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4
Solving Linear 
Programming Problems: 
The Simplex Method
We now are ready to begin studying the simplex method, a general procedure for solving
linear programming problems. Developed by George Dantzig in 1947, it has proved to be
a remarkably efficient method that is used routinely to solve huge problems on today’s
computers. Except for its use on tiny problems, this method is always executed on a com-
puter, and sophisticated software packages are widely available. Extensions and variations
of the simplex method also are used to perform postoptimality analysis (including sensi-
tivity analysis) on the model.

This chapter describes and illustrates the main features of the simplex method. The
first section introduces its general nature, including its geometric interpretation. The fol-
lowing three sections then develop the procedure for solving any linear programming
model that is in our standard form (maximization, all functional constraints in � form,
and nonnegativity constraints on all variables) and has only nonnegative right-hand sides
bi in the functional constraints. Certain details on resolving ties are deferred to Sec. 4.5,
and Sec. 4.6 describes how to adapt the simplex method to other model forms. Next we
discuss postoptimality analysis (Sec. 4.7), and describe the computer implementation of
the simplex method (Sec. 4.8). Section 4.9 then introduces an alternative to the simplex
method (the interior-point approach) for solving large linear programming problems.

The simplex method is an algebraic procedure. However, its underlying concepts are geo-
metric. Understanding these geometric concepts provides a strong intuitive feeling for how
the simplex method operates and what makes it so efficient. Therefore, before delving into
algebraic details, we focus in this section on the big picture from a geometric viewpoint.

To illustrate the general geometric concepts, we shall use the Wyndor Glass Co. ex-
ample presented in Sec. 3.1. (Sections 4.2 and 4.3 use the algebra of the simplex method
to solve this same example.) Section 5.1 will elaborate further on these geometric con-
cepts for larger problems.

To refresh your memory, the model and graph for this example are repeated in Fig.
4.1. The five constraint boundaries and their points of intersection are highlighted in this
figure because they are the keys to the analysis. Here, each constraint boundary is a line
that forms the boundary of what is permitted by the corresponding constraint. The points
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of intersection are the corner-point solutions of the problem. The five that lie on the cor-
ners of the feasible region—(0, 0), (0, 6), (2, 6), (4, 3), and (4, 0)—are the corner-point
feasible solutions (CPF solutions). [The other three—(0, 9), (4, 6), and (6, 0)—are called
corner-point infeasible solutions.]

In this example, each corner-point solution lies at the intersection of two constraint
boundaries. (For a linear programming problem with n decision variables, each of its
corner-point solutions lies at the intersection of n constraint boundaries.1) Certain pairs
of the CPF solutions in Fig. 4.1 share a constraint boundary, and other pairs do not. It
will be important to distinguish between these cases by using the following general 
definitions.

For any linear programming problem with n decision variables, two CPF solutions are ad-
jacent to each other if they share n � 1 constraint boundaries. The two adjacent CPF so-
lutions are connected by a line segment that lies on these same shared constraint bound-
aries. Such a line segment is referred to as an edge of the feasible region.

Since n � 2 in the example, two of its CPF solutions are adjacent if they share one
constraint boundary; for example, (0, 0) and (0, 6) are adjacent because they share the 
x1 � 0 constraint boundary. The feasible region in Fig. 4.1 has five edges, consisting of
the five line segments forming the boundary of this region. Note that two edges emanate
from each CPF solution. Thus, each CPF solution has two adjacent CPF solutions (each
lying at the other end of one of the two edges), as enumerated in Table 4.1. (In each row
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FIGURE 4.1
Constraint boundaries and
corner-point solutions for the
Wyndor Glass Co. problem.

1Although a corner-point solution is defined in terms of n constraint boundaries whose intersection gives this
solution, it also is possible that one or more additional constraint boundaries pass through this same point.



of this table, the CPF solution in the first column is adjacent to each of the two CPF so-
lutions in the second column, but the two CPF solutions in the second column are not ad-
jacent to each other.)

One reason for our interest in adjacent CPF solutions is the following general prop-
erty about such solutions, which provides a very useful way of checking whether a CPF
solution is an optimal solution.

Optimality test: Consider any linear programming problem that possesses at
least one optimal solution. If a CPF solution has no adjacent CPF solutions that
are better (as measured by Z), then it must be an optimal solution.

Thus, for the example, (2, 6) must be optimal simply because its Z � 36 is larger than 
Z � 30 for (0, 6) and Z � 27 for (4, 3). (We will delve further into why this property
holds in Sec. 5.1.) This optimality test is the one used by the simplex method for deter-
mining when an optimal solution has been reached.

Now we are ready to apply the simplex method to the example.

Solving the Example

Here is an outline of what the simplex method does (from a geometric viewpoint) to solve
the Wyndor Glass Co. problem. At each step, first the conclusion is stated and then the
reason is given in parentheses. (Refer to Fig. 4.1 for a visualization.)

Initialization: Choose (0, 0) as the initial CPF solution to examine. (This is a conve-
nient choice because no calculations are required to identify this CPF solution.)

Optimality Test: Conclude that (0, 0) is not an optimal solution. (Adjacent CPF so-
lutions are better.)

Iteration 1: Move to a better adjacent CPF solution, (0, 6), by performing the fol-
lowing three steps.

1. Considering the two edges of the feasible region that emanate from (0, 0), choose to
move along the edge that leads up the x2 axis. (With an objective function of 
Z � 3x1 � 5x2, moving up the x2 axis increases Z at a faster rate than moving along
the x1 axis.)

2. Stop at the first new constraint boundary: 2x2 � 12. [Moving farther in the direction
selected in step 1 leaves the feasible region; e.g., moving to the second new constraint
boundary hit when moving in that direction gives (0, 9), which is a corner-point in-
feasible solution.]

4.1 THE ESSENCE OF THE SIMPLEX METHOD 111

TABLE 4.1 Adjacent CPF solutions for each CPF 
solution of the Wyndor Glass Co. problem

CPF Solution Its Adjacent CPF Solutions

(0, 0) (0, 6) and (4, 0)
(0, 6) (2, 6) and (0, 0)
(2, 6) (4, 3) and (0, 6)
(4, 3) (4, 0) and (2, 6)
(4, 0) (0, 0) and (4, 3)



3. Solve for the intersection of the new set of constraint boundaries: (0, 6). (The equations
for these constraint boundaries, x1 � 0 and 2x2 � 12, immediately yield this solution.)

Optimality Test: Conclude that (0, 6) is not an optimal solution. (An adjacent CPF
solution is better.)

Iteration 2: Move to a better adjacent CPF solution, (2, 6), by performing the fol-
lowing three steps.

1. Considering the two edges of the feasible region that emanate from (0, 6), choose to
move along the edge that leads to the right. (Moving along this edge increases Z,
whereas backtracking to move back down the x2 axis decreases Z.)

2. Stop at the first new constraint boundary encountered when moving in that direction:
3x1 � 2x2 � 12. (Moving farther in the direction selected in step 1 leaves the feasible
region.)

3. Solve for the intersection of the new set of constraint boundaries: (2, 6). (The equa-
tions for these constraint boundaries, 3x1 � 2x2 � 18 and 2x2 � 12, immediately yield
this solution.)

Optimality Test: Conclude that (2, 6) is an optimal solution, so stop. (None of the ad-
jacent CPF solutions are better.)

This sequence of CPF solutions examined is shown in Fig. 4.2, where each circled num-
ber identifies which iteration obtained that solution.

Now let us look at the six key solution concepts of the simplex method that provide
the rationale behind the above steps. (Keep in mind that these concepts also apply for
solving problems with more than two decision variables where a graph like Fig. 4.2 is not
available to help quickly find an optimal solution.)

The Key Solution Concepts

The first solution concept is based directly on the relationship between optimal solutions
and CPF solutions given at the end of Sec. 3.2.
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This graph shows the
sequence of CPF solutions
(�, �, �) examined by the
simplex method for the
Wyndor Glass Co. problem.
The optimal solution (2, 6) is
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solutions are examined.



Solution concept 1: The simplex method focuses solely on CPF solutions. For
any problem with at least one optimal solution, finding one requires only find-
ing a best CPF solution.1

Since the number of feasible solutions generally is infinite, reducing the number of solu-
tions that need to be examined to a small finite number ( just three in Fig. 4.2) is a tremen-
dous simplification.

The next solution concept defines the flow of the simplex method.

Solution concept 2: The simplex method is an iterative algorithm (a systematic
solution procedure that keeps repeating a fixed series of steps, called an itera-
tion, until a desired result has been obtained) with the following structure.

Initialization: Set up to start iterations, including finding an initial
CPF solution.

Optimality test: Is the current CPF solution optimal?

If no If yes → Stop.

Iteration: Perform an iteration to find a better CPF solution.

When the example was solved, note how this flow diagram was followed through two it-
erations until an optimal solution was found.

We next focus on how to get started.

Solution concept 3: Whenever possible, the initialization of the simplex method
chooses the origin (all decision variables equal to zero) to be the initial CPF so-
lution. When there are too many decision variables to find an initial CPF solu-
tion graphically, this choice eliminates the need to use algebraic procedures to
find and solve for an initial CPF solution.

Choosing the origin commonly is possible when all the decision variables have nonneg-
ativity constraints, because the intersection of these constraint boundaries yields the ori-
gin as a corner-point solution. This solution then is a CPF solution unless it is infeasible
because it violates one or more of the functional constraints. If it is infeasible, special pro-
cedures described in Sec. 4.6 are needed to find the initial CPF solution.

The next solution concept concerns the choice of a better CPF solution at each iteration.

Solution concept 4: Given a CPF solution, it is much quicker computationally
to gather information about its adjacent CPF solutions than about other CPF so-
lutions. Therefore, each time the simplex method performs an iteration to move
from the current CPF solution to a better one, it always chooses a CPF solution
that is adjacent to the current one. No other CPF solutions are considered. Con-
sequently, the entire path followed to eventually reach an optimal solution is along
the edges of the feasible region.
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1The only restriction is that the problem must possess CPF solutions. This is ensured if the feasible region is
bounded.
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The next focus is on which adjacent CPF solution to choose at each iteration.

Solution concept 5: After the current CPF solution is identified, the simplex
method examines each of the edges of the feasible region that emanate from this
CPF solution. Each of these edges leads to an adjacent CPF solution at the other
end, but the simplex method does not even take the time to solve for the adja-
cent CPF solution. Instead, it simply identifies the rate of improvement in Z that
would be obtained by moving along the edge. Among the edges with a positive
rate of improvement in Z, it then chooses to move along the one with the largest
rate of improvement in Z. The iteration is completed by first solving for the ad-
jacent CPF solution at the other end of this one edge and then relabeling this ad-
jacent CPF solution as the current CPF solution for the optimality test and (if
needed) the next iteration.

At the first iteration of the example, moving from (0, 0) along the edge on the x1 axis
would give a rate of improvement in Z of 3 (Z increases by 3 per unit increase in x1),
whereas moving along the edge on the x2 axis would give a rate of improvement in Z of
5 (Z increases by 5 per unit increase in x2), so the decision is made to move along the lat-
ter edge. At the second iteration, the only edge emanating from (0, 6) that would yield a
positive rate of improvement in Z is the edge leading to (2, 6), so the decision is made to
move next along this edge.

The final solution concept clarifies how the optimality test is performed efficiently.

Solution concept 6: Solution concept 5 describes how the simplex method ex-
amines each of the edges of the feasible region that emanate from the current
CPF solution. This examination of an edge leads to quickly identifying the rate
of improvement in Z that would be obtained by moving along the edge toward
the adjacent CPF solution at the other end. A positive rate of improvement in Z
implies that the adjacent CPF solution is better than the current CPF solution,
whereas a negative rate of improvement in Z implies that the adjacent CPF so-
lution is worse. Therefore, the optimality test consists simply of checking whether
any of the edges give a positive rate of improvement in Z. If none do, then the
current CPF solution is optimal.

In the example, moving along either edge from (2, 6) decreases Z. Since we want to max-
imize Z, this fact immediately gives the conclusion that (2, 6) is optimal.
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The preceding section stressed the geometric concepts that underlie the simplex method.
However, this algorithm normally is run on a computer, which can follow only algebraic
instructions. Therefore, it is necessary to translate the conceptually geometric procedure
just described into a usable algebraic procedure. In this section, we introduce the algebraic
language of the simplex method and relate it to the concepts of the preceding section.

The algebraic procedure is based on solving systems of equations. Therefore, the first
step in setting up the simplex method is to convert the functional inequality constraints
to equivalent equality constraints. (The nonnegativity constraints are left as inequalities
because they are treated separately.) This conversion is accomplished by introducing slack
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variables. To illustrate, consider the first functional constraint in the Wyndor Glass Co.
example of Sec. 3.1

x1 � 4.

The slack variable for this constraint is defined to be

x3 � 4 � x1,

which is the amount of slack in the left-hand side of the inequality. Thus,

x1 � x3 � 4.

Given this equation, x1 � 4 if and only if 4 � x1 � x3 � 0. Therefore, the original con-
straint x1 � 4 is entirely equivalent to the pair of constraints

x1 � x3 � 4 and x3 � 0.

Upon the introduction of slack variables for the other functional constraints, the original
linear programming model for the example (shown below on the left) can now be replaced
by the equivalent model (called the augmented form of the model) shown below on the right:

Original Form of the Model Augmented Form of the Model1
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Maximize Z � 3x1 � 5x2,

subject to

x1 � 2x2 � 4

3x1 � 2x2 � 12

3x1 � 2x2 � 18

and

x1 � 0, x2 � 0.

Maximize Z � 3x1 � 5x2,

subject to

(1) x1 � x3 � 4

(2) 2x2 � x4 � 12

(3) 3x1 � 2x2 � x5 � 18

and

xj � 0, for j � 1, 2, 3, 4, 5.

Although both forms of the model represent exactly the same problem, the new form is
much more convenient for algebraic manipulation and for identification of CPF solutions.
We call this the augmented form of the problem because the original form has been aug-
mented by some supplementary variables needed to apply the simplex method.

If a slack variable equals 0 in the current solution, then this solution lies on the con-
straint boundary for the corresponding functional constraint. A value greater than 0 means
that the solution lies on the feasible side of this constraint boundary, whereas a value less
than 0 means that the solution lies on the infeasible side of this constraint boundary. A
demonstration of these properties is provided by the demonstration example in your OR
Tutor entitled Interpretation of the Slack Variables.

The terminology used in the preceding section (corner-point solutions, etc.) applies
to the original form of the problem. We now introduce the corresponding terminology for
the augmented form.

An augmented solution is a solution for the original variables (the decision vari-
ables) that has been augmented by the corresponding values of the slack variables.

1The slack variables are not shown in the objective function because the coefficients there are 0.



For example, augmenting the solution (3, 2) in the example yields the augmented solu-
tion (3, 2, 1, 8, 5) because the corresponding values of the slack variables are x3 � 1,
x4 � 8, and x5 � 5.

A basic solution is an augmented corner-point solution.

To illustrate, consider the corner-point infeasible solution (4, 6) in Fig. 4.1. Augmenting
it with the resulting values of the slack variables x3 � 0, x4 � 0, and x5 � �6 yields the
corresponding basic solution (4, 6, 0, 0, �6).

The fact that corner-point solutions (and so basic solutions) can be either feasible or
infeasible implies the following definition:

A basic feasible (BF) solution is an augmented CPF solution.

Thus, the CPF solution (0, 6) in the example is equivalent to the BF solution (0, 6, 4,
0, 6) for the problem in augmented form.

The only difference between basic solutions and corner-point solutions (or between
BF solutions and CPF solutions) is whether the values of the slack variables are included.
For any basic solution, the corresponding corner-point solution is obtained simply by delet-
ing the slack variables. Therefore, the geometric and algebraic relationships between these
two solutions are very close, as described in Sec. 5.1.

Because the terms basic solution and basic feasible solution are very important parts
of the standard vocabulary of linear programming, we now need to clarify their algebraic
properties. For the augmented form of the example, notice that the system of functional
constraints has 5 variables and 3 equations, so

Number of variables � number of equations � 5 � 3 � 2.

This fact gives us 2 degrees of freedom in solving the system, since any two variables can be
chosen to be set equal to any arbitrary value in order to solve the three equations in terms of
the remaining three variables.1 The simplex method uses zero for this arbitrary value. Thus,
two of the variables (called the nonbasic variables) are set equal to zero, and then the si-
multaneous solution of the three equations for the other three variables (called the basic vari-
ables) is a basic solution. These properties are described in the following general definitions.

A basic solution has the following properties:

1. Each variable is designated as either a nonbasic variable or a basic variable.
2. The number of basic variables equals the number of functional constraints (now equa-

tions). Therefore, the number of nonbasic variables equals the total number of vari-
ables minus the number of functional constraints.

3. The nonbasic variables are set equal to zero.
4. The values of the basic variables are obtained as the simultaneous solution of the sys-

tem of equations (functional constraints in augmented form). (The set of basic vari-
ables is often referred to as the basis.)

5. If the basic variables satisfy the nonnegativity constraints, the basic solution is a BF
solution.
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1This method of determining the number of degrees of freedom for a system of equations is valid as long as the
system does not include any redundant equations. This condition always holds for the system of equations formed
from the functional constraints in the augmented form of a linear programming model.



To illustrate these definitions, consider again the BF solution (0, 6, 4, 0, 6). This so-
lution was obtained before by augmenting the CPF solution (0, 6). However, another way
to obtain this same solution is to choose x1 and x4 to be the two nonbasic variables, and
so the two variables are set equal to zero. The three equations then yield, respectively,
x3 � 4, x2 � 6, and x5 � 6 as the solution for the three basic variables, as shown below
(with the basic variables in bold type):

x1 � 0 and x4 � 0 so
(1) x1 � x3 � 4 x3 � 4
(2) 2x2 � x4 � 12 x2 � 6
(3) 3x1 � 2x2 � x5 � 18 x5 � 6

Because all three of these basic variables are nonnegative, this basic solution (0, 6, 4,
0, 6) is indeed a BF solution.

Just as certain pairs of CPF solutions are adjacent, the corresponding pairs of BF so-
lutions also are said to be adjacent. Here is an easy way to tell when two BF solutions
are adjacent.

Two BF solutions are adjacent if all but one of their nonbasic variables are the same.
This implies that all but one of their basic variables also are the same, although perhaps
with different numerical values.

Consequently, moving from the current BF solution to an adjacent one involves switch-
ing one variable from nonbasic to basic and vice versa for one other variable (and then
adjusting the values of the basic variables to continue satisfying the system of equations).

To illustrate adjacent BF solutions, consider one pair of adjacent CPF solutions in
Fig. 4.1: (0, 0) and (0, 6). Their augmented solutions, (0, 0, 4, 12, 18) and (0, 6, 4, 0, 6),
automatically are adjacent BF solutions. However, you do not need to look at Fig. 4.1 to
draw this conclusion. Another signpost is that their nonbasic variables, (x1, x2) and 
(x1, x4), are the same with just the one exception—x2 has been replaced by x4. Conse-
quently, moving from (0, 0, 4, 12, 18) to (0, 6, 4, 0, 6) involves switching x2 from non-
basic to basic and vice versa for x4.

When we deal with the problem in augmented form, it is convenient to consider and
manipulate the objective function equation at the same time as the new constraint equa-
tions. Therefore, before we start the simplex method, the problem needs to be rewritten
once again in an equivalent way:

Maximize Z,

subject to

(0) Z � 3x1 � 5x2 � 0
(1) x1 � x3 � 4
(2) 2x2 � x4 � 12
(3) 3x1 � 2x2 � x5 � 18

and

xj � 0, for j � 1, 2, . . . , 5.
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It is just as if Eq. (0) actually were one of the original constraints; but because it already
is in equality form, no slack variable is needed. While adding one more equation, we also
have added one more unknown (Z) to the system of equations. Therefore, when using
Eqs. (1) to (3) to obtain a basic solution as described above, we use Eq. (0) to solve for
Z at the same time.

Somewhat fortuitously, the model for the Wyndor Glass Co. problem fits our stan-
dard form, and all its functional constraints have nonnegative right-hand sides bi. If this
had not been the case, then additional adjustments would have been needed at this point
before the simplex method was applied. These details are deferred to Sec. 4.6, and we
now focus on the simplex method itself.
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We continue to use the prototype example of Sec. 3.1, as rewritten at the end of Sec. 4.2,
for illustrative purposes. To start connecting the geometric and algebraic concepts of the
simplex method, we begin by outlining side by side in Table 4.2 how the simplex method
solves this example from both a geometric and an algebraic viewpoint. The geometric
viewpoint (first presented in Sec. 4.1) is based on the original form of the model (no slack
variables), so again refer to Fig. 4.1 for a visualization when you examine the second col-
umn of the table. Refer to the augmented form of the model presented at the end of Sec.
4.2 when you examine the third column of the table.

We now fill in the details for each step of the third column of Table 4.2.

Initialization

The choice of x1 and x2 to be the nonbasic variables (the variables set equal to zero) for
the initial BF solution is based on solution concept 3 in Sec. 4.1. This choice eliminates
the work required to solve for the basic variables (x3, x4, x5) from the following system
of equations (where the basic variables are shown in bold type):

x1 � 0 and x2 � 0 so
(1) x1 � x3 � 4 x3 � 4
(2) 2x2 � x4 � 12 x4 � 12
(3) 3x1 � 2x2 � x5 � 18 x5 � 18

Thus, the initial BF solution is (0, 0, 4, 12, 18).
Notice that this solution can be read immediately because each equation has just one

basic variable, which has a coefficient of 1, and this basic variable does not appear in any
other equation. You will soon see that when the set of basic variables changes, the sim-
plex method uses an algebraic procedure (Gaussian elimination) to convert the equations
to this same convenient form for reading every subsequent BF solution as well. This form
is called proper form from Gaussian elimination.

Optimality Test

The objective function is

Z � 3x1 � 5x2,
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so Z � 0 for the initial BF solution. Because none of the basic variables (x3, x4, x5) have
a nonzero coefficient in this objective function, the coefficient of each nonbasic variable
(x1, x2) gives the rate of improvement in Z if that variable were to be increased from zero
(while the values of the basic variables are adjusted to continue satisfying the system of
equations).1 These rates of improvement (3 and 5) are positive. Therefore, based on so-
lution concept 6 in Sec. 4.1, we conclude that (0, 0, 4, 12, 18) is not optimal.

For each BF solution examined after subsequent iterations, at least one basic variable
has a nonzero coefficient in the objective function. Therefore, the optimality test then will
use the new Eq. (0) to rewrite the objective function in terms of just the nonbasic vari-
ables, as you will see later.
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TABLE 4.2 Geometric and algebraic interpretations of how the simplex method
solves the Wyndor Glass Co. problem

Method
Sequence Geometric Interpretation Algebraic Interpretation

Initialization Choose (0, 0) to be the initial CPF Choose x1 and x2 to be the nonbasic 
solution. variables (� 0) for the initial BF 

solution: (0, 0, 4, 12, 18).
Optimality Not optimal, because moving along Not optimal, because increasing either 
test either edge from (0, 0) increases Z. nonbasic variable (x1 or x2) increases Z.

Iteration 1
Step 1 Move up the edge lying on the x2 Increase x2 while adjusting other 

axis. variable values to satisfy the system of 
equations.

Step 2 Stop when the first new constraint Stop when the first basic variable (x3, 
boundary (2x2 � 12) is reached. x4, or x5) drops to zero (x4).

Step 3 Find the intersection of the new pair With x2 now a basic variable and x4

of constraint boundaries: (0, 6) is the now a nonbasic variable, solve the 
new CPF solution. system of equations: (0, 6, 4, 0, 6) is 

the new BF solution.
Optimality Not optimal, because moving along the Not optimal, because increasing one 
test edge from (0, 6) to the right increases Z. nonbasic variable (x1) increases Z.

Iteration 2
Step 1 Move along this edge to the right. Increase x1 while adjusting other 

variable values to satisfy the system of 
equations.

Step 2 Stop when the first new constraint Stop when the first basic variable (x2, 
boundary (3x1 � 2x2 � 18) is reached. x3, or x5) drops to zero (x5).

Step 3 Find the intersection of the new pair With x1 now a basic variable and x5

of constraint boundaries: (2, 6) is the now a nonbasic variable, solve the 
new CPF solution. system of equations: (2, 6, 2, 0, 0) is 

the new BF solution.
Optimality (2, 6) is optimal, because moving (2, 6, 2, 0, 0) is optimal, because 
test along either edge from (2, 6) decreases Z. increasing either nonbasic variable (x4

or x5) decreases Z.

