. 12.8 discusses how some algorithms have suc-
cessfully solved certain vastly larger BIP problems. The best algorithms today are capa-
ble of solving many pure BIP problems with a few hundred variables and some
considerably larger ones (including certain problems with several tens of thousands of
variables). Nevertheless, because of exponential growth, even the best algorithms cannot
be guaranteed to solve every relatively small problem (less than a hundred binary or in-
teger variables). Depending on their characteristics, certain relatively small problems can
be much more difficult to solve than some much larger ones.

The second fallacy is that removing some feasible solutions (the noninteger ones)
from a linear programming problem will make it easier to solve. To the contrary, it is only
because all these feasible solutions are there that the guarantee can be given (see Sec. 5.1)
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that there will be a corner-point feasible (CPF) solution [and so a corresponding basic fea-
sible (BF) solution] that is optimal for the overall problem. This guarantee is the key to
the remarkable efficiency of the simplex method. As a result, linear programming prob-
lems generally are much easier to solve than IP problems.

Consequently, most successful algorithms for integer programming incorporate the
simplex method (or dual simplex method) as much as they can by relating portions of the
IP problem under consideration to the corresponding linear programming problem (i.e.,
the same problem except that the integer restriction is deleted). For any given IP problem,
this corresponding linear programming problem commonly is referred to as its LP re-
laxation. The algorithms presented in the next two sections illustrate how a sequence of
LP relaxations for portions of an IP problem can be used to solve the overall IP problem
effectively.

There is one special situation where solving an IP problem is no more difficult than
solving its LP relaxation once by the simplex method, namely, when the optimal solution
to the latter problem turns out to satisfy the integer restriction of the IP problem. When
this situation occurs, this solution must be optimal for the IP problem as well, because it
is the best solution among all the feasible solutions for the LP relaxation, which includes
all the feasible solutions for the IP problem. Therefore, it is common for an IP algorithm
to begin by applying the simplex method to the LP relaxation to check whether this for-
tuitous outcome has occurred.

Although it generally is quite fortuitous indeed for the optimal solution to the LP re-
laxation to be integer as well, there actually exist several special types of IP problems for
which this outcome is guaranteed. You already have seen the most prominent of these
special types in Chaps. 8 and 9, namely, the minimum cost flow problem (with integer pa-
rameters) and its special cases (including the transportation problem, the assignment prob-
lem, the shortest-path problem, and the maximum flow problem). This guarantee can be
given for these types of problems because they possess a certain special structure (e.g.,
see Table 8.6) that ensures that every BF solution is integer, as stated in the integer solu-
tions property given in Secs. 8.1 and 9.6. Consequently, these special types of IP prob-
lems can be treated as linear programming problems, because they can be solved com-
pletely by a streamlined version of the simplex method.

Although this much simplification is somewhat unusual, in practice IP problems fre-
quently have some special structure that can be exploited to simplify the problem. (Ex-
amples 2 and 3 in the preceding section fit into this category, because of their mutually
exclusive alternatives constraints or contingent decisions constraints or set-covering con-
straints.) Sometimes, very large versions of these problems can be solved successfully.
Special-purpose algorithms designed specifically to exploit certain kinds of special struc-
tures are becoming increasingly important in integer programming.

Thus, the two primary determinants of computational difficulty for an IP problem are
(1) the number of integer variables and (2) any special structure in the problem. This sit-
uation is in contrast to linear programming, where the number of (functional) constraints
is much more important than the number of variables. In integer programming, the num-
ber of constraints is of some importance (especially if LP relaxations are being solved),
but it is strictly secondary to the other two factors. In fact, there occasionally are cases
where increasing the number of constraints decreases the computation time because the
number of feasible solutions has been reduced. For MIP problems, it is the number of in-
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teger variables rather than the total number of variables that is important, because the con-
tinuous variables have almost no effect on the computational effort.

Because IP problems are, in general, much more difficult to solve than linear pro-
gramming problems, sometimes it is tempting to use the approximate procedure of sim-
ply applying the simplex method to the LP relaxation and then rounding the noninteger
values to integers in the resulting solution. This approach may be adequate for some ap-
plications, especially if the values of the variables are quite large so that rounding creates
relatively little error. However, you should beware of two pitfalls involved in this approach.

One pitfall is that an optimal linear programming solution is not necessarily feasible
after it is rounded. Often it is difficult to see in which way the rounding should be done
to retain feasibility. It may even be necessary to change the value of some variables by
one or more units after rounding. To illustrate, consider the following problem:

Maximize Z � x2,

subject to

�x1 � x2 � 

1
2




�x1 � x2 � 3

1
2




and

x1 � 0, x2 � 0
x1, x2 are integers.

As Fig. 12.2 shows, the optimal solution for the LP relaxation is x1 � 1

1
2


, x2 � 2, but it is
impossible to round the noninteger variable x1 to 1 or 2 (or any other integer) and retain
feasibility. Feasibility can be retained only by also changing the integer value of x2. It is
easy to imagine how such difficulties can be compounded when there are tens or hun-
dreds of constraints and variables.

Even if an optimal solution for the LP relaxation is rounded successfully, there re-
mains another pitfall. There is no guarantee that this rounded solution will be the optimal
integer solution. In fact, it may even be far from optimal in terms of the value of the ob-
jective function. This fact is illustrated by the following problem:

Maximize Z � x1 � 5x2,

subject to

x1 � 10x2 � 20
x1 � 2

and

x1 � 0, x2 � 0
x1, x2 are integers.

Because there are only two decision variables, this problem can be depicted graphically
as shown in Fig. 12.3. Either the graph or the simplex method may be used to find that
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the optimal solution for the LP relaxation is x1 � 2, x2 � 

9
5


, with Z � 11. If a graphical
solution were not available (which would be the case with more decision variables),
then the variable with the noninteger value x2 � 


9
5


 would normally be rounded in the
feasible direction to x2 � 1. The resulting integer solution is x1 � 2, x2 � 1, which yields
Z � 7. Notice that this solution is far from the optimal solution (x1, x2) � (0, 2), where
Z � 10.
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Because of these two pitfalls, a better approach for dealing with IP problems that are
too large to be solved exactly is to use one of the available heuristic algorithms. These
algorithms are extremely efficient for large problems, but they are not guaranteed to find
an optimal solution. However, they do tend to be considerably more effective than the
rounding approach just discussed in finding very good feasible solutions.

One of the particularly exciting developments in OR in recent years has been the rapid
progress in developing very effective heuristic algorithms (commonly called metaheuris-
tics) for various combinatorial problems such as IP problems. Three prominent types of
metaheuristics are tabu search, simulated annealing, and genetic algorithms. All three use
innovative concepts that guide a search procedure to move toward an optimal solution.
Tabu search explores promising areas to hold good solutions by rapidly eliminating un-
promising areas that are classified as tabu. Simulated annealing conducts the search by
using the analog of a physical annealing process. The basic concept underlying the search
with genetic algorithms is survival of the fittest through natural evolution. These sophis-
ticated metaheuristics (described further in Selected Reference 8) can even be applied to
integer nonlinear programming problems that have locally optimal solutions that may be
far removed from a globally optimal solution.

Returning to integer linear programming, for IP problems that are small enough to
be solved to optimality, a considerable number of algorithms now are available. However,
no IP algorithm possesses computational efficiency that is even nearly comparable to the
simplex method (except on special types of problems). Therefore, developing IP algorithms
has continued to be an active area of research. Fortunately, some exciting algorithmic ad-
vances have been made within the last two decades, and additional progress can be an-
ticipated during the coming years. These advances are discussed further in Sec. 12.8.

The most popular mode for IP algorithms is to use the branch-and-bound technique
and related ideas to implicitly enumerate the feasible integer solutions, and we shall fo-
cus on this approach. The next section presents the branch-and-bound technique in a gen-
eral context, and illustrates it with a basic branch-and-bound algorithm for BIP problems.
Section 12.7 presents another algorithm of the same type for general MIP problems.
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Because any bounded pure IP problem has only a finite number of feasible solutions, it
is natural to consider using some kind of enumeration procedure for finding an optimal
solution. Unfortunately, as we discussed in the preceding section, this finite number can
be, and usually is, very large. Therefore, it is imperative that any enumeration procedure
be cleverly structured so that only a tiny fraction of the feasible solutions actually need
be examined. For example, dynamic programming (see Chap. 11) provides one such kind
of procedure for many problems having a finite number of feasible solutions (although it
is not particularly efficient for most IP problems). Another such approach is provided by
the branch-and-bound technique. This technique and variations of it have been applied
with some success to a variety of OR problems, but it is especially well known for its ap-
plication to IP problems.

The basic concept underlying the branch-and-bound technique is to divide and con-
quer. Since the original “large” problem is too difficult to be solved directly, it is divided
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into smaller and smaller subproblems until these subproblems can be conquered. The di-
viding (branching) is done by partitioning the entire set of feasible solutions into smaller
and smaller subsets. The conquering ( fathoming) is done partially by bounding how good
the best solution in the subset can be and then discarding the subset if its bound indicates
that it cannot possibly contain an optimal solution for the original problem.

We shall now describe in turn these three basic steps—branching, bounding, and fath-
oming—and illustrate them by applying a branch-and-bound algorithm to the prototype
example (the California Manufacturing Co. problem) presented in Sec. 12.1 and repeated
here (with the constraints numbered for later reference).

Maximize Z � 9x1 � 5x2 � 6x3 � 4x4,

subject to

(1) 6x1 � 3x2 � 5x3 � 2x4 � 10
(2) x3 � 3x2 � 5x3 � 2x4 � 1
(3) �x1 � 3x2 � 5x3 � 0
(4) 6x1 ��x2 � 5x3 � x4 � 0

and

(5) xj is binary, for j � 1, 2, 3, 4.

Branching

When you are dealing with binary variables, the most straightforward way to partition the
set of feasible solutions into subsets is to fix the value of one of the variables (say, x1) at
x1 � 0 for one subset and at x1 � 1 for the other subset. Doing this for the prototype ex-
ample divides the whole problem into the two smaller subproblems shown below.

Subproblem 1:
Fix x1 � 0 so the resulting subproblem is

Maximize Z � 5x2 � 6x3 � 4x4,

subject to

(1) 3x2 � 5x3 � 2x4 � 10
(2) x3 � x4 � 1
(3) x3 � 0
(4) �x2 5x3 � x4 � 0
(5) xj is binary, for j � 2, 3, 4.

Subproblem 2:
Fix x1 � 1 so the resulting subproblem is

Maximize Z � 9 � 5x2 � 6x3 � 4x4,

subject to

(1) 3x2 � 5x3 � 2x4 � 4
(2) x3 � x4 � 1
(3) x3 � 1
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(4) �x2 5x3 � x4 � 0
(5) xj is binary, for j � 2, 3, 4.

Figure 12.4 portrays this dividing (branching) into subproblems by a tree (defined in Sec.
9.2) with branches (arcs) from the All node (corresponding to the whole problem having
all feasible solutions) to the two nodes corresponding to the two subproblems. This tree,
which will continue “growing branches” iteration by iteration, is referred to as the solu-
tion tree (or enumeration tree) for the algorithm. The variable used to do this branch-
ing at any iteration by assigning values to the variable (as with x1 above) is called the
branching variable. (Sophisticated methods for selecting branching variables are an im-
portant part of some branch-and-bound algorithms but, for simplicity, we always select
them in their natural order—x1, x2, . . . , xn—throughout this section.)

Later in the section you will see that one of these subproblems can be conquered
(fathomed) immediately, whereas the other subproblem will need to be divided further
into smaller subproblems by setting x2 � 0 or x2 � 1.

For other IP problems where the integer variables have more than two possible val-
ues, the branching can still be done by setting the branching variable at its respective in-
dividual values, thereby creating more than two new subproblems. However, a good al-
ternate approach is to specify a range of values (for example, xj � 2 or xj � 3) for the
branching variable for each new subproblem. This is the approach used for the algorithm
presented in Sec. 12.7.

Bounding

For each of these subproblems, we now need to obtain a bound on how good its best fea-
sible solution can be. The standard way of doing this is to quickly solve a simpler relax-
ation of the subproblem. In most cases, a relaxation of a problem is obtained simply by
deleting (“relaxing”) one set of constraints that had made the problem difficult to solve.
For IP problems, the most troublesome constraints are those requiring the respective vari-
ables to be integer. Therefore, the most widely used relaxation is the LP relaxation that
deletes this set of constraints.

To illustrate for the example, consider first the whole problem given in Sec. 12.1. Its
LP relaxation is obtained by replacing the last line of the model (xj is binary, for j � 1,
2, 3, 4) by the constraints that xj � 1 and xj � 0 for j � 1, 2, 3, 4. Using the simplex
method to quickly solve this LP relaxation yields its optimal solution

(x1, x2, x3, x4) � �

5
6


, 1, 0, 1�, with Z � 16

1
2


.

Therefore, Z � 16

1
2


 for all feasible solutions for the original BIP problem (since these so-
lutions are a subset of the feasible solutions for the LP relaxation). In fact, as summarized
below, this bound of 16


1
2


 can be rounded down to 16, because all coefficients in the ob-
jective function are integer, so all integer solutions must have an integer value for Z.

Bound for whole problem: Z � 16.

Now let us obtain the bounds for the two subproblems in the same way. Their LP re-
laxations are obtained from the models in the preceding subsection by replacing the con-
straints that xj is binary for j � 2, 3, 4 by the constraints 0 � xj � 1 for j � 2, 3, 4. Ap-
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plying the simplex method then yields their optimal solutions (plus the fixed value of x1)
shown below.

LP relaxation of subproblem 1: (x1, x2, x3, x4) � (0, 1, 0, 1) with Z � 9.

LP relaxation of subproblem 2: (x1, x2, x3, x4) � �1, 

4
5


, 0, 

4
5


� with Z � 16

1
5


.

The resulting bounds for the subproblems then are

Bound for subproblem 1: Z � 9,
Bound for subproblem 2: Z � 16.

Figure 12.5 summarizes these results, where the numbers given just below the nodes
are the bounds and below each bound is the optimal solution obtained for the LP relaxation.

Fathoming

A subproblem can be conquered (fathomed), and thereby dismissed from further consid-
eration, in the three ways described below.

One way is illustrated by the results for subproblem 1 given by the x1 � 0 node in
Fig. 12.5. Note that the (unique) optimal solution for its LP relaxation, (x1, x2, x3, x4) �
(0, 1, 0, 1), is an integer solution. Therefore, this solution must also be the optimal solu-
tion for subproblem 1 itself. This solution should be stored as the first incumbent (the
best feasible solution found so far) for the whole problem, along with its value of Z. This
value is denoted by

Z* � value of Z for current incumbent,

so Z* � 9 at this point. Since this solution has been stored, there is no reason to consider
subproblem 1 any further by branching from the x1 � 0 node, etc. Doing so could only
lead to other feasible solutions that are inferior to the incumbent, and we have no inter-
est in such solutions. Because it has been solved, we fathom (dismiss) subproblem 1 now.

The above results suggest a second key fathoming test. Since Z* � 9, there is no rea-
son to consider further any subproblem whose bound � 9, since such a subproblem can-
not have a feasible solution better than the incumbent. Stated more generally, a subprob-
lem is fathomed whenever its

Bound � Z*.

This outcome does not occur in the current iteration of the example because subproblem 2
has a bound of 16 that is larger than 9. However, it might occur later for descendants of
this subproblem (new smaller subproblems created by branching on this subproblem, and
then perhaps branching further through subsequent “generations”). Furthermore, as new in-
cumbents with larger values of Z* are found, it will become easier to fathom in this way.

