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Abstract 

Historically, redistricting has been a process ridden