1Note that this interpretation of the coefficients of the xj variables is based on these variables being on the right-
hand side, Z � 3x1 � 5x2. When these variables are brought to the left-hand side for Eq. (0), Z � 3x1 � 5x2 � 0,
the nonzero coefficients change their signs.



Determining the Direction of Movement (Step 1 of an Iteration)

Increasing one nonbasic variable from zero (while adjusting the values of the basic vari-
ables to continue satisfying the system of equations) corresponds to moving along one
edge emanating from the current CPF solution. Based on solution concepts 4 and 5 in
Sec. 4.1, the choice of which nonbasic variable to increase is made as follows:

Z � 3x1 � 5x2

Increase x1? Rate of improvement in Z � 3.
Increase x2? Rate of improvement in Z � 5.
5 � 3, so choose x2 to increase.

As indicated next, we call x2 the entering basic variable for iteration 1.

At any iteration of the simplex method, the purpose of step 1 is to choose one nonbasic
variable to increase from zero (while the values of the basic variables are adjusted to con-
tinue satisfying the system of equations). Increasing this nonbasic variable from zero will
convert it to a basic variable for the next BF solution. Therefore, this variable is called
the entering basic variable for the current iteration (because it is entering the basis).

Determining Where to Stop (Step 2 of an Iteration)

Step 2 addresses the question of how far to increase the entering basic variable x2 before
stopping. Increasing x2 increases Z, so we want to go as far as possible without leaving
the feasible region. The requirement to satisfy the functional constraints in augmented
form (shown below) means that increasing x2 (while keeping the nonbasic variable x1 � 0)
changes the values of some of the basic variables as shown on the right.

x1 � 0, so
(1) x1 � x3 � 4 x3 � 4
(2) 2x2 � x4 � 12 x4 � 12 � 2x2

(3) 3x1 � 2x2 � x5 � 18 x5 � 18 � 2x2.

The other requirement for feasibility is that all the variables be nonnegative. The nonbasic
variables (including the entering basic variable) are nonnegative, but we need to check how
far x2 can be increased without violating the nonnegativity constraints for the basic variables.

x3 � 4 � 0 ⇒ no upper bound on x2.

x4 � 12 � 2x2 � 0 ⇒ x2 � �
1
2
2
� � 6 � minimum.

x5 � 18 � 2x2 � 0 ⇒ x2 � �
1
2
8
� � 9.

Thus, x2 can be increased just to 6, at which point x4 has dropped to 0. Increasing x2 be-
yond 6 would cause x4 to become negative, which would violate feasibility.

These calculations are referred to as the minimum ratio test. The objective of this
test is to determine which basic variable drops to zero first as the entering basic variable
is increased. We can immediately rule out the basic variable in any equation where the
coefficient of the entering basic variable is zero or negative, since such a basic variable
would not decrease as the entering basic variable is increased. [This is what happened
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with x3 in Eq. (1) of the example.] However, for each equation where the coefficient of
the entering basic variable is strictly positive (� 0), this test calculates the ratio of the
right-hand side to the coefficient of the entering basic variable. The basic variable in the
equation with the minimum ratio is the one that drops to zero first as the entering basic
variable is increased.

At any iteration of the simplex method, step 2 uses the minimum ratio test to determine
which basic variable drops to zero first as the entering basic variable is increased. De-
creasing this basic variable to zero will convert it to a nonbasic variable for the next BF
solution. Therefore, this variable is called the leaving basic variable for the current iter-
ation (because it is leaving the basis).

Thus, x4 is the leaving basic variable for iteration 1 of the example.

Solving for the New BF Solution (Step 3 of an Iteration)

Increasing x2 � 0 to x2 � 6 moves us from the initial BF solution on the left to the new
BF solution on the right.

Initial BF solution New BF solution
Nonbasic variables: x1 � 0, x2 � 0 x1 � 0, x4 � 0
Basic variables: x3 � 4, x4 � 12, x5 � 18 x3 � ?, x2 � 6, x5 � ?

The purpose of step 3 is to convert the system of equations to a more convenient form
(proper form from Gaussian elimination) for conducting the optimality test and (if needed)
the next iteration with this new BF solution. In the process, this form also will identify
the values of x3 and x5 for the new solution.

Here again is the complete original system of equations, where the new basic vari-
ables are shown in bold type (with Z playing the role of the basic variable in the objec-
tive function equation):

(0) Z � 3x1 � 5x2 � 0.
(1) x1 � x3 � 4.
(2) 2x2 � x4 � 12.
(3) 3x1 � 2x2 � x5 � 18.

Thus, x2 has replaced x4 as the basic variable in Eq. (2). To solve this system of equations
for Z, x2, x3, and x5, we need to perform some elementary algebraic operations to re-
produce the current pattern of coefficients of x4 (0, 0, 1, 0) as the new coefficients of x2.
We can use either of two types of elementary algebraic operations:

1. Multiply (or divide) an equation by a nonzero constant.
2. Add (or subtract) a multiple of one equation to (or from) another equation.

To prepare for performing these operations, note that the coefficients of x2 in the above
system of equations are �5, 0, 2, and 3, respectively, whereas we want these coefficients
to become 0, 0, 1, and 0, respectively. To turn the coefficient of 2 in Eq. (2) into 1, we use
the first type of elementary algebraic operation by dividing Eq. (2) by 2 to obtain

(2) x2 � �
1
2

�x4 � 6.
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To turn the coefficients of �5 and 3 into zeros, we need to use the second type of elementary
algebraic operation. In particular, we add 5 times this new Eq. (2) to Eq. (0), and subtract 2
times this new Eq. (2) from Eq. (3). The resulting complete new system of equations is

(0) Z � 3x1 � �
5
2

�x4 � 30

(1) x1 � x3 � 4

(2) x2 � �
1
2

�x4 � 6

(3) 3x1 � x4 � x5 � 6.

Since x1 � 0 and x4 � 0, the equations in this form immediately yield the new BF solu-
tion, (x1, x2, x3, x4, x5) � (0, 6, 4, 0, 6), which yields Z � 30.

This procedure for obtaining the simultaneous solution of a system of linear equa-
tions is called the Gauss-Jordan method of elimination, or Gaussian elimination for
short.1 The key concept for this method is the use of elementary algebraic operations to
reduce the original system of equations to proper form from Gaussian elimination, where
each basic variable has been eliminated from all but one equation (its equation) and has
a coefficient of �1 in that equation.

Optimality Test for the New BF Solution

The current Eq. (0) gives the value of the objective function in terms of just the current
nonbasic variables

Z � 30 � 3x1 � �
5
2

�x4.

Increasing either of these nonbasic variables from zero (while adjusting the values of the
basic variables to continue satisfying the system of equations) would result in moving to-
ward one of the two adjacent BF solutions. Because x1 has a positive coefficient, in-
creasing x1 would lead to an adjacent BF solution that is better than the current BF solu-
tion, so the current solution is not optimal.

Iteration 2 and the Resulting Optimal Solution

Since Z � 30 � 3x1 � �
5
2

�x4, Z can be increased by increasing x1, but not x4. Therefore, step
1 chooses x1 to be the entering basic variable.

For step 2, the current system of equations yields the following conclusions about
how far x1 can be increased (with x4 � 0):

x3 � 4 � x1 � 0 ⇒ x1 � �
4
1

� � 4.

x2 � 6 � 0 ⇒ no upper bound on x1.

x5 � 6 � 3x1 � 0 ⇒ x1 � �
6
3

� � 2 � minimum.

Therefore, the minimum ratio test indicates that x5 is the leaving basic variable.
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For step 3, with x1 replacing x5 as a basic variable, we perform elementary algebraic
operations on the current system of equations to reproduce the current pattern of coeffi-
cients of x5 (0, 0, 0, 1) as the new coefficients of x1. This yields the following new sys-
tem of equations:

(0) Z � �
3
2

�x4 � x5 � 36

(1) x3 � �
1
3

�x4 � �
1
3

�x5 � 2

(2) x2 � �
1
2

�x4 � 6

(3) x1 � �
1
3

�x4 � �
1
3

�x5 � 2.

Therefore, the next BF solution is (x1, x2, x3, x4, x5) � (2, 6, 2, 0, 0), yielding Z � 36. To
apply the optimality test to this new BF solution, we use the current Eq. (0) to express Z
in terms of just the current nonbasic variables,

Z � 36 � �
3
2

�x4 � x5.

Increasing either x4 or x5 would decrease Z, so neither adjacent BF solution is as good as
the current one. Therefore, based on solution concept 6 in Sec. 4.1, the current BF solu-
tion must be optimal.

In terms of the original form of the problem (no slack variables), the optimal solu-
tion is x1 � 2, x2 � 6, which yields Z � 3x1 � 5x2 � 36.

To see another example of applying the simplex method, we recommend that you now
view the demonstration entitled Simplex Method—Algebraic Form in your OR Tutor. This
vivid demonstration simultaneously displays both the algebra and the geometry of the sim-
plex method as it dynamically evolves step by step. Like the many other demonstration ex-
amples accompanying other sections of the book (including the next section), this com-
puter demonstration highlights concepts that are difficult to convey on the printed page.

To further help you learn the simplex method efficiently, your OR Courseware in-
cludes a procedure entitled Solve Interactively by the Simplex Method. This routine per-
forms nearly all the calculations while you make the decisions step by step, thereby en-
abling you to focus on concepts rather than get bogged down in a lot of number crunching.
Therefore, you probably will want to use this routine for your homework on this section.
The software will help you get started by letting you know whenever you make a mistake
on the first iteration of a problem.

The next section includes a summary of the simplex method for a more convenient
tabular form.
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The algebraic form of the simplex method presented in Sec. 4.3 may be the best one for
learning the underlying logic of the algorithm. However, it is not the most convenient form
for performing the required calculations. When you need to solve a problem by hand (or
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interactively with your OR Courseware), we recommend the tabular form described in
this section.1

The tabular form of the simplex method records only the essential information, namely,
(1) the coefficients of the variables, (2) the constants on the right-hand sides of the equa-
tions, and (3) the basic variable appearing in each equation. This saves writing the sym-
bols for the variables in each of the equations, but what is even more important is the fact
that it permits highlighting the numbers involved in arithmetic calculations and recording
the computations compactly.

Table 4.3 compares the initial system of equations for the Wyndor Glass Co. prob-
lem in algebraic form (on the left) and in tabular form (on the right), where the table on
the right is called a simplex tableau. The basic variable for each equation is shown in bold
type on the left and in the first column of the simplex tableau on the right. [Although only
the xj variables are basic or nonbasic, Z plays the role of the basic variable for Eq. (0).]
All variables not listed in this basic variable column (x1, x2) automatically are nonbasic
variables. After we set x1 � 0, x2 � 0, the right side column gives the resulting solution
for the basic variables, so that the initial BF solution is (x1, x2, x3, x4, x5) � (0, 0, 4, 12,
18) which yields Z � 0.

The tabular form of the simplex method uses a simplex tableau to compactly display the
system of equations yielding the current BF solution. For this solution, each variable in
the leftmost column equals the corresponding number in the rightmost column (and vari-
ables not listed equal zero). When the optimality test or an iteration is performed, the only
relevant numbers are those to the right of the Z column. The term row refers to just a row
of numbers to the right of the Z column (including the right side number), where row i
corresponds to Eq. (i).

We summarize the tabular form of the simplex method below and, at the same time,
briefly describe its application to the Wyndor Glass Co. problem. Keep in mind that the
logic is identical to that for the algebraic form presented in the preceding section. Only
the form for displaying both the current system of equations and the subsequent iteration
has changed (plus we shall no longer bother to bring variables to the right-hand side of
an equation before drawing our conclusions in the optimality test or in steps 1 and 2 of
an iteration).
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TABLE 4.3 Initial system of equations for the Wyndor Glass Co. problem

(a) Algebraic Form (b) Tabular Form

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

(0) Z � 3x1 � 5x2 � x3 � x4 � x5 � 0 Z (0) 1 �3 �5 0 0 0 0
(1) Z � 3x1 � 5x2 � x3 � x4 � x5 � 4 x3 (1) 0 �1 �0 1 0 0 4
(2) Z � 3x1 � 2x2 � x3 � x4 � x5 � 12 x4 (2) 0 �0 �2 0 1 0 12
(3) Z � 3x1 � 2x2 � x3 � x4 � x5 � 18 x5 (3) 0 �3 �2 0 0 1 18

1A form more convenient for automatic execution on a computer is presented in Sec. 5.2.



Summary of the Simplex Method (and Iteration 1 for the Example)

Initialization. Introduce slack variables. Select the decision variables to be the initial
nonbasic variables (set equal to zero) and the slack variables to be the initial basic vari-
ables. (See Sec. 4.6 for the necessary adjustments if the model is not in our standard
form—maximization, only � functional constraints, and all nonnegativity constraints—
or if any bi values are negative.)

For the Example: This selection yields the initial simplex tableau shown in Table 4.3b,
so the initial BF solution is (0, 0, 4, 12, 18).

Optimality Test. The current BF solution is optimal if and only if every coefficient in
row 0 is nonnegative (� 0). If it is, stop; otherwise, go to an iteration to obtain the next
BF solution, which involves changing one nonbasic variable to a basic variable (step 1)
and vice versa (step 2) and then solving for the new solution (step 3).

For the Example: Just as Z � 3x1 � 5x2 indicates that increasing either x1 or x2 will
increase Z, so the current BF solution is not optimal, the same conclusion is drawn from
the equation Z � 3x1 � 5x2 � 0. These coefficients of �3 and �5 are shown in row 0 of
Table 4.3b.

Iteration. Step 1: Determine the entering basic variable by selecting the variable (au-
tomatically a nonbasic variable) with the negative coefficient having the largest absolute
value (i.e., the “most negative” coefficient) in Eq. (0). Put a box around the column be-
low this coefficient, and call this the pivot column.

For the Example: The most negative coefficient is �5 for x2 (5 � 3), so x2 is to be
changed to a basic variable. (This change is indicated in Table 4.4 by the box around the
x2 column below �5.)

Step 2: Determine the leaving basic variable by applying the minimum ratio test.
Minimum Ratio Test

1. Pick out each coefficient in the pivot column that is strictly positive (� 0).
2. Divide each of these coefficients into the right side entry for the same row.
3. Identify the row that has the smallest of these ratios.
4. The basic variable for that row is the leaving basic variable, so replace that variable

by the entering basic variable in the basic variable column of the next simplex tableau.
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TABLE 4.4 Applying the minimum ratio test to determine the first leaving basic
variable for the Wyndor Glass Co. problem

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side Ratio

Z (0) 1 �3 �5 0 0 0 0
x3 (1) 0 �1 �0 1 0 0 4

x4 (2) 0 �0 �2 0 1 0 12 � � 6 � minimum

x5 (3) 0 �3 �2 0 0 1 18 � � 9
18
�
2

12
�
2



Put a box around this row and call it the pivot row. Also call the number that is in both
boxes the pivot number.

For the Example: The calculations for the minimum ratio test are shown to the
right of Table 4.4. Thus, row 2 is the pivot row (see the box around this row in the
first simplex tableau of Table 4.5), and x4 is the leaving basic variable. In the next sim-
plex tableau (see the bottom of Table 4.5), x2 replaces x4 as the basic variable for 
row 2.

Step 3: Solve for the new BF solution by using elementary row operations (multi-
ply or divide a row by a nonzero constant; add or subtract a multiple of one row to an-
other row) to construct a new simplex tableau in proper form from Gaussian elimination
below the current one, and then return to the optimality test. The specific elementary row
operations that need to be performed are listed below.

1. Divide the pivot row by the pivot number. Use this new pivot row in steps 2 
and 3.

2. For each other row (including row 0) that has a negative coefficient in the pivot col-
umn, add to this row the product of the absolute value of this coefficient and the new
pivot row.

3. For each other row that has a positive coefficient in the pivot column, subtract from
this row the product of this coefficient and the new pivot row.

For the Example: Since x2 is replacing x4 as a basic variable, we need to reproduce
the first tableau’s pattern of coefficients in the column of x4 (0, 0, 1, 0) in the second
tableau’s column of x2. To start, divide the pivot row (row 2) by the pivot number (2),
which gives the new row 2 shown in Table 4.5. Next, we add to row 0 the product, 5 times
the new row 2. Then we subtract from row 3 the product, 2 times the new row 2 (or equiv-
alently, subtract from row 3 the old row 2). These calculations yield the new tableau shown
in Table 4.6 for iteration 1. Thus, the new BF solution is (0, 6, 4, 0, 6), with Z � 30. We
next return to the optimality test to check if the new BF solution is optimal. Since the new
row 0 still has a negative coefficient (�3 for x1), the solution is not optimal, and so at
least one more iteration is needed.
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TABLE 4.5 Simplex tableaux for the Wyndor Glass Co. problem after the 
first pivot row is divided by the first pivot number

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �3 �5 0 0 0 0
x3 (1) 0 �1 �0 1 0 0 4

0
x4 (2) 0 �0 �2 0 1 0 12
x5 (3) 0 �3 �2 0 0 1 18

Z (0) 1
x3 (1) 0

1
x2 (2) 0 �0 �1 0 �

1
2

� 0 6
x5 (3) 0



Iteration 2 for the Example and the Resulting Optimal Solution

The second iteration starts anew from the second tableau of Table 4.6 to find the next BF
solution. Following the instructions for steps 1 and 2, we find x1 as the entering basic vari-
able and x5 as the leaving basic variable, as shown in Table 4.7.

For step 3, we start by dividing the pivot row (row 3) in Table 4.7 by the pivot num-
ber (3). Next, we add to row 0 the product, 3 times the new row 3. Then we subtract the
new row 3 from row 1.

We now have the set of tableaux shown in Table 4.8. Therefore, the new BF solution
is (2, 6, 2, 0, 0), with Z � 36. Going to the optimality test, we find that this solution is
optimal because none of the coefficients in row 0 is negative, so the algorithm is finished.
Consequently, the optimal solution for the Wyndor Glass Co. problem (before slack vari-
ables are introduced) is x1 � 2, x2 � 6.

Now compare Table 4.8 with the work done in Sec. 4.3 to verify that these two forms
of the simplex method really are equivalent. Then note how the algebraic form is supe-
rior for learning the logic behind the simplex method, but the tabular form organizes the
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TABLE 4.6 First two simplex tableaux for the Wyndor Glass Co. problem

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �3 �5 0 �0 0 0
x3 (1) 0 �1 �0 1 �0 0 4

0
x4 (2) 0 �0 �2 0 �1 0 12
x5 (3) 0 �3 �2 0 �0 1 18

Z (0) 1 �3 �0 0 ��
5
2

� 0 30

x3 (1) 0 �1 �0 1 �0 0 4
1

x2 (2) 0 �0 �1 0 ��
1
2

� 0 6

x5 (3) 0 �3 �0 0 �1 1 6

TABLE 4.7 Steps 1 and 2 of iteration 2 for the Wyndor Glass Co. problem

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side Ratio

Z (0) 1 �3 0 0 ��
5
2

� 0 30

x3 (1) 0 �1 0 1 �0 0 4 �
4
1

� � 4
1

x2 (2) 0 �0 1 0 ��
1
2

� 0 6

x5 (3) 0 �3 0 0 �1 1 6 �
6
3

� � 2 � minimum



work being done in a considerably more convenient and compact form. We generally use
the tabular form from now on.

An additional example of applying the simplex method in tabular form is available
to you in the OR Tutor. See the demonstration entitled Simplex Method—Tabular Form.
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TABLE 4.8 Complete set of simplex tableaux for the Wyndor Glass Co. problem

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �3 �5 0 �0 �0 0
x3 (1) 0 �1 �0 1 �0 �0 4

0
x4 (2) 0 �0 �2 0 �1 �0 12
x5 (3) 0 �3 �2 0 �0 �1 18

Z (0) 1 �3 �0 0 ��
5
2

� �0 30

x3 (1) 0 �1 �0 1 �0 �0 4
1

x2 (2) 0 �0 �1 0 ��
1
2

� �0 6

x5 (3) 0 �3 �0 0 �1 �1 6

Z (0) 1 �0 �0 0 ��
3
2

� �1 36

x3 (1) 0 �0 �0 1 ��
1
3

� ��
1
3

� 2
2

x2 (2) 0 �0 �1 0 ��
1
2

� �0 6

x1 (3) 0 �1 �0 0 ��
1
3

� ��
1
3

� 2

You may have noticed in the preceding two sections that we never said what to do if the
various choice rules of the simplex method do not lead to a clear-cut decision, because of
either ties or other similar ambiguities. We discuss these details now.

Tie for the Entering Basic Variable

Step 1 of each iteration chooses the nonbasic variable having the negative coefficient with
the largest absolute value in the current Eq. (0) as the entering basic variable. Now sup-
pose that two or more nonbasic variables are tied for having the largest negative coeffi-
cient (in absolute terms). For example, this would occur in the first iteration for the Wyn-
dor Glass Co. problem if its objective function were changed to Z � 3x1� 3x2, so that the
initial Eq. (0) became Z � 3x1 � 3x2 � 0. How should this tie be broken?

The answer is that the selection between these contenders may be made arbitrarily.
The optimal solution will be reached eventually, regardless of the tied variable chosen,
and there is no convenient method for predicting in advance which choice will lead there
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sooner. In this example, the simplex method happens to reach the optimal solution (2, 6)
in three iterations with x1 as the initial entering basic variable, versus two iterations if x2

is chosen.

Tie for the Leaving Basic Variable—Degeneracy

Now suppose that two or more basic variables tie for being the leaving basic variable in
step 2 of an iteration. Does it matter which one is chosen? Theoretically it does, and in a
very critical way, because of the following sequence of events that could occur. First, all
the tied basic variables reach zero simultaneously as the entering basic variable is in-
creased. Therefore, the one or ones not chosen to be the leaving basic variable also will
have a value of zero in the new BF solution. (Note that basic variables with a value of
zero are called degenerate, and the same term is applied to the corresponding BF solu-
tion.) Second, if one of these degenerate basic variables retains its value of zero until it
is chosen at a subsequent iteration to be a leaving basic variable, the corresponding en-
tering basic variable also must remain zero (since it cannot be increased without making
the leaving basic variable negative), so the value of Z must remain unchanged. Third, if
Z may remain the same rather than increase at each iteration, the simplex method may
then go around in a loop, repeating the same sequence of solutions periodically rather
than eventually increasing Z toward an optimal solution. In fact, examples have been ar-
tificially constructed so that they do become entrapped in just such a perpetual loop.

Fortunately, although a perpetual loop is theoretically possible, it has rarely been
known to occur in practical problems. If a loop were to occur, one could always get out
of it by changing the choice of the leaving basic variable. Furthermore, special rules1 have
been constructed for breaking ties so that such loops are always avoided. However, these
rules frequently are ignored in actual application, and they will not be repeated here. For
your purposes, just break this kind of tie arbitrarily and proceed without worrying about
the degenerate basic variables that result.

No Leaving Basic Variable—Unbounded Z

In step 2 of an iteration, there is one other possible outcome that we have not yet dis-
cussed, namely, that no variable qualifies to be the leaving basic variable.2 This outcome
would occur if the entering basic variable could be increased indefinitely without giving
negative values to any of the current basic variables. In tabular form, this means that every
coefficient in the pivot column (excluding row 0) is either negative or zero.

As illustrated in Table 4.9, this situation arises in the example displayed in Fig. 3.6
on p. 36. In this example, the last two functional constraints of the Wyndor Glass Co.
problem have been overlooked and so are not included in the model. Note in Fig. 3.6 how
x2 can be increased indefinitely (thereby increasing Z indefinitely) without ever leaving
the feasible region. Then note in Table 4.9 that x2 is the entering basic variable but the
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1See R. Bland, “New Finite Pivoting Rules for the Simplex Method,” Mathematics of Operations Research, 2:
103–107, 1977.
2Note that the analogous case (no entering basic variable) cannot occur in step 1 of an iteration, because the
optimality test would stop the algorithm first by indicating that an optimal solution had been reached.



only coefficient in the pivot column is zero. Because the minimum ratio test uses only co-
efficients that are greater than zero, there is no ratio to provide a leaving basic variable.