The third way of fathoming is quite straightforward. If the simplex method finds that
a subproblem’s LP relaxation has no feasible solutions, then the subproblem itself must
have no feasible solutions, so it can be dismissed (fathomed).

In all three cases, we are conducting our search for an optimal solution by retaining
for further investigation only those subproblems that could possibly have a feasible solu-
tion better than the current incumbent.
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Summary of Fathoming Tests. A subproblem is fathomed (dismissed from further
consideration) if

Test 1: Its bound � Z*,
or
Test 2: Its LP relaxation has no feasible solutions,
or
Test 3: The optimal solution for its LP relaxation is integer. (If this solution is better

than the incumbent, it becomes the new incumbent, and test 1 is reapplied to all unfath-
omed subproblems with the new larger Z*.)

Figure 12.6 summarizes the results of applying these three tests to subproblems 1 and
2 by showing the current solution tree. Only subproblem 1 has been fathomed, by test 3,
as indicated by F(3) next to the x1 � 0 node. The resulting incumbent also is identified
below this node.

The subsequent iterations will illustrate successful applications of all three tests. How-
ever, before continuing the example, we summarize the algorithm being applied to this
BIP problem. (This algorithm assumes that all coefficients in the objective function are
integer and that the ordering of the variables for branching is x1, x2, . . . , xn.)

Summary of the BIP Branch-and-Bound Algorithm.

Initialization: Set Z* � ��. Apply the bounding step, fathoming step, and op-
timality test described below to the whole problem. If not fathomed, classify this
problem as the one remaining “subproblem” for performing the first full itera-
tion below.

Steps for each iteration:

1. Branching: Among the remaining (unfathomed) subproblems, select the one that was
created most recently. (Break ties according to which has the larger bound.) Branch
from the node for this subproblem to create two new subproblems by fixing the next
variable (the branching variable) at either 0 or 1.

2. Bounding: For each new subproblem, obtain its bound by applying the simplex method
to its LP relaxation and rounding down the value of Z for the resulting optimal solution.

3. Fathoming: For each new subproblem, apply the three fathoming tests summarized
above, and discard those subproblems that are fathomed by any of the tests.
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Optimality test: Stop when there are no remaining subproblems; the current in-
cumbent is optimal.1 Otherwise, return to perform another iteration.

The branching step for this algorithm warrants a comment as to why the subproblem
to branch from is selected in this way. One option not used would have been always to
select the remaining subproblem with the best bound, because this subproblem would be
the most promising one to contain an optimal solution for the whole problem. The rea-
son for instead selecting the most recently created subproblem is that LP relaxations are
being solved in the bounding step. Rather than start the simplex method from scratch each
time, each LP relaxation generally is solved by reoptimization in large-scale implemen-
tations of this algorithm. This reoptimization involves revising the final simplex tableau
from the preceding LP relaxation as needed because of the few differences in the model
( just as for sensitivity analysis) and then applying a few iterations of perhaps the dual
simplex method. This reoptimization tends to be much faster than starting from scratch,
provided the preceding and current models are closely related. The models will tend to be
closely related under the branching rule used, but not when you are skipping around in
the solution tree by selecting the subproblem with the best bound.

Completing the Example

The pattern for the remaining iterations will be quite similar to that for the first iteration de-
scribed above except for the ways in which fathoming occurs. Therefore, we shall summa-
rize the branching and bounding steps fairly briefly and then focus on the fathoming step.

Iteration 2. The only remaining subproblem corresponds to the x1 � 1 node in Fig.
12.6, so we shall branch from this node to create the two new subproblems given below.

Subproblem 3:
Fix x1 � 1, x2 � 0 so the resulting subproblem is

Maximize Z � 9 � 6x3 � 4x4,

subject to

(1) 5x3 � 2x4 � 4
(2) x3 � x4 � 1
(3) x3 � 1
(4) x4 � 0
(5) xj is binary, for j � 3, 4.

Subproblem 4:
Fix x1 � 1, x2 � 1 so the resulting subproblem is

Maximize Z � 14 � 6x3 � 4x4,

subject to

(1) 5x3 � 2x4 � 1
(2) x3 � x4 � 1
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(3) x3 � 1
(4) x4 � 1
(5) xj is binary, for j � 3, 4.

The LP relaxations of these subproblems are obtained by replacing the constraints xj

is binary for j � 3, 4 by the constraints 0 � xj � 1 for j � 3, 4. Their optimal solutions
(plus the fixed values of x1 and x2) are

LP relaxation of subproblem 3: (x1, x2, x3, x4) � �1, 0, 

4
5


, 0� with Z � 13

4
5


,

LP relaxation of subproblem 4: (x1, x2, x3, x4) � �1, 1, 0, 

1
2


� with Z � 16.

The resulting bounds for the subproblems are

Bound for subproblem 3: Z � 13,
Bound for subproblem 4: Z � 16.

Note that both these bounds are larger than Z* � 9, so fathoming test 1 fails in both
cases. Test 2 also fails, since both LP relaxations have feasible solutions (as indicated by
the existence of an optimal solution). Alas, test 3 fails as well, because both optimal so-
lutions include variables with noninteger values.

Figure 12.7 shows the resulting solution tree at this point. The lack of an F to the
right of either new node indicates that both remain unfathomed.

Iteration 3. So far, the algorithm has created four subproblems. Subproblem 1 has been
fathomed, and subproblem 2 has been replaced by (separated into) subproblems 3 and 4,
but these last two remain under consideration. Because they were created simultaneously,
but subproblem 4 (x1 � 1, x2 � 1) has the larger bound (16 � 13), the next branching is
done from the (x1, x2) � (1, 1) node in the solution tree, which creates the following new
subproblems (where constraint 3 disappears because it does not contain x4).
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Subproblem 5:
Fix x1 � 1, x2 � 1, x3 � 0 so the resulting subproblem is

Maximize Z � 14 � 4x4,

subject to

(1) 2x4 � 1
(2), (4) x4 � 1 (twice)
(5) x4 is binary.

Subproblem 6:
Fix x1 � 1, x2 � 1, x3 � 1 so the resulting subproblem is

Maximize Z � 20 � 4x4,

subject to

(1) 2x4 � �4
(2) x4 � �0
(4) x4 � �1
(5) x4 is binary.

If we form their LP relaxations by replacing constraint 5 by

(5) 0 � x4 � 1,

the following results are obtained:

LP relaxation of subproblem 5: (x1, x2, x3, x4) � �1, 1, 0, 

1
2


�, with Z � 16.

LP relaxation of subproblem 6: No feasible solutions.
Bound for subproblem 5: Z � 16.

Note how the combination of constraints 1 and 5 in the LP relaxation of subproblem 6
prevents any feasible solutions. Therefore, this subproblem is fathomed by test 2. How-
ever, subproblem 5 fails this test, as well as test 1 (16 � 9) and test 3 (x4 � 


1
2


 is not inte-
ger), so it remains under consideration.

We now have the solution tree shown in Fig. 12.8.

Iteration 4. The subproblems corresponding to nodes (1, 0) and (1, 1, 0) in Fig. 12.8
remain under consideration, but the latter node was created more recently, so it is selected
for branching from next. Since the resulting branching variable x4 is the last variable, fix-
ing its value at either 0 or 1 actually creates a single solution rather than subproblems re-
quiring fuller investigation. These single solutions are

x4 � 0: (x1, x2, x3, x4) � (1, 1, 0, 0) is feasible, with Z � 14,
x4 � 1: (x1, x2, x3, x4) � (1, 1, 0, 1) is infeasible.

Formally applying the fathoming tests, we see that the first solution passes test 3 and the
second passes test 2. Furthermore, this feasible first solution is better than the incumbent
(14 � 9), so it becomes the new incumbent, with Z* � 14.

Because a new incumbent has been found, we now reapply fathoming test 1 with the
new larger value of Z* to the only remaining subproblem, the one at node (1, 0).
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Subproblem 3:

Bound � 13 � Z* � 14.

Therefore, this subproblem now is fathomed.
We now have the solution tree shown in Fig. 12.9. Note that there are no remaining

(unfathomed) subproblems. Consequently, the optimality test indicates that the current in-
cumbent

(x1, x2, x3, x4) � (1, 1, 0, 0)

is optimal, so we are done.
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Your OR Tutor includes another example of applying this algorithm. Also included
in the OR Courseware is an interactive routine for executing this algorithm. As usual, the
Excel, LINGO/LINDO, and MPL/CPLEX files for this chapter in your OR Courseware
show how the student version of these software packages is applied to the various exam-
ples in the chapter. The algorithms they use for BIP problems all are similar to the one
described above.1

Other Options with the Branch-and-Bound Technique

This section has illustrated the branch-and-bound technique by describing a basic branch-
and-bound algorithm for solving BIP problems. However, the general framework of the
branch-and-bound technique provides a great deal of flexibility in how to design a spe-
cific algorithm for any given type of problem such as BIP. There are many options avail-
able, and constructing an efficient algorithm requires tailoring the specific design to fit
the specific structure of the problem type.

Every branch-and-bound algorithm has the same three basic steps of branching,
bounding, and fathoming. The flexibility lies in how these steps are performed.

Branching always involves selecting one remaining subproblem and dividing it into
smaller subproblems. The flexibility here is found in the rules for selecting and dividing.
Our BIP algorithm selected the most recently created subproblem, because this is very ef-
ficient for reoptimizing each LP relaxation from the preceding one. Selecting the subprob-
lem with the best bound is the other most popular rule, because it tends to lead more quickly
to better incumbents and so more fathoming. Combinations of the two rules also can be
used. The dividing typically (but not always) is done by choosing a branching variable and
assigning it either individual values (e.g., our BIP algorithm) or ranges of values (e.g., the
algorithm in the next section). More sophisticated algorithms generally use a rule for strate-
gically choosing a branching variable that should tend to lead to early fathoming.

Bounding usually is done by solving a relaxation. However, there are a variety of
ways to form relaxations. For example, consider the Lagrangian relaxation, where the
entire set of functional constraints Ax � b (in matrix notation) is deleted (except possi-
bly for any “convenient” constraints) and then the objective function

Maximize Z � cx,

is replaced by

Maximize ZR � cx � �(Ax � b),

where the fixed vector � � 0. If x* is an optimal solution for the original problem, its 
Z � ZR, so solving the Lagrangian relaxation for the optimal value of ZR provides a valid
bound. If � is chosen well, this bound tends to be a reasonably tight one (at least com-
parable to the bound from the LP relaxation). Without any functional constraints, this re-
laxation also can be solved extremely quickly. The drawbacks are that fathoming tests 2
and 3 (revised) are not as powerful as for the LP relaxation.
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In general terms, two features are sought in choosing a relaxation: it can be solved rel-
atively quickly, and provides a relatively tight bound. Neither alone is adequate. The LP
relaxation is popular because it provides an excellent trade-off between these two factors.

One option occasionally employed is to use a quickly solved relaxation and then, if
fathoming is not achieved, to tighten the relaxation in some way to obtain a somewhat
tighter bound.

Fathoming generally is done pretty much as described for the BIP algorithm. The
three fathoming criteria can be stated in more general terms as follows.

Summary of Fathoming Criteria. A subproblem is fathomed if an analysis of its re-
laxation reveals that

Criterion 1: Feasible solutions of the subproblem must have Z � Z*, or
Criterion 2: The subproblem has no feasible solutions, or
Criterion 3: An optimal solution of the subproblem has been found.

Just as for the BIP algorithm, the first two criteria usually are applied by solving the re-
laxation to obtain a bound for the subproblem and then checking whether this bound is
� Z* (test 1) or whether the relaxation has no feasible solutions (test 2). If the relaxation
differs from the subproblem only by the deletion (or loosening) of some constraints, then
the third criterion usually is applied by checking whether the optimal solution for the re-
laxation is feasible for the subproblem, in which case it must be optimal for the sub-
problem. For other relaxations (such as the Lagrangian relaxation), additional analysis is
required to determine whether the optimal solution for the relaxation is also optimal for
the subproblem.

If the original problem involves minimization rather than maximization, two options
are available. One is to convert to maximization in the usual way (see Sec. 4.6). The other
is to convert the branch-and-bound algorithm directly to minimization form, which re-
quires changing the direction of the inequality for fathoming test 1 from

Is the subproblem’s bound � Z*?

to

Is the subproblem’s bound � Z*?

So far, we have described how to use the branch-and-bound technique to find only
one optimal solution. However, in the case of ties for the optimal solution, it is sometimes
desirable to identify all these optimal solutions so that the final choice among them can
be made on the basis of intangible factors not incorporated into the mathematical model.
To find them all, you need to make only a few slight alterations in the procedure. First,
change the weak inequality for fathoming test 1 (Is the subproblem’s bound � Z*?) to a
strict inequality (Is the subproblem’s bound � Z*?), so that fathoming will not occur if
the subproblem can have a feasible solution equal to the incumbent. Second, if fathom-
ing test 3 passes and the optimal solution for the subproblem has Z � Z*, then store this
solution as another (tied) incumbent. Third, if test 3 provides a new incumbent (tied or
otherwise), then check whether the optimal solution obtained for the relaxation is unique.
If it is not, then identify the other optimal solutions for the relaxation and check whether
they are optimal for the subproblem as well, in which case they also become incumbents.
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Finally, when the optimality test finds that there are no remaining (unfathomed) subsets,
all the current incumbents will be the optimal solutions.

Finally, note that rather than find an optimal solution, the branch-and-bound tech-
nique can be used to find a nearly optimal solution, generally with much less computa-
tional effort. For some applications, a solution is “good enough” if its Z is “close enough”
to the value of Z for an optimal solution (call it Z**). Close enough can be defined in ei-
ther of two ways as either

Z** � K � Z or (1 � 
)Z** � Z

for a specified (positive) constant K or 
. For example, if the second definition is chosen
and 
 � 0.05, then the solution is required to be within 5 percent of optimal. Consequently,
if it were known that the value of Z for the current incumbent (Z*) satisfies either

Z** � K � Z* or (1 � 
)Z** � Z*

then the procedure could be terminated immediately by choosing the incumbent as the
desired nearly optimal solution. Although the procedure does not actually identify an op-
timal solution and the corresponding Z**, if this (unknown) solution is feasible (and so
optimal) for the subproblem currently under investigation, then fathoming test 1 finds an
upper bound such that

Z** � bound

so that either

Bound � K � Z* or (1 � 
)bound � Z*

would imply that the corresponding inequality in the preceding sentence is satisfied. Even
if this solution is not feasible for the current subproblem, a valid upper bound is still ob-
tained for the value of Z for the subproblem’s optimal solution. Thus, satisfying either of
these last two inequalities is sufficient to fathom this subproblem because the incumbent
must be “close enough” to the subproblem’s optimal solution.

Therefore, to find a solution that is close enough to being optimal, only one change
is needed in the usual branch-and-bound procedure. This change is to replace the usual
fathoming test 1 for a subproblem

Bound � Z*?

by either

Bound � K � Z*?

or

(1 � 
)(bound) � Z*?

and then perform this test after test 3 (so that a feasible solution found with Z � Z* is still
kept as the new incumbent). The reason this weaker test 1 suffices is that regardless of how
close Z for the subproblem’s (unknown) optimal solution is to the subproblem’s bound, the
incumbent is still close enough to this solution (if the new inequality holds) that the sub-
problem does not need to be considered further. When there are no remaining subprob-
lems, the current incumbent will be the desired nearly optimal solution. However, it is much
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easier to fathom with this new fathoming test (in either form), so the algorithm should run
much faster. For a large problem, this acceleration may make the difference between fin-
ishing with a solution guaranteed to be close to optimal and never terminating.
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We shall now consider the general MIP problem, where some of the variables (say, I of
them) are restricted to integer values (but not necessarily just 0 and 1) but the rest are or-
dinary continuous variables. For notational convenience, we shall order the variables so
that the first I variables are the integer-restricted variables. Therefore, the general form of
the problem being considered is

Maximize Z � �
n

j�1
cjxj,

subject to

�
n

j�1
aijxj � bi, for i � 1, 2, . . . , m,

and

xj � 0, for j � 1, 2, . . . , n,
xj is integer, for j � 1, 2, . . . , I; I � n.

(When I � n, this problem becomes the pure IP problem.)
We shall describe a basic branch-and-bound algorithm for solving this problem that,

with a variety of refinements, has provided a standard approach to MIP. The structure of
this algorithm was first developed by R. J. Dakin,1 based on a pioneering branch-and-
bound algorithm by A. H. Land and A. G. Doig.2

This algorithm is quite similar in structure to the BIP algorithm presented in the pre-
ceding section. Solving LP relaxations again provides the basis for both the bounding and
fathoming steps. In fact, only four changes are needed in the BIP algorithm to deal with
the generalizations from binary to general integer variables and from pure IP to mixed IP.

One change involves the choice of the branching variable. Before, the next variable
in the natural ordering—x1, x2, . . . , xn—was chosen automatically. Now, the only vari-
ables considered are the integer-restricted variables that have a noninteger value in the
optimal solution for the LP relaxation of the current subproblem. Our rule for choosing
among these variables is to select the first one in the natural ordering. (Production codes
generally use a more sophisticated rule.)

12.7 A BRANCH-AND-BOUND ALGORITHM FOR 
MIXED INTEGER PROGRAMMING

1R. J. Dakin, “A Tree Search Algorithm for Mixed Integer Programming Problems,” Computer Journal, 8(3):
250–255, 1965.
2A. H. Land and A. G. Doig, “An Automatic Method of Solving Discrete Programming Problems,” Economet-
rica, 28: 497–520, 1960.



The second change involves the values assigned to the branching variable for creat-
ing the new smaller subproblems. Before, the binary variable was fixed at 0 and 1, re-
spectively, for the two new subproblems. Now, the general integer-restricted variable could
have a very large number of possible integer values, and it would be inefficient to create
and analyze many subproblems by fixing the variable at its individual integer values.
Therefore, what is done instead is to create just two new subproblems (as before) by spec-
ifying two ranges of values for the variable.

To spell out how this is done, let xj be the current branching variable, and let xj* be
its (noninteger) value in the optimal solution for the LP relaxation of the current sub-
problem. Using square brackets to denote

[xj*] � greatest integer � xj*,

we have for the range of values for the two new subproblems

xj � [xj*] and xj � [xj*] � 1,

respectively. Each inequality becomes an additional constraint for that new subproblem.
For example, if xj* � 3


1
2


, then

xj � 3 and xj � 4

are the respective additional constraints for the new subproblem.
When the two changes to the BIP algorithm described above are combined, an in-

teresting phenomenon of a recurring branching variable can occur. To illustrate, as shown
in Fig. 12.10, let j � 1 in the above example where xj* � 3


1
2


, and consider the new sub-
problem where x1 � 3. When the LP relaxation of a descendant of this subproblem is
solved, suppose that x1* � 1


1
4


. Then x1 recurs as the branching variable, and the two new
subproblems created have the additional constraint x1 � 1 and x1 � 2, respectively (as
well as the previous additional constraint x1 � 3). Later, when the LP relaxation for a de-
scendant of, say, the x1 � 1 subproblem is solved, suppose that x1* � 


3
4


. Then x1 recurs
again as the branching variable, and the two new subproblems created have x1 � 0 (be-
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cause of the new x1 � 0 constraint and the nonnegativity constraint on x1) and x1 � 1 (be-
cause of the new x1 � 1 constraint and the previous x1 � 1 constraint).

The third change involves the bounding step. Before, with a pure IP problem and in-
teger coefficients in the objective function, the value of Z for the optimal solution for the
subproblem’s LP relaxation was rounded down to obtain the bound, because any feasible
solution for the subproblem must have an integer Z. Now, with some of the variables not
integer-restricted, the bound is the value of Z without rounding down.

The fourth (and final) change to the BIP algorithm to obtain our MIP algorithm in-
volves fathoming test 3. Before, with a pure IP problem, the test was that the optimal so-
lution for the subproblem’s LP relaxation is integer, since this ensures that the solution is
feasible, and therefore optimal, for the subproblem. Now, with a mixed IP problem, the
test requires only that the integer-restricted variables be integer in the optimal solution
for the subproblem’s LP relaxation, because this suffices to ensure that the solution is fea-
sible, and therefore optimal, for the subproblem.

Incorporating these four changes into the summary presented in the preceding sec-
tion for the BIP algorithm yields the following summary for the new algorithm for MIP.

Summary of the MIP Branch-and-Bound Algorithm.

Initialization: Set Z* � ��. Apply the bounding step, fathoming step, and optimality
test described below to the whole problem. If not fathomed, classify this
problem as the one remaining subproblem for performing the first full it-
eration below.

Steps for each iteration:

1. Branching: Among the remaining (unfathomed) subproblems, select the one that was
created most recently. (Break ties according to which has the larger bound.) Among
the integer-restricted variables that have a noninteger value in the optimal solution for
the LP relaxation of the subproblem, choose the first one in the natural ordering of the
variables to be the branching variable. Let xj be this variable and xj* its value in this
solution. Branch from the node for the subproblem to create two new subproblems by
adding the respective constraints xj � [xj*] and xj � [xj*] � 1.

2. Bounding: For each new subproblem, obtain its bound by applying the simplex method
(or the dual simplex method when reoptimizing) to its LP relaxation and using the
value of Z for the resulting optimal solution.

3. Fathoming: For each new subproblem, apply the three fathoming tests given below,
and discard those subproblems that are fathomed by any of the tests.
Test 1: Its bound � Z*, where Z* is the value of Z for the current incumbent.
Test 2: Its LP relaxation has no feasible solutions.
Test 3: The optimal solution for its LP relaxation has integer values for the integer-

restricted variables. (If this solution is better than the incumbent, it becomes
the new incumbent and test 1 is reapplied to all unfathomed subproblems with
the new larger Z*.)

Optimality test: Stop when there are no remaining subproblems; the current incumbent is
optimal.1 Otherwise, perform another iteration.
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An MIP Example. We will now illustrate this algorithm by applying it to the follow-
ing MIP problem:

Maximize Z � 4x1 � 2x2 � 7x3 � x4,

subject to

x1 � 5x3 � 10
x1 � x2 � x3 � 1

6x1 � 5x2 � 2x4 � 0
�x1 5x2 � 2x3 � 2x4 � 3

and

xj � 0, for j � 1, 2, 3, 4
xj is an integer, for j � 1, 2, 3.

Note that the number of integer-restricted variables is I � 3, so x4 is the only continuous
variable.

Initialization. After setting Z* � ��, we form the LP relaxation of this problem by
deleting the set of constraints that xj is an integer for j � 1, 2, 3. Applying the simplex
method to this LP relaxation yields its optimal solution below.

LP relaxation of whole problem: (x1, x2, x3, x4) � �

5
4


, 

3
2


, 

7
4


, 0�, with Z � 14

1
4


.

Because it has feasible solutions and this optimal solution has noninteger values for its
integer-restricted variables, the whole problem is not fathomed, so the algorithm contin-
ues with the first full iteration below.

Iteration 1. In this optimal solution for the LP relaxation, the first integer-restricted
variable that has a noninteger value is x1 � 


5
4


, so x1 becomes the branching variable. Branch-
ing from the All node (all feasible solutions) with this branching variable then creates the
following two subproblems:

Subproblem 1:
Original problem plus additional constraint

x1 � 1.

Subproblem 2:
Original problem plus additional constraint

x1 � 2.

Deleting the set of integer constraints again and solving the resulting LP relaxations of
these two subproblems yield the following results.

LP relaxation of subproblem 1: (x1, x2, x3, x4) � �1, 

6
5


, 

9
5


, 0�, with Z � 14

1
5


.

Bound for subproblem 1: Z � 14

1
5


.

LP relaxation of subproblem 2: No feasible solutions.
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This outcome for subproblem 2 means that it is fathomed by test 2. However, just as
for the whole problem, subproblem 1 fails all fathoming tests.

These results are summarized in the solution tree shown in Fig. 12.11.

Iteration 2. With only one remaining subproblem, corresponding to the x1 � 1 node
in Fig. 12.11, the next branching is from this node. Examining its LP relaxation’s opti-
mal solution given below, we see that this node reveals that the branching variable is x2,
because x2 � 


6
5


 is the first integer-restricted variable that has a noninteger value. Adding
one of the constraints x2 � 1 or x2 � 2 then creates the following two new subproblems.

Subproblem 3:
Original problem plus additional constraints

x1 � 1, x2 � 1.

Subproblem 4:
Original problem plus additional constraints

x1 � 1, x2 � 2.

Solving their LP relaxations gives the following results.

LP relaxation of subproblem 3: (x1, x2, x3, x4) � �

5
6


, 1, 

1
6
1

, 0�, with Z � 14


1
6


.

Bound for subproblem 3: Z � 14

1
6


.

LP relaxation of subproblem 4: (x1, x2, x3, x4) � �

5
6


, 2, 

1
6
1

, 0�, with Z � 12


1
6


.

Bound for subproblem 4: Z � 12

1
6


.

Because both solutions exist (feasible solutions) and have noninteger values for integer-
restricted variables, neither subproblem is fathomed. (Test 1 still is not operational, since
Z* � �� until the first incumbent is found.)

The solution tree at this point is given in Fig. 12.12.

Iteration 3. With two remaining subproblems (3 and 4) that were created simultane-
ously, the one with the larger bound (subproblem 3, with 14


1
6


 � 12

1
6


) is selected for the
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next branching. Because x1 � 

5
6


 has a noninteger value in the optimal solution for this sub-
problem’s LP relaxation, x1 becomes the branching variable. (Note that x1 now is a re-
curring branching variable, since it also was chosen at iteration 1.) This leads to the fol-
lowing new subproblems.

Subproblem 5:
Original problem plus additional constraints

x1 � 1
x2 � 1
x1 � 0 (so x1 � 0).

Subproblem 6:
Original problem plus additional constraints

x1 � 1
x2 � 1
x1 � 1 (so x1 � 1).

The results from solving their LP relaxations are given below.

LP relaxation of subproblem 5: (x1, x2, x3, x4) � �0, 0, 2, 

1
2


�, with Z � 13

1
2


.

Bound for subproblem 5: Z � 13

1
2


.

LP relaxation of subproblem 6: No feasible solutions.

Subproblem 6 is immediately fathomed by test 2. However, note that subproblem 5
also can be fathomed. Test 3 passes because the optimal solution for its LP relaxation has
integer values (x1 � 0, x2 � 0, x3 � 2) for all three integer-restricted variables. (It does
not matter that x4 � 


1
2


, since x4 is not integer-restricted.) This feasible solution for the orig-
inal problem becomes our first incumbent:

Incumbent � �0, 0, 2, 

1
2


� with Z* � 13

1
2


.
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Using this Z* to reapply fathoming test 1 to the only other subproblem (subproblem 4) is
successful, because its bound 12


1
6


 � Z*.
This iteration has succeeded in fathoming subproblems in all three possible ways. Fur-

thermore, there now are no remaining subproblems, so the current incumbent is optimal.

Optimal solution � �0, 0, 2, 

1
2


� with Z � 13

1
2


.

These results are summarized by the final solution tree given in Fig. 12.13.

Another example of applying the MIP algorithm is presented in your OR Tutor. The
OR Courseware also includes an interactive routine for executing this algorithm.
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Integer programming has been an especially exciting area of OR since the mid-1980s be-
cause of the dramatic progress being made in its solution methodology.

Background

To place this progress into perspective, consider the historical background. One big break-
through had come in the 1960s and early 1970s with the development and refinement of
the branch-and-bound approach. But then the state of the art seemed to hit a plateau. Rel-
atively small problems (well under 100 variables) could be solved very efficiently, but
even a modest increase in problem size might cause an explosion in computation time be-
yond feasible limits. Little progress was being made in overcoming this exponential growth
in computation time as the problem size was increased. Many important problems arising
in practice could not be solved.

Then came the next breakthrough in the mid-1980s, as reported largely in four pa-
pers published in 1983, 1985, 1987, and 1991. (See Selected References 3, 6, 10, and 5.)
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In the 1983 paper, Harlan Crowder, Ellis Johnson, and Manfred Padberg presented a new
algorithmic approach to solving pure BIP problems that had successfully solved problems
with no apparent special structure having up to 2,756 variables! This paper won the Lan-
chester Prize, awarded by the Operations Research Society of America for the most no-
table publication in operations research during 1983. In the 1985 paper, Ellis Johnson,
Michael Kostreva, and Uwe Suhl further refined this algorithmic approach.

However, both of these papers were limited to pure BIP. For IP problems arising in
practice, it is quite common for all the integer-restricted variables to be binary, but a large
proportion of these problems are mixed BIP problems. What was critically needed was a
way of extending this same kind of algorithmic approach to mixed BIP. This came in the
1987 paper by Tony Van Roy and Laurence Wolsey of Belgium. Once again, problems of
very substantial size (up to nearly 1,000 binary variables and a larger number of contin-
uous variables) were being solved successfully. And once again, this paper won a very
prestigious award, the Orchard-Hays Prize given triannually by the Mathematical Pro-
gramming Society.

In the 1991 paper, Karla Hoffman and Manfred Padberg followed up on the 1983 and
1985 papers by developing improved techniques for solving pure BIP problems. Using
the name branch-and-cut algorithm for this algorithmic approach, they reported suc-
cessfully solving problems with as many as 6,000 variables!

We do need to add one note of caution. This algorithmic approach cannot consistently
solve all pure BIP problems with a few thousand variables, or even a few hundred vari-
ables. The very large pure BIP problems solved had sparse A matrices; i.e., the percent-
age of coefficients in the functional constraints that were nonzeros was quite small (per-
haps less than 5 percent). In fact, the approach depends heavily upon this sparsity.
(Fortunately, this kind of sparsity is typical in large practical problems.) Furthermore, there
are other important factors besides sparsity and size that affect just how difficult a given
IP problem will be to solve. IP formulations of fairly substantial size should still be ap-
proached with considerable caution.

On the other hand, each new algorithmic breakthrough in OR always generates a
flurry of new research and development activity to try to refine the new approach further.
We have seen substantial effort to develop sophisticated software packages for widespread
use. For example, the kinds of IP techniques discussed above have been incorporated into
the IP module of IBM’s Optimization Subroutine Library (OSL). The developers of
CPLEX have an ongoing project to maintain a fully state-of-the-art IP module. Theoret-
ical research also continues. 

Throughout the 1990s, we have seen further fruits of these intensified research and
development activities in integer programming. Larger and larger problems are being
solved. For example, at the end of that decade, CPLEX 6.5 successfully used a sophisti-
cated branch-and-cut algorithm to solve a real-world problem with over 4,000 functional
constraints and over 120,000 binary variables! MIP problems with thousands of general
integer variables, along with numerous continuous variables and binary variables, also
were being solved. (Selected Reference 2 provides details.)