The interpretation of a tableau like the one shown in Table 4.9 is that the constraints
do not prevent the value of the objective function Z increasing indefinitely, so the sim-
plex method would stop with the message that Z is unbounded. Because even linear pro-
gramming has not discovered a way of making infinite profits, the real message for prac-
tical problems is that a mistake has been made! The model probably has been
misformulated, either by omitting relevant constraints or by stating them incorrectly. Al-
ternatively, a computational mistake may have occurred.

Multiple Optimal Solutions

We mentioned in Sec. 3.2 (under the definition of optimal solution) that a problem can
have more than one optimal solution. This fact was illustrated in Fig. 3.5 by changing the
objective function in the Wyndor Glass Co. problem to Z � 3x1 � 2x2, so that every point
on the line segment between (2, 6) and (4, 3) is optimal. Thus, all optimal solutions are
a weighted average of these two optimal CPF solutions

(x1, x2) � w1(2, 6) � w2(4, 3),

where the weights w1 and w2 are numbers that satisfy the relationships

w1 � w2 � 1 and w1 � 0, w2 � 0.

For example, w1 � �
1
3

� and w2 � �
2
3

� give

(x1, x2) � �
1
3

�(2, 6) � �
2
3

�(4, 3) � ��
2
3

� � �
8
3

�, �
6
3

� � �
6
3

�� � ��
1
3
0
�, 4�

as one optimal solution.
In general, any weighted average of two or more solutions (vectors) where the weights

are nonnegative and sum to 1 is called a convex combination of these solutions. Thus,
every optimal solution in the example is a convex combination of (2, 6) and (4, 3).

This example is typical of problems with multiple optimal solutions.

As indicated at the end of Sec. 3.2, any linear programming problem with multiple opti-
mal solutions (and a bounded feasible region) has at least two CPF solutions that are op-
timal. Every optimal solution is a convex combination of these optimal CPF solutions.
Consequently, in augmented form, every optimal solution is a convex combination of the
optimal BF solutions.

(Problems 4.5-5 and 4.5-6 guide you through the reasoning behind this conclusion.)
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TABLE 4.9 Initial simplex tableau for the Wyndor Glass Co. problem without the
last two functional constraints

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 Side Ratio

Z (0) 1 �3 �5 0 0 With x1 � 0 and x2 increasing,
x3 (1) 0 �1 �0 1 4 None x3 � 4 � 1x1 � 0x2 � 4 � 0.



The simplex method automatically stops after one optimal BF solution is found. How-
ever, for many applications of linear programming, there are intangible factors not incor-
porated into the model that can be used to make meaningful choices between alternative
optimal solutions. In such cases, these other optimal solutions should be identified as well.
As indicated above, this requires finding all the other optimal BF solutions, and then every
optimal solution is a convex combination of the optimal BF solutions.

After the simplex method finds one optimal BF solution, you can detect if there are
any others and, if so, find them as follows:

Whenever a problem has more than one optimal BF solution, at least one of the nonba-
sic variables has a coefficient of zero in the final row 0, so increasing any such variable
will not change the value of Z. Therefore, these other optimal BF solutions can be iden-
tified (if desired) by performing additional iterations of the simplex method, each time
choosing a nonbasic variable with a zero coefficient as the entering basic variable.1

To illustrate, consider again the case just mentioned, where the objective function in
the Wyndor Glass Co. problem is changed to Z � 3x1 � 2x2. The simplex method obtains
the first three tableaux shown in Table 4.10 and stops with an optimal BF solution. How-
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TABLE 4.10 Complete set of simplex tableaux to obtain all optimal BF solutions
for the Wyndor Glass Co. problem with c2 � 2

Coefficient of:
Basic Right Solution

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side Optimal?

Z (0) 1 �3 �2 �0 �0 �0 0 No
x3 (1) 0 �1 �0 �1 �0 �0 4

0
x4 (2) 0 �0 �2 �0 �1 �0 12
x5 (3) 0 �3 �2 �0 �0 �1 18

Z (0) 1 �0 �2 �3 �0 �0 12 No
x1 (1) 0 �1 �0 �1 �0 �0 4

1
x4 (2) 0 �0 �2 �0 �1 �0 12
x5 (3) 0 �0 �2 �3 �0 �1 6

Z (0) 1 �0 �0 �0 �0 �1 18 Yes
x1 (1) 0 �1 �0 �1 �0 �0 4

2
x4 (2) 0 �0 �0 �3 �1 �1 6

x2 (3) 0 �0 �1 ��
3
2

� �0 ��
1
2

� 3

Z (0) 1 �0 �0 �0 �0 �1 18 Yes

x1 (1) 0 �1 �0 �0 ��
1
3

� ��
1
3

� 2
Extra

x3 (2) 0 �0 �0 �1 ��
1
3

� ��
1
3

� 2

x2 (3) 0 �0 �1 �0 ��
1
2

� �0 6

1If such an iteration has no leaving basic variable, this indicates that the feasible region is unbounded and the
entering basic variable can be increased indefinitely without changing the value of Z.



ever, because a nonbasic variable (x3) then has a zero coefficient in row 0, we perform
one more iteration in Table 4.10 to identify the other optimal BF solution. Thus, the two
optimal BF solutions are (4, 3, 0, 6, 0) and (2, 6, 2, 0, 0), each yielding Z � 18. Notice
that the last tableau also has a nonbasic variable (x4) with a zero coefficient in row 0. This
situation is inevitable because the extra iteration does not change row 0, so this leaving
basic variable necessarily retains its zero coefficient. Making x4 an entering basic variable
now would only lead back to the third tableau. (Check this.) Therefore, these two are the
only BF solutions that are optimal, and all other optimal solutions are a convex combi-
nation of these two.

(x1, x2, x3, x4, x5) � w1(2, 6, 2, 0, 0) � w2(4, 3, 0, 6, 0),
w1 � w2 � 1, w1 � 0, w2 � 0.
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Thus far we have presented the details of the simplex method under the assumptions that
the problem is in our standard form (maximize Z subject to functional constraints in � form
and nonnegativity constraints on all variables) and that bi � 0 for all i � 1, 2, . . . , m. In
this section we point out how to make the adjustments required for other legitimate forms
of the linear programming model. You will see that all these adjustments can be made dur-
ing the initialization, so the rest of the simplex method can then be applied just as you have
learned it already.

The only serious problem introduced by the other forms for functional constraints
(the � or � forms, or having a negative right-hand side) lies in identifying an initial BF
solution. Before, this initial solution was found very conveniently by letting the slack vari-
ables be the initial basic variables, so that each one just equals the nonnegative right-hand
side of its equation. Now, something else must be done. The standard approach that is
used for all these cases is the artificial-variable technique. This technique constructs a
more convenient artificial problem by introducing a dummy variable (called an artificial
variable) into each constraint that needs one. This new variable is introduced just for the
purpose of being the initial basic variable for that equation. The usual nonnegativity con-
straints are placed on these variables, and the objective function also is modified to im-
pose an exorbitant penalty on their having values larger than zero. The iterations of the
simplex method then automatically force the artificial variables to disappear (become zero),
one at a time, until they are all gone, after which the real problem is solved.

To illustrate the artificial-variable technique, first we consider the case where the only
nonstandard form in the problem is the presence of one or more equality constraints.

Equality Constraints

Any equality constraint

ai1x1 � ai2x2 � 			 � ainxn � bi

actually is equivalent to a pair of inequality constraints:

ai1x1 � ai2x2 � 			 � ainxn � bi

ai1x1 � ai2x2 � 			 � ainxn � bi.
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However, rather than making this substitution and thereby increasing the number of con-
straints, it is more convenient to use the artificial-variable technique. We shall illustrate
this technique with the following example.

4.6 ADAPTING TO OTHER MODEL FORMS 133

Example. Suppose that the Wyndor Glass Co. problem in Sec. 3.1 is modified to re-
quire that Plant 3 be used at full capacity. The only resulting change in the linear pro-
gramming model is that the third constraint, 3x1 � 2x2 � 18, instead becomes an equal-
ity constraint

3x1 � 2x2 � 18,

so that the complete model becomes the one shown in the upper right-hand corner of Fig.
4.3. This figure also shows in darker ink the feasible region which now consists of just
the line segment connecting (2, 6) and (4, 3).

After the slack variables still needed for the inequality constraints are introduced, the
system of equations for the augmented form of the problem becomes

(0) Z � 3x1 � 5x2 � 0.
(1) x1 � x3 � 4.
(2) 2x2 � x4 � 12.
(3) 3x1 � 2x2 � 18.

Unfortunately, these equations do not have an obvious initial BF solution because there
is no longer a slack variable to use as the initial basic variable for Eq. (3). It is necessary
to find an initial BF solution to start the simplex method.

This difficulty can be circumvented in the following way.

(2, 6)

(4, 3)

x2

x1

Maximize     Z � 3x1 � 5x2,
subject to x1 �   4

� 12
� 18

2x2
2x23x1 �

x1 � 0, x2 � 0 and

0 2 4 6 8

2

4

6

8

10

FIGURE 4.3
When the third functional
constraint becomes an
equality constraint, the
feasible region for the
Wyndor Glass Co. problem
becomes the line segment
between (2, 6) and (4, 3).



Obtaining an Initial BF Solution. The procedure is to construct an artificial prob-
lem that has the same optimal solution as the real problem by making two modifications
of the real problem.

1. Apply the artificial-variable technique by introducing a nonnegative artificial vari-
able (call it xx�5)1 into Eq. (3), just as if it were a slack variable

(3) 3x1 � 2x2 � x�5 � 18.

2. Assign an overwhelming penalty to having xx�5 � 0 by changing the objective function
Z � 3x1 � 5x2 to

Z � 3x1 � 5x2 � Mx�5,

where M symbolically represents a huge positive number. (This method of forcing xx�5

to be xx�5 � 0 in the optimal solution is called the Big M method.)

Now find the optimal solution for the real problem by applying the simplex method to the
artificial problem, starting with the following initial BF solution:

Initial BF Solution
Nonbasic variables: x1 � 0, x2 � 0
Basic variables: x3 � 4, x4 � 12, xx�5 � 18.

Because xx�5 plays the role of the slack variable for the third constraint in the artificial
problem, this constraint is equivalent to 3x1 � 2x2 � 18 ( just as for the original Wyndor
Glass Co. problem in Sec. 3.1). We show below the resulting artificial problem (before
augmenting) next to the real problem.

The Real Problem The Artificial Problem
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Maximize Z � 3x1 � 5x2,

subject to

x1 � 2x2 � 4

3x1 � 2x2 � 12

3x1 � 2x2 � 18

and

x1 � 0, x2 � 0.

Define xx�5 � 18 � 3x1 � 2x2.

Maximize Z � 3x1 � 5x2 � Mxx�5,

subject to

(so 3x1 � 2x2 � x�5 � 4

(so 3x1 � 2x2 � x�5 � 12

(so 3x1 � 2x2 � x�5 � 18

(so 3x1 � 2x2 � x�5 � 18)

and

x1 � 0, x2 � 0, xx�5 � 0.

Therefore, just as in Sec. 3.1, the feasible region for (x1, x2) for the artificial problem is
the one shown in Fig. 4.4. The only portion of this feasible region that coincides with the
feasible region for the real problem is where x�5 � 0 (so 3x1 � 2x2 � 18).

Figure 4.4 also shows the order in which the simplex method examines the CPF so-
lutions (or BF solutions after augmenting), where each circled number identifies which it-
eration obtained that solution. Note that the simplex method moves counterclockwise here

1We shall always label the artificial variables by putting a bar over them.



whereas it moved clockwise for the original Wyndor Glass Co. problem (see Fig. 4.2). The
reason for this difference is the extra term �Mxx�5 in the objective function for the artificial
problem.

Before applying the simplex method and demonstrating that it follows the path shown
in Fig. 4.4, the following preparatory step is needed.

Converting Equation (0) to Proper Form. The system of equations after the arti-
ficial problem is augmented is

(0) Z � 3x1 � 5x2 � Mx�5 � 0
(1) x1 � x3 � 4
(2) 2x2 � x4 � 12
(3) 3x1 � 2x2 � x�5 � 18

where the initial basic variables (x3, x4, x�5) are shown in bold type. However, this system
is not yet in proper form from Gaussian elimination because a basic variable x�5 has a
nonzero coefficient in Eq. (0). Recall that all basic variables must be algebraically elim-
inated from Eq. (0) before the simplex method can either apply the optimality test or find
the entering basic variable. This elimination is necessary so that the negative of the coef-
ficient of each nonbasic variable will give the rate at which Z would increase if that non-
basic variable were to be increased from 0 while adjusting the values of the basic 
variables accordingly.

To algebraically eliminate x�5 from Eq. (0), we need to subtract from Eq. (0) the prod-
uct, M times Eq. (3).

New (0)

Z � 3x1 � 5x2 � Mx�5 � 0
�M(3x1 � 2x2 � Mxx�5 � 18)

����������������
Z � (3M � 3)x1 � (2M � 5)x2 � �18M.
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FIGURE 4.4
This graph shows the feasible
region and the sequence of
CPF solutions (�, �, �, �)
examined by the simplex
method for the artificial
problem that corresponds to
the real problem of Fig. 4.3.



Application of the Simplex Method. This new Eq. (0) gives Z in terms of just the
nonbasic variables (x1, x2),

Z � �18M � (3M � 3)x1 � (2M � 5)x2.

Since 3M � 3 � 2M � 5 (remember that M represents a huge number), increasing x1 in-
creases Z at a faster rate than increasing x2 does, so x1 is chosen as the entering basic vari-
able. This leads to the move from (0, 0) to (4, 0) at iteration 1, shown in Fig. 4.4, thereby
increasing Z by 4(3M � 3).

The quantities involving M never appear in the system of equations except for Eq.
(0), so they need to be taken into account only in the optimality test and when an enter-
ing basic variable is determined. One way of dealing with these quantities is to assign
some particular (huge) numerical value to M and use the resulting coefficients in Eq. (0)
in the usual way. However, this approach may result in significant rounding errors that in-
validate the optimality test. Therefore, it is better to do what we have just shown, namely,
to express each coefficient in Eq. (0) as a linear function aM � b of the symbolic quan-
tity M by separately recording and updating the current numerical value of (1) the multi-
plicative factor a and (2) the additive term b. Because M is assumed to be so large that b
always is negligible compared with M when a 
 0, the decisions in the optimality test
and the choice of the entering basic variable are made by using just the multiplicative fac-
tors in the usual way, except for breaking ties with the additive factors.

Using this approach on the example yields the simplex tableaux shown in Table 4.11.
Note that the artificial variable x�5 is a basic variable (xx�5 � 0) in the first two tableaux
and a nonbasic variable (xx�5 � 0) in the last two. Therefore, the first two BF solutions for
this artificial problem are infeasible for the real problem whereas the last two also are BF
solutions for the real problem.

This example involved only one equality constraint. If a linear programming model
has more than one, each is handled in just the same way. (If the right-hand side is nega-
tive, multiply through both sides by �1 first.)

Negative Right-Hand Sides

The technique mentioned in the preceding sentence for dealing with an equality constraint
with a negative right-hand side (namely, multiply through both sides by �1) also works
for any inequality constraint with a negative right-hand side. Multiplying through both
sides of an inequality by �1 also reverses the direction of the inequality; i.e., � changes
to � or vice versa. For example, doing this to the constraint

x1 � x2 � �1 (that is, x1 � x2 � 1)

gives the equivalent constraint

�x1 � x2 � 1 (that is, x2 � 1 � x1)

but now the right-hand side is positive. Having nonnegative right-hand sides for all the
functional constraints enables the simplex method to begin, because (after augmenting)
these right-hand sides become the respective values of the initial basic variables, which
must satisfy nonnegativity constraints.
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We next focus on how to augment � constraints, such as �x1 � x2 � 1, with the help
of the artificial-variable technique.

Functional Constraints in � Form

To illustrate how the artificial-variable technique deals with functional constraints in �
form, we will use the model for designing Mary’s radiation therapy, as presented in Sec.
3.4. For your convenience, this model is repeated below, where we have placed a box
around the constraint of special interest here.

Radiation Therapy Example
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TABLE 4.11 Complete set of simplex tableaux for the problem shown in Fig. 4.4

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x�5 Side

Z (0) 1 �3M � 3 �2M � 5 �0 0 �0 �18M
x3 (1) 0 1 0 �1 0 �0 4

0
x4 (2) 0 0 2 �0 1 �0 12
x�5 (3) 0 3 2 �0 0 �1 18

Z (0) 1 0 �2M � 5 3M � 3 0 �0 �6M � 12
x1 (1) 0 1 0 �1 0 �0 4

1
x4 (2) 0 0 2 �0 1 �0 12
x�5 (3) 0 0 2 �3 0 �1 6

Z (0) 1 0 0 � 0 M � 27

x1 (1) 0 1 0 �1 0 �0 4
2

x4 (2) 0 0 0 �3 1 �1 6

x2 (3) 0 0 1 � 0 � 3

Z (0) 1 0 0 �0 ��
3
2

� M � 1 36

x1 (1) 0 1 0 �0 � � 2
Extra

x3 (2) 0 0 0 �1 � � 2

x2 (3) 0 0 1 �0 � �0 6
1
�
2

1
�
3

1
�
3

1
�
3

1
�
3

1
�
2

3
�
2

5
�
2

9
�
2

Minimize Z � 0.4x1 � 0.5x2,

subject to

0.3x1 � 0.1x2 � 2.7

0.5x1 � 0.5x2 � 6

0.6x1 � 0.4x2 � 6

and

x1 � 0, x2 � 0.



The graphical solution for this example (originally presented in Fig. 3.12) is repeated
here in a slightly different form in Fig. 4.5. The three lines in the figure, along with the
two axes, constitute the five constraint boundaries of the problem. The dots lying at the
intersection of a pair of constraint boundaries are the corner-point solutions. The only two
corner-point feasible solutions are (6, 6) and (7.5, 4.5), and the feasible region is the line
segment connecting these two points. The optimal solution is (x1, x2) � (7.5, 4.5), with 
Z � 5.25.

We soon will show how the simplex method solves this problem by directly solving
the corresponding artificial problem. However, first we must describe how to deal with
the third constraint.
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FIGURE 4.5
Graphical display of the
radiation therapy example
and its corner-point
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Our approach involves introducing both a surplus variable x5 (defined as x5 �
0.6x1 � 0.4x2 � 6) and an artificial variable x�6, as shown next.

0.6x1 � 0.4x2 � 6
� 0.6x1 � 0.4x2 � x5 � 6 (x5 � 0)
� 0.6x1 � 0.4x2 � x5 � x�6 � 6 (x5 � 0, xx�6 � 0).

Here x5 is called a surplus variable because it subtracts the surplus of the left-hand side
over the right-hand side to convert the inequality constraint to an equivalent equality con-
straint. Once this conversion is accomplished, the artificial variable is introduced just as
for any equality constraint.

After a slack variable x3 is introduced into the first constraint, an artificial variable
x�4 is introduced into the second constraint, and the Big M method is applied, so the com-
plete artificial problem (in augmented form) is

Minimize Z � 0.4x1 � 0.5x2 � Mxx�4 � Mxx�6,

subject to 0.3x1 � 0.1x2 � x3 � 2.7
0.5x1 � 0.5x2 � x�4 � 6
0.6x1 � 0.4x2 � xxx5 � x�6 � 6

and x1 � 0, x2 � 0, x3 � 0, x�4 � 0, x5 � 0, x�6 � 0.

Note that the coefficients of the artificial variables in the objective function are �M, in-
stead of �M, because we now are minimizing Z. Thus, even though xx�4 � 0 and/or x�6 � 0
is possible for a feasible solution for the artificial problem, the huge unit penalty of �M
prevents this from occurring in an optimal solution.

As usual, introducing artificial variables enlarges the feasible region. Compare below
the original constraints for the real problem with the corresponding constraints on (x1, x2)
for the artificial problem.

Constraints on (x1, x2) Constraints on (x1, x2)
for the Real Problem for the Artificial Problem

0.3x1 � 0.1x2 � 2.7 0.3x1 � 0.1x2 � 2.7
0.5x1 � 0.5x2 � 6 0.5x1 � 0.5x2 � 6 (� holds when xx�4 � 0)
0.6x1 � 0.4x2 � 6 No such constraint (except when xx�6 � 0)

x1 � 0, x2 � 0 x1 � 0, x2 � 0

Introducing the artificial variable xx�4 to play the role of a slack variable in the second con-
straint allows values of (x1, x2) below the 0.5x1 � 0.5x2 � 6 line in Fig. 4.5. Introducing
x5 and xx�6 into the third constraint of the real problem (and moving these variables to the
right-hand side) yields the equation

0.6x1 � 0.4x2 � 6 � x5 � xx�6.

Because both x5 and xx�6 are constrained only to be nonnegative, their difference x5 � xx�6

can be any positive or negative number. Therefore, 0.6x1 � 0.4x2 can have any value,
which has the effect of eliminating the third constraint from the artificial problem and al-
lowing points on either side of the 0.6x1 � 0.4x2 � 6 line in Fig. 4.5. (We keep the third
constraint in the system of equations only because it will become relevant again later, af-
ter the Big M method forces x�6 to be zero.) Consequently, the feasible region for the ar-
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tificial problem is the entire polyhedron in Fig. 4.5 whose vertices are (0, 0), (9, 0),
(7.5, 4.5), and (0, 12).

Since the origin now is feasible for the artificial problem, the simplex method starts
with (0, 0) as the initial CPF solution, i.e., with (x1, x2, x3, xx�4, x5, x�6) � (0, 0, 2.7, 6, 0,
6) as the initial BF solution. (Making the origin feasible as a convenient starting point for
the simplex method is the whole point of creating the artificial problem.) We soon will
trace the entire path followed by the simplex method from the origin to the optimal so-
lution for both the artificial and real problems. But, first, how does the simplex method
handle minimization?

Minimization

One straightforward way of minimizing Z with the simplex method is to exchange the
roles of the positive and negative coefficients in row 0 for both the optimality test and
step 1 of an iteration. However, rather than changing our instructions for the simplex
method for this case, we present the following simple way of converting any minimiza-
tion problem to an equivalent maximization problem:

Minimizing Z � �
n

j�1
cjxj

is equivalent to

maximizing �Z � �
n

j�1
(�cj)xj;

i.e., the two formulations yield the same optimal solution(s).
The two formulations are equivalent because the smaller Z is, the larger �Z is, so the

solution that gives the smallest value of Z in the entire feasible region must also give the
largest value of �Z in this region.

Therefore, in the radiation therapy example, we make the following change in the
formulation:

� Minimize �Z � �0.4x1 � 0.5x2

� Maximize �Z � �0.4x1 � 0.5x2.

After artificial variables xx�4 and xx�6 are introduced and then the Big M method is applied,
the corresponding conversion is

� Minimize �Z � �0.4x1 � 0.5x2 � Mxx�4 � Mxxx�6

� Maximize �Z � �0.4x1 � 0.5x2 � Mxx�4 � Mxxx�6.

Solving the Radiation Therapy Example

We now are nearly ready to apply the simplex method to the radiation therapy example.
By using the maximization form just obtained, the entire system of equations is now

(0) �Z � 0.4x1 � 0.5x2 � Mx�4 � Mx�6 � 0
(1) 0.3x1 � 0.1x2 � x3 � 2.7
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(2) 0.5x1 � 0.5x2 � x�4 � 6
(3) 0.6x1 � 0.4x2 � x5 � x�6 � 6.

The basic variables (x3, x�4, x�6) for the initial BF solution (for this artificial problem) are
shown in bold type.

Note that this system of equations is not yet in proper form from Gaussian elimina-
tion, as required by the simplex method, since the basic variables x�4 and x�6 still need to
be algebraically eliminated from Eq. (0). Because x�4 and x�6 both have a coefficient of M,
Eq. (0) needs to have subtracted from it both M times Eq. (2) and M times Eq. (3). The
calculations for all the coefficients (and the right-hand sides) are summarized below, where
the vectors are the relevant rows of the simplex tableau corresponding to the above sys-
tem of equations.