Although it would be beyond the scope and level of this book to fully describe the al-
gorithmic approach discussed above, we will now give a brief overview. (You are encour-
aged to read Selected References 2, 3, 5, 6, and 10 for further information.) This overview
is limited to pure BIP, so all variables introduced later in this section are binary variables.
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The approach mainly uses a combination of three kinds1 of techniques: automatic
problem preprocessing, the generation of cutting planes, and clever branch-and-bound
techniques. You already are familiar with branch-and-bound techniques, and we will not
elaborate further on the more advanced versions incorporated here. An introduction to the
other two kinds of techniques is given below.

Automatic Problem Preprocessing for Pure BIP

Automatic problem preprocessing involves a “computer inspection” of the user-supplied
formulation of the IP problem in order to spot reformulations that make the problem
quicker to solve without eliminating any feasible solutions. These reformulations fall into
three categories:

1. Fixing variables: Identify variables that can be fixed at one of their possible values (ei-
ther 0 or 1) because the other value cannot possibly be part of a solution that is both
feasible and optimal.

2. Eliminating redundant constraints: Identify and eliminate redundant constraints (con-
straints that automatically are satisfied by solutions that satisfy all the other constraints).

3. Tightening constraints: Tighten some constraints in a way that reduces the feasible region
for the LP relaxation without eliminating any feasible solutions for the BIP problem.

These categories are described in turn.

Fixing Variables. One general principle for fixing variables is the following.

If one value of a variable cannot satisfy a certain constraint, even when the other vari-
ables equal their best values for trying to satisfy the constraint, then that variable should
be fixed at its other value.

For example, each of the following � constraints would enable us to fix x1 at x1 � 0,
since x1 � 1 with the best values of the other variables (0 with a nonnegative coefficient
and 1 with a negative coefficient) would violate the constraint.

3x1 � 2 ⇒ x1 � 0, since 3(1) � 2.
3x1 � x2 � 2 ⇒ x1 � 0, since 3(1) � 1(0) � 2.

5x1 � x2 � 2x3 � 2 ⇒ x1 � 0, since 5(1) � 1(0) � 2(1) � 2.

The general procedure for checking any � constraint is to identify the variable with
the largest positive coefficient, and if the sum of that coefficient and any negative coeffi-
cients exceeds the right-hand side, then that variable should be fixed at 0. (Once the vari-
able has been fixed, the procedure can be repeated for the variable with the next largest
positive coefficient, etc.)

An analogous procedure with � constraints can enable us to fix a variable at 1 in-
stead, as illustrated below three times.

3x1 � 2 ⇒ x1 � 1, since 3(0) � 2.
3x1 � x2 � 2 ⇒ x1 � 1, since 3(0) � 1(1) � 2.

3x1 � x2 � 2x3 � 2 ⇒ x1 � 1, since 3(0) � 1(1) � 2(0) � 2.
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A � constraint also can enable us to fix a variable at 0, as illustrated next.

x1 � x2 � 2x3 � 1 ⇒ x3 � 0, since 1(1) � 1(1) � 2(1) � 1.

The next example shows a � constraint fixing one variable at 1 and another at 0.

3x1 � x2 � 3x3 � 2 ⇒ x1 � 1, since 3(0) � 1(1) � 3(0) � 2
and ⇒ x3 � 0, since 3(1) � 1(1) � 3(1) � 2.

Similarly, a � constraint with a negative right-hand side can result in either 0 or 1
becoming the fixed value of a variable. For example, both happen with the following
constraint.

3x1 � 2x2 � �1 ⇒ x1 � 0, since 3(1) � 2(1) � �1
and ⇒ x2 � 1, since 3(0) � 2(0) � �1.

Fixing a variable from one constraint can sometimes generate a chain reaction of then
being able to fix other variables from other constraints. For example, look at what hap-
pens with the following three constraints.

3x1 � x2 � 2x3 � 2 ⇒ x1 � 1 (as above).

Then

x1 � x4 � x5 � 1 ⇒ x4 � 0, x5 � 0.

Then

�x5 � x6 � 0 ⇒ x6 � 0.

In some cases, it is possible to combine one or more mutually exclusive alternatives
constraints with another constraint to fix a variable, as illustrated below,

8x1 � 4x2 � 5x3 � 3x4 � 2� ⇒ x1 � 0,
8x1 � 4x2 � x3 � 3x4 � 1

since 8(1) � max{4, 5}(1) � 3(0) � 2.

There are additional techniques for fixing variables, including some involving opti-
mality considerations, but we will not delve further into this topic.

Fixing variables can have a dramatic impact on reducing the size of a problem. One
example is the problem with 2,756 variables reported in Selected Reference 3. A major
factor in being able to solve this problem is that the algorithm succeeded in fixing 1,341
variables, thereby eliminating essentially half of the problem’s variables from further
consideration.

Eliminating Redundant Constraints. Here is one easy way to detect a redundant
constraint.

If a functional constraint satisfies even the most challenging binary solution, then it has
been made redundant by the binary constraints and can be eliminated from further con-
sideration. For a � constraint, the most challenging binary solution has variables equal to
1 when they have nonnegative coefficients and other variables equal to 0. (Reverse these
values for a � constraint.)
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Some examples are given below.

3x1 � 2x2 � �6 is redundant, since 3(1) � 2(1) � 6.
3x1 � 2x2 � �3 is redundant, since 3(1) � 2(0) � 3.
3x1 � 2x2 � �3 is redundant, since 3(0) � 2(1) � �3.

In most cases where a constraint has been identified as redundant, it was not redundant
in the original model but became so after fixing some variables. Of the 11 examples of fix-
ing variables given above, all but the last one left a constraint that then was redundant.

Tightening Constraints.1 Consider the following problem.

Maximize Z � 3x1 � 2x2,

subject to

2x1 � 3x2 � 4

and

x1, x2 binary.

This BIP problem has just three feasible solutions—(0, 0), (1, 0), and (0, 1)—where the
optimal solution is (1, 0) with Z � 3. The feasible region for the LP relaxation of this
problem is shown in Fig. 12.14. The optimal solution for this LP relaxation is (1, 


2
3


) with
Z � 4


1
3


, which is not very close to the optimal solution for the BIP problem. A branch-
and-bound algorithm would have some work to do to identify the optimal BIP solution.
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0 1 x1

1

x2

Optimal solution

Optimal solution
for BIP problem

LP relaxation

Maximize
subject to
and

Feasible
region

Z � 3x1 � 2x2,
2x1 � 3x2 � 4

0 � x1 � 1, 0 � x2 � 1

FIGURE 12.14
The LP relaxation (including
its feasible region and
optimal solution) for the BIP
example used to illustrate
tightening a constraint.

1Also commonly called coefficient reduction.



Now look what happens when the functional constraint 2x1 � 3x2 � 4 is replaced by

x1 � x2 � 1.

The feasible solutions for the BIP problem remain exactly the same—(0, 0), (1, 0), and
(0, 1)—so the optimal solution still is (1, 0). However, the feasible region for the LP re-
laxation has been greatly reduced, as shown in Fig. 12.15. In fact, this feasible region has
been reduced so much that the optimal solution for the LP relaxation now is (1, 0), so the
optimal solution for the BIP problem has been found without needing any additional work.

This is an example of tightening a constraint in a way that reduces the feasible re-
gion for the LP relaxation without eliminating any feasible solutions for the BIP problem.
It was easy to do for this tiny two-variable problem that could be displayed graphically.
However, with application of the same principles for tightening a constraint without elim-
inating any feasible BIP solutions, the following algebraic procedure can be used to do
this for any � constraint with any number of variables.

Procedure for Tightening a � Constraint
Denote the constraint by a1x1 � a2x2 � 			 � anxn � b.

1. Calculate S � sum of the positive aj.
2. Identify any aj � 0 such that S � b � aj.

(a) If none, stop; the constraint cannot be tightened further.
(b) If aj � 0, go to step 3.
(c) If aj � 0, go to step 4.

3. (aj � 0) Calculate a�j � S � b and b� � S � aj. Reset aj � a�j and b � b�. Return to
step 1.

4. (aj � 0) Increase aj to aj � b � S. Return to step 1.
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FIGURE 12.15
The LP relaxation after
tightening the constraint, 
2x1 � 3x2 � 4, to x1 �
x2 � 1 for the example of
Fig. 12.14.



Applying this procedure to the functional constraint in the above example flows as
follows:

The constraint is 2x1 � 3x2 � 4 (a1 � 2, a2 � 3, b � 4).

1. S � 2 � 3 � 5.
2. a1 satisfies S � b � a1, since 5 � 4 � 2. Also a2 satisfies S � b � a2, since 

5 � 4 � 3. Choose a1 arbitrarily.
3. a�1 � 5 � 4 � 1 and b� � 5 � 2 � 3, so reset a1 � 1 and b � 3. The new tighter con-

straint is

x1 � 3x2 � 3 (a1 � 1, a2 � 3, b � 3).

1. S � 1 � 3 � 4.
2. a2 satisfies S � b � a2, since 4 � 3 � 3.
3. a�2 � 4 � 3 � 1 and b� � 4 � 3 � 1, so reset a2 � 1 and b � 1. The new tighter con-

straint is

x1 � x2 � 1 (a1 � 1, a2 � 1, b � 1).

1. S � 1 � 1 � 2.
2. No aj � 0 satisfies S � b � aj, so stop; x1 � x2 � 1 is the desired tightened constraint.

If the first execution of step 2 in the above example had chosen a2 instead, then the
first tighter constraint would have been 2x1 � x2 � 2. The next series of steps again would
have led to x1 � x2 � 1.

In the next example, the procedure tightens the constraint on the left to become the
one on its right and then tightens further to become the second one on the right.

4x1 � 3x2 � x3 � 2x4 � 5 ⇒ 2x1 � 3x2 � x3 � 2x4 � 3
⇒ 2x1 � 2x2 � x3 � 2x4 � 3.

(Problem 12.8-5 asks you to apply the procedure to confirm these results.)
A constraint in � form can be converted to � form (by multiplying through both

sides by �1) to apply this procedure directly.

Generating Cutting Planes for Pure BIP

A cutting plane (or cut) for any IP problem is a new functional constraint that reduces the
feasible region for the LP relaxation without eliminating any feasible solutions for the IP
problem. In fact, you have just seen one way of generating cutting planes for pure BIP prob-
lems, namely, apply the above procedure for tightening constraints. Thus, x1 � x2 � 1 is a
cutting plane for the BIP problem considered in Fig. 12.14, which leads to the reduced fea-
sible region for the LP relaxation shown in Fig. 12.15.

In addition to this procedure, a number of other techniques have been developed for
generating cutting planes that will tend to accelerate how quickly a branch-and-bound al-
gorithm can find an optimal solution for a pure BIP problem. We will focus on just one
of these techniques.

To illustrate this technique, consider the California Manufacturing Co. pure BIP prob-
lem presented in Sec. 12.1 and used to illustrate the BIP branch-and-bound algorithm in
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Sec. 12.6. The optimal solution for its LP relaxation is given in Fig. 12.5 as (x1, x2, x3,
x4) � (


5
6


, 1, 0, 1). One of the functional constraints is

6x1 � 3x2 � 5x3 � 2x4 � 10.

Now note that the binary constraints and this constraint together imply that

x1 � x2 � x4 � 2.

This new constraint is a cutting plane. It eliminates part of the feasible region for the LP
relaxation, including what had been the optimal solution, (


5
6


, 1, 0, 1), but it does not elim-
inate any feasible integer solutions. Adding just this one cutting plane to the original model
would improve the performance of the BIP branch-and-bound algorithm in Sec. 12.6 (see
Fig. 12.9) in two ways. First, the optimal solution for the new (tighter) LP relaxation
would be (1, 1, 


1
5


, 0), with Z � 15

1
5


, so the bounds for the All node, x1 � 1 node, and (x1,
x2) � (1, 1) node now would be 15 instead of 16. Second, one less iteration would be
needed because the optimal solution for the LP relaxation at the (x1, x2, x3) � (1, 1, 0)
node now would be (1, 1, 0, 0), which provides a new incumbent with Z* � 14. There-
fore, on the third iteration (see Fig. 12.8), this node would be fathomed by test 3, and the
(x1, x2) � (1, 0) node would be fathomed by test 1, thereby revealing that this incumbent
is the optimal solution for the original BIP problem.

Here is the general procedure used to generate this cutting plane.

A Procedure for Generating Cutting Planes

1. Consider any functional constraint in � form with only nonnegative coefficients.
2. Find a group of variables (called a minimum cover of the constraint) such that

(a) The constraint is violated if every variable in the group equals 1 and all other vari-
ables equal 0.

(b) But the constraint becomes satisfied if the value of any one of these variables is
changed from 1 to 0.

3. By letting N denote the number of variables in the group, the resulting cutting plane
has the form

Sum of variables in group � N � 1.

Applying this procedure to the constraint 6x1 � 3x2 � 5x3 � 2x4 � 10, we see that
the group of variables {x1, x2, x4} is a minimal cover because

(a) (1, 1, 0, 1) violates the constraint.
(b) But the constraint becomes satisfied if the value of any one of these three vari-

ables is changed from 1 to 0.

Since N � 3 in this case, the resulting cutting plane is x1 � x2 � x4 � 2.
This same constraint also has a second minimal cover {x1, x3}, since (1, 0, 1, 0) vi-

olates the constraint but both (0, 0, 1, 0) and (1, 0, 0, 0) satisfy the constraint. Therefore,
x1 � x3 � 1 is another valid cutting plane.

The new algorithmic approach presented in Selected References 3, 6, 10, 5, and 2
involves generating many cutting planes in a similar manner before then applying clever
branch-and-bound techniques. The results of including the cutting planes can be quite
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dramatic in tightening the LP relaxations. For example, for the test problem with 2,756
binary variables considered in Selected Reference 3,326 cutting planes were generated.
The result was that the gap between Z for the optimal solution for the LP relaxation of
the whole BIP problem and Z for this problem’s optimal solution was reduced by 98 per-
cent. Similar results were obtained on about half of the problems considered in Selected
Reference 3.

Ironically, the very first algorithms developed for integer programming, including
Ralph Gomory’s celebrated algorithm announced in 1958, were based on cutting planes
(generated in a different way), but this approach proved to be unsatisfactory in practice
(except for special classes of problems). However, these algorithms relied solely on cut-
ting planes. We now know that judiciously combining cutting planes and branch-and-bound
techniques (along with automatic problem preprocessing) provides a powerful algorith-
mic approach for solving large-scale BIP problems. This is one reason that the name
branch-and-cut algorithm has been given to this new approach.
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IP problems arise frequently because some or all of the decision variables must be re-
stricted to integer values. There also are many applications involving yes-or-no decisions
(including combinatorial relationships expressible in terms of such decisions) that can be
represented by binary (0–1) variables. These factors have made integer programming one
of the most widely used OR techniques.

IP problems are more difficult than they would be without the integer restriction,
so the algorithms available for integer programming are generally much less efficient
than the simplex method. The most important determinants of computation time are the
number of integer variables and whether the problem has some special structure that
can be exploited. For a fixed number of integer variables, BIP problems generally are
much easier to solve than problems with general integer variables, but adding continu-
ous variables (MIP) may not increase computation time substantially. For special types
of BIP problems containing a special structure that can be exploited by a special-
purpose algorithm, it may be possible to solve very large problems (thousands of bi-
nary variables) routinely. Other much smaller problems without such special structure
may not be solvable.

Computer codes for IP algorithms now are commonly available in mathematical pro-
gramming software packages. Traditionally, these algorithms usually have been based on
the branch-and-bound technique and variations thereof.

A new era in IP solution methodology has now been ushered in by a series of land-
mark papers since the mid-1980s. The new branch-and-cut algorithmic approach involves
combining automatic problem preprocessing, the generation of cutting planes, and clever
branch-and-bound techniques. Research in this area is continuing, along with the devel-
opment of sophisticated new software packages that incorporate these new techniques.

In recent years, there has been considerable investigation into the development of al-
gorithms (including heuristic algorithms) for integer nonlinear programming, and this area
continues to be a very active area of research.
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The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The corresponding demonstration example listed above may be
helpful.

I: We suggest that you use the corresponding interactive routine
listed above (the printout records your work).

C: Use the computer with any of the software options available to
you (or as instructed by your instructor) to solve the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

12.1-1. Reconsider the California Manufacturing Co. example pre-
sented in Sec. 12.1. The mayor of San Diego now has contacted
the company’s president to try to persuade him to build a factory
and perhaps a warehouse in that city. With the tax incentives be-
ing offered the company, the president’s staff estimates that the net
present value of building a factory in San Diego would be $7 mil-
lion and the amount of capital required to do this would be $4 mil-
lion. The net present value of building a warehouse there would be
$5 million and the capital required would be $3 million. (This op-
tion would be considered only if a factory also is being built there.)

The company president now wants the previous OR study re-
vised to incorporate these new alternatives into the overall prob-
lem. The objective still is to find the feasible combination of in-
vestments that maximizes the total net present value, given that the
amount of capital available for these investments is $10 million.
(a) Formulate a BIP model for this problem.
(b) Display this model on an Excel spreadsheet.
C (c) Use the computer to solve this model.

12.1-2* A young couple, Eve and Steven, want to divide their
main household chores (marketing, cooking, dishwashing, and
laundering) between them so that each has two tasks but the total
time they spend on household duties is kept to a minimum. Their
efficiencies on these tasks differ, where the time each would need
to perform the task is given by the following table:

12.1-3. A real estate development firm, Peterson and Johnson, is
considering five possible development projects. The following table
shows the estimated long-run profit (net present value) that each
project would generate, as well as the amount of investment re-
quired to undertake the project, in units of millions of dollars.
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PROBLEMS

Time Needed per Week

Marketing Cooking Dishwashing Laundry

Eve 4.5 hours 7.8 hours 3.6 hours 2.9 hours
Steven 4.9 hours 7.2 hours 4.3 hours 3.1 hours

(a) Formulate a BIP model for this problem.
(b) Display this model on an Excel spreadsheet.
C (c) Use the computer to solve this model.

The owners of the firm, Dave Peterson and Ron Johnson, have
raised $20 million of investment capital for these projects. Dave
and Ron now want to select the combination of projects that will
maximize their total estimated long-run profit (net present value)
without investing more that $20 million.
(a) Formulate a BIP model for this problem.
(b) Display this model on an Excel spreadsheet.
C (c) Use the computer to solve this model.

12.1-4. The board of directors of General Wheels Co. is consid-
ering seven large capital investments. Each investment can be made
only once. These investments differ in the estimated long-run profit
(net present value) that they will generate as well as in the amount
of capital required, as shown by the following table (in units of
millions of dollars):

Investment Opportunity

1 2 3 4 5 6 7

Estimated profit 17 10 15 19 7 13 9
Capital required 43 28 34 48 17 32 23

The total amount of capital available for these investments is $100
million. Investment opportunities 1 and 2 are mutually exclusive,
and so are 3 and 4. Furthermore, neither 3 nor 4 can be undertaken
unless one of the first two opportunities is undertaken. There are
no such restrictions on investment opportunities 5, 6, and 7. The
objective is to select the combination of capital investments that
will maximize the total estimated long-run profit (net present
value).
(a) Formulate a BIP model for this problem.
C (b) Use the computer to solve this model.

Development Project

1 2 3 4 5

Estimated profit 1 1.8 1.6 0.8 1.4
Capital required 6 12 10 4 8



ated with hiring each truck. A truck can haul 5 tons, but it is not
required to go full. For each combination of pit and site, there are
now two decisions to be made: the number of trucks to be used
and the amount of gravel to be hauled.
(a) Formulate an MIP model for this problem.
C (b) Use the computer to solve this model.

12.2-1. Select one of the actual applications of BIP by a company
or governmental agency mentioned in Sec. 12.2. Read the article
describing the application in the referenced issue of Interfaces.
Write a two-page summary of the application and its benefits.

12.2-2. Select three of the actual applications of BIP by a com-
pany or governmental agency mentioned in Sec. 12.2. Read the ar-
ticles describing the applications in the referenced issues of Inter-
faces. For each one, write a one-page summary of the application
and its benefits.

12.3-1.* The Research and Development Division of the Progres-
sive Company has been developing four possible new product lines.
Management must now make a decision as to which of these four
products actually will be produced and at what levels. Therefore,
an operations research study has been requested to find the most
profitable product mix.

A substantial cost is associated with beginning the production
of any product, as given in the first row of the following table.
Management’s objective is to find the product mix that maximizes
the total profit (total net revenue minus start-up costs).

12.1-5. Reconsider Prob. 8.3-4, where a swim team coach needs
to assign swimmers to the different legs of a 200-yard medley re-
lay team. Formulate a BIP model for this problem. Identify the
groups of mutually exclusive alternatives in this formulation.

12.1-6. Vincent Cardoza is the owner and manager of a machine
shop that does custom order work. This Wednesday afternoon, he
has received calls from two customers who would like to place
rush orders. One is a trailer hitch company which would like some
custom-made heavy-duty tow bars. The other is a mini-car-carrier
company which needs some customized stabilizer bars. Both cus-
tomers would like as many as possible by the end of the week (two
working days). Since both products would require the use of the
same two machines, Vincent needs to decide and inform the cus-
tomers this afternoon about how many of each product he will agree
to make over the next two days.

Each tow bar requires 3.2 hours on machine 1 and 2 hours on
machine 2. Each stabilizer bar requires 2.4 hours on machine 1 and
3 hours on machine 2. Machine 1 will be available for 16 hours
over the next two days and machine 2 will be available for 15 hours.
The profit for each tow bar produced would be $130 and the profit
for each stabilizer bar produced would be $150.

Vincent now wants to determine the mix of these production
quantities that will maximize the total profit.
(a) Formulate an IP model for this problem.
(b) Use a graphical approach to solve this model.
C (c) Use the computer to solve the model.

12.1-7. Pawtucket University is planning to buy new copier ma-
chines for its library. Three members of its Operations Research
Department are analyzing what to buy. They are considering two
different models: Model A, a high-speed copier, and Model B, a
lower-speed but less expensive copier. Model A can handle 20,000
copies a day, and costs $6,000. Model B can handle 10,000 copies
a day, but costs only $4,000. They would like to have at least six
copiers so that they can spread them throughout the library. They
also would like to have at least one high-speed copier. Finally, the
copiers need to be able to handle a capacity of at least 75,000 copies
per day. The objective is to determine the mix of these two copiers
which will handle all these requirements at minimum cost.
(a) Formulate an IP model for this problem.
(b) Use a graphical approach to solve this model.
C (c) Use the computer to solve the model.

12.1-8. Reconsider Prob. 8.2-23 involving a contractor (Susan
Meyer) who needs to arrange for hauling gravel from two pits to
three building sites.

Susan now needs to hire the trucks (and their drivers) to do
the hauling. Each truck can only be used to haul gravel from a sin-
gle pit to a single site. In addition to the hauling and gravel costs
specified in Prob. 8.2-23, there now is a fixed cost of $50 associ-
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Product

1 2 3 4

Start-up cost $50,000 $40,000 $70,000 $60,000
Marginal revenue $50,070 $50,060 $50,090 $50,080

Let the continuous decision variables x1, x2, x3, and x4 be the
production levels of products 1, 2, 3, and 4, respectively. Manage-
ment has imposed the following policy constraints on these vari-
ables:

1. No more than two of the products can be produced.
2. Either product 3 or 4 can be produced only if either product 1

or 2 is produced.
3. Either 5x1 � 3x2 � 6x3 � 4x4 � 6,000

or 4x1 � 6x2 � 3x3 � 5x4 � 6,000.

(a) Introduce auxiliary binary variables to formulate a mixed BIP
model for this problem.

C (b) Use the computer to solve this model.



at essentially maximum capacity. It is estimated that the net annual
profit (after capital recovery costs are subtracted) would be $4.2
million per long-range plane, $3 million per medium-range plane,
and $2.3 million per short-range plane.

It is predicted that enough trained pilots will be available to
the company to crew 30 new airplanes. If only short-range planes
were purchased, the maintenance facilities would be able to han-
dle 40 new planes. However, each medium-range plane is equiva-
lent to 1


1
3


 short-range planes, and each long-range plane is equiv-
alent to 1


2
3


 short-range planes in terms of their use of the
maintenance facilities.

The information given here was obtained by a preliminary
analysis of the problem. A more detailed analysis will be conducted
subsequently. However, using the preceding data as a first ap-
proximation, management wishes to know how many planes of
each type should be purchased to maximize profit.
(a) Formulate an IP model for this problem.
C (b) Use the computer to solve this problem.
(c) Use a binary representation of the variables to reformulate the

IP model in part (a) as a BIP problem.
C (d) Use the computer to solve the BIP model formulated in part

(c). Then use this optimal solution to identify an optimal so-
lution for the IP model formulated in part (a).

12.3-6. Consider the two-variable IP example discussed in Sec.
12.5 and illustrated in Fig. 12.3.
(a) Use a binary representation of the variables to reformulate this

model as a BIP problem.
C (b) Use the computer to solve this BIP problem. Then use this

optimal solution to identify an optimal solution for the orig-
inal IP model.

12.3-7. The Fly-Right Airplane Company builds small jet airplanes
to sell to corporations for the use of their executives. To meet the
needs of these executives, the company’s customers sometimes or-
der a custom design of the airplanes being purchased. When this
occurs, a substantial start-up cost is incurred to initiate the pro-
duction of these airplanes.

Fly-Right has recently received purchase requests from three
customers with short deadlines. However, because the company’s
production facilities already are almost completely tied up filling
previous orders, it will not be able to accept all three orders. There-
fore, a decision now needs to be made on the number of airplanes
the company will agree to produce (if any) for each of the three
customers.

The relevant data are given in the next table. The first row
gives the start-up cost required to initiate the production of the air-
planes for each customer. Once production is under way, the mar-
ginal net revenue (which is the purchase price minus the marginal
production cost) from each airplane produced is shown in the sec-
ond row. The third row gives the percentage of the available pro-

12.3-2. Suppose that a mathematical model fits linear program-
ming except for the restriction that x1 � x2 � 0, or 3, or 6. Show
how to reformulate this restriction to fit an MIP model.

12.3-3. Suppose that a mathematical model fits linear program-
ming except for the restrictions that

1. At least one of the following two inequalities holds:

x1 � x2 � x3 � x4 � 4
3x1 � x2 � x3 � x4 � 3.

2. At least two of the following four inequalities holds:

5x1 � 3x2 � 3x3 � x4 � 10
2x1 � 5x2 � x3 � 3x4 � 10

�x1 � 3x2 � 5x3 � 3x4 � 10
3x1 � x2 � 3x3 � 5x4 � 10.

Show how to reformulate these restrictions to fit an MIP model.

12.3-4. The Toys-R-4-U Company has developed two new toys for
possible inclusion in its product line for the upcoming Christmas
season. Setting up the production facilities to begin production
would cost $50,000 for toy 1 and $80,000 for toy 2. Once these
costs are covered, the toys would generate a unit profit of $10 for
toy 1 and $15 for toy 2.

The company has two factories that are capable of producing
these toys. However, to avoid doubling the start-up costs, just one
factory would be used, where the choice would be based on max-
imizing profit. For administrative reasons, the same factory would
be used for both new toys if both are produced.

Toy 1 can be produced at the rate of 50 per hour in factory
1 and 40 per hour in factory 2. Toy 2 can be produced at the rate
of 40 per hour in factory 1 and 25 per hour in factory 2. Facto-
ries 1 and 2, respectively, have 500 hours and 700 hours of pro-
duction time available before Christmas that could be used to pro-
duce these toys.

It is not known whether these two toys would be continued
after Christmas. Therefore, the problem is to determine how many
units (if any) of each new toy should be produced before Christ-
mas to maximize the total profit.
(a) Formulate an MIP model for this problem.
C (b) Use the computer to solve this model.

12.3-5.* Northeastern Airlines is considering the purchase of new
long-, medium-, and short-range jet passenger airplanes. The pur-
chase price would be $67 million for each long-range plane, $50
million for each medium-range plane, and $35 million for each
short-range plane. The board of directors has authorized a maxi-
mum commitment of $1.5 billion for these purchases. Regardless
of which airplanes are purchased, air travel of all distances is ex-
pected to be sufficiently large that these planes would be utilized
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new products should be produced, and the choice is to be made on
the basis of maximizing profit. Introduce auxiliary binary variables
to formulate an MIP model for this new version of the problem.

12.4-3.* Reconsider Prob. 3.1-11, where the management of the
Omega Manufacturing Company is considering devoting excess
production capacity to one or more of three products. (See the Par-
tial Answers to Selected Problems in the back of the book for ad-
ditional information about this problem.) Management now has de-
cided to add the restriction that no more than two of the three
prospective products should be produced.
(a) Introduce auxiliary binary variables to formulate an MIP

model for this new version of the problem.
C (b) Use the computer to solve this model.

12.4-4. Consider the following integer nonlinear programming
problem.

Maximize Z � 4x2
1 � x3

1 � 10x2
2 � x4

2,

subject to

x1 � x2 � 3

and

x1 � 0, x2 � 0
x1 and x2 are integers.

This problem can be reformulated in two different ways as an
equivalent pure BIP problem (with a linear objective function) with
six binary variables (y1 j and y2 j for j � 1, 2, 3), depending on the
interpretation given the binary variables.
(a) Formulate a BIP model for this problem where the binary vari-

ables have the interpretation,

yij � �
C (b) Use the computer to solve the model formulated in part (a),

and thereby identify an optimal solution for (x1, x2) for the
original problem.

(c) Formulate a BIP model for this problem where the binary vari-
ables have the interpretation,

yij � �
C (d) Use the computer to solve the model formulated in part (c),

and thereby identify an optimal solution for (x1, x2) for the
original problem.

12.4-5. Consider the following discrete nonlinear programming
problem.

Maximize Z � 2x1 � x2
1 � 3x2 � 3x2

2,

if xi � j
otherwise.

1
0

if xi � j
otherwise.

1
0

duction capacity that would be used for each airplane produced.
The last row indicates the maximum number of airplanes requested
by each customer (but less will be accepted).

CHAPTER 12 PROBLEMS 635

Fly-Right now wants to determine how many airplanes to pro-
duce for each customer (if any) to maximize the company’s total
profit (total net revenue minus start-up costs).
(a) Formulate a model with both integer variables and binary vari-

ables for this problem.
C (b) Use the computer to solve this model.

12.4-1. Reconsider the Fly-Right Airplane Co. problem introduced
in Prob. 12.3-7. A more detailed analysis of the various cost and
revenue factors now has revealed that the potential profit from pro-
ducing airplanes for each customer cannot be expressed simply in
terms of a start-up cost and a fixed marginal net revenue per air-
plane produced. Instead, the profits are given by the following table.

Customer

1 2 3

Start-up cost $3 million $2 million 0
Marginal net revenue $2 million $3 million $0.8 million
Capacity used per plane 20% 40% 20%
Maximum order 3 planes 2 planes 5 planes

Profit from

Airplanes
Customer

Produced 1 2 3

0 0 0 0
1 �$1 million $1 million $1 million
2 �$2 million $5 million $3 million
3 �$4 million $5 million
4 $6 million
5 $7 million

(a) Formulate a BIP model for this problem that includes con-
straints for mutually exclusive alternatives.