Row 0:
�M[0.4, 0.5, 0, M, 0, M, 0]
�M[0.5, 0.5, 0, 1, 0, 0, 6]
�M[0.6, 0.4, 0, 0, �1, 1, 6]

New row 0 � [�1.1M � 0.4, �0.9M � 0.5, 0, 0, M, 0, �12M]

The resulting initial simplex tableau, ready to begin the simplex method, is shown at
the top of Table 4.12. Applying the simplex method in just the usual way then yields the
sequence of simplex tableaux shown in the rest of Table 4.12. For the optimality test and
the selection of the entering basic variable at each iteration, the quantities involving M
are treated just as discussed in connection with Table 4.11. Specifically, whenever M is
present, only its multiplicative factor is used, unless there is a tie, in which case the tie is
broken by using the corresponding additive terms. Just such a tie occurs in the last se-
lection of an entering basic variable (see the next-to-last tableau), where the coefficients
of x3 and x5 in row 0 both have the same multiplicative factor of ��

5
3

�. Comparing the ad-
ditive terms, �

1
6
1
� � �

7
3

� leads to choosing x5 as the entering basic variable.
Note in Table 4.12 the progression of values of the artificial variables x�4 and x�6 and

of Z. We start with large values, x�4 � 6 and x�6 � 6, with Z � 12M (�Z � �12M). The
first iteration greatly reduces these values. The Big M method succeeds in driving x�6 to
zero (as a new nonbasic variable) at the second iteration and then in doing the same to xx�4

at the next iteration. With both x�4 � 0 and x�6 � 0, the basic solution given in the last
tableau is guaranteed to be feasible for the real problem. Since it passes the optimality
test, it also is optimal.

Now see what the Big M method has done graphically in Fig. 4.6. The feasible re-
gion for the artificial problem initially has four CPF solutions—(0, 0), (9, 0), (0, 12), and
(7.5, 4.5)—and then replaces the first three with two new CPF solutions—(8, 3), (6, 6)—
after x�6 decreases to x�6 � 0 so that 0.6x1 � 0.4x2 � 6 becomes an additional constraint.
(Note that the three replaced CPF solutions—(0, 0), (9, 0), and (0, 12)—actually were
corner-point infeasible solutions for the real problem shown in Fig. 4.5.) Starting with the
origin as the convenient initial CPF solution for the artificial problem, we move around
the boundary to three other CPF solutions—(9, 0), (8, 3), and (7.5, 4.5). The last of these
is the first one that also is feasible for the real problem. Fortuitously, this first feasible so-
lution also is optimal, so no additional iterations are needed.
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For other problems with artificial variables, it may be necessary to perform additional
iterations to reach an optimal solution after the first feasible solution is obtained for the
real problem. (This was the case for the example solved in Table 4.11.) Thus, the Big M
method can be thought of as having two phases. In the first phase, all the artificial vari-
ables are driven to zero (because of the penalty of M per unit for being greater than zero)
in order to reach an initial BF solution for the real problem. In the second phase, all the
artificial variables are kept at zero (because of this same penalty) while the simplex method
generates a sequence of BF solutions for the real problem that leads to an optimal solu-
tion. The two-phase method described next is a streamlined procedure for performing these
two phases directly, without even introducing M explicitly.

The Two-Phase Method

For the radiation therapy example just solved in Table 4.12, recall its real objective 
function

Real problem: Minimize Z � 0.4x1 � 0.5x2.
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TABLE 4.12 The Big M method for the radiation therapy example

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) �1 �1.1M � 0.4 �0.9M � 0.5 �0.0 �0.0 M �0 �12M1
x3 (1) �0 0.3 0.1 �1.0 �0.0 �0 �0 �2.7

0
x�4 (2) �0 0.5 0.5 �0.0 �1.0 �0 �0 �6.0
x�6 (3) �0 0.6 0.4 �0.0 �0.0 �1 �1 �6.0

Z (0) �1 0.0 ��
1
3
6
0
�M � �

1
3

1
0
� �

1
3
1
�M � �

4
3

� �0.0 M �0 �2.1M � 3.6

x1 (1) �0 1.0 �
1
3

� ��
1
3
0
� �0.0 �0 �0 �9.0

1
x�4 (2) �0 0.0 �

1
3

� ��
5
3

� �1.0 �0 �0 �1.5

x�6 (3) �0 0.0 0.2 �2 �0.0 �1 �1 �0.6

Z (0) �1 0.0 0.0 ��
5
3

�M � �
7
3

� �0.0 ��
5
3

�M � �
1
6
1
� �

8
3

�M � �
1
6
1
� �0.5M � 4.7

x1 (1) �0 1.0 0.0 ��
2
3
0
� �0.0 ��

5
3

� ��
5
3

� �8.0
2

x�4 (2) �0 0.0 0.0 ��
5
3

� �1.0 ��
5
3

� ��
5
3

� �0.5

x2 (3) �0 0.0 1.0 �10.0 �0.0 �5 �5 �3.0

Z (0) �1 0.0 0.0 � 0.5 M � 1.1 �0 M �5.25
x1 (1) �0 1.0 0.0 � 5.0 �1.0 �0 �0 �7.51

3
x5 (2) �0 0.0 0.0 � 1.0 1 0.6 �1 �1 �0.31
x2 (3) �0 0.0 1.0 �5.0 �3.0 �0 �0 �4.51



However, the Big M method uses the following objective function (or its equivalent in
maximization form) throughout the entire procedure:

Big M method: Minimize Z � 0.4x1 � 0.5x2 � Mx�4 � Mx�6.

Since the first two coefficients are negligible compared to M, the two-phase method is
able to drop M by using the following two objective functions with completely different
definitions of Z in turn.

Two-phase method:

Phase 1: Minimize Z � x�4 � xx�6 (until x�4 � 0, x�6 � 0).
Phase 2: Minimize Z � 0.4x1 � 0.5x2 (with x�4 � 0, x�6 � 0).

The phase 1 objective function is obtained by dividing the Big M method objective func-
tion by M and then dropping the negligible terms. Since phase 1 concludes by obtaining
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x2

(0, 0)
(9, 0) x1

(6, 6)

(7.5, 4.5) optimal

(8, 3)

(0, 12)
Z � 6 � 1.2M

Z � 0 � 12M

Z � 4.7 � 0.5M

Z � 3.6 � 2.1M

Z � 5.25

Z � 5.4

Feasible region for the artificial problem

This dark line segment is the feasible
region for the real problem
(x4 � 0, x6 � 0).

Constraints for the artificial problem:

 0.3x1 � 0.1x2 � 2.7
 0.5x1 � 0.5x2 � 6 (� holds when x4 � 0)
(0.6x1 � 0.4x2 � 6 when x6 � 0)

x1 � 0,  x2 � 0  (x4 � 0,  x6 � 0)

10

2

3

FIGURE 4.6
This graph shows the feasible
region and the sequence of
CPF solutions (�, �, �, �)
examined by the simplex
method (with the Big M
method) for the artificial
problem that corresponds to
the real problem of Fig. 4.5.



a BF solution for the real problem (one where x�4 � 0 and x�6 � 0), this solution is then
used as the initial BF solution for applying the simplex method to the real problem (with
its real objective function) in phase 2.

Before solving the example in this way, we summarize the general method.

Summary of the Two-Phase Method. Initialization: Revise the constraints of the
original problem by introducing artificial variables as needed to obtain an obvious initial
BF solution for the artificial problem.

Phase 1: The objective for this phase is to find a BF solution for the real problem.
To do this,

Minimize Z � � artificial variables, subject to revised constraints.

The optimal solution obtained for this problem (with Z � 0) will be a BF solution for the
real problem.

Phase 2: The objective for this phase is to find an optimal solution for the real prob-
lem. Since the artificial variables are not part of the real problem, these variables can now
be dropped (they are all zero now anyway).1 Starting from the BF solution obtained at the
end of phase 1, use the simplex method to solve the real problem.

For the example, the problems to be solved by the simplex method in the respective
phases are summarized below.

Phase 1 Problem (Radiation Therapy Example):

Minimize Z � x�4 � x�6,

subject to

0.3x1 � 0.1x2 � x3 � 2.7
0.5x1 � 0.5x2 � x�4 � 6
0.6x1 � 0.4x2 � xx5 � xx�6 � 6

and

x1 � 0, x2 � 0, x3 � 0, xx�4 � 0, x5 � 0, xx�6 � 0. 

Phase 2 Problem (Radiation Therapy Example):

Minimize Z � 0.4x1 � 0.5x2,

subject to

0.3x1 � 0.1x2 � x3 � 2.7
0.5x1 � 0.5x2 � 6
0.6x1 � 0.4x2 � x5 � 6

and

x1 � 0, x2 � 0, x3 � 0, x5 � 0.
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1We are skipping over three other possibilities here: (1) artificial variables � 0 (discussed in the next subsec-
tion), (2) artificial variables that are degenerate basic variables, and (3) retaining the artificial variables as non-
basic variables in phase 2 (and not allowing them to become basic) as an aid to subsequent postoptimality analy-
sis. Your OR Courseware allows you to explore these possibilities.



The only differences between these two problems are in the objective function and in the
inclusion (phase 1) or exclusion (phase 2) of the artificial variables x�4 and x�6. Without the
artificial variables, the phase 2 problem does not have an obvious initial BF solution. The
sole purpose of solving the phase 1 problem is to obtain a BF solution with xx�4 � 0 and
x�6 � 0 so that this solution (without the artificial variables) can be used as the initial BF
solution for phase 2.

Table 4.13 shows the result of applying the simplex method to this phase 1 problem.
[Row 0 in the initial tableau is obtained by converting Minimize Z � x�4 � xx�6 to Maxi-
mize (�Z) � �x�4 � x�6 and then using elementary row operations to eliminate the basic
variables x�4 and x�6 from �Z � x�4 � x�6 � 0.] In the next-to-last tableau, there is a tie for
the entering basic variable between x3 and x5, which is broken arbitrarily in favor of x3.
The solution obtained at the end of phase 1, then, is (x1, x2, x3, x�4, x5, x�6) � (6, 6, 0.3, 0,
0, 0) or, after x�4 and x�6 are dropped, (x1, x2, x3, x5) � (6, 6, 0.3, 0).

As claimed in the summary, this solution from phase 1 is indeed a BF solution for
the real problem (the phase 2 problem) because it is the solution (after you set x5 � 0) to
the system of equations consisting of the three functional constraints for the phase 2 prob-
lem. In fact, after deleting the x�4 and xx�6 columns as well as row 0 for each iteration, Table
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TABLE 4.13 Phase 1 of the two-phase method for the radiation therapy example

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) �1 �1.1 �0.9 �00 �0 �1 �0 �12
x3 (1) �0 �0.3 �0.1 �01 �0 �0 �0 �2.7

0
x�4 (2) �0 �0.5 �0.5 �00 �1 �0 �0 �6.0
x�6 (3) �0 �0.6 �0.4 �00 �0 �1 �1 �6.0

Z (0) �1 �0.0 ��
1
3

6
0
� ��

1
3
1
� �0 �1 �0 �2.1

x1 (1) �0 �1.0 ��
1
3

� ��
1
3
0
� �0 �0 �0 �9.0

1
x�4 (2) �0 �0.0 ��

1
3

� ��
5
3

� �1 �0 �0 �1.5

x�6 (3) �0 �0.0 �0.2 �2 �0 �1 �1 �0.6

Z (0) �1 �0.0 �0.0 ��
5
3

� �0 ��
5
3

� ��
8
3

� �0.5

x1 (1) �0 �1.0 �0.0 ��
2
3
0
� �0 ��

5
3

� ��
5
3

� �8.0
2

x�4 (2) �0 �0.0 �0.0 ��
5
3

� �1 ��
5
3

� ��
5
3

� �0.5

x2 (3) �0 �0.0 �1.0 �10 �0 �5 �5 �3.0

Z (0) �1 �0.0 �0.0 �00 �1 �0 �1 �0.0
x1 (1) �0 �1.0 �0.0 �00 �4 �5 �5 �6.0

3
x3 (2) �0 �0.0 �0.0 �01 ��

3
5

� �1 �1 �0.3

x2 (3) �0 �0.0 �1.0 �00 �6 �5 �5 �6.0



4.13 shows one way of using Gaussian elimination to solve this system of equations by
reducing the system to the form displayed in the final tableau.

Table 4.14 shows the preparations for beginning phase 2 after phase 1 is completed.
Starting from the final tableau in Table 4.13, we drop the artificial variables (x�4 and xx�6),
substitute the phase 2 objective function (�Z � �0.4x1 � 0.5x2 in maximization form)
into row 0, and then restore the proper form from Gaussian elimination (by algebraically
eliminating the basic variables x1 and x2 from row 0). Thus, row 0 in the last tableau is
obtained by performing the following elementary row operations in the next-to-last
tableau: from row 0 subtract both the product, 0.4 times row 1, and the product, 0.5 times
row 3. Except for the deletion of the two columns, note that rows 1 to 3 never change.
The only adjustments occur in row 0 in order to replace the phase 1 objective function by
the phase 2 objective function.

The last tableau in Table 4.14 is the initial tableau for applying the simplex method
to the phase 2 problem, as shown at the top of Table 4.15. Just one iteration then leads to
the optimal solution shown in the second tableau: (x1, x2, x3, x5) � (7.5, 4.5, 0, 0.3). This
solution is the desired optimal solution for the real problem of interest rather than the ar-
tificial problem constructed for phase 1.

Now we see what the two-phase method has done graphically in Fig. 4.7. Starting at
the origin, phase 1 examines a total of four CPF solutions for the artificial problem. The
first three actually were corner-point infeasible solutions for the real problem shown in
Fig. 4.5. The fourth CPF solution, at (6, 6), is the first one that also is feasible for the real
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TABLE 4.14 Preparing to begin phase 2 for the radiation therapy example

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) �1 00. 0.0 0 �1 �0.0 �1 �0.0

Final Phase 1 x1 (1) �0 10. 0.0 0 �4 �5.0 �5 �6.0

tableau x3 (2) �0 00. 0.0 1 ��
3
5

� �1.0 �1 �0.3

x2 (3) �0 00. 1.0 0 �6 �5.0 �5 �6.0

Z (0) �1 00. 0.0 0 �0.0 �0.0
x1 (1) �0 10. 0.0 0 �5.0 �6.0

Drop x�4 and xx�6

x3 (2) �0 00. 0.0 1 �1.0 �0.3
x2 (3) �0 00. 1.0 0 �5.0 �6.0

Z (0) �1 0.4 0.5 0 �0.0 �0.0
Substitute phase 2 x1 (1) �0 10. 0.0 0 �5.0 �6.0
objective function x3 (2) �0 00. 0.0 1 �1.0 �0.3

x2 (3) �0 00. 1.0 0 �5.0 �6.0

Z (0) �1 00. 0.0 0 �0.5 �5.4
Restore proper form x1 (1) �0 10. 0.0 0 �5.0 �6.0
from Gaussian elimination x3 (2) �0 00. 0.0 1 �1.0 �0.3

x2 (3) �0 00. 1.0 0 �5.0 �6.0
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TABLE 4.15 Phase 2 of the two-phase method for the radiation therapy example

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x5 Side

Z (0) �1 0 0 �0.0 �0.5 �5.40
x1 (1) �0 1 0 �0.0 �5.0 �6.00

0
x3 (2) �0 0 0 �1.0 �1.0 �0.30
x2 (3) �0 0 1 �0.0 �5.0 �6.00

Z (0) �1 0 0 �0.5 �0.0 �5.25
x1 (1) �0 1 0 �5.0 �0.0 �7.50

1
x5 (2) �0 0 0 �1.0 �1.0 �0.30
x2 (3) �0 0 1 �5.0 �0.0 �4.50

x2

(0, 0)
(9, 0) x1

(6, 6)

(7.5, 4.5) optimal

(8, 3)

(0, 12)

Feasible region
for the artificial
problem (phase 1)

This dark line segment is the
feasible region for the real problem
(phase 2).

10

2

3
0

1

FIGURE 4.7
This graph shows the
sequence of CPF solutions for
phase 1 (�, �, �, �) and
then for phase 2 ( , )
when the two-phase method
is applied to the radiation
therapy example.
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problem, so it becomes the initial CPF solution for phase 2. One iteration in phase 2 leads
to the optimal CPF solution at (7.5, 4.5).

If the tie for the entering basic variable in the next-to-last tableau of Table 4.13 had
been broken in the other way, then phase 1 would have gone directly from (8, 3) to (7.5,
4.5). After (7.5, 4.5) was used to set up the initial simplex tableau for phase 2, the opti-
mality test would have revealed that this solution was optimal, so no iterations would be
done.

It is interesting to compare the Big M and two-phase methods. Begin with their ob-
jective functions.

Big M Method:

Minimize Z � 0.4x1 � 0.5x2 � Mx�4 � Mxx�6.

Two-Phase Method:

Phase 1: Minimize Z � xx�4 � x�6.
Phase 2: Minimize Z � 0.4x1 � 0.5x2.

Because the Mx�4 and Mx�6 terms dominate the 0.4x1 and 0.5x2 terms in the objective func-
tion for the Big M method, this objective function is essentially equivalent to the phase 1
objective function as long as x�4 and/or xx�6 is greater than zero. Then, when both x�4 � 0
and x�6 � 0, the objective function for the Big M method becomes completely equivalent
to the phase 2 objective function.

Because of these virtual equivalencies in objective functions, the Big M and two-
phase methods generally have the same sequence of BF solutions. The one possible ex-
ception occurs when there is a tie for the entering basic variable in phase 1 of the two-
phase method, as happened in the third tableau of Table 4.13. Notice that the first three
tableaux of Tables 4.12 and 4.13 are almost identical, with the only difference being
that the multiplicative factors of M in Table 4.12 become the sole quantities in the cor-
responding spots in Table 4.13. Consequently, the additive terms that broke the tie for
the entering basic variable in the third tableau of Table 4.12 were not present to break
this same tie in Table 4.13. The result for this example was an extra iteration for the
two-phase method. Generally, however, the advantage of having the additive factors is
minimal.

The two-phase method streamlines the Big M method by using only the multiplica-
tive factors in phase 1 and by dropping the artificial variables in phase 2. (The Big M
method could combine the multiplicative and additive factors by assigning an actual huge
number to M, but this might create numerical instability problems.) For these reasons, the
two-phase method is commonly used in computer codes.

No Feasible Solutions

So far in this section we have been concerned primarily with the fundamental problem
of identifying an initial BF solution when an obvious one is not available. You have seen
how the artificial-variable technique can be used to construct an artificial problem and
obtain an initial BF solution for this artificial problem instead. Use of either the Big M
method or the two-phase method then enables the simplex method to begin its pilgrim-
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age toward the BF solutions, and ultimately toward the optimal solution, for the real
problem.

However, you should be wary of a certain pitfall with this approach. There may be
no obvious choice for the initial BF solution for the very good reason that there are no
feasible solutions at all! Nevertheless, by constructing an artificial feasible solution, there
is nothing to prevent the simplex method from proceeding as usual and ultimately re-
porting a supposedly optimal solution.

Fortunately, the artificial-variable technique provides the following signpost to indi-
cate when this has happened:

If the original problem has no feasible solutions, then either the Big M method or phase
1 of the two-phase method yields a final solution that has at least one artificial variable
greater than zero. Otherwise, they all equal zero.

To illustrate, let us change the first constraint in the radiation therapy example (see
Fig. 4.5) as follows:

0.3x1 � 0.1x2 � 2.7 � 0.3x1 � 0.1x2 � 1.8,

so that the problem no longer has any feasible solutions. Applying the Big M method just
as before (see Table 4.12) yields the tableaux shown in Table 4.16. (Phase 1 of the two-
phase method yields the same tableaux except that each expression involving M is re-
placed by just the multiplicative factor.) Hence, the Big M method normally would be in-
dicating that the optimal solution is (3, 9, 0, 0, 0, 0.6). However, since an artificial variable
x�6 � 0.6 � 0, the real message here is that the problem has no feasible solutions.
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TABLE 4.16 The Big M method for the revision of the radiation therapy example that has no feasible solutions

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) �1 �1.1M � 0.4 �0.9M � 0.5 �0 �0.0 M 0 �12M
x3 (1) �0 0.3 0.1 �1 �0.0 �0 0 1.8

0
x�4 (2) �0 0.5 0.5 �0 �1.0 �0 0 6.0
x�6 (3) �0 0.6 0.4 �0 �0.0 �1 1 6.0

Z (0) �1 0.0 ��
1
3

6
0
�M � �

1
3

1
0
� �

1
3
1
�M � �

4
3

� �0.0 M 0 �5.4M � 2.4

x1 (1) �0 1.0 �
1
3

� ��
1
3
0
� �0.0 �0 0 6.0

1
x�4 (2) �0 0.0 �

1
3

� ��
5
3

� �1.0 �0 0 3.0

x�6 (3) �0 0.0 0.2 �2 �0.0 �1 1 2.4

Z (0) �1 0.0 0.0 M � 0.5 1.6M � 1.1 M 0 �0.6M � 5.7
x1 (1) �0 1.0 0.0 �5 �1.0 �0 0 3.0

2
x2 (2) �0 0.0 1.0 �5 �3.0 �0 0 9.0
x�6 (3) �0 0.0 0.0 �1 �0.6 �1 1 0.6



Variables Allowed to Be Negative

In most practical problems, negative values for the decision variables would have no
physical meaning, so it is necessary to include nonnegativity constraints in the formula-
tions of their linear programming models. However, this is not always the case. To il-
lustrate, suppose that the Wyndor Glass Co. problem is changed so that product 1 al-
ready is in production, and the first decision variable x1 represents the increase in its
production rate. Therefore, a negative value of x1 would indicate that product 1 is to be
cut back by that amount. Such reductions might be desirable to allow a larger produc-
tion rate for the new, more profitable product 2, so negative values should be allowed
for x1 in the model.

Since the procedure for determining the leaving basic variable requires that all the
variables have nonnegativity constraints, any problem containing variables allowed to be
negative must be converted to an equivalent problem involving only nonnegative variables
before the simplex method is applied. Fortunately, this conversion can be done. The mod-
ification required for each variable depends upon whether it has a (negative) lower bound
on the values allowed. Each of these two cases is now discussed.

Variables with a Bound on the Negative Values Allowed. Consider any decision
variable xj that is allowed to have negative values which satisfy a constraint of the form

xj � Lj,

where Lj is some negative constant. This constraint can be converted to a nonnegativity
constraint by making the change of variables

x
j � xj � Lj, so x
j � 0.

Thus, x
j � Lj would be substituted for xj throughout the model, so that the redefined de-
cision variable x
j cannot be negative. (This same technique can be used when Lj is posi-
tive to convert a functional constraint xj � Lj to a nonnegativity constraint x
j � 0.)

To illustrate, suppose that the current production rate for product 1 in the Wyndor
Glass Co. problem is 10. With the definition of x1 just given, the complete model at this
point is the same as that given in Sec. 3.1 except that the nonnegativity constraint x1 � 0
is replaced by

x1 � �10.

To obtain the equivalent model needed for the simplex method, this decision variable
would be redefined as the total production rate of product 1

x
j � x1 � 10,

which yields the changes in the objective function and constraints as shown:

� �

Z � �30 � 3x
1 � 5x2

2x
1 � 2x2 � 14
3x
1 � 2x2 � 12
3x
1 � 2x2 � 48
x
1 � 0, x2 � 0

Z � 3(x
1 � 10) � 5x2

3(x
1 � 10) � 2x2 � 4
3(x
1 � 10) � 2x2 � 12
3(x
1 � 10) � 2x2 � 18
x
1 � 10 � �10, x2 � 0

Z � 3x1 � 5x2

3x1 � 2x2 � 4
3x1 � 2x2 � 12
3x1 � 2x2 � 18
x1 � �10, x2 � 0
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Variables with No Bound on the Negative Values Allowed. In the case where
xj does not have a lower-bound constraint in the model formulated, another approach is
required: xj is replaced throughout the model by the difference of two new nonnegative
variables

xj � xj
� � xj

�, where xj
� � 0, xj

� � 0.

Since xj
� and xj

� can have any nonnegative values, this difference xj
� � xj

� can have any
value (positive or negative), so it is a legitimate substitute for xj in the model. But after
such substitutions, the simplex method can proceed with just nonnegative variables.

The new variables xj
� and xj

� have a simple interpretation. As explained in the next
paragraph, each BF solution for the new form of the model necessarily has the property
that either xj

� � 0 or xj
� � 0 (or both). Therefore, at the optimal solution obtained by the

simplex method (a BF solution),

xj
� � �

xj
� � �

so that xj
� represents the positive part of the decision variable xj and xj

� its negative part
(as suggested by the superscripts).

For example, if xj � 10, the above expressions give xj
� � 10 and xj

� � 0. This same
value of xj � xj

� � xj
� � 10 also would occur with larger values of xj

� and xj
� such that

xj
� � xj

� � 10. Plotting these values of xj
� and xj

� on a two-dimensional graph gives a line
with an endpoint at xj

� � 10, xj
� � 0 to avoid violating the nonnegativity constraints. This

endpoint is the only corner-point solution on the line. Therefore, only this endpoint can
be part of an overall CPF solution or BF solution involving all the variables of the model.
This illustrates why each BF solution necessarily has either xj

� � 0 or xj
� � 0 (or both).

To illustrate the use of the xj
� and xj

�, let us return to the example on the preceding
page where x1 is redefined as the increase over the current production rate of 10 for prod-
uct 1 in the Wyndor Glass Co. problem.

However, now suppose that the x1 � �10 constraint was not included in the original
model because it clearly would not change the optimal solution. (In some problems, cer-
tain variables do not need explicit lower-bound constraints because the functional con-
straints already prevent lower values.) Therefore, before the simplex method is applied,
x1 would be replaced by the difference

x1 � x1
� � x1

�, where x1
� � 0, x1

� � 0,

as shown:

�

Maximize Z � 3x1
� � 3x1

� � 5x2,
subject to Z � 3x1

� � 3x1
� � 5x2 � 4

2x2 � 12
3x1

� � 3x1
� � 2x2 � 18

x1
� � 0, x1

� � 0, x2 � 0

Maximize Z � 3x1 � 5x2,
subject to Z � 3x1 � 5x2 � 4

2x2 � 12
3x1 � 2x2 � 18

x2 � 0 (only)

if xj � 0,
otherwise;

xj
0

if xj � 0,
otherwise;

xj

0
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From a computational viewpoint, this approach has the disadvantage that the new
equivalent model to be used has more variables than the original model. In fact, if all the
original variables lack lower-bound constraints, the new model will have twice as many
variables. Fortunately, the approach can be modified slightly so that the number of vari-
ables is increased by only one, regardless of how many original variables need to be re-
placed. This modification is done by replacing each such variable xj by

xj � x
j � x�, where x
j � 0, x� � 0,

instead, where x� is the same variable for all relevant j. The interpretation of x� in this
case is that �x� is the current value of the largest (in absolute terms) negative original
variable, so that x
j is the amount by which xj exceeds this value. Thus, the simplex method
now can make some of the x
j variables larger than zero even when x� � 0.
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We stressed in Secs. 2.3, 2.4, and 2.5 that postoptimality analysis—the analysis done af-
ter an optimal solution is obtained for the initial version of the model—constitutes a very
major and very important part of most operations research studies. The fact that postop-
timality analysis is very important is particularly true for typical linear programming ap-
plications. In this section, we focus on the role of the simplex method in performing this
analysis.

Table 4.17 summarizes the typical steps in postoptimality analysis for linear pro-
gramming studies. The rightmost column identifies some algorithmic techniques that in-
volve the simplex method. These techniques are introduced briefly here with the techni-
cal details deferred to later chapters.

Reoptimization

As discussed in Sec. 3.7, linear programming models that arise in practice commonly are
very large, with hundreds or thousands of functional constraints and decision variables.
In such cases, many variations of the basic model may be of interest for considering dif-
ferent scenarios. Therefore, after having found an optimal solution for one version of a
linear programming model, we frequently must solve again (often many times) for the so-

4.7 POSTOPTIMALITY ANALYSIS

TABLE 4.17 Postoptimality analysis for linear programming

Task Purpose Technique

Model debugging Find errors and weaknesses in model Reoptimization
Model validation Demonstrate validity of final model See Sec. 2.4
Final managerial Make appropriate division of organizational Shadow prices
decisions on resource resources between activities under study
allocations (the bi values) and other important activities

Evaluate estimates of Determine crucial estimates that may affect Sensitivity analysis
model parameters optimal solution for further study

Evaluate trade-offs Determine best trade-off Parametric linear
between model programming
parameters



lution of a slightly different version of the model. We nearly always have to solve again
several times during the model debugging stage (described in Secs. 2.3 and 2.4), and we
usually have to do so a large number of times during the later stages of postoptimality
analysis as well.

One approach is simply to reapply the simplex method from scratch for each new
version of the model, even though each run may require hundreds or even thousands of
iterations for large problems. However, a much more efficient approach is to reoptimize.
Reoptimization involves deducing how changes in the model get carried along to the fi-
nal simplex tableau (as described in Secs. 5.3 and 6.6). This revised tableau and the op-
timal solution for the prior model are then used as the initial tableau and the initial ba-
sic solution for solving the new model. If this solution is feasible for the new model, then
the simplex method is applied in the usual way, starting from this initial BF solution. If
the solution is not feasible, a related algorithm called the dual simplex method (described
in Sec. 7.1) probably can be applied to find the new optimal solution,1 starting from this
initial basic solution.

The big advantage of this reoptimization technique over re-solving from scratch is
that an optimal solution for the revised model probably is going to be much closer to the
prior optimal solution than to an initial BF solution constructed in the usual way for the
simplex method. Therefore, assuming that the model revisions were modest, only a few
iterations should be required to reoptimize instead of the hundreds or thousands that may
be required when you start from scratch. In fact, the optimal solutions for the prior and
revised models are frequently the same, in which case the reoptimization technique re-
quires only one application of the optimality test and no iterations.

Shadow Prices

Recall that linear programming problems often can be interpreted as allocating resources
to activities. In particular, when the functional constraints are in � form, we interpreted
the bi (the right-hand sides) as the amounts of the respective resources being made avail-
able for the activities under consideration. In many cases, there may be some latitude in
the amounts that will be made available. If so, the bi values used in the initial (validated)
model actually may represent management’s tentative initial decision on how much of the
organization’s resources will be provided to the activities considered in the model instead
of to other important activities under the purview of management. From this broader per-
spective, some of the bi values can be increased in a revised model, but only if a suffi-
ciently strong case can be made to management that this revision would be beneficial.

Consequently, information on the economic contribution of the resources to the mea-
sure of performance (Z ) for the current study often would be extremely useful. The sim-
plex method provides this information in the form of shadow prices for the respective
resources.

The shadow price for resource i (denoted by yi*) measures the marginal value of this re-
source, i.e., the rate at which Z could be increased by (slightly) increasing the amount of
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1The one requirement for using the dual simplex method here is that the optimality test is still passed when ap-
plied to row 0 of the revised final tableau. If not, then still another algorithm called the primal-dual method can
be used instead.



this resource (bi) being made available.1,2 The simplex method identifies this shadow price
by yi* � coefficient of the ith slack variable in row 0 of the final simplex tableau.

To illustrate, for the Wyndor Glass Co. problem,

Resource i � production capacity of Plant i (i � 1, 2, 3) being made available to the
two new products under consideration,

bi � hours of production time per week being made available in Plant i for
these new products.

Providing a substantial amount of production time for the new products would require ad-
justing production times for the current products, so choosing the bi value is a difficult
managerial decision. The tentative initial decision has been

b1 � 4, b2 � 12, b3 � 18,

as reflected in the basic model considered in Sec. 3.1 and in this chapter. However, man-
agement now wishes to evaluate the effect of changing any of the bi values.

The shadow prices for these three resources provide just the information that man-
agement needs. The final tableau in Table 4.8 (see p. 128) yields

y1* � 0 � shadow price for resource 1,

y2* � � shadow price for resource 2,

y3* � 1 � shadow price for resource 3.

With just two decision variables, these numbers can be verified by checking graphically
that individually increasing any bi by 1 indeed would increase the optimal value of Z by
yi*. For example, Fig. 4.8 demonstrates this increase for resource 2 by reapplying the graph-
ical method presented in Sec. 3.1. The optimal solution, (2, 6) with Z � 36, changes to
(�

5
3

�, �
1
2
3
�) with Z � 37�

1
2

� when b2 is increased by 1 (from 12 to 13), so that

y2* � �Z � 37�
1
2

� � 36 � �
3
2

�.

Since Z is expressed in thousands of dollars of profit per week, y2* � �
3
2

� indicates that
adding 1 more hour of production time per week in Plant 2 for these two new products
would increase their total profit by $1,500 per week. Should this actually be done? It de-
pends on the marginal profitability of other products currently using this production time.
If there is a current product that contributes less than $1,500 of weekly profit per hour of
weekly production time in Plant 2, then some shift of production time to the new prod-
ucts would be worthwhile.

We shall continue this story in Sec. 6.7, where the Wyndor OR team uses shadow
prices as part of its sensitivity analysis of the model.

3
�
2
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1The increase in bi must be sufficiently small that the current set of basic variables remains optimal since this
rate (marginal value) changes if the set of basic variables changes.
2In the case of a functional constraint in � or � form, its shadow price is again defined as the rate at which Z
could be increased by (slightly) increasing the value of bi, although the interpretation of bi now would normally
be something other than the amount of a resource being made available.



Figure 4.8 demonstrates that y2* � �
3
2

� is the rate at which Z could be increased by in-
creasing b2 slightly. However, it also demonstrates the common phenomenon that this in-
terpretation holds only for a small increase in b2. Once b2 is increased beyond 18, the op-
timal solution stays at (0, 9) with no further increase in Z. (At that point, the set of basic
variables in the optimal solution has changed, so a new final simplex tableau will be ob-
tained with new shadow prices, including y2* � 0.)

Now note in Fig. 4.8 why y1* � 0. Because the constraint on resource 1, x1 � 4, is
not binding on the optimal solution (2, 6), there is a surplus of this resource. Therefore,
increasing b1 beyond 4 cannot yield a new optimal solution with a larger value of Z.

By contrast, the constraints on resources 2 and 3, 2x2 � 12 and 3x1 � 2x2 � 18, are
binding constraints (constraints that hold with equality at the optimal solution). Because
the limited supply of these resources (b2 � 12, b3 � 18) binds Z from being increased fur-
ther, they have positive shadow prices. Economists refer to such resources as scarce goods,
whereas resources available in surplus (such as resource 1) are free goods (resources with
a zero shadow price).

The kind of information provided by shadow prices clearly is valuable to manage-
ment when it considers reallocations of resources within the organization. It also is very
helpful when an increase in bi can be achieved only by going outside the organization to
purchase more of the resource in the marketplace. For example, suppose that Z represents
profit and that the unit profits of the activities (the cj values) include the costs (at regular
prices) of all the resources consumed. Then a positive shadow price of yi* for resource i
means that the total profit Z can be increased by yi* by purchasing 1 more unit of this re-
source at its regular price. Alternatively, if a premium price must be paid for the resource
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in the marketplace, then yi* represents the maximum premium (excess over the regular
price) that would be worth paying.1

The theoretical foundation for shadow prices is provided by the duality theory de-
scribed in Chap. 6.

Sensitivity Analysis

When discussing the certainty assumption for linear programming at the end of Sec. 3.3,
we pointed out that the values used for the model parameters (the ai j, bi, and cj identified
in Table 3.3) generally are just estimates of quantities whose true values will not become
known until the linear programming study is implemented at some time in the future. A
main purpose of sensitivity analysis is to identify the sensitive parameters (i.e., those
that cannot be changed without changing the optimal solution). The sensitive parameters
are the parameters that need to be estimated with special care to minimize the risk of ob-
taining an erroneous optimal solution. They also will need to be monitored particularly
closely as the study is implemented. If it is discovered that the true value of a sensitive
parameter differs from its estimated value in the model, this immediately signals a need
to change the solution.

How are the sensitive parameters identified? In the case of the bi, you have just seen
that this information is given by the shadow prices provided by the simplex method. In
particular, if yi* � 0, then the optimal solution changes if bi is changed, so bi is a sensi-
tive parameter. However, yi* � 0 implies that the optimal solution is not sensitive to at
least small changes in bi. Consequently, if the value used for bi is an estimate of the amount
of the resource that will be available (rather than a managerial decision), then the bi val-
ues that need to be monitored more closely are those with positive shadow prices—espe-
cially those with large shadow prices.

When there are just two variables, the sensitivity of the various parameters can be
analyzed graphically. For example, in Fig. 4.9, c1 � 3 can be changed to any other value
from 0 to 7.5 without the optimal solution changing from (2, 6). (The reason is that any
value of c1 within this range keeps the slope of Z � c1x1 � 5x2 between the slopes of the
lines 2x2 � 12 and 3x1 � 2x2 � 18.) Similarly, if c2 � 5 is the only parameter changed,
it can have any value greater than 2 without affecting the optimal solution. Hence, nei-
ther c1 nor c2 is a sensitive parameter.

The easiest way to analyze the sensitivity of each of the aij parameters graphically is
to check whether the corresponding constraint is binding at the optimal solution. Because
x1 � 4 is not a binding constraint, any sufficiently small change in its coefficients 
(a11 � 1, a12 � 0) is not going to change the optimal solution, so these are not sensitive
parameters. On the other hand, both 2x2 � 12 and 3x1 � 2x2 � 18 are binding constraints,
so changing any one of their coefficients (a21 � 0, a22 � 2, a31 � 3, a32 � 2) is going to
change the optimal solution, and therefore these are sensitive parameters.

Typically, greater attention is given to performing sensitivity analysis on the bi and
cj parameters than on the aij parameters. On real problems with hundreds or thousands of
constraints and variables, the effect of changing one aij value is usually negligible, but
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1If the unit profits do not include the costs of the resources consumed, then yi* represents the maximum total
unit price that would be worth paying to increase bi.



changing one bi or cj value can have real impact. Furthermore, in many cases, the ai j val-
ues are determined by the technology being used (the aij values are sometimes called tech-
nological coefficients), so there may be relatively little (or no) uncertainty about their fi-
nal values. This is fortunate, because there are far more aij parameters than bi and cj

parameters for large problems.
For problems with more than two (or possibly three) decision variables, you cannot

analyze the sensitivity of the parameters graphically as was just done for the Wyndor Glass
Co. problem. However, you can extract the same kind of information from the simplex
method. Getting this information requires using the fundamental insight described in Sec.
5.3 to deduce the changes that get carried along to the final simplex tableau as a result of
changing the value of a parameter in the original model. The rest of the procedure is de-
scribed and illustrated in Secs. 6.6 and 6.7.

Using Excel to Generate Sensitivity Analysis Information

Sensitivity analysis normally is incorporated into software packages based on the simplex
method. For example, the Excel Solver will generate sensitivity analysis information upon
request. As was shown in Fig. 3.19 (see page 72), when the Solver gives the message that
it has found a solution, it also gives on the right a list of three reports that can be pro-
vided. By selecting the second one (labeled “Sensitivity”) after solving the Wyndor Glass
Co. problem, you will obtain the sensitivity report shown in Fig. 4.10. The upper table in
this report provides sensitivity analysis information about the decision variables and their
coefficients in the objective function. The lower table does the same for the functional
constraints and their right-hand sides.

4.7 POSTOPTIMALITY ANALYSIS 157

0

2

4

8

2 4 6

x2

Z � 36 � 3x1 � 5x2
(or Z � 18 � 3x1 � 2x2)

Z � 45 � 7.5x1 � 5x2

Z � 30 � 0x1 � 5x2
(2, 6) optimal

Feasible 
region

10

x1

FIGURE 4.9
This graph demonstrates the
sensitivity analysis of c1 and
c2 for the Wyndor Glass Co.
problem. Starting with the
original objective function
line [where c1 � 3, c2 � 5,
and the optimal solution is
(2, 6)], the other two lines
show the extremes of how
much the slope of the
objective function line can
change and still retain (2, 6)
as an optimal solution. Thus,
with c2 � 5, the allowable
range for c1 is 0 � c1 � 7.5.
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Look first at the upper table in this figure. The “Final Value” column indicates the
optimal solution. The next column gives the reduced costs. (We will not discuss these re-
duced costs now because the information they provide can also be gleaned from the rest
of the upper table.) The next three columns provide the information needed to identify the
allowable range to stay optimal for each coefficient cj in the objective function.

For any cj, its allowable range to stay optimal is the range of values for this coefficient
over which the current optimal solution remains optimal, assuming no change in the other
coefficients.

The “Objective Coefficient” column gives the current value of each coefficient, and then
the next two columns give the allowable increase and the allowable decrease from this
value to remain within the allowable range. Therefore,

3 � 3 � c1 � 3 � 4.5, so 0 � c1 � 7.5

is the allowable range for c1 over which the current optimal solution will stay optimal (as-
suming c2 � 5), just as was found graphically in Fig. 4.9. Similarly, since Excel uses 
1E � 30 (1030) to represent infinity,

5 � 3 � c2 � 5 � �, so 2 � c2

is the allowable range to stay optimal for c2.
The fact that both the allowable increase and the allowable decrease are greater than

zero for the coefficient of both decision variables provides another useful piece of infor-
mation, as described below.

When the upper table in the sensitivity report generated by the Excel Solver indi-
cates that both the allowable increase and the allowable decrease are greater than zero for
every objective coefficient, this is a signpost that the optimal solution in the “Final Value”
column is the only optimal solution. Conversely, having any allowable increase or allow-
able decrease equal to zero is a signpost that there are multiple optimal solutions. Chang-
ing the corresponding coefficient a tiny amount beyond the zero allowed and re-solving
provides another optimal CPF solution for the original model.
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FIGURE 4.10
The sensitivity report
provided by the Excel Solver
for the Wyndor Glass Co.
problem.



Now consider the lower table in Fig. 4.10 that focuses on sensitivity analysis for the
three functional constraints. The “Final Value” column gives the value of each constraint’s
left-hand side for the optimal solution. The next two columns give the shadow price and
the current value of the right-hand side (bi) for each constraint. When just one bi value is
then changed, the last two columns give the allowable increase or allowable decrease in
order to remain within its allowable range to stay feasible.

For any bi, its allowable range to stay feasible is the range of values for this right-hand
side over which the current optimal BF solution (with adjusted values1 for the basic vari-
ables) remains feasible, assuming no change in the other right-hand sides.

Thus, using the lower table in Fig. 4.10, combining the last two columns with the current
values of the right-hand sides gives the following allowable ranges to stay feasible:

2 � b1

6 � b2 � 18
12 � b3 � 24.

This sensitivity report generated by the Excel Solver is typical of the sensitivity analy-
sis information provided by linear programming software packages. You will see in Ap-
pendix 4.1 that LINDO provides essentially the same report. MPL/CPLEX does also when
it is requested with the Solution File dialogue box. Once again, this information obtained
algebraically also can be derived from graphical analysis for this two-variable problem.
(See Prob. 4.7-1.) For example, when b2 is increased from 12 in Fig. 4.8, the originally
optimal CPF solution at the intersection of two constraint boundaries 2x2 � b2 and 
3x1 � 2x2 � 18 will remain feasible (including x1 � 0) only for b2 � 18.

The latter part of Chap. 6 will delve into this type of analysis more deeply.

Parametric Linear Programming

Sensitivity analysis involves changing one parameter at a time in the original model to check
its effect on the optimal solution. By contrast, parametric linear programming (or para-
metric programming for short) involves the systematic study of how the optimal solution
changes as many of the parameters change simultaneously over some range. This study can
provide a very useful extension of sensitivity analysis, e.g., to check the effect of “corre-
lated” parameters that change together due to exogenous factors such as the state of the
economy. However, a more important application is the investigation of trade-offs in param-
eter values. For example, if the cj values represent the unit profits of the respective activi-
ties, it may be possible to increase some of the cj values at the expense of decreasing oth-
ers by an appropriate shifting of personnel and equipment among activities. Similarly, if the
bi values represent the amounts of the respective resources being made available, it may be
possible to increase some of the bi values by agreeing to accept decreases in some of the
others. The analysis of such possibilities is discussed and illustrated at the end of Sec. 6.7.
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1Since the values of the basic variables are obtained as the simultaneous solution of a system of equations (the
functional constraints in augmented form), at least some of these values change if one of the right-hand sides
changes. However, the adjusted values of the current set of basic variables still will satisfy the nonnegativity
constraints, and so still will be feasible, as long as the new value of this right-hand side remains within its al-
lowable range to stay feasible. If the adjusted basic solution is still feasible, it also will still be optimal. We shall
elaborate further in Sec. 6.7.



In some applications, the main purpose of the study is to determine the most appro-
priate trade-off between two basic factors, such as costs and benefits. The usual approach
is to express one of these factors in the objective function (e.g., minimize total cost) and
incorporate the other into the constraints (e.g., benefits � minimum acceptable level), as
was done for the Nori & Leets Co. air pollution problem in Sec. 3.4. Parametric linear
programming then enables systematic investigation of what happens when the initial ten-
tative decision on the trade-off (e.g., the minimum acceptable level for the benefits) is
changed by improving one factor at the expense of the other.

The algorithmic technique for parametric linear programming is a natural extension
of that for sensitivity analysis, so it, too, is based on the simplex method. The procedure
is described in Sec. 7.2.
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If the electronic computer had never been invented, undoubtedly you would have never
heard of linear programming and the simplex method. Even though it is possible to ap-
ply the simplex method by hand to solve tiny linear programming problems, the calcula-
tions involved are just too tedious to do this on a routine basis. However, the simplex
method is ideally suited for execution on a computer. It is the computer revolution that
has made possible the widespread application of linear programming in recent decades.

Implementation of the Simplex Method

Computer codes for the simplex method now are widely available for essentially all mod-
ern computer systems. These codes commonly are part of a sophisticated software pack-
age for mathematical programming that includes many of the procedures described in sub-
sequent chapters (including those used for postoptimality analysis).

These production computer codes do not closely follow either the algebraic form or
the tabular form of the simplex method presented in Secs. 4.3 and 4.4. These forms can
be streamlined considerably for computer implementation. Therefore, the codes use in-
stead a matrix form (usually called the revised simplex method ) that is especially well
suited for the computer. This form accomplishes exactly the same things as the algebraic
or tabular form, but it does this while computing and storing only the numbers that are
actually needed for the current iteration; and then it carries along the essential data in a
more compact form. The revised simplex method is described in Sec. 5.2.

The simplex method is used routinely to solve surprisingly large linear programming
problems. For example, powerful desktop computers (especially workstations) commonly
are used to solve problems with many thousand functional constraints and a larger num-
ber of decision variables. We now are beginning to hear reports of successfully solved
problems ranging into the hundreds of thousands of functional constraints and millions of
decision variables.1 For certain special types of linear programming problems (such as the
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1Do not try this at home. Attacking such a massive problem requires an especially sophisticated linear pro-
gramming system that uses the latest techniques for exploiting sparcity in the coefficient matrix as well as other
special techniques (e.g., crashing techniques for quickly finding an advanced initial BF solution). When prob-
lems are re-solved periodically after minor updating of the data, much time often is saved by using (or modi-
fying) the last optimal solution to provide the initial BF solution for the new run.



transportation, assignment, and minimum cost flow problems to be described later in the
book), even larger problems now can be solved by specialized versions of the simplex
method.

Several factors affect how long it will take to solve a linear programming problem
by the general simplex method. The most important one is the number of ordinary func-
tional constraints. In fact, computation time tends to be roughly proportional to the cube
of this number, so that doubling this number may multiply the computation time by a fac-
tor of approximately 8. By contrast, the number of variables is a relatively minor factor.1

Thus, doubling the number of variables probably will not even double the computation
time. A third factor of some importance is the density of the table of constraint coeffi-
cients (i.e., the proportion of the coefficients that are not zero), because this affects the
computation time per iteration. (For large problems encountered in practice, it is com-
mon for the density to be under 5 percent, or even under 1 percent, and this much “sparcity”
tends to greatly accelerate the simplex method.) One common rule of thumb for the num-
ber of iterations is that it tends to be roughly twice the number of functional constraints.

With large linear programming problems, it is inevitable that some mistakes and faulty
decisions will be made initially in formulating the model and inputting it into the com-
puter. Therefore, as discussed in Sec. 2.4, a thorough process of testing and refining the
model (model validation) is needed. The usual end product is not a single static model
that is solved once by the simplex method. Instead, the OR team and management typi-
cally consider a long series of variations on a basic model (sometimes even thousands of
variations) to examine different scenarios as part of postoptimality analysis. This entire
process is greatly accelerated when it can be carried out interactively on a desktop com-
puter. And, with the help of both mathematical programming modeling languages and im-
proving computer technology, this now is becoming common practice.

Until the mid-1980s, linear programming problems were solved almost exclusively
on mainframe computers. Since then, there has been an explosion in the capability of do-
ing linear programming on desktop computers, including personal computers as well as
workstations. Workstations, including some with parallel processing capabilities, now are
commonly used instead of mainframe computers to solve massive linear programming
models. The fastest personal computers are not lagging far behind, although solving huge
models usually requires additional memory.