C (b) Use the computer to solve the model formulated in part (a).
Then use this optimal solution to identify the optimal num-
ber of airplanes to produce for each customer.

(c) Formulate another BIP model for this model that includes con-
straints for contingent decisions.

C (d) Repeat part (b) for the model formulated in part (c).

12.4-2. Reconsider the Wyndor Glass Co. problem presented in
Sec. 3.1. Management now has decided that only one of the two



(a) Reformulate this problem as a pure binary integer linear pro-
gramming problem.

C (b) Use the computer to solve the model formulated in part (a),
and thereby identify an optimal solution for (x1, x2) for the
original problem.

12.4-6.* Consider the following special type of shortest-path prob-
lem (see Sec. 9.3) where the nodes are in columns and the only
paths considered always move forward one column at a time.

subject to

x1 � x2 � 0.75

and

each variable is restricted to the values: 

1
2


, 

1
3


, 

1
4


, 

1
5


.

(Continue in the next column.)
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(Origin) (Destination)O

A

B

C

D

T

6

3

4

3

6

5
3

2

The numbers along the links represent distances, and the objective
is to find the shortest path from the origin to the destination.

This problem also can be formulated as a BIP model involv-
ing both mutually exclusive alternatives and contingent decisions.
(a) Formulate this model. Identify the constraints that are for mu-

tually exclusive alternatives and that are for contingent deci-
sions.

C (b) Use the computer to solve this problem.

12.4-7. Consider the project network for a PERT-type system
shown in Prob. 11.2-3. Formulate a BIP model for the problem of
finding a critical path (i.e., a longest path) for this project network.

12.4-8. Speedy Delivery provides two-day delivery service of large
parcels across the United States. Each morning at each collection
center, the parcels that have arrived overnight are loaded onto sev-
eral trucks for delivery throughout the area. Since the competitive
battlefield in this business is speed of delivery, the parcels are di-
vided among the trucks according to their geographical destina-
tions to minimize the average time needed to make the deliveries.

On this particular morning, the dispatcher for the Blue River
Valley Collection Center, Sharon Lofton, is hard at work. Her three
drivers will be arriving in less than an hour to make the day’s de-
liveries. There are nine parcels to be delivered, all at locations many
miles apart. As usual, Sharon has loaded these locations into her
computer. She is using her company’s special software package, a
decision support system called Dispatcher. The first thing Dis-
patcher does is use these locations to generate a considerable num-
ber of attractive possible routes for the individual delivery trucks.
These routes are shown in the following table (where the numbers

in each column indicate the order of the deliveries), along with the
estimated time required to traverse the route.

Attractive Possible Route

Delivery Location 1 2 3 4 5 6 7 8 9 10

A 1 1 1
B 2 1 2 2 2
C 3 3 3 3
D 2 1 1
E 2 2 3
F 1 2
G 3 1 2 3
H 1 3 1
I 3 4 2

Time (in hours) 6 4 7 5 4 6 5 3 7 6

Dispatcher is an interactive system that shows these routes to
Sharon for her approval or modification. (For example, the com-
puter may not know that flooding has made a particular route in-
feasible.) After Sharon approves these routes as attractive possi-
bilities with reasonable time estimates, Dispatcher next formulates
and solves a BIP model for selecting three routes that minimize
their total time while including each delivery location on exactly
one route. This morning, Sharon does approve all the routes.
(a) Formulate this BIP model.
C (b) Use the computer to solve this model.



In contrast to the original problem, note that the total number of
fire stations is no longer fixed. Furthermore, if a tract without a
station has more than one station within 15 minutes, it is no longer
necessary to assign this tract to just one of these stations.
(a) Formulate a complete pure BIP model with 5 binary variables

for this problem.
(b) Is this a set covering problem? Explain, and identify the rele-

vant sets.
C (c) Use the computer to solve the model formulated in part (a).

12.4-11. Suppose that a state sends R persons to the U.S. House
of Representatives. There are D counties in the state (D � R), and
the state legislature wants to group these counties into R distinct
electoral districts, each of which sends a delegate to Congress. The
total population of the state is P, and the legislature wants to form
districts whose population approximates p � P/R. Suppose that the
appropriate legislative committee studying the electoral districting
problem generates a long list of N candidates to be districts 
(N � R). Each of these candidates contains contiguous counties
and a total population pj ( j � 1, 2, . . . , N ) that is acceptably close
to p. Define cj � pj � p. Each county i (i � 1, 2, . . . , D) is in-
cluded in at least one candidate and typically will be included in
a considerable number of candidates (in order to provide many fea-
sible ways of selecting a set of R candidates that includes each
county exactly once). Define

aij � �
Given the values of the cj and the aij, the objective is to se-

lect R of these N possible districts such that each county is con-
tained in a single district and such that the largest of the associ-
ated cj is as small as possible.

Formulate a BIP model for this problem.

12.4-12. A U.S. professor will be spending a short sabbatical leave
at the University of Iceland. She wishes to bring all needed items
with her on the airplane. After collecting the professional items that
she must have, she finds that airline regulations on space and weight
for checked luggage will severely limit the clothes she can take. (She
plans to carry on a warm coat and then purchase a warm Icelandic
sweater upon arriving in Iceland.) Clothes under consideration for
checked luggage include 3 skirts, 3 slacks, 4 tops, and 3 dresses. The
professor wants to maximize the number of outfits she will have in
Iceland (including the special dress she will wear on the airplane).
Each dress constitutes an outfit. Other outfits consist of a combina-
tion of a top and either a skirt or slacks. However, certain combina-
tions are not fashionable and so will not qualify as an outfit.

In the following table, the combinations that will make an out-
fit are marked with an x.

if county i is included in candidate j
if not.

1
0

12.4-9. An increasing number of Americans are moving to a
warmer climate when they retire. To take advantage of this trend,
Sunny Skies Unlimited is undertaking a major real estate devel-
opment project. The project is to develop a completely new re-
tirement community (to be called Pilgrim Haven) that will cover
several square miles. One of the decisions to be made is where to
locate the two fire stations that have been allocated to the com-
munity. For planning purposes, Pilgrim Haven has been divided
into five tracts, with no more than one fire station to be located in
any given tract. Each station is to respond to all the fires that oc-
cur in the tract in which it is located as well as in the other tracts
that are assigned to this station. Thus, the decisions to be made
consist of (1) the tracts to receive a fire station and (2) the assign-
ment of each of the other tracts to one of the fire stations. The ob-
jective is to minimize the overall average of the response times to
fires.

The following table gives the average response time to a fire
in each tract (the columns) if that tract is served by a station in a
given tract (the rows). The bottom row gives the forecasted aver-
age number of fires that will occur in each of the tracts per day.
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Formulate a BIP model for this problem. Identify any con-
straints that correspond to mutually exclusive alternatives or con-
tingent decisions.

12.4-10. Reconsider Prob. 12.4-9. The management of Sunny
Skies Unlimited now has decided that the decision on the locations
of the fire stations should be based mainly on costs.

The cost of locating a fire station in a tract is $200,000 for
tract 1, $250,000 for tract 2, $400,000 for tract 3, $300,000 for
tract 4, and $500,000 for tract 5. Management’s objective now is
the following:

Determine which tracts should receive a station to min-
imize the total cost of stations while ensuring that each
tract has at least one station close enough to respond to
a fire in no more than 15 minutes (on the average).

Response Times (in minutes)

Assigned Station
Fire in Tract

Located in Tract 1 2 3 4 5

1 5 12 30 20 15
2 20 4 15 10 25
3 15 20 6 15 12
4 25 15 25 4 10
5 10 25 15 12 5

Average frequency 2 per 1 per 3 per 1 per 3 per 
of fires day day day day day



and

x1 � 0, x2 � 0
x1, x2 are integers.

(a) Solve this problem graphically.
(b) Solve the LP relaxation graphically. Round this solution to the

nearest integer solution and check whether it is feasible. Then
enumerate all the rounded solutions by rounding this solution
for the LP relaxation in all possible ways (i.e., by rounding each
noninteger value both up and down). For each rounded solu-
tion, check for feasibility and, if feasible, calculate Z. Are any
of these feasible rounded solutions optimal for the IP problem?

12.5-2. Follow the instructions of Prob. 12.5-1 for the following
IP problem.

Maximize Z � 220x1 � 80x2,

subject to

5x1 � 2x2 � 16
2x1 � x2 � 4

�x1 � 2x2 � 4

and

x1 � 0, x2 � 0
x1, x2 are integers.

12.5-3. Follow the instructions of Prob. 12.5-1 for the following
BIP problem.

Maximize Z � 2x1 � 5x2,

subject to

10x1 � 30x2 � 30
95x1 � 30x2 � 75

and

x1, x2 are binary.

12.5-4. Follow the instructions of Prob. 12.5-1 for the following
BIP problem.

Maximize Z � �5x1 � 25x2,

subject to

�3x1 � 30x2 � 27
3x1 � x2 � 4

and

x1, x2 are binary.

12.5-5. Label each of the following statements as True or False,
and then justify your answer by referring to specific statements
(with page citations) in the chapter.

The weight (in grams) and volume (in cubic centimeters) of each
item are shown in the following table:
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Top

1 2 3 4 Icelandic Sweater

1 x x x
Skirt 2 x x

3 x x x x

1 x x
Slacks 2 x x x x

3 x x x

Weight Volume

1 600 5,000
Skirt 2 450 3,500

3 700 3,000

1 600 3,500
Slacks 2 550 6,000

3 500 4,000

1 350 4,000

Top
2 300 3,500
3 300 3,000
4 450 5,000

1 600 6,000
Dress 2 700 5,000

3 800 4,000

Total allowed 4,000 32,000

Formulate a BIP model to choose which items of clothing to
take. (Hint: After using binary decision variables to represent the
individual items, you should introduce auxiliary binary variables
to represent outfits involving combinations of items. Then use con-
straints and the objective function to ensure that these auxiliary
variables have the correct values, given the values of the decision
variables.)

12.5-1.* Consider the following IP problem.

Maximize Z � 5x1 � x2,

subject to

�x1 � 2x2 � 4
x1 � x2 � 1

4x1 � x2 � 12



12.6-6. Consider the following statements about any pure IP prob-
lem (in maximization form) and its LP relaxation. Label each of
the statements as True or False, and then justify your answer.
(a) The feasible region for the LP relaxation is a subset of the fea-

sible region for the IP problem.
(b) If an optimal solution for the LP relaxation is an integer solu-

tion, then the optimal value of the objective function is the
same for both problems.

(c) If a noninteger solution is feasible for the LP relaxation, then
the nearest integer solution (rounding each variable to the near-
est integer) is a feasible solution for the IP problem.

12.6-7.* Consider the assignment problem with the following cost
table:

(a) Linear programming problems are generally much easier to
solve than IP problems.

(b) For IP problems, the number of integer variables is generally
more important in determining the computational difficulty
than is the number of functional constraints.

(c) To solve an IP problem with an approximate procedure, one
may apply the simplex method to the LP relaxation problem
and then round each noninteger value to the nearest integer.
The result will be a feasible but not necessarily optimal solu-
tion for the IP problem.

D,I 12.6-1.* Use the BIP branch-and-bound algorithm presented
in Sec. 12.6 to solve the following problem interactively.

Maximize Z � 2x1 � x2 � 5x3 � 3x4 � 4x5,

subject to

3x1 � 2x2 � 7x3 � 5x4 � 4x5 � 6
x1 � x2 � 2x3 � 4x4 � 2x5 � 0

and

xj is binary, for j � 1, 2, . . . , 5.

D,I 12.6-2. Use the BIP branch-and-bound algorithm presented in
Sec. 12.6 to solve the following problem interactively.

Minimize Z � 5x1 � 6x2 � 7x3 � 8x4 � 9x5,

subject to

3x1 � x2 � x3 � x4 � 2x5 � 2
x1 � 3x2 � x3 � 2x4 � x5 � 0

�x1 � x2 � 3x3 � x4 � x5 � 1

and

xj is binary, for j � 1, 2, . . . , 5.

D,I 12.6-3. Use the BIP branch-and-bound algorithm presented in
Sec. 12.6 to solve the following problem interactively.

Maximize Z � 5x1 � 5x2 � 8x3 � 2x4 � 4x5,

subject to

�3x1 � 6x2 � 7x3 � 9x4 � 9x5 � 10
x1 � 2x2 7x3 � x4 � 3x5 � 0

and

xj is binary, for j � 1, 2, . . . , 5.

D,I 12.6-4. Reconsider Prob. 12.3-6(a). Use the BIP branch-and-
bound algorithm presented in Sec. 12.6 to solve this BIP model
interactively.

D,I 12.6-5. Reconsider Prob. 12.4-10(a). Use the BIP algorithm
presented in Sec. 12.6 to solve this problem interactively.
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Task

1 2 3 4 5

1 39 65 69 66 57
2 64 84 24 92 22

Assignee 3 49 50 61 31 45
4 48 45 55 23 50
5 59 34 30 34 18

(a) Design a branch-and-bound algorithm for solving such as-
signment problems by specifying how the branching, bound-
ing, and fathoming steps would be performed. (Hint: For the
assignees not yet assigned for the current subproblem, form
the relaxation by deleting the constraints that each of these as-
signees must perform exactly one task.)

(b) Use this algorithm to solve this problem.

12.6-8. Five jobs need to be done on a certain machine. However,
the setup time for each job depends upon which job immediately
preceded it, as shown by the following table:

Setup Time

Job

1 2 3 4 5

None 4 5 8 9 4
1 — 7 12 10 9

Immediately 2 6 — 10 14 11
Preceding Job 3 10 11 — 12 10

4 7 8 15 — 7
5 12 9 8 16 —

The objective is to schedule the sequence of jobs that minimizes
the sum of the resulting setup times.



D,I (d) Use the BIP branch-and-bound algorithm presented in Sec.
12.6 to solve the problem as formulated in part (c) inter-
actively.

12.7-2. Follow the instructions of Prob. 12.7-1 for the following
IP model.

Minimize Z � 2x1 � 3x2,

subject to

x1 � x2 � 3
x1 � 3x2 � 6

and

x1 � 0, x2 � 0
x1, x2 are integers.

12.7-3. Reconsider the IP model of Prob. 12.5-1.
(a) Use the MIP branch-and-bound algorithm presented in Sec.

12.7 to solve this problem by hand. For each subproblem, solve
its LP relaxation graphically.

D,I (b) Now use the interactive routine for this algorithm in your
OR Courseware to solve this problem.

C (c) Check your answer by using an automatic routine to solve
the problem.

12.7-4. Follow the instructions of Prob. 12.7-3 for the IP model of
Prob. 12.5-2.

D,I 12.7-5. Consider the IP example discussed in Sec. 12.5 and il-
lustrated in Fig. 12.3. Use the MIP branch-and-bound algorithm
presented in Sec. 12.7 to solve this problem interactively.

D,I 12.7-6. Reconsider Prob. 12.3-5a. Use the MIP branch-and-
bound algorithm presented in Sec. 12.7 to solve this IP problem
interactively.