Linear Programming Software Featured in This Book

A considerable number of excellent software packages for linear programming and its ex-
tensions now are available to fill a variety of needs. One that is widely regarded to be a
particularly powerful package for solving massive problems is CPLEX, a product of ILOG,
Inc., located in Silicon Valley. For more than a decade, CPLEX has helped to lead the
way in solving larger and larger linear programming problems. An extensive research and
development effort has enabled a series of upgrades with dramatic increases in efficiency.
CPLEX 6.5 released in March 1999 provided another order-of-magnitude improvement.
This software package has successfully solved real linear programming problems arising
in industry with as many as 2 million functional constraints and a comparable number of
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decision variables! CPLEX 6.5 often uses the simplex method and its variants (such as
the dual simplex method presented in Sec. 7.1) to solve these massive problems. In addi-
tion to the simplex method, CPLEX 6.5 also features some other powerful weapons for
attacking linear programming problems. One is a lightning-fast algorithm that uses the in-
terior-point approach introduced in the next section. This algorithm can solve some huge
general linear programming problems that the simplex method cannot (and vice versa).
Another feature is the network simplex method (described in Sec. 9.7) that can solve even
larger special types of linear programming problems. CPLEX 6.5 also extends beyond lin-
ear programming by including state-of-the-art algorithms for integer programming
(Chap. 12) and quadratic programming (Sec. 13.7).

Because it often is used to solve really large problems, CPLEX normally is used in
conjunction with a mathematical programming modeling language. As described in Sec.
3.7, modeling languages are designed for efficiently formulating large linear programming
models (and related models) in a compact way, after which a solver is called upon to solve
the model. Several of the prominent modeling languages support CPLEX as a solver. ILOG
also has recently introduced its own modeling language, called OPL Studio, that can be
used with CPLEX. (A trial version of OPL Studio is available at ILOG’s website,
www.ilog.com.)

As we mentioned in Sec. 3.7, the student version of CPLEX is included in your
OR Courseware as the solver for the MPL modeling language. This version features the
simplex method for solving linear programming problems.

LINDO (short for Linear, INteractive, and Discrete Optimizer) is another prominent
software package for linear programming and its extensions. A product of LINDO Sys-
tems based in Chicago, LINDO has an even longer history than CPLEX. Although not as
powerful as CPLEX, the largest version of LINDO has solved problems with tens of thou-
sands of functional constraints and hundreds of thousands of decision variables. Its long-
time popularity is partially due to its ease of use. For relatively small (textbook-sized)
problems, the model can be entered and solved in an intuitive straightforward manner, so
LINDO provides a convenient tool for students to use. However, LINDO lacks some of
the capabilities of modeling languages for dealing with large linear programming prob-
lems. For such problems, it may be more efficient to use the LINGO modeling language
to formulate the model and then to call the solver it shares with LINDO to solve the model.

You can download the student version of LINDO from the website, www.lindo.com.
Appendix 4.1 provides an introduction to how to use LINDO. The CD-ROM also includes
a LINDO tutorial, as well as LINDO formulations for all the examples in this book to
which it can be applied.

Spreadsheet-based solvers are becoming increasingly popular for linear programming
and its extensions. Leading the way are the solvers produced by Frontline Systems for
Microsoft Excel, Lotus 1-2-3, and Corel Quattro Pro. In addition to the basic solver shipped
with these packages, two more powerful upgrades—Premium Solver and Premium Solver
Plus—also are available. Because of the widespread use of spreadsheet packages such as
Microsoft Excel today, these solvers are introducing large numbers of people to the po-
tential of linear programming for the first time. For textbook-sized linear programming
problems (and considerably larger problems as well), spreadsheets provide a convenient
way to formulate and solve the model, as described in Sec. 3.6. The more powerful spread-
sheet solvers can solve fairly large models with many thousand decision variables. How-
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ever, when the spreadsheet grows to an unwieldy size, a good modeling language and its
solver may provide a more efficient approach to formulating and solving the model.

Spreadsheets provide an excellent communication tool, especially when dealing with
typical managers who are very comfortable with this format but not with the algebraic
formulations of OR models. Therefore, optimization software packages and modeling lan-
guages now can commonly import and export data and results in a spreadsheet format.
For example, the MPL modeling language now includes an enhancement (called the Op-
tiMax 2000 Component Library) that enables the modeler to create the feel of a spread-
sheet model for the user of the model while still using MPL to formulate the model very
efficiently. (The student version of OptiMax 2000 is included in your OR Courseware.)

Premium Solver is one of the Excel add-ins included on the CD-ROM. You can in-
stall this add-in to obtain a much better performance than with the standard Excel Solver.

Consequently, all the software, tutorials, and examples packed on the CD-ROM are
providing you with several attractive software options for linear programming.

Available Software Options for Linear Programming.

1. Demonstration examples (in OR Tutor) and interactive routines for efficiently learning
the simplex method.

2. Excel and its Premium Solver for formulating and solving linear programming mod-
els in a spreadsheet format.

3. MPL/CPLEX for efficiently formulating and solving large linear programming models.
4. LINGO and its solver (shared with LINDO) for an alternative way of efficiently for-

mulating and solving large linear programming models.
5. LINDO for formulating and solving linear programming models in a straightforward way.

Your instructor may specify which software to use. Whatever the choice, you will be gain-
ing experience with the kind of state-of-the-art software that is used by OR professionals.
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The most dramatic new development in operations research during the 1980s was the dis-
covery of the interior-point approach to solving linear programming problems. This dis-
covery was made in 1984 by a young mathematician at AT&T Bell Laboratories, Naren-
dra Karmarkar, when he successfully developed a new algorithm for linear programming
with this kind of approach. Although this particular algorithm experienced only mixed
success in competing with the simplex method, the key solution concept described below
appeared to have great potential for solving huge linear programming problems beyond
the reach of the simplex method. Many top researchers subsequently worked on modify-
ing Karmarkar’s algorithm to fully tap this potential. Much progress has been made (and
continues to be made), and a number of powerful algorithms using the interior-point ap-
proach have been developed. Today, the more powerful software packages that are de-
signed for solving really large linear programming problems (such as CPLEX) include at
least one algorithm using the interior-point approach along with the simplex method. As
research continues on these algorithms, their computer implementations continue to im-
prove. This has spurred renewed research on the simplex method, and its computer im-
plementations continue to improve as well (recall the dramatic advance by CPLEX 6.5
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cited in the preceding section). The competition between the two approaches for supremacy
in solving huge problems is continuing.

Now let us look at the key idea behind Karmarkar’s algorithm and its subsequent vari-
ants that use the interior-point approach.

The Key Solution Concept

Although radically different from the simplex method, Karmarkar’s algorithm does share
a few of the same characteristics. It is an iterative algorithm. It gets started by identify-
ing a feasible trial solution. At each iteration, it moves from the current trial solution to
a better trial solution in the feasible region. It then continues this process until it reaches
a trial solution that is (essentially) optimal.

The big difference lies in the nature of these trial solutions. For the simplex method,
the trial solutions are CPF solutions (or BF solutions after augmenting), so all movement
is along edges on the boundary of the feasible region. For Karmarkar’s algorithm, the trial
solutions are interior points, i.e., points inside the boundary of the feasible region. For this
reason, Karmarkar’s algorithm and its variants are referred to as interior-point algorithms.

To illustrate, Fig. 4.11 shows the path followed by the interior-point algorithm in your
OR Courseware when it is applied to the Wyndor Glass Co. problem, starting from the
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FIGURE 4.11
The curve from (1, 2) to 
(2, 6) shows a typical path
followed by an interior-point
algorithm, right through the
interior of the feasible region
for the Wyndor Glass Co.
problem.



initial trial solution (1, 2). Note how all the trial solutions (dots) shown on this path are
inside the boundary of the feasible region as the path approaches the optimal solution 
(2, 6). (All the subsequent trial solutions not shown also are inside the boundary of the
feasible region.) Contrast this path with the path followed by the simplex method around
the boundary of the feasible region from (0, 0) to (0, 6) to (2, 6).

Table 4.18 shows the actual output from your OR Courseware for this problem.1 (Try
it yourself.) Note how the successive trial solutions keep getting closer and closer to the
optimal solution, but never literally get there. However, the deviation becomes so infini-
tesimally small that the final trial solution can be taken to be the optimal solution for all
practical purposes.

Section 7.4 presents the details of the specific interior-point algorithm that is imple-
mented in your OR Courseware.

Comparison with the Simplex Method

One meaningful way of comparing interior-point algorithms with the simplex method is
to examine their theoretical properties regarding computational complexity. Karmarkar
has proved that the original version of his algorithm is a polynomial time algorithm; i.e.,
the time required to solve any linear programming problem can be bounded above by a
polynomial function of the size of the problem. Pathological counterexamples have been
constructed to demonstrate that the simplex method does not possess this property, so it
is an exponential time algorithm (i.e., the required time can be bounded above only by
an exponential function of the problem size). This difference in worst-case performance
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1The routine is called Solve Automatically by the Interior-Point Algorithm. The option menu provides two choices
for a certain parameter of the algorithm � (defined in Sec. 7.4). The choice used here is the default value of 
� � 0.5.

TABLE 4.18 Output of interior-point algorithm in OR Courseware 
for Wyndor Glass Co. problem

Iteration x1 x2 Z

0 1 2 13
1 1.27298 4 23.8189
2 1.37744 5 29.1323
3 1.56291 5.5 32.1887
4 1.80268 5.71816 33.9989
5 1.92134 5.82908 34.9094
6 1.96639 5.90595 35.429
7 1.98385 5.95199 35.7115
8 1.99197 5.97594 35.8556
9 1.99599 5.98796 35.9278

10 1.99799 5.99398 35.9639
11 1.999 5.99699 35.9819
12 1.9995 5.9985 35.991
13 1.99975 5.99925 35.9955
14 1.99987 5.99962 35.9977
15 1.99994 5.99981 35.9989



is noteworthy. However, it tells us nothing about their comparison in average performance
on real problems, which is the more crucial issue.

The two basic factors that determine the performance of an algorithm on a real prob-
lem are the average computer time per iteration and the number of iterations. Our next
comparisons concern these factors.

Interior-point algorithms are far more complicated than the simplex method. Con-
siderably more extensive computations are required for each iteration to find the next trial
solution. Therefore, the computer time per iteration for an interior-point algorithm is many
times longer than that for the simplex method.

For fairly small problems, the numbers of iterations needed by an interior-point al-
gorithm and by the simplex method tend to be somewhat comparable. For example, on a
problem with 10 functional constraints, roughly 20 iterations would be typical for either
kind of algorithm. Consequently, on problems of similar size, the total computer time for
an interior-point algorithm will tend to be many times longer than that for the simplex
method.

On the other hand, a key advantage of interior-point algorithms is that large problems
do not require many more iterations than small problems. For example, a problem with
10,000 functional constraints probably will require well under 100 iterations. Even con-
sidering the very substantial computer time per iteration needed for a problem of this size,
such a small number of iterations makes the problem quite tractable. By contrast, the sim-
plex method might need 20,000 iterations and so might not finish within a reasonable
amount of computer time. Therefore, interior-point algorithms often are faster than the
simplex method for such huge problems.

The reason for this very large difference in the number of iterations on huge prob-
lems is the difference in the paths followed. At each iteration, the simplex method moves
from the current CPF solution to an adjacent CPF solution along an edge on the bound-
ary of the feasible region. Huge problems have an astronomical number of CPF solutions.
The path from the initial CPF solution to an optimal solution may be a very circuitous
one around the boundary, taking only a small step each time to the next adjacent CPF so-
lution, so a huge number of steps may be required to reach an optimal solution. By con-
trast, an interior-point algorithm bypasses all this by shooting through the interior of the
feasible region toward an optimal solution. Adding more functional constraints adds more
constraint boundaries to the feasible region, but has little effect on the number of trial so-
lutions needed on this path through the interior. This makes it possible for interior-point
algorithms to solve problems with a huge number of functional constraints.

A final key comparison concerns the ability to perform the various kinds of postop-
timality analysis described in Sec. 4.7. The simplex method and its extensions are very
well suited to and are widely used for this kind of analysis. Unfortunately, the interior-
point approach currently has limited capability in this area.1 Given the great importance
of postoptimality analysis, this is a crucial drawback of interior-point algorithms. How-
ever, we point out next how the simplex method can be combined with the interior-point
approach to overcome this drawback.
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1However, research aimed at increasing this capability continues to make progress. For example, see H. J. Green-
berg, “Matrix Sensitivity Analysis from an Interior Solution of a Linear Program,” INFORMS Journal on Com-
puting, 11: 316–327, 1999, and its references.



The Complementary Roles of the Simplex Method 
and the Interior-Point Approach

Ongoing research is continuing to provide substantial improvements in computer imple-
mentations of both the simplex method (including its variants) and interior-point algo-
rithms. Therefore, any predictions about their future roles are risky. However, we do sum-
marize below our current assessment of their complementary roles.

The simplex method (and its variants) continues to be the standard algorithm for the
routine use of linear programming. It continues to be the most efficient algorithm for prob-
lems with less than a few hundred functional constraints. It also is the most efficient for
some (but not all) problems with up to several thousand functional constraints and nearly
an unlimited number of decision variables, so most users are continuing to use the sim-
plex method for such problems. However, as the number of functional constraints increases
even further, it becomes increasingly likely that an interior-point approach will be the most
efficient, so it often is now used instead. As the size grows into the tens of thousands of
functional constraints, the interior-point approach may be the only one capable of solv-
ing the problem. However, this certainly is not always the case. As mentioned in the pre-
ceding section, the latest state-of-the-art software (CPLEX 6.5) is successfully using the
simplex method and its variants to solve some truly massive problems with hundreds of
thousands, or even millions of functional constraints and decision variables.

These generalizations about how the interior-point approach and the simplex method
should compare for various problem sizes will not hold across the board. The specific
software packages and computer equipment being used have a major impact. The com-
parison also is affected considerably by the specific type of linear programming problem
being solved. As time goes on, we should learn much more about how to identify specific
types which are better suited for one kind of algorithm.

One of the by-products of the emergence of the interior-point approach has been a
major renewal of efforts to improve the efficiency of computer implementations of the
simplex method. As we indicated, impressive progress has been made in recent years, and
more lies ahead. At the same time, ongoing research and development of the interior-point
approach will further increase its power, and perhaps at a faster rate than for the simplex
method.

Improving computer technology, such as massive parallel processing (a huge number
of computer units operating in parallel on different parts of the same problem), also will
substantially increase the size of problem that either kind of algorithm can solve. How-
ever, it now appears that the interior-point approach has much greater potential to take ad-
vantage of parallel processing than the simplex method does.

As discussed earlier, a key disadvantage of the interior-point approach is its limited
capability for performing postoptimality analysis. To overcome this drawback, researchers
have been developing procedures for switching over to the simplex method after an inte-
rior-point algorithm has finished. Recall that the trial solutions obtained by an interior-point
algorithm keep getting closer and closer to an optimal solution (the best CPF solution), but
never quite get there. Therefore, a switching procedure requires identifying a CPF solution
(or BF solution after augmenting) that is very close to the final trial solution.

For example, by looking at Fig. 4.11, it is easy to see that the final trial solution in
Table 4.18 is very near the CPF solution (2, 6). Unfortunately, on problems with thou-
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sands of decision variables (so no graph is available), identifying a nearby CPF (or BF)
solution is a very challenging and time-consuming task. However, good progress has been
made in developing procedures to do this.

Once this nearby BF solution has been found, the optimality test for the simplex
method is applied to check whether this actually is the optimal BF solution. If it is not
optimal, some iterations of the simplex method are conducted to move from this BF so-
lution to an optimal solution. Generally, only a very few iterations (perhaps one) are needed
because the interior-point algorithm has brought us so close to an optimal solution. There-
fore, these iterations should be done quite quickly, even on problems that are too huge to
be solved from scratch. After an optimal solution is actually reached, the simplex method
and its variants are applied to help perform postoptimality analysis.

Because of the difficulties involved in applying a switching procedure (including the
extra computer time), some practitioners prefer to just use the simplex method from the
outset. This makes good sense when you only occasionally encounter problems that are
large enough for an interior-point algorithm to be modestly faster (before switching) than
the simplex method. This modest speed-up would not justify both the extra computer time
for a switching procedure and the high cost of acquiring (and learning to use) a software
package based on the interior-point approach. However, for organizations which frequently
must deal with extremely large linear programming problems, acquiring a state-of-the-art
software package of this kind (including a switching procedure) probably is worthwhile.
For sufficiently huge problems, the only available way of solving them may be with such
a package.

Applications of huge linear programming models sometimes lead to savings of mil-
lions of dollars. Just one such application can pay many times over for a state-of-the-art
software package based on the interior-point approach plus switching over to the simplex
method at the end.
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The simplex method is an efficient and reliable algorithm for solving linear programming
problems. It also provides the basis for performing the various parts of postoptimality
analysis very efficiently.

Although it has a useful geometric interpretation, the simplex method is an algebraic
procedure. At each iteration, it moves from the current BF solution to a better, adjacent
BF solution by choosing both an entering basic variable and a leaving basic variable and
then using Gaussian elimination to solve a system of linear equations. When the current
solution has no adjacent BF solution that is better, the current solution is optimal and the
algorithm stops.

We presented the full algebraic form of the simplex method to convey its logic, and
then we streamlined the method to a more convenient tabular form. To set up for starting
the simplex method, it is sometimes necessary to use artificial variables to obtain an ini-
tial BF solution for an artificial problem. If so, either the Big M method or the two-phase
method is used to ensure that the simplex method obtains an optimal solution for the real
problem.

Computer implementations of the simplex method and its variants have become so
powerful that they now are frequently used to solve linear programming problems with
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many thousand functional constraints and decision variables, and occasionally vastly larger
problems. Interior-point algorithms also provide a powerful tool for solving very large
problems.
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The LINDO software is designed to be easy to learn and to use, especially for small problems of
the size you will encounter in this book. In addition to linear programming, it also can be used to
solve both integer programming problems (Chap. 12) and quadratic programming problems (Sec.
13.7). Our focus in this appendix is on its use for linear programming.

LINDO allows you to enter a model in a straightforward algebraic way. For example, here is
a nice way of entering the LINDO model for the Wyndor Glass Co. example introduced in Sec. 3.1.

! Wyndor Glass Co. Problem. LINDO model
! X1 � batches of product 1 per week
! X2 � batches of product 2 per week

! Profit, in 1000 of dollars

MAX Profit) 3 X1 � 5 X2

Subject to

! Production time
Plant1) X1 �� 4
Plant2) 2 X2 �� 12
Plant3) 3 X1 � 2 X2 �� 18
END

In addition to the basic model, this formulation includes several clarifying comments, where
each comment is indicated by starting with an exclamation point. Thus, the first three lines give the
title and the definitions of the decision variables. The decision variables can be either lowercase or
uppercase, but uppercase usually is used so the variables won’t be dwarfed by the following “sub-
scripts.” Another option is to use a suggestive word (or abbreviation of a word), such as the name
of the product being produced, to represent the decision variable throughout the model, provided
the word does not exceed eight letters.

The fifth line of the LINDO formulation indicates that the objective of the model is to maxi-
mize the objective function, 3x1 � 5x2. The word Profit followed by a parenthesis clarifies that this
quantity being maximized is profit. The comment on the fourth line further clarifies that the objec-
tive function is expressed in units of thousands of dollars. The number 1000 in this comment does
not have the usual comma in front of the last three digits because LINDO does not accept commas.
(It also does not accept parentheses in algebraic expressions.)

The comment on the seventh line points out that the following constraints are on the produc-
tion times being used. The next three lines start by giving a name (followed by a parenthesis) for
each of the functional constraints. These constraints are written in the usual way except for the in-
equality signs. Because many keyboards do not include � and � signs, LINDO interprets either
� or �� as � and either � or �� as �. (On systems that include � and � signs, LINDO will
not recognize them.)

The end of the constraints is signified by the word END. No nonnegativity constraints are stated
because LINDO automatically assumes that all the variables have these constraints. If, say, x1 had
not had a nonnegativity constraint, this would have to be indicated by typing FREE X1 on the next
line below END.
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To solve this model in the Windows version of LINDO, either select the Solve command from
the Solve menu or press the Solve button on the toolbar. On a platform other than Windows, sim-
ply type GO followed by a return at the colon prompt. Figure A4.1 shows the resulting solution re-
port delivered by LINDO.

Both the top line and bottom line in this figure indicate that an optimal solution was found at
iteration 2 of the simplex method. Next comes the value of the objective function for this solution.
Below this, we have the values of x1 and x2 for the optimal solution.

The column to the right of these values gives the reduced costs. We have not discussed re-
duced costs in this chapter because the information they provide can also be gleaned from the al-
lowable range to stay optimal for the coefficients in the objective function, and these allowable
ranges also are readily available (as you will see in the next figure). When the variable is a basic
variable in the optimal solution (as for both variables in the Wyndor problem), its reduced cost au-
tomatically is 0. When the variable is a nonbasic variable, its reduced cost provides some interest-
ing information. This variable is 0 because its coefficient in the objective function is too small (when
maximizing the objective function) or too large (when minimizing) to justify undertaking the ac-
tivity represented by the variable. The reduced cost indicates how much this coefficient can be in-
creased (when maximizing) or decreased (when minimizing) before the optimal solution would
change and this variable would become a basic variable. However, recall that this same informa-
tion already is available from the allowable range to stay optimal for the coefficient of this variable
in the objective function. The reduced cost (for a nonbasic variable) is just the allowable increase
(when maximizing) from the current value of this coefficient to remain within its allowable range
to stay optimal or the allowable decrease (when minimizing).

Below the variable values and reduced costs in Fig. A4.1, we next have information about the
three functional constraints. The Slack or Surplus column gives the difference between the two sides
of each constraint. The Dual Prices column gives, by another name, the shadow prices discussed
in Sec. 4.7 for these constraints.1 (This alternate name comes from the fact found in Sec. 6.1 that
these shadow prices are just the optimal values of the dual variables introduced in Chap. 6.)

When LINDO provides you with this solution report, it also asks you whether you want to
do range (sensitivity) analysis. Answering yes (by pressing the Y key) provides you with the ad-
ditional range report shown in Fig. A4.2. This report is identical to the last three columns of the
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LP OPTIMUM FOUND AT STEP 2

OBJECTIVE FUNCTION VALUE

Profit) 36.00000

VARIABLE VALUE REDUCED COST
X1 2.000000 .000000
X2 6.000000 .000000

ROW SLACK OR SURPLUS DUAL PRICES
Plant1) 2.000000 .000000
Plant2) .000000 1.500000
Plant3) .000000 1.000000

NO. ITERATIONS= 2

FIGURE A4.1
The solution report provided
by LINDO for the Wyndor
Glass Co. problem.

1However, beware that LINDO uses a different sign convention from the common one adopted here (see the
second footnote for the definition of shadow price in Sec. 4.7), so that for minimization problems, its shadow
prices (dual prices) are the negative of ours.



tables in the sensitivity report generated by the Excel Solver, as shown earlier in Fig. 4.10. Thus,
as already discussed in Sec. 4.7, the first two rows of this range report indicate that the allowable
range to stay optimal for each coefficient in the objective function (assuming no other change in
the model) is

0 � c1 � 7.5
2 � c2

Similarly, the last three rows indicate that the allowable range to stay feasible for each right-hand
side (assuming no other change in the model) is

2 � b1

6 � b2 � 18
12 � b3 � 24

To print your results with the Windows version of LINDO, you simply need to use the Print
command to send the contents of the active window to the printer. If you are running LINDO on a
platform other than Windows, you can use the DIVERT command (followed by the file name) to
send screen output to a file, which can then print from either the operating system or a word pro-
cessing package.

These are the basics for getting started with LINDO. The LINDO tutorial on the CD-ROM
also provides some additional details. The LINGO/LINDO files on the CD-ROM for various chap-
ters show the LINDO formulations for numerous examples. In addition, LINDO includes a Help
menu to provide guidance. These resources should enable you to apply LINDO to any linear pro-
gramming problem you will encounter in this book. (We will discuss applications to other problem
types in Chaps. 12 and 13.) For more advanced applications, the LINDO User’s Manual (Selected
Reference 4 for this chapter) might be needed.
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FIGURE A4.2
The range report provided
by LINDO for the Wyndor
Glass Co. problem.