12.7-7. A machine shop makes two products. Each unit of the first
product requires 3 hours on machine 1 and 2 hours on machine 2.
Each unit of the second product requires 2 hours on machine 1 and
3 hours on machine 2. Machine 1 is available only 8 hours per day
and machine 2 only 7 hours per day. The profit per unit sold is 16
for the first product and 10 for the second. The amount of each
product produced per day must be an integral multiple of 0.25. The
objective is to determine the mix of production quantities that will
maximize profit.
(a) Formulate an IP model for this problem.
(b) Solve this model graphically.
(c) Use graphical analysis to apply the MIP branch-and-bound al-

gorithm presented in Sec. 12.7 to solve this model.
D,I (d) Now use the interactive routine for this algorithm in your

OR Courseware to solve this model.
C (e) Check your answers in parts (b), (c), and (d ) by using an

automatic routine to solve the model.

(a) Design a branch-and-bound algorithm for sequencing prob-
lems of this type by specifying how the branch, bound, and
fathoming steps would be performed.

(b) Use this algorithm to solve this problem.

12.6-9.* Consider the following nonlinear BIP problem.

Maximize Z � 80x1 � 60x2 � 40x3 � 20x4

� (7x1 � 5x2 � 3x3 � 2x4)2,
subject to

xj is binary, for j � 1, 2, 3, 4.

Given the value of the first k variables x1, . . . , xk, where k � 0,
1, 2, or 3, an upper bound on the value of Z that can be achieved
by the corresponding feasible solutions is

�
k

j�1
cjxj � ��

k

j�1
djxj�

2

� �
4

j�k�1
max�0, cj � ���

k

i�1
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2

� ��
k

i�1
dixi�

2

	�,

where c1 � 80, c2 � 60, c3 � 40, c4 � 20, d1 � 7, d2 � 5, d3 � 3,
d4 � 2. Use this bound to solve the problem by the branch-and-
bound technique.

12.6-10. Consider the Lagrangian relaxation described near the
end of Sec. 12.6.
(a) If x is a feasible solution for an MIP problem, show that x also

must be a feasible solution for the corresponding Lagrangian
relaxation.

(b) If x* is an optimal solution for an MIP problem, with an ob-
jective function value of Z, show that Z � Z*R, where Z*R is the
optimal objective function value for the corresponding La-
grangian relaxation.

12.7-1.* Consider the following IP problem.

Maximize Z � �3x1 � 5x2,

subject to

5x1 � 7x2 � 3

and

xj � 3
xj � 0
xj is integer, for j � 1, 2.

(a) Solve this problem graphically.
(b) Use the MIP branch-and-bound algorithm presented in Sec.

12.7 to solve this problem by hand. For each subproblem, solve
its LP relaxation graphically.

(c) Use the binary representation for integer variables to refor-
mulate this problem as a BIP problem.
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D,I 12.7-8. Use the MIP branch-and-bound algorithm presented in
Sec. 12.7 to solve the following MIP problem interactively.

Maximize Z � 5x1 � 4x2 � 4x3 � 2x4,

subject to

x1 � 3x2 � 2x3 � x4 � 10
5x1 � x2 � 3x3 � 2x4 � 15
x1 � x2 � x3 � x4 � 6

and

xj � 0, for j � 1, 2, 3, 4
xj is integer, for j � 1, 2, 3.

D,I 12.7-9. Use the MIP branch-and-bound algorithm presented in
Sec. 12.7 to solve the following MIP problem interactively.

Maximize Z � 3x1 � 4x2 � 2x3 � x4 � 2x5,

subject to

2x1 � x2 � x3 � x4 � x5 � 3
�x1 � 3x2 � x3 � x4 � 2x5 � 2
2x1 � x2 � x3 � x4 � 3x5 � 1

and

xj � 0, for j � 1, 2, 3, 4, 5
xj is binary, for j � 1, 2, 3.

D,I 12.7-10. Use the MIP branch-and-bound algorithm presented
in Sec. 12.7 to solve the following MIP problem interactively.

Minimize Z � 5x1 � x2 � x3 � 2x4 � 3x5,

subject to

x2 � 5x3 � x4 � 2x5 � �2
5x1 � x2 � x4 � x5 � �7

x1 � x2 � 6x3 � x4 � �4

and

xj � 0, for j � 1, 2, 3, 4, 5
xj is integer, for j � 1, 2, 3.

12.7-11. Reconsider the discrete nonlinear programming problem
given in Prob. 12.4-5.
(a) Use the following outline in designing the main features of a

branch-and-bound algorithm for solving this problem (and sim-
ilar problems) directly without reformulation.
(i) Specify the tightest possible nonlinear programming re-

laxation that has only continuous variables and so can be
solved efficiently by nonlinear programming techniques.
(The next chapter will describe how such nonlinear pro-
gramming problems can be solved efficiently.)
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(ii) Specify the fathoming tests.
(iii) Specify a branching procedure that involves specifying

two ranges of values for a single variable.
(b) Use the algorithm designed in part (a) to solve this problem

by using an available software package to solve the quadratic
programming relaxation at each iteration. (As described in Sec.
13.7, Excel, LINDO, LINGO, and MPL/CPLEX all are able
to solve quadratic programming problems.)

12.8-1.* For each of the following constraints of pure BIP prob-
lems, use the constraint to fix as many variables as possible.
(a) 4x1 � x2 � 3x3 � 2x4 � 2
(b) 4x1 � x2 � 3x3 � 2x4 � 2
(c) 4x1 � x2 � 3x3 � 2x4 � 7

12.8-2. For each of the following constraints of pure BIP prob-
lems, use the constraint to fix as many variables as possible.
(a) 20x1 � 7x2 � 5x3 � 10
(b) 10x1 � 7x2 � 5x3 � 10
(c) 10x1 � 7x2 � 5x3 � �1

12.8-3. Use the following set of constraints for the same pure BIP
problem to fix as many variables as possible. Also identify the con-
straints which become redundant because of the fixed variables.

3x3 � x5 � x7 � 1
x2 � x4 � x6 � 1
x1 � 2x5 � 2x6 � 2
x1 � x2 � x4 � 0

12.8-4. For each of the following constraints of pure BIP prob-
lems, identify which ones are made redundant by the binary con-
straints. Explain why each one is, or is not, redundant.
(a) 2x1 � x2 � 2x3 � 5
(b) 3x1 � 4x2 � 5x3 � 5
(c) x1 � x2 � x3 � 2
(d) 3x1 � x2 � 2x3 � �4

12.8-5. In Sec. 12.8, at the end of the subsection on tightening
constraints, we indicated that the constraint 4x1 � 3x2 � x3 �
2x4 � 5 can be tightened to 2x1 � 3x2 � x3 � 2x4 � 3 and then
to 2x1 � 2x2 � x3 � 2x4 � 3. Apply the procedure for tightening
constraints to confirm these results.

12.8-6. Apply the procedure for tightening constraints to the fol-
lowing constraint for a pure BIP problem.

3x1 � 2x2 � x3 � 3.

12.8-7. Apply the procedure for tightening constraints to the fol-
lowing constraint for a pure BIP problem.

x1 � x2 � 3x3 � 4x4 � 1.



12.8-13. Generate as many cutting planes as possible from the fol-
lowing constraint for a pure BIP problem.

5x1 � 3x2 � 7x3 � 4x4 � 6x5 � 9.

12.8-14. Consider the following BIP problem.

Maximize Z � 2x1 � 3x2 � x3 � 4x4 � 3x5

� 2x6 � 2x7 � x8 � 3x9,

subject to

3x2 � x4 � x5 � 3
x1 � x2 � 1

x2 � x4 � x5 � x6 � �1
x2 � 2x6 � 3x7 � x8 � 2x9 � 4

�x3 � 2x5 � x6 � 2x7 � 2x8 � x9 � 5

and

all xj binary.

Develop the tightest possible formulation of this problem by using
the techniques of automatic problem reprocessing (fixing variables,
deleting redundant constraints, and tightening constraints). Then
use this tightened formulation to determine an optimal solution by
inspection.

12.8-8. Apply the procedure for tightening constraints to each of
the following constraints for a pure BIP problem.
(a) x1 � 3x2 � 4x3 � 2.
(b) 3x1 � x2 � 4x3 � 1.

12.8-9. In Sec. 12.8, a pure BIP example with the constraint, 2x1 �
3x2 � 4, was used to illustrate the procedure for tightening constraints.
Show that applying the procedure for generating cutting planes to this
constraint yields the same new constraint, x1 � x2 � 1.

12.8-10. One of the constraints of a certain pure BIP problem is

x1 � 3x2 � 2x3 � 4x4 � 5.

Identify all the minimal covers for this constraint, and then give
the corresponding cutting planes.

12.8-11. One of the constraints of a certain pure BIP problem is

3x1 � 4x2 � 2x3 � 5x4 � 7.

Identify all the minimal covers for this constraint, and then give
the corresponding cutting planes.

12.8-12. Generate as many cutting planes as possible from the fol-
lowing constraint for a pure BIP problem.

3x1 � 5x2 � 4x3 � 8x4 � 10.
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Bentley Hamilton throws the business section of the New York Times onto the confer-
ence room table and watches as his associates jolt upright in their overstuffed chairs.

Mr. Hamilton wants to make a point.
He throws the front page of the Wall Street Journal on top of the New York Times

and watches as his associates widen their eyes once heavy with boredom.
Mr. Hamilton wants to make a big point.
He then throws the front page of the Financial Times on top of the newspaper pile

and watches as his associates dab the fine beads of sweat off their brows.
Mr. Hamilton wants his point indelibly etched into his associates’ minds.
“I have just presented you with three leading financial newspapers carrying to-

day’s top business story,” Mr. Hamilton declares in a tight, angry voice. “My dear as-
sociates, our company is going to hell in a hand basket! Shall I read you the headlines?
From the New York Times, ‘CommuniCorp stock drops to lowest in 52 weeks.’ From
the Wall Street Journal, ‘CommuniCorp loses 25 percent of the pager market in only
one year.’ Oh and my favorite, from the Financial Times, ‘CommuniCorp cannot Com-
muniCate: CommuniCorp stock drops because of internal communications disarray.’
How did our company fall into such dire straits?”
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Mr. Hamilton throws a transparency showing a line sloping slightly upward onto
the overhead projector. “This is a graph of our productivity over the last 12 months. As
you can see from the graph, productivity in our pager production facility has increased
steadily over the last year. Clearly, productivity is not the cause of our problem.”

Mr. Hamilton throws a second transparency showing a line sloping steeply upward
onto the overhead projector. “This is a graph of our missed or late orders over the last
12 months.” Mr. Hamilton hears an audible gasp from his associates. “As you can see
from the graph, our missed or late orders have increased steadily and significantly over
the past 12 months. I think this trend explains why we have been losing market share,
causing our stock to drop to its lowest level in 52 weeks. We have angered and lost the
business of retailers, our customers who depend upon on-time deliveries to meet the
demand of consumers.”

“Why have we missed our delivery dates when our productivity level should have
allowed us to fill all orders?” Mr. Hamilton asks. “I called several departments to ask
this question.”

“It turns out that we have been producing pagers for the hell of it!” Mr. Hamilton
says in disbelief. “The marketing and sales departments do not communicate with the
manufacturing department, so manufacturing executives do not know what pagers to
produce to fill orders. The manufacturing executives want to keep the plant running,
so they produce pagers regardless of whether the pagers have been ordered. Finished
pagers are sent to the warehouse, but marketing and sales executives do not know the
number and styles of pagers in the warehouse. They try to communicate with ware-
house executives to determine if the pagers in inventory can fill the orders, but they
rarely receive answers to their questions.”

Mr. Hamilton pauses and looks directly at his associates. “Ladies and gentlemen,
it seems to me that we have a serious internal communications problem. I intend to
correct this problem immediately. I want to begin by installing a companywide com-
puter network to ensure that all departments have access to critical documents and are
able to easily communicate with each other through e-mail. Because this intranet will
represent a large change from the current communications infrastructure, I expect some
bugs in the system and some resistance from employees. I therefore want to phase in
the installation of the intranet.”

Mr. Hamilton passes the following timeline and requirements chart to his associ-
ates (IN � Intranet).
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Month 1 Month 2 Month 3 Month 4 Month 5

IN Education
Install IN in
Sales

Install IN in
Manufacturing

Install IN in
Warehouse

Install IN in
Marketing



Mr. Hamilton proceeds to explain the timeline and requirements chart. “In the first
month, I do not want to bring any department onto the intranet; I simply want to dis-
seminate information about it and get buy-in from employees. In the second month, I
want to bring the sales department onto the intranet since the sales department receives
all critical information from customers. In the third month, I want to bring the manu-
facturing department onto the intranet. In the fourth month, I want to install the in-
tranet at the warehouse, and in the fifth and final month, I want to bring the market-
ing department onto the intranet. The requirements chart under the timeline lists the
number of employees requiring access to the intranet in each department.”

Mr. Hamilton turns to Emily Jones, the head of Corporate Information Manage-
ment. “I need your help in planning for the installation of the intranet. Specifically, the
company needs to purchase servers for the internal network. Employees will connect
to company servers and download information to their own desktop computers.”

Mr. Hamilton passes Emily the following chart detailing the types of servers avail-
able, the number of employees each server supports, and the cost of each server.
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Department Number of Employees

Sales 60
Manufacturing 200
Warehouse 30
Marketing 75

Number of Employees
Type of Server Server Supports Cost of Server

Standard Intel Pentium PC Up to 30 employees $12,500
Enhanced Intel Pentium PC Up to 80 employees $15,000
SGI Workstation Up to 200 employees $10,000
Sun Workstation Up to 2,000 employees $25,000

“Emily, I need you to decide what servers to purchase and when to purchase them
to minimize cost and to ensure that the company possesses enough server capacity to
follow the intranet implementation timeline,” Mr. Hamilton says. “For example, you
may decide to buy one large server during the first month to support all employees, or
buy several small servers during the first month to support all employees, or buy one
small server each month to support each new group of employees gaining access to the
intranet.”

“There are several factors that complicate your decision,” Mr. Hamilton continues.
“Two server manufacturers are willing to offer discounts to CommuniCorp. SGI is will-
ing to give you a discount of 10 percent off each server purchased, but only if you pur-
chase servers in the first or second month. Sun is willing to give you a 25 percent dis-
count off all servers purchased in the first two months. You are also limited in the
amount of money you can spend during the first month. CommuniCorp has already al-



located much of the budget for the next two months, so you only have a total of $9,500
available to purchase servers in months 1 and 2. Finally, the Manufacturing Depart-
ment requires at least one of the three more powerful servers. Have your decision on
my desk at the end of the week.”

(a) Emily first decides to evaluate the number and type of servers to purchase on a month-to-
month basis. For each month, formulate an IP model to determine which servers Emily should
purchase in that month to minimize costs in that month and support the new users. How
many and which types of servers should she purchase in each month? How much is the to-
tal cost of the plan?

(b) Emily realizes that she could perhaps achieve savings if she bought a larger server in the
initial months to support users in the final months. She therefore decides to evaluate the
number and type of servers to purchase over the entire planning period. Formulate an IP
model to determine which servers Emily should purchase in which months to minimize to-
tal cost and support all new users. How many and which types of servers should she pur-
chase in each month? How much is the total cost of the plan?

(c) Why is the answer using the first method different from that using the second method?
(d) Are there other costs that Emily is not accounting for in her problem formulation? If so,

what are they?
(e) What further concerns might the various departments of CommuniCorp have regarding the

intranet?
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It had been a dream come true for Ash Briggs, a struggling artist living in the San Fran-
cisco Bay Area. He had made a trip to the corner grocery store late one Friday after-
noon to buy some milk, and on impulse, he had also purchased a California lottery
ticket. One week later, he was a millionaire.