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES
VARIABLE CURRENT ALLOWABLE ALLOWABLE

COEF INCREASE DECREASE
X1 3.000000 4.500000 3.000000
X2 5.000000 INFINITY 3.000000

RIGHTHAND SIDE RANGES
ROW CURRENT ALLOWABLE ALLOWABLE

RHS INCREASE DECREASE
Plant1 4.000000 INFINITY 2.000000
Plant2 12.000000 6.000000 6.000000
Plant3 18.000000 6.000000 6.000000
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Demonstration Examples in OR Tutor:

Interpretation of the Slack Variables
Simplex Method—Algebraic Form
Simplex Method—Tabular Form

Interactive Routines:

Enter or Revise a General Linear Programming Model
Set Up for the Simplex Method—Interactive Only
Solve Interactively by the Simplex Method

An Automatic Routine:

Solve Automatically by the Interior-Point Algorithm

An Excel Add-In:

Premium Solver

Files (Chapter 3) for Solving the Wyndor and 
Radiation Therapy Examples:

Excel File
LINGO/LINDO File
MPL/CPLEX File

See Appendix 1 for documentation of the software.

LEARNING AIDS FOR THIS CHAPTER IN YOUR OR COURSEWARE

The symbols to the left of some of the problems (or their parts)
have the following meaning:
D: The corresponding demonstration example listed above may be

helpful.
I: We suggest that you use the corresponding interactive routine

listed above (the printout records your work).
C: Use the computer with any of the software options available to

you (or as instructed by your instructor) to solve the problem
automatically. (See Sec. 4.8 for a listing of the options featured
in this book and on the CD-ROM.)

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

4.1-1. Consider the following problem.

Maximize Z � x1 � 2x2,

subject to

x1 � 2
x2 � 2

x1 � x2 � 3

and

x1 � 0, x2 � 0.

(a) Plot the feasible region and circle all the CPF solutions.

PROBLEMS



The objective is to maximize the total profit from the two activi-
ties. The unit profit for activity 1 is $1,000 and the unit profit for
activity 2 is $2,000.
(a) Calculate the total profit for each CPF solution. Use this in-

formation to find an optimal solution.
(b) Use the solution concepts of the simplex method given in Sec.

4.1 to identify the sequence of CPF solutions that would be
examined by the simplex method to reach an optimal solution.

4.1-4.* Consider the linear programming model (given in the back
of the book) that was formulated for Prob. 3.2-3.
(a) Use graphical analysis to identify all the corner-point solutions

for this model. Label each as either feasible or infeasible.
(b) Calculate the value of the objective function for each of the

CPF solutions. Use this information to identify an optimal so-
lution.

(c) Use the solution concepts of the simplex method given in Sec.
4.1 to identify which sequence of CPF solutions might be ex-
amined by the simplex method to reach an optimal solution.
(Hint: There are two alternative sequences to be identified for
this particular model.)

4.1-5. Repeat Prob. 4.1-4 for the following problem.

Maximize Z � x1 � 2x2,

subject to

x1 � 3x2 � 8
x1 � x2 � 4

and

x1 � 0, x2 � 0.

4.1-6. Repeat Prob. 4.1-4 for the following problem.

Maximize Z � 3x1 � 2x2,

subject to

x1 � 3x2 � 4
x1 � 3x2 � 15

2x1 � x2 � 10

and

x1 � 0, x2 � 0.

4.1-7. Describe graphically what the simplex method does step by
step to solve the following problem.

Maximize Z � 2x1 � 3x2,

subject to

�3x1 � x2 � 1
�4x1 � 2x2 � 20

(b) For each CPF solution, identify the pair of constraint bound-
ary equations that it satisfies.

(c) For each CPF solution, use this pair of constraint boundary
equations to solve algebraically for the values of x1 and x2 at
the corner point.

(d) For each CPF solution, identify its adjacent CPF solutions.
(e) For each pair of adjacent CPF solutions, identify the constraint

boundary they share by giving its equation.

4.1-2. Consider the following problem.

Maximize Z � 3x1 � 2x2,

subject to

2x1 � x2 � 6
x1 � 2x2 � 6

and

x1 � 0, x2 � 0.

(a) Use the graphical method to solve this problem. Circle all the
corner points on the graph.

(b) For each CPF solution, identify the pair of constraint bound-
ary equations it satisfies.

(c) For each CPF solution, identify its adjacent CPF solutions.
(d) Calculate Z for each CPF solution. Use this information to

identify an optimal solution.
(e) Describe graphically what the simplex method does step by

step to solve the problem.

4.1-3. A certain linear programming model involving two activi-
ties has the feasible region shown below.
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(b) For each CPF solution, identify the corresponding BF solution
by calculating the values of the slack variables. For each BF
solution, use the values of the variables to identify the nonba-
sic variables and the basic variables.

(c) For each BF solution, demonstrate (by plugging in the solu-
tion) that, after the nonbasic variables are set equal to zero,
this BF solution also is the simultaneous solution of the sys-
tem of equations obtained in part (a).

4.2-2. Reconsider the model in Prob. 4.1-5. Follow the instructions
of Prob. 4.2-1 for parts (a), (b), and (c).
(d) Repeat part (b) for the corner-point infeasible solutions and the

corresponding basic infeasible solutions.
(e) Repeat part (c) for the basic infeasible solutions.

4.2-3. Follow the instructions of Prob. 4.2-1 for the model in Prob.
4.1-6.

D,I 4.3-1. Work through the simplex method (in algebraic form)
step by step to solve the model in Prob. 4.1-4.

4.3-2. Reconsider the model in Prob. 4.1-5.
(a) Work through the simplex method (in algebraic form) by hand

to solve this model.
D,I (b) Repeat part (a) with the corresponding interactive routine

in your OR Tutor.
C (c) Verify the optimal solution you obtained by using a software

package based on the simplex method.

4.3-3. Follow the instructions of Prob. 4.3-2 for the model in Prob.
4.1-6.

D,I 4.3-4.* Work through the simplex method (in algebraic form)
step by step to solve the following problem.

Maximize Z � 4x1 � 3x2 � 6x3,

subject to

3x1 � x2 � 3x3 � 30
2x1 � 2x2 � 3x3 � 40

and

x1 � 0, x2 � 0, x3 � 0.

D,I 4.3-5. Work through the simplex method (in algebraic form)
step by step to solve the following problem.

Maximize Z � x1 � 2x2 � 4x3,

subject to

3x1 � x2 � 5x3 � 10
x1 � 4x2 � x3 � 8

2x1 � 4x2 � 2x3 � 7

�4x1 � x2 � 10
�x1 � 2x2 � 5

and

x1 � 0, x2 � 0.

4.1-8. Describe graphically what the simplex method does step by
step to solve the following problem.

Minimize Z � 5x1 � 7x2,

subject to

2x1 � 3x2 � 42
3x1 � 4x2 � 60
x1 � x2 � 18

and

x1 � 0, x2 � 0.

4.1-9. Label each of the following statements about linear pro-
gramming problems as true or false, and then justify your answer.
(a) For minimization problems, if the objective function evaluated

at a CPF solution is no larger than its value at every adjacent
CPF solution, then that solution is optimal.

(b) Only CPF solutions can be optimal, so the number of optimal
solutions cannot exceed the number of CPF solutions.

(c) If multiple optimal solutions exist, then an optimal CPF solu-
tion may have an adjacent CPF solution that also is optimal
(the same value of Z ).

4.1-10. The following statements give inaccurate paraphrases of
the six solution concepts presented in Sec. 4.1. In each case, ex-
plain what is wrong with the statement.
(a) The best CPF solution always is an optimal solution.
(b) An iteration of the simplex method checks whether the current

CPF solution is optimal and, if not, moves to a new CPF 
solution.

(c) Although any CPF solution can be chosen to be the initial CPF
solution, the simplex method always chooses the origin.

(d) When the simplex method is ready to choose a new CPF so-
lution to move to from the current CPF solution, it only con-
siders adjacent CPF solutions because one of them is likely to
be an optimal solution.

(e) To choose the new CPF solution to move to from the current
CPF solution, the simplex method identifies all the adjacent
CPF solutions and determines which one gives the largest rate
of improvement in the value of the objective function.

4.2-1. Reconsider the model in Prob. 4.1-4.
(a) Introduce slack variables in order to write the functional con-

straints in augmented form.
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(b) Use the procedure developed in part (a) to solve this problem
by hand. (Do not use your OR Courseware.)

4.3-9. Label each of the following statements as true or false, and
then justify your answer by referring to specific statements (with
page citations) in the chapter.
(a) The simplex method’s rule for choosing the entering basic vari-

able is used because it always leads to the best adjacent BF
solution (largest Z).

(b) The simplex method’s minimum ratio rule for choosing the
leaving basic variable is used because making another choice
with a larger ratio would yield a basic solution that is not fea-
sible.

(c) When the simplex method solves for the next BF solution, el-
ementary algebraic operations are used to eliminate each non-
basic variable from all but one equation (its equation) and to
give it a coefficient of �1 in that one equation.

D,I 4.4-1. Repeat Prob. 4.3-1, using the tabular form of the sim-
plex method.

D,I,C 4.4-2. Repeat Prob. 4.3-2, using the tabular form of the sim-
plex method.

D,I,C 4.4-3. Repeat Prob. 4.3-3, using the tabular form of the sim-
plex method.

4.4-4. Consider the following problem.

Maximize Z � 2x1 � x2,

subject to

x1 � x2 � 40
4x1 � x2 � 100

and

x1 � 0, x2 � 0.

(a) Solve this problem graphically in a freehand manner. Also
identify all the CPF solutions.

(b) Now repeat part (a) when using a ruler to draw the graph 
carefully.

D (c) Use hand calculations to solve this problem by the simplex
method in algebraic form.

D,I (d) Now use your OR Courseware to solve this problem in-
teractively by the simplex method in algebraic form.

D (e) Use hand calculations to solve this problem by the simplex
method in tabular form.

D,I (f) Now use your OR Courseware to solve this problem inter-
actively by the simplex method in tabular form.

C (g) Use a software package based on the simplex method to
solve the problem.

and

x1 � 0, x2 � 0, x3 � 0.

D,I 4.3-6. Work through the simplex method (in algebraic form)
step by step to solve the following problem.

Maximize Z � x1 � 2x2 � 2x3,

subject to

5x1 � 2x2 � 3x3 � 15
x1 � 4x2 � 2x3 � 12

2x1 � 4x2 � x3 � 8

and

x1 � 0, x2 � 0, x3 � 0.

4.3-7. Consider the following problem.

Maximize Z � 5x1 � 3x2 � 4x3,

subject to

2x1 � x2 � x3 � 20
3x1 � x2 � 2x3 � 30

and

x1 � 0, x2 � 0, x3 � 0.

You are given the information that the nonzero variables in the op-
timal solution are x2 and x3.
(a) Describe how you can use this information to adapt the sim-

plex method to solve this problem in the minimum possible
number of iterations (when you start from the usual initial BF
solution). Do not actually perform any iterations.

(b) Use the procedure developed in part (a) to solve this problem
by hand. (Do not use your OR Courseware.)

4.3-8. Consider the following problem.

Maximize Z � 2x1 � 4x2 � 3x3,

subject to

x1 � 3x2 � 2x3 � 30
x1 � x2 � x3 � 24

3x1 � 5x2 � 3x3 � 60

and

x1 � 0, x2 � 0, x3 � 0.

You are given the information that x1 � 0, x2 � 0, and x3 � 0 in
the optimal solution.
(a) Describe how you can use this information to adapt the sim-

plex method to solve this problem in the minimum possible
number of iterations (when you start from the usual initial BF
solution). Do not actually perform any iterations.
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and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step in algebraic
form to solve this problem.

D,I (b) Work through the simplex method step by step in tabular
form to solve the problem.

C (c) Use a computer package based on the simplex method to
solve the problem.

D,I 4.4-9. Work through the simplex method step by step (in tab-
ular form) to solve the following problem.

Maximize Z � 2x1 � x2 � x3,

subject to

3x1 � x2 � x3 � 6
x1 � x2 � 2x3 � 1
x1 � x2 � x3 � 2

and

x1 � 0, x2 � 0, x3 � 0.

D,I 4.4-10. Work through the simplex method step by step to solve
the following problem.

Maximize Z � �x1 � x2 � 2x3,

subject to

� x1 � 2x2 � x3 � 20
�2x1 � 4x2 � 2x3 � 60
�2x1 � 3x2 � x3 � 50

and

x1 � 0, x2 � 0, x3 � 0.

4.5-1. Consider the following statements about linear program-
ming and the simplex method. Label each statement as true or false,
and then justify your answer.
(a) In a particular iteration of the simplex method, if there is a tie

for which variable should be the leaving basic variable, then
the next BF solution must have at least one basic variable equal
to zero.

(b) If there is no leaving basic variable at some iteration, then the
problem has no feasible solutions.

(c) If at least one of the basic variables has a coefficient of zero
in row 0 of the final tableau, then the problem has multiple op-
timal solutions.

(d) If the problem has multiple optimal solutions, then the prob-
lem must have a bounded feasible region.

4.4-5. Repeat Prob. 4.4-4 for the following problem.

Maximize Z � 2x1 � 3x2,

subject to

x1 � 2x2 � 30
x1 � x2 � 20

and

x1 � 0, x2 � 0.

4.4-6. Consider the following problem.

Maximize Z � 2x1 � 4x2 � 3x3,

subject to

3x1 � 4x2 � 2x3 � 60
2x1 � x2 � 2x3 � 40
x1 � 3x2 � 2x3 � 80

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step in algebraic
form.

D,I (b) Work through the simplex method step by step in tabular
form.

C (c) Use a software package based on the simplex method to
solve the problem.

4.4-7. Consider the following problem.

Maximize Z � 3x1 � 5x2 � 6x3,

subject to

2x1 � x2 � x3 � 4
x1 � 2x2 � x3 � 4
x1 � x2 � 2x3 � 4
x1 � x2 � x3 � 3

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step in algebraic
form.

D,I (b) Work through the simplex method in tabular form.
C (c) Use a computer package based on the simplex method to

solve the problem.

4.4-8. Consider the following problem.

Maximize Z � 2x1 � x2 � x3,

subject to

x1 � x2 � 3x3 � 4
2x1 � x2 � 3x3 � 10
x1 � x2 � x3 � 7
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(a) Show that any convex combination of any set of feasible so-
lutions must be a feasible solution (so that any convex combi-
nation of CPF solutions must be feasible).

(b) Use the result quoted in part (a) to show that any convex com-
bination of BF solutions must be a feasible solution.

4.5-6. Using the facts given in Prob. 4.5-5, show that the follow-
ing statements must be true for any linear programming problem
that has a bounded feasible region and multiple optimal solutions:
(a) Every convex combination of the optimal BF solutions must

be optimal.
(b) No other feasible solution can be optimal.

4.5-7. Consider a two-variable linear programming problem whose
CPF solutions are (0, 0), (6, 0), (6, 3), (3, 3), and (0, 2). (See Prob.
3.2-2 for a graph of the feasible region.)
(a) Use the graph of the feasible region to identify all the con-

straints for the model.
(b) For each pair of adjacent CPF solutions, give an example of

an objective function such that all the points on the line seg-
ment between these two corner points are multiple optimal so-
lutions.

(c) Now suppose that the objective function is Z � �x1 � 2x2. Use
the graphical method to find all the optimal solutions.

D,I (d) For the objective function in part (c), work through the sim-
plex method step by step to find all the optimal BF solu-
tions. Then write an algebraic expression that identifies all
the optimal solutions.

D,I 4.5-8. Consider the following problem.

Maximize Z � x1 � x2 � x3 � x4,

subject to

x1 � x2 � 3
x3 � x4 � 2

and

xj � 0, for j � 1, 2, 3, 4.

Work through the simplex method step by step to find all the op-
timal BF solutions.

4.6-1.* Consider the following problem.

Maximize Z � 2x1 � 3x2,

subject to

x1 � 2x2 � 4
x1 � x2 � 3

and

x1 � 0, x2 � 0.

4.5-2. Suppose that the following constraints have been provided
for a linear programming model with decision variables x1 and x2.

�x1 � 3x2 � 30
�3x1 � x2 � 30

and

x1 � 0, x2 � 0.

(a) Demonstrate graphically that the feasible region is unbounded.
(b) If the objective is to maximize Z � �x1 � x2, does the model

have an optimal solution? If so, find it. If not, explain why not.
(c) Repeat part (b) when the objective is to maximize Z � x1 � x2.
(d) For objective functions where this model has no optimal solu-

tion, does this mean that there are no good solutions accord-
ing to the model? Explain. What probably went wrong when
formulating the model?

D,I (e) Select an objective function for which this model has no
optimal solution. Then work through the simplex method
step by step to demonstrate that Z is unbounded.

C (f) For the objective function selected in part (e), use a software
package based on the simplex method to determine that Z is
unbounded.

4.5-3. Follow the instructions of Prob. 4.5-2 when the constraints
are the following:

2x1 � x2 � 20
x1 � 2x2 � 20

and

x1 � 0, x2 � 0.

D,I 4.5-4. Consider the following problem.

Maximize Z � 5x1 � x2 � 3x3 � 4x4,

subject to

� x1 � 2x2 � 4x3 � 3x4 � 20
�4x1 � 6x2 � 5x3 � 4x4 � 40
�2x1 � 3x2 � 3x3 � 8x4 � 50

and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

Work through the simplex method step by step to demonstrate that
Z is unbounded.

4.5-5. A basic property of any linear programming problem with
a bounded feasible region is that every feasible solution can be ex-
pressed as a convex combination of the CPF solutions (perhaps in
more than one way). Similarly, for the augmented form of the prob-
lem, every feasible solution can be expressed as a convex combi-
nation of the BF solutions.
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initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

I (c) Work through the simplex method step by step to solve the
problem.

4.6-4.* Consider the following problem.

Minimize Z � 2x1 � 3x2 � x3,

subject to

x1 � 4x2 � 2x3 � 8
3x1 � 2x2 � 2x3 � 6

and

x1 � 0, x2 � 0, x3 � 0.

(a) Reformulate this problem to fit our standard form for a linear
programming model presented in Sec. 3.2.

I (b) Using the Big M method, work through the simplex method
step by step to solve the problem.

I (c) Using the two-phase method, work through the simplex
method step by step to solve the problem.

(d) Compare the sequence of BF solutions obtained in parts (b)
and (c). Which of these solutions are feasible only for the ar-
tificial problem obtained by introducing artificial variables and
which are actually feasible for the real problem?

C (e) Use a software package based on the simplex method to
solve the problem.

4.6-5. For the Big M method, explain why the simplex method
never would choose an artificial variable to be an entering basic
variable once all the artificial variables are nonbasic.

4.6-6. Consider the following problem.

Maximize Z � 90x1 � 70x2,

subject to

2x1 � x2 � 2
x1 � x2 � 2

and

x1 � 0, x2 � 0.

(a) Demonstrate graphically that this problem has no feasible so-
lutions.

C (b) Use a computer package based on the simplex method to
determine that the problem has no feasible solutions.

I (c) Using the Big M method, work through the simplex method
step by step to demonstrate that the problem has no feasible
solutions.

I (d) Repeat part (c) when using phase 1 of the two-phase method.

(a) Solve this problem graphically.
(b) Using the Big M method, construct the complete first simplex

tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

I (c) Continue from part (b) to work through the simplex method
step by step to solve the problem.

4.6-2. Consider the following problem.

Maximize Z � 4x1 � 2x2 � 3x3 � 5x4,

subject to

2x1 � 3x2 � 4x3 � 2x4 � 300
8x1 � x2 � x3 � 5x4 � 300

and

xj � 0, for j � 1, 2, 3, 4.

(a) Using the Big M method, construct the complete first simplex
tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

I (b) Work through the simplex method step by step to solve the
problem.

(c) Using the two-phase method, construct the complete first sim-
plex tableau for phase 1 and identify the corresponding initial
(artificial) BF solution. Also identify the initial entering basic
variable and the leaving basic variable.

I (d) Work through phase 1 step by step.
(e) Construct the complete first simplex tableau for phase 2.
I (f) Work through phase 2 step by step to solve the problem.
(g) Compare the sequence of BF solutions obtained in part (b) with

that in parts (d) and ( f ). Which of these solutions are feasible
only for the artificial problem obtained by introducing artificial
variables and which are actually feasible for the real problem?

C (h) Use a software package based on the simplex method to
solve the problem.

4.6-3. Consider the following problem.

Minimize Z � 3x1 � 2x2,

subject to

�2x1 � x2 � 10
�3x1 � 2x2 � 6
� x1 � x2 � 6

and

x1 � 0, x2 � 0.

(a) Solve this problem graphically.
(b) Using the Big M method, construct the complete first simplex

tableau for the simplex method and identify the corresponding
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I (a) Using the two-phase method, work through phase 1 step by
step.

C (b) Use a software package based on the simplex method to for-
mulate and solve the phase 1 problem.

I (c) Work through phase 2 step by step to solve the original 
problem.

C (d) Use a computer code based on the simplex method to solve
the original problem.

4.6-10.* Consider the following problem.

Minimize Z � 3x1 � 2x2 � 4x3,

subject to

2x1 � x2 � 3x3 � 60
3x1 � 3x2 � 5x3 � 120

and

x1 � 0, x2 � 0, x3 � 0.

I (a) Using the Big M method, work through the simplex method
step by step to solve the problem.

I (b) Using the two-phase method, work through the simplex
method step by step to solve the problem.

(c) Compare the sequence of BF solutions obtained in parts (a)
and (b). Which of these solutions are feasible only for the ar-
tificial problem obtained by introducing artificial variables and
which are actually feasible for the real problem?

C (d) Use a software package based on the simplex method to
solve the problem.

4.6-11. Follow the instructions of Prob. 4.6-10 for the following
problem.

Minimize Z � 3x1 � 2x2 � 7x3,

subject to

�x1 � x2 � x3 � 10
2x1 � x2 � x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

4.6-12. Follow the instructions of Prob. 4.6-10 for the following
problem.

Minimize Z � 3x1 � 2x2 � x3,

subject to

x1 � x2 � x3 � 7
3x1 � x2 � x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

4.6-7. Follow the instructions of Prob. 4.6-6 for the following 
problem.

Minimize Z � 5,000x1 � 7,000x2,

subject to

�2x1 � x2 � 1
� x1 � 2x2 � 1

and

x1 � 0, x2 � 0.

4.6-8. Consider the following problem.

Maximize Z � 2x1 � 5x2 � 3x3,

subject to

x1 � 2x2 � x3 � 20
2x1 � 4x2 � x3 � 50

and

x1 � 0, x2 � 0, x3 � 0.

(a) Using the Big M method, construct the complete first simplex
tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

I (b) Work through the simplex method step by step to solve the
problem.

I (c) Using the two-phase method, construct the complete first
simplex tableau for phase 1 and identify the corresponding
initial (artificial) BF solution. Also identify the initial enter-
ing basic variable and the leaving basic variable.

I (d) Work through phase 1 step by step.
(e) Construct the complete first simplex tableau for phase 2.
I (f) Work through phase 2 step by step to solve the problem.
(g) Compare the sequence of BF solutions obtained in part (b) with

that in parts (d) and ( f ). Which of these solutions are feasible
only for the artificial problem obtained by introducing artificial
variables and which are actually feasible for the real problem?

C (h) Use a software package based on the simplex method to
solve the problem.

4.6-9. Consider the following problem.

Minimize Z � 2x1 � x2 � 3x3,

subject to

5x1 � 2x2 � 7x3 � 420
3x1 � 2x2 � 5x3 � 280

and

x1 � 0, x2 � 0, x3 � 0.

CHAPTER 4 PROBLEMS 179



(a) Reformulate this problem so that all variables have nonnega-
tivity constraints.

D,I (b) Work through the simplex method step by step to solve the
problem.

C (c) Use a computer package based on the simplex method to
solve the problem.

4.6-17. This chapter has described the simplex method as applied
to linear programming problems where the objective function is to
be maximized. Section 4.6 then described how to convert a mini-
mization problem to an equivalent maximization problem for ap-
plying the simplex method. Another option with minimization
problems is to make a few modifications in the instructions for the
simplex method given in the chapter in order to apply the algo-
rithm directly.
(a) Describe what these modifications would need to be.
(b) Using the Big M method, apply the modified algorithm devel-

oped in part (a) to solve the following problem directly by
hand. (Do not use your OR Courseware.)

Minimize Z � 3x1 � 8x2 � 5x3,

subject to

3x1 � 3x2 � 4x3 � 70
3x1 � 5x2 � 2x3 � 70

and

x1 � 0, x2 � 0, x3 � 0.

4.6-18. Consider the following problem.

Maximize Z � �2x1 � x2 � 4x3 � 3x4,

subject to

x1 � x2 � 3x3 � 2x4 � �4
x1 � x2 � x3 � x4 � �1

2x1 � x2 � x3 � x4 � �2
x1 � 2x2 � x3 � 2x4 � �2

and

x2 � 0, x3 � 0, x4 � 0

(no nonnegativity constraint for x1).
(a) Reformulate this problem to fit our standard form for a linear

programming model presented in Sec. 3.2.
(b) Using the Big M method, construct the complete first simplex

tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

(c) Using the two-phase method, construct row 0 of the first sim-
plex tableau for phase 1.

C (d) Use a computer package based on the simplex method to
solve the problem.

4.6-13. Label each of the following statements as true or false, and
then justify your answer.
(a) When a linear programming model has an equality constraint,

an artificial variable is introduced into this constraint in order
to start the simplex method with an obvious initial basic solu-
tion that is feasible for the original model.

(b) When an artificial problem is created by introducing artificial
variables and using the Big M method, if all artificial variables
in an optimal solution for the artificial problem are equal to
zero, then the real problem has no feasible solutions.

(c) The two-phase method is commonly used in practice because
it usually requires fewer iterations to reach an optimal solution
than the Big M method does.

4.6-14. Consider the following problem.

Maximize Z � x1 � 4x2 � 2x3,

subject to

4x1 � x2 � x3 � 5
�x1 � x2 � 2x3 � 10

and

x2 � 0, x3 � 0

(no nonnegativity constraint for x1).
(a) Reformulate this problem so all variables have nonnegativity

constraints.
D,I (b) Work through the simplex method step by step to solve the

problem.
C (c) Use a software package based on the simplex method to

solve the problem.

4.6-15.* Consider the following problem.

Maximize Z � �x1 � 4x2,

subject to

�3x1 � x2 � �6
� x1 � 2x2 � �4
� x1 � 2x2 � �3

(no lower bound constraint for x1).
(a) Solve this problem graphically.
(b) Reformulate this problem so that it has only two functional

constraints and all variables have nonnegativity constraints.
D,I (c) Work through the simplex method step by step to solve the

problem.

4.6-16. Consider the following problem.

Maximize Z � �x1 � 2x2 � x3,

subject to

3x2 � x3 � 120
x1 � x2 � 4x3 � 80

�3x1 � x2 � 2x3 � 100

(no nonnegativity constraints).
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and

x1 � 0, x2 � 0.

(a) Solve this problem graphically.
(b) Use graphical analysis to find the shadow prices for the re-

sources.
(c) Determine how many additional units of resource 1 would be

needed to increase the optimal value of Z by 15.

4.7-5. Consider the following problem.

Maximize Z � x1 � 7x2 � 3x3,

subject to

�2x1 � x2 � x3 � 4 (resource 1)
�4x1 � 3x2 � x3 � 2 (resource 2)
�3x1 � 2x2 � x3 � 3 (resource 3)

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step to solve the
problem.

(b) Identify the shadow prices for the three resources and describe
their significance.

C (c) Use a software package based on the simplex method to
solve the problem and then to generate sensitivity informa-
tion. Use this information to identify the shadow price for
each resource, the allowable range to stay optimal for each
objective function coefficient, and the allowable range to
stay feasible for each right-hand side.

4.7-6.* Consider the following problem.

Maximize Z � 2x1 � 2x2 � 3x3,

subject to

�x1 � x2 � x3 � 4 (resource 1)
2x1 � x2 � x3 � 2 (resource 2)

x1 � x2 � 3x3 � 12 (resource 3)

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step to solve the
problem.

(b) Identify the shadow prices for the three resources and describe
their significance.

C (c) Use a software package based on the simplex method to
solve the problem and then to generate sensitivity informa-
tion. Use this information to identify the shadow price for
each resource, the allowable range to stay optimal for each
objective function coefficient and the allowable range to stay
feasible for each right-hand side.

I 4.6-19. Consider the following problem.

Maximize Z � 4x1 � 5x2 � 3x3,

subject to

x1 � x2 � 2x3 � 20
15x1 � 6x2 � 5x3 � 50

x1 � 3x2 � 5x3 � 30

and

x1 � 0, x2 � 0, x3 � 0.

Work through the simplex method step by step to demonstrate that
this problem does not possess any feasible solutions.

4.7-1. Refer to Fig. 4.10 and the resulting allowable range to stay
feasible for the respective right-hand sides of the Wyndor Glass
Co. problem given in Sec. 3.1. Use graphical analysis to demon-
strate that each given allowable range is correct.

4.7-2. Reconsider the model in Prob. 4.1-5. Interpret the right-hand
side of the respective functional constraints as the amount avail-
able of the respective resources.
(a) Use graphical analysis as in Fig. 4.8 to determine the shadow

prices for the respective resources.
(b) Use graphical analysis to perform sensitivity analysis on this

model. In particular, check each parameter of the model to
determine whether it is a sensitive parameter (a parameter
whose value cannot be changed without changing the opti-
mal solution) by examining the graph that identifies the op-
timal solution.

(c) Use graphical analysis as in Fig. 4.9 to determine the allow-
able range for each cj value (coefficient of xj in the objective
function) over which the current optimal solution will remain
optimal.

(d) Changing just one bi value (the right-hand side of functional
constraint i) will shift the corresponding constraint boundary.
If the current optimal CPF solution lies on this constraint
boundary, this CPF solution also will shift. Use graphical
analysis to determine the allowable range for each bi value over
which this CPF solution will remain feasible.

C (e) Verify your answers in parts (a), (c), and (d) by using a com-
puter package based on the simplex method to solve the prob-
lem and then to generate sensitivity analysis information.

4.7-3. Repeat Prob. 4.7-2 for the model in Prob. 4.1-6.

4.7-4. You are given the following linear programming problem.

Maximize Z � 4x1 � 2x2,

subject to

2x1 � 3x2 � 16 (resource 1)
x1 � 3x2 � 17 (resource 2)
x1 � 3x2 � 5 (resource 3)
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and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

D,I (a) Work through the simplex method step by step to solve the
problem.

(b) Identify the shadow prices for the two resources and describe
their significance.

C (c) Use a software package based on the simplex method to
solve the problem and then to generate sensitivity informa-
tion. Use this information to identify the shadow price for
each resource, the allowable range to stay optimal for each
objective function coefficient, and the allowable range to
stay feasible for each right-hand side.

4.9.1. Use the interior-point algorithm in your OR Courseware to
solve the model in Prob. 4.1-4. Choose � � 0.5 from the Option
menu, use (x1, x2) � (0.1, 0.4) as the initial trial solution, and run
15 iterations. Draw a graph of the feasible region, and then plot
the trajectory of the trial solutions through this feasible region.

4.9-2. Repeat Prob. 4.9-1 for the model in Prob. 4.1-5.

4.9-3. Repeat Prob. 4.9-1 for the model in Prob. 4.1-6.

4.7-7. Consider the following problem.

Maximize Z � 2x1 � 4x2 � x3,

subject to

2x1 � 3x2 � x3 � 30 (resource 1)
2x1 � x2 � x3 � 10 (resource 2)
4x1 � 2x2 � 2x3 � 40 (resource 3)

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step to solve the
problem.

(b) Identify the shadow prices for the three resources and describe
their significance.

C (c) Use a software package based on the simplex method to
solve the problem and then to generate sensitivity informa-
tion. Use this information to identify the shadow price for
each resource, the allowable range to stay optimal for each
objective function coefficient, and the allowable range to
stay feasible for each right-hand side.

4.7-8. Consider the following problem.

Maximize Z � 5x1 � 4x2 � x3 � 3x4,

subject to

3x1 � 2x2 � 3x3 � x4 � 24 (resource 1)
3x1 � 3x2 � x3 � 3x4 � 36 (resource 2)
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From the tenth floor of her office building, Katherine Rally watches the swarms of
New Yorkers fight their way through the streets infested with yellow cabs and the side-
walks littered with hot dog stands. On this sweltering July day, she pays particular at-
tention to the fashions worn by the various women and wonders what they will choose
to wear in the fall. Her thoughts are not simply random musings; they are critical to
her work since she owns and manages TrendLines, an elite women’s clothing company.

Today is an especially important day because she must meet with Ted Lawson, the
production manager, to decide upon next month’s production plan for the fall line.
Specifically, she must determine the quantity of each clothing item she should produce
given the plant’s production capacity, limited resources, and demand forecasts. Accu-
rate planning for next month’s production is critical to fall sales since the items pro-
duced next month will appear in stores during September, and women generally buy
the majority of the fall fashions when they first appear in September.

She turns back to her sprawling glass desk and looks at the numerous papers cov-
ering it. Her eyes roam across the clothing patterns designed almost six months ago,
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the lists of materials requirements for each pattern, and the lists of demand forecasts
for each pattern determined by customer surveys at fashion shows. She remembers the
hectic and sometimes nightmarish days of designing the fall line and presenting it at
fashion shows in New York, Milan, and Paris. Ultimately, she paid her team of six de-
signers a total of $860,000 for their work on her fall line. With the cost of hiring run-
way models, hair stylists, and makeup artists, sewing and fitting clothes, building the
set, choreographing and rehearsing the show, and renting the conference hall, each of
the three fashion shows cost her an additional $2,700,000.

She studies the clothing patterns and material requirements. Her fall line consists
of both professional and casual fashions. She determined the prices for each clothing
item by taking into account the quality and cost of material, the cost of labor and ma-
chining, the demand for the item, and the prestige of the TrendLines brand name.

The fall professional fashions include:
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The fall casual fashions include:

Labor and
Clothing Item Materials Requirements Price Machine Cost

Tailored wool slacks 3 yards of wool $300 $160
2 yards of acetate for lining

Cashmere sweater 1.5 yards of cashmere $450 $150
Silk blouse 1.5 yards of silk $180 $100
Silk camisole 0.5 yard of silk $120 $ 60
Tailored skirt 2 yards of rayon $270 $120

1.5 yards of acetate for lining
Wool blazer 2.5 yards of wool $320 $140

1.5 yards of acetate for lining

Labor and
Clothing Item Materials Requirements Price Machine Cost

Velvet pants 3 yards of velvet $350 $175
2 yards of acetate for lining

Cotton sweater 1.5 yards of cotton $130 $ 60
Cotton miniskirt 0.5 yard of cotton $ 75 $ 40
Velvet shirt 1.5 yards of velvet $200 $160
Button-down blouse 1.5 yards of rayon $120 $ 90

She knows that for the next month, she has ordered 45,000 yards of wool, 28,000
yards of acetate, 9,000 yards of cashmere, 18,000 yards of silk, 30,000 yards of rayon,
20,000 yards of velvet, and 30,000 yards of cotton for production. The prices of the
materials are listed on the next page.



Any material that is not used in production can be sent back to the textile wholesaler
for a full refund, although scrap material cannot be sent back to the wholesaler.

She knows that the production of both the silk blouse and cotton sweater leaves
leftover scraps of material. Specifically, for the production of one silk blouse or one
cotton sweater, 2 yards of silk and cotton, respectively, are needed. From these 2 yards,
1.5 yards are used for the silk blouse or the cotton sweater and 0.5 yard is left as scrap
material. She does not want to waste the material, so she plans to use the rectangular
scrap of silk or cotton to produce a silk camisole or cotton miniskirt, respectively.
Therefore, whenever a silk blouse is produced, a silk camisole is also produced. Like-
wise, whenever a cotton sweater is produced, a cotton miniskirt is also produced. Note
that it is possible to produce a silk camisole without producing a silk blouse and a cot-
ton miniskirt without producing a cotton sweater.

The demand forecasts indicate that some items have limited demand. Specifically,
because the velvet pants and velvet shirts are fashion fads, TrendLines has forecasted
that it can sell only 5,500 pairs of velvet pants and 6,000 velvet shirts. TrendLines
does not want to produce more than the forecasted demand because once the pants
and shirts go out of style, the company cannot sell them. TrendLines can produce less
than the forecasted demand, however, since the company is not required to meet the
demand. The cashmere sweater also has limited demand because it is quite expensive,
and TrendLines knows it can sell at most 4,000 cashmere sweaters. The silk blouses
and camisoles have limited demand because many women think silk is too hard to
care for, and TrendLines projects that it can sell at most 12,000 silk blouses and 15,000
silk camisoles.

The demand forecasts also indicate that the wool slacks, tailored skirts, and wool
blazers have a great demand because they are basic items needed in every professional
wardrobe. Specifically, the demand for wool slacks is 7,000 pairs of slacks, and the
demand for wool blazers is 5,000 blazers. Katherine wants to meet at least 60 percent
of the demand for these two items in order to maintain her loyal customer base and
not lose business in the future. Although the demand for tailored skirts could not be
estimated, Katherine feels she should make at least 2,800 of them.

(a) Ted is trying to convince Katherine not to produce any velvet shirts since the demand for
this fashion fad is quite low. He argues that this fashion fad alone accounts for $500,000
of the fixed design and other costs. The net contribution (price of clothing item � mate-
rials cost � labor cost) from selling the fashion fad should cover these fixed costs. Each
velvet shirt generates a net contribution of $22. He argues that given the net contribution,
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Material Price per yard

Wool $ 9.00
Acetate $ 1.50
Cashmere $60.00
Silk $13.00
Rayon $ 2.25
Velvet $12.00
Cotton $ 2.50



even satisfying the maximum demand will not yield a profit. What do you think of Ted’s
argument?

(b) Formulate and solve a linear programming problem to maximize profit given the produc-
tion, resource, and demand constraints.

Before she makes her final decision, Katherine plans to explore the following ques-
tions independently except where otherwise indicated.

(c) The textile wholesaler informs Katherine that the velvet cannot be sent back because the de-
mand forecasts show that the demand for velvet will decrease in the future. Katherine can
therefore get no refund for the velvet. How does this fact change the production plan?

(d) What is an intuitive economic explanation for the difference between the solutions found in
parts (b) and (c)?

(e) The sewing staff encounters difficulties sewing the arms and lining into the wool blazers
since the blazer pattern has an awkward shape and the heavy wool material is difficult to cut
and sew. The increased labor time to sew a wool blazer increases the labor and machine cost
for each blazer by $80. Given this new cost, how many of each clothing item should Trend-
Lines produce to maximize profit?

(f) The textile wholesaler informs Katherine that since another textile customer canceled his or-
der, she can obtain an extra 10,000 yards of acetate. How many of each clothing item should
TrendLines now produce to maximize profit?

(g) TrendLines assumes that it can sell every item that was not sold during September and Oc-
tober in a big sale in November at 60 percent of the original price. Therefore, it can sell all
items in unlimited quantity during the November sale. (The previously mentioned upper lim-
its on demand concern only the sales during September and October.) What should the new
production plan be to maximize profit?
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Rob Richman, president of AmeriBank, takes off his glasses, rubs his eyes in exhaus-
tion, and squints at the clock in his study. It reads 3 A.M. For the last several hours,
Rob has been poring over AmeriBank’s financial statements from the last three quar-
ters of operation. AmeriBank, a medium-sized bank with branches throughout the
United States, is headed for dire economic straits. The bank, which provides transac-
tion, savings, and investment and loan services, has been experiencing a steady decline
in its net income over the past year, and trends show that the decline will continue.
The bank is simply losing customers to nonbank and foreign bank competitors.

AmeriBank is not alone in its struggle to stay out of the red. From his daily in-
dustry readings, Rob knows that many American banks have been suffering significant
losses because of increasing competition from nonbank and foreign bank competitors
offering services typically in the domain of American banks. Because the nonbank and
foreign bank competitors specialize in particular services, they are able to better cap-
ture the market for those services by offering less expensive, more efficient, more con-
venient services. For example, large corporations now turn to foreign banks and com-
mercial paper offerings for loans, and affluent Americans now turn to money-market
funds for investment. Banks face the daunting challenge of distinguishing themselves
from nonbank and foreign bank competitors.
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Rob has concluded that one strategy for distinguishing AmeriBank from its com-
petitors is to improve services that nonbank and foreign bank competitors do not read-
ily provide: transaction services. He has decided that a more convenient transaction
method must logically succeed the automatic teller machine, and he believes that elec-
tronic banking over the Internet allows this convenient transaction method. Over the
Internet, customers are able to perform transactions on their desktop computers either
at home or at work. The explosion of the Internet means that many potential customers
understand and use the World Wide Web. He therefore feels that if AmeriBank offers
Web banking (as the practice of Internet banking is commonly called), the bank will
attract many new customers.

Before Rob undertakes the project to make Web banking possible, however, he
needs to understand the market for Web banking and the services AmeriBank should
provide over the Internet. For example, should the bank only allow customers to ac-
cess account balances and historical transaction information over the Internet, or should
the bank develop a strategy to allow customers to make deposits and withdrawals over
the Internet? Should the bank try to recapture a portion of the investment market by
continuously running stock prices and allowing customers to make stock transactions
over the Internet for a minimal fee?

Because AmeriBank is not in the business of performing surveys, Rob has decided
to outsource the survey project to a professional survey company. He has opened the
project up for bidding by several survey companies and will award the project to the
company which is willing to perform the survey for the least cost.

Sophisticated Surveys is one of three survey companies competing for the project.
Rob provided each survey company with a list of survey requirements to ensure that
AmeriBank receives the needed information for planning the Web banking project.

Because different age groups require different services, AmeriBank is interested
in surveying four different age groups. The first group encompasses customers who are
18 to 25 years old. The bank assumes that this age group has limited yearly income
and performs minimal transactions. The second group encompasses customers who are
26 to 40 years old. This age group has significant sources of income, performs many
transactions, requires numerous loans for new houses and cars, and invests in various
securities. The third group encompasses customers who are 41 to 50 years old. These
customers typically have the same level of income and perform the same number of
transactions as the second age group, but the bank assumes that these customers are
less likely to use Web banking since they have not become as comfortable with the ex-
plosion of computers or the Internet. Finally, the fourth group encompasses customers
who are 51 years of age and over. These customers commonly crave security and re-
quire continuous information on retirement funds. The banks believes that it is highly
unlikely that customers in this age group will use Web banking, but the bank desires
to learn the needs of this age group for the future. AmeriBank wants to interview 2,000
customers with at least 20 percent from the first age group, at least 27.5 percent from
the second age group, at least 15 percent from the third age group, and at least 15 per-
cent from the fourth age group.

Rob understands that the Internet is a recent phenomenon and that some customers
may not have heard of the World Wide Web. He therefore wants to ensure that the sur-
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vey includes a mix of customers who know the Internet well and those that have less
exposure to the Internet. To ensure that AmeriBank obtains the correct mix, he wants
to interview at least 15 percent of customers from the Silicon Valley where Internet use
is high, at least 35 percent of customers from big cities where Internet use is medium,
and at least 20 percent of customers from small towns where Internet use is low.

Sophisticated Surveys has performed an initial analysis of these survey require-
ments to determine the cost of surveying different populations. The costs per person
surveyed are listed in the following table:
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Sophisticated Surveys explores the following options cumulatively.

(a) Formulate a linear programming model to minimize costs while meeting all survey con-
straints imposed by AmeriBank.

(b) If the profit margin for Sophisticated Surveys is 15 percent of cost, what bid will they 
submit?

(c) After submitting its bid, Sophisticated Surveys is informed that it has the lowest cost but
that AmeriBank does not like the solution. Specifically, Rob feels that the selected survey
population is not representative enough of the banking customer population. Rob wants at
least 50 people of each age group surveyed in each region. What is the new bid made by
Sophisticated Surveys?

(d) Rob feels that Sophisticated Survey oversampled the 18- to 25-year-old population and the
Silicon Valley population. He imposes a new constraint that no more than 600 individuals
can be surveyed from the 18- to 25-year-old population and no more than 650 individuals
can be surveyed from the Silicon Valley population. What is the new bid?

(e) When Sophisticated Surveys calculated the cost of reaching and surveying particular indi-
viduals, the company thought that reaching individuals in young populations would be eas-
iest. In a recently completed survey, however, Sophisticated Surveys learned that this as-
sumption was wrong. The new costs for surveying the 18- to 25-year-old population are listed
below.

Age Group

Region 18 to 25 26 to 40 41 to 50 51 and over

Silicon Valley $4.75 $6.50 $6.50 $5.00
Big cities $5.25 $5.75 $6.25 $6.25
Small towns $6.50 $7.50 $7.50 $7.25

Region survey cost per person

Silicon Valley $6.50
Big cities $6.75
Small towns $7.00

Given the new costs, what is the new bid?



(f) To ensure the desired sampling of individuals, Rob imposes even stricter requirements. He
fixes the exact percentage of people that should be surveyed from each population. The re-
quirements are listed below:
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Population percentage of 
people surveyed

18 to 25 25%
26 to 40 35%
41 to 50 20%
51 and over 20%

Silicon Valley 20%
Big cities 50%
Small towns 30%

By how much would these new requirements increase the cost of surveying for Sophisticated
Surveys? Given the 15 percent profit margin, what would Sophisticated Surveys bid?

The Springfield school board has made the decision to close one of its middle schools
(sixth, seventh, and eighth grades) at the end of this school year and reassign all of
next year’s middle school students to the three remaining middle schools. The school
district provides bussing for all middle school students who must travel more than ap-
proximately a mile, so the school board wants a plan for reassigning the students that
will minimize the total bussing cost. The annual cost per student of bussing from each
of the six residential areas of the city to each of the schools is shown in the following
table (along with other basic data for next year), where 0 indicates that bussing is not
needed and a dash indicates an infeasible assignment.

CASE 4.3 ASSIGNING STUDENTS TO SCHOOLS

Percentage Percentage Percentage
No. of in 6th in 7th in 8th

Bussing Cost per Student

Area Students Grade Grade Grade School 1 School 2 School 3

1 450 32 38 30 $300 0 $700
2 600 37 28 35 — $400 $500
3 550 30 32 38 $600 $300 $200
4 350 28 40 32 $200 $500 —
5 500 39 34 27 0 — $400
6 450 34 28 38 $500 $300 0

School capacity: 900 1,100 1,000

The school board also has imposed the restriction that each grade must constitute
between 30 and 36 percent of each school’s population. The above table shows the per-
centage of each area’s middle school population for next year that falls into each of



the three grades. The school attendance zone boundaries can be drawn so as to split
any given area among more than one school, but assume that the percentages shown
in the table will continue to hold for any partial assignment of an area to a school.

You have been hired as an operations research consultant to assist the school board
in determining how many students in each area should be assigned to each school.

(a) Formulate a linear programming model for this problem.
(b) Solve the model.
(c) What is your resulting recommendation to the school board?

After seeing your recommendation, the school board expresses concern about all
the splitting of residential areas among multiple schools. They indicate that they “would
like to keep each neighborhood together.”

(d) Adjust your recommendation as well as you can to enable each area to be assigned to just
one school. (Adding this restriction may force you to fudge on some other constraints.) How
much does this increase the total bussing cost? (This line of analysis will be pursued more
rigorously in Case 12.4.)

The school board is considering eliminating some bussing to reduce costs. Option
1 is to eliminate bussing only for students traveling 1 to 1.5 miles, where the cost per
student is given in the table as $200. Option 2 is to also eliminate bussing for students
traveling 1.5 to 2 miles, where the estimated cost per student is $300.

(e) Revise the model from part (a) to fit Option 1, and solve. Compare these results with those
from part (c), including the reduction in total bussing cost.

(f ) Repeat part (e) for Option 2.

The school board now needs to choose among the three alternative bussing plans
(the current one or Option 1 or Option 2). One important factor is bussing costs. How-
ever, the school board also wants to place equal weight on a second factor: the incon-
venience and safety problems caused by forcing students to travel by foot or bicycle a
substantial distance (more than a mile, and especially more than 1.5 miles). Therefore,
they want to choose a plan that provides the best trade-off between these two factors.

(g) Use your results from parts (c), (e), and ( f ) to summarize the key information related to
these two factors that the school board needs to make this decision.

(h) Which decision do you think should be made? Why?

Note: This case will be continued in later chapters (Cases 6.3 and 12.4), so we
suggest that you save your analysis, including your basic model.
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