Ash did not want to squander his winnings on materialistic, trivial items. Instead
he wanted to use his money to support his true passion: art. Ash knew all too well the
difficulties of gaining recognition as an artist in this postindustrial, technological soci-
ety where artistic appreciation is rare and financial support even rarer. He therefore de-
cided to use the money to fund an exhibit of up-and-coming modern artists at the San
Francisco Museum of Modern Art.

Ash approached the museum directors with his idea, and the directors became ex-
cited immediately after he informed them that he would fund the entire exhibit in ad-
dition to donating $1 million to the museum. Celeste McKenzie, a museum director,
was assigned to work with Ash in planning the exhibit. The exhibit was slated to open
one year from the time Ash met with the directors, and the exhibit pieces would re-
main on display for two months.
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Ash began the project by combing the modern art community for potential artists
and pieces. He presented the following list of artists, their pieces, and the price of dis-
playing each piece1 to Celeste.
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1The display price includes the cost of paying the artist for loaning the piece to the museum, transporting
the piece to San Francisco, constructing the display for the piece, insuring the piece while it is on display,
and transporting the piece back to its origin.

Artist Piece Description of Piece Price

Colin Zweibell “Perfection” A wire mesh sculpture of $300,000
the human body

“Burden” A wire mesh sculpture of a mule $250,000

“The Great Equalizer” A wire mesh sculpture of a gun $125,000

Rita Losky “Chaos Reigns” A series of computer-generated $400,000
drawings

“Who Has Control?” A computer-generated drawing $500,000
intermeshed with lines of computer 
code

“Domestication” A pen-and-ink drawing of a house $400,000

“Innocence” A pen-and-ink drawing of a child $550,000

Norm Marson “Aging Earth” A sculpture of trash covering a $700,000
larger globe

“Wasted Resources” A collage of various packaging $575,000
materials

Candy Tate “Serenity” An all blue watercolor painting $200,000

“Calm Before the A painting with an all blue $225,000
Storm” watercolor background and a black 

watercolor center

Robert Bayer “Void” An all black oil painting $150,000

“Sun” An all yellow oil painting $150,000

David Lyman “Storefront Window” A photo-realistic painting of a $850,000
jewelry store display window

“Harley” A photo-realistic painting of a $750,000
Harley-Davidson motorcycle

Angie Oldman “Consumerism” A collage of magazine advertisements $400,000

“Reflection” A mirror (considered a sculpture) $175,000

“Trojan Victory” A wooden sculpture of a condom $450,000
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Ash possesses certain requirements for the exhibit. He believes the majority of
Americans lack adequate knowledge of art and artistic styles, and he wants the exhibit
to educate Americans. Ash wants visitors to become aware of the collage as an art form,
but he believes collages require little talent. He therefore decides to include only one
collage. Additionally, Ash wants viewers to compare the delicate lines in a three-
dimensional wire mesh sculpture to the delicate lines in a two-dimensional computer-

Artist Piece Description of Piece Price

Rick Rawls “Rick” A photo-realistic self-portrait $500,000
(painting)

“Rick II” A cubist self-portrait (painting) $500,000

“Rick III” An expressionist self-portrait $500,000
(painting)

Bill Reynolds “Beyond” A science fiction oil painting $650,000
depicting Mars colonization

“Pioneers” An oil painting of three astronauts $650,000
aboard the space shuttle

Bear Canton “Wisdom” A pen-and-ink drawing of an $250,000
Apache chieftain

“Superior Powers” A pen-and-ink drawing of a $350,000
traditional Native American rain 
dance

“Living Land” An oil painting of the Grand Canyon $450,000

Helen Row “Study of a Violin” A cubist painting of a violin $400,000

“Study of a Fruit Bowl” A cubist painting of a bowl of fruit $400,000

Ziggy Lite “My Namesake” A collage of Ziggy cartoons $300,000

“Narcissism” A collage of photographs of Ziggy Lite $300,000

Ash Briggs “All That Glitters” A watercolor painting of the $50,000*
Golden Gate Bridge

“The Rock” A watercolor painting of Alcatraz $150,000

“Winding Road” A watercolor painting of Lombard $150,000
Street

“Dreams Come True” A watercolor painting of the San $150,000
Francisco Museum of Modern Art

*Ash does not require personal compensation, and the cost for moving his pieces to the museum
from his home in San Francisco is minimal. The cost of displaying his pieces therefore only
includes the cost of constructing the display and insuring the pieces.



generated drawing. He therefore wants at least one wire mesh sculpture displayed if a
computer-generated drawing is displayed. Alternatively, he wants at least one com-
puter-generated drawing displayed if a wire mesh sculpture is displayed. Furthermore,
Ash wants to expose viewers to all painting styles, but he wants to limit the number
of paintings displayed to achieve a balance in the exhibit between paintings and other
art forms. He therefore decides to include at least one photo-realistic painting, at least
one cubist painting, at least one expressionist painting, at least one watercolor paint-
ing, and at least one oil painting. At the same time, he wants the number of paintings
to be no greater than twice the number of other art forms.

Ash wants all his own paintings included in the exhibit since he is sponsoring the
exhibit and since his paintings celebrate the San Francisco Bay Area, the home of the
exhibit.

Ash possesses personal biases for and against some artists. Ash is currently hav-
ing a steamy affair with Candy Tate, and he wants both of her paintings displayed.
Ash counts both David Lyman and Rick Rawls as his best friends, and he does not
want to play favorites among these two artists. He therefore decides to display as many
pieces from David Lyman as from Rick Rawls and to display at least one piece from
each of them. Although Ziggy Lite is very popular within art circles, Ash believes
Ziggy makes a mockery of art. Ash will therefore only accept one display piece from
Ziggy, if any at all.

Celeste also possesses her own agenda for the exhibit. As a museum director, she
is interested in representing a diverse population of artists, appealing to a wide audi-
ence, and creating a politically correct exhibit. To advance feminism, she decides to
include at least one piece from a female artist for every two pieces included from a
male artist. To advance environmentalism, she decides to include either one or both of
the pieces “Aging Earth” and “Wasted Resources.” To advance Native American rights,
she decides to include at least one piece by Bear Canton. To advance science, she de-
cides to include at least one of the following pieces: “Chaos Reigns,” “Who Has Con-
trol,” “Beyond,” and “Pioneers.”

Celeste also understands that space is limited at the museum. The museum only
has enough floor space for four sculptures and enough wall space for 20 paintings, col-
lages, and drawings.

Finally, Celeste decides that if “Narcissism” is displayed, “Reflection” should also
be displayed since “Reflection” also suggests narcissism.

Please explore the following questions independently except where otherwise in-
dicated.

(a) Ash decides to allocate $4 million to fund the exhibit. Given the pieces available and the
specific requirements from Ash and Celeste, formulate and solve a BIP model to maximize
the number of pieces displayed in the exhibit without exceeding the budget. How many pieces
are displayed? Which pieces are displayed?

(b) To ensure that the exhibit draws the attention of the public, Celeste decides that it must in-
clude at least 20 pieces. Formulate and solve a BIP model to minimize the cost of the ex-
hibit while displaying at least 20 pieces and meeting the requirements set by Ash and Ce-
leste. How much does the exhibit cost? Which pieces are displayed?
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(c) An influential patron of Rita Losky’s work who chairs the Museum Board of Directors learns
that Celeste requires at least 20 pieces in the exhibit. He offers to pay the minimum amount
required on top of Ash’s $4 million to ensure that exactly 20 pieces are displayed in the ex-
hibit and that all of Rita’s pieces are displayed. How much does the patron have to pay?
Which pieces are displayed?
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Daniel Holbrook, an expeditor at the local warehouse for Furniture City, sighed as he
moved boxes and boxes of inventory to the side in order to reach the shelf where the
particular item he needed was located. He dropped to his hands and knees and squinted
at the inventory numbers lining the bottom row of the shelf. He did not find the num-
ber he needed. He worked his way up the shelf until he found the number matching
the number on the order slip. Just his luck! The item was on the top row of the shelf!
Daniel walked back through the warehouse to find a ladder, stumbling over boxes of
inventory littering his path. When he finally climbed the ladder to reach the top shelf,
his face crinkled in frustration. Not again! The item he needed was not in stock! All
he saw above the inventory number was an empty space covered with dust!

Daniel trudged back through the warehouse to make the dreadful phone call. He
dialed the number of Brenda Sims, the saleswoman on the kitchen showroom floor of
Furniture City, and informed her that the particular light fixture the customer had re-
quested was not in stock. He then asked her if she wanted him to look for the rest of
the items in the kitchen set. Brenda told him that she would talk to the customer and
call him back.

Brenda hung up the phone and frowned. Mr. Davidson, her customer, would not
be happy. Ordering and receiving the correct light fixture from the regional warehouse
would take at least two weeks.

Brenda then paused to reflect upon business during the last month and realized
that over 80 percent of the orders for kitchen sets could not be filled because items
needed to complete the sets were not in stock at the local warehouse. She also real-
ized that Furniture City was losing customer goodwill and business because of stock-
outs. The furniture megastore was gaining a reputation for slow service and delayed
deliveries, causing customers to turn to small competitors that sold furniture directly
from the showroom floor.

Brenda decided to investigate the inventory situation at the local warehouse. She
walked the short distance to the building next door and gasped when she stepped in-
side the warehouse. What she saw could only be described as chaos. Spaces allocated
for some items were overflowing into the aisles of the warehouse while other spaces
were completely bare. She walked over to one of the spaces overflowing with inven-
tory to discover the item that was overstocked. She could not believe her eyes! The
warehouse had at least 30 rolls of pea-green wallpaper! No customer had ordered pea-
green wallpaper since 1973!
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Brenda marched over to Daniel demanding an explanation. Daniel said that the
warehouse had been in such a chaotic state since his arrival one year ago. He said the
inventory problems occurred because management had a policy of stocking every fur-
niture item on the showroom floor in the local warehouse. Management only replen-
ished inventory every three months, and when inventory was replenished, management
ordered every item regardless of if it had been sold. Daniel also said that he had tried
to make management aware of the problems with overstocking unpopular items and
understocking popular items, but that management would not listen to him because he
was simply an expeditor.

Brenda understood that Furniture City required a new inventory policy. Not only
was the megastore losing money by making customers unhappy with delivery de-
lays, but it was also losing money by wasting warehouse space. By changing the
inventory policy to stock only popular items and replenish them immediately when
they are sold, Furniture City would ensure that the majority of customers receive
their furniture immediately and that the valuable warehouse space was utilized 
effectively.

Brenda needed to sell her inventory policy to management. Using her extensive
sales experience, she decided that the most effective sales strategy would be to use
her kitchen department as a model for the new inventory policy. She would identify
all kitchen sets comprising 85 percent of customers orders. Given the fixed amount
of warehouse space allocated to the kitchen department, she would identify the items
Furniture City should stock in order to satisfy the greatest number of customer or-
ders. She would then calculate the revenue from satisfying customer orders under the
new inventory policy, using the bottom line to persuade management to accept her
policy.

Brenda analyzed her records over the past three years and determined that 20
kitchen sets were responsible for 85 percent of the customer orders. These 20 kitchen
sets were composed of up to eight features in a variety of styles. Brenda listed each
feature and its popular styles:
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Floor Tile Wallpaper Light Fixtures Cabinets

(T1) White textured (W1) Plain ivory (L1) One large rectangular (C1) Light solid 
tile paper frosted fixture wood cabinets

(T2) Ivory textured (W2) Ivory paper (L2) Three small square (C2) Dark solid 
tile with dark brown frosted fixtures wood cabinets

pinstripes

(T3) White (W3) Blue paper (L3) One large oval (C3) Light wood
checkered tile with marble texture frosted fixture cabinets with glass
with blue trim doors

(T4) White (W4) Light yellow (L4) Three small frosted (C4) Dark wood 
checkered tile with paper with marble globe fixtures cabinets with glass
light yellow trim texture doors



Brenda then created a table showing the 20 kitchen sets and the particular features
composing each set. To simplify the table, she used the codes shown in parentheses
above to represent the particular feature and style. The table is given below. For ex-
ample, kitchen set 1 consists of floor tile T2, wallpaper W2, light fixture L4, cabinet
C2, countertop O2, dishwasher D2, sink S2, and range R2. Notice that sets 14 through
20 do not contain dishwashers.

Brenda knew she had only a limited amount of warehouse space allocated to the
kitchen department. The warehouse could hold 50 square feet of tile and 12 rolls of
wallpaper in the inventory bins. The inventory shelves could hold two light fixtures,
two cabinets, three countertops, and two sinks. Dishwashers and ranges are similar in
size, so Furniture City stored them in similar locations. The warehouse floor could hold
a total of four dishwashers and ranges.

Every kitchen set always includes exactly 20 square feet of tile and exactly five
rolls of wallpaper. Therefore, 20 square feet of a particular style of tile and five rolls
of a particular style of wallpaper are required for the styles to be in stock.

(a) Formulate and solve a BIP model to maximize the total number of kitchen sets (and thus the
number of customer orders) Furniture City stocks in the local warehouse. Assume that when
a customer orders a kitchen set, all the particular items composing that kitchen set are re-
plenished at the local warehouse immediately.

(b) How many of each feature and style should Furniture City stock in the local warehouse?
How many different kitchen sets are in stock?

(c) Furniture City decides to discontinue carrying nursery sets, and the warehouse space previ-
ously allocated to the nursery department is divided between the existing departments at Fur-
niture City. The kitchen department receives enough additional space to allow it to stock
both styles of dishwashers and three of the four styles of ranges. How does the optimal in-
ventory policy for the kitchen department change with this additional warehouse space?

(d) Brenda convinces management that the kitchen department should serve as a testing ground
for future inventory policies. To provide adequate space for testing, management decides to
allocate all the space freed by the nursery department to the kitchen department. The extra
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Countertops Dishwashers Sinks Ranges

(O1) Plain light (D1) White energy- (S1) Sink with separate (R1) White electric
wood countertops saving dishwasher hot and cold water taps oven

(O2) Stained light (D2) Ivory energy- (S2) Divided sink with (R2) Ivory electric
wood countertops saving dishwasher separate hot and cold oven

water taps and garbage 
disposal

(O3) White  (S3) Sink with one hot (R3) White gas 
lacquer-coated and cold water tap oven
countertops

(O4) Ivory lacquer- (S4) Divided sink with (R4) Ivory gas oven
coated countertops one hot and cold water tap

and garbage disposal
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space means that the kitchen department can store not only the dishwashers and ranges from
part (c), but also all sinks, all countertops, three of the four light fixtures, and three of the
four cabinets. How much does the additional space help?

(e) How would the inventory policy be affected if the items composing a kitchen set could not
be replenished immediately? Under what conditions is the assumption of immediate replen-
ishment nevertheless justified?

CASE 12.4 ASSIGNING STUDENTS TO SCHOOLS (REVISITED AGAIN) 653

Reconsider Case 4.3.
The Springfield School Board now has made the decision to prohibit the splitting

of residential areas among multiple schools. Thus, each of the six areas must be as-
signed to a single school.

(a) Formulate a BIP model for this problem under the current policy of providing bussing for
all middle school students who must travel more than approximately a mile.

(b) Referring to part (a) of Case 4.3, explain why that linear programming model and the BIP
model just formulated are so different when they are dealing with nearly the same problem.

(c) Solve the BIP model formulated in part (a).
(d) Referring to part (c) of Case 4.3, determine how much the total bussing cost increases be-

cause of the decision to prohibit the splitting of residential areas among multiple schools.
(e, f, g, h) Repeat parts (e, f, g, h) of Case 4.3 under the new school board decision to prohibit

splitting residential areas among multiple schools.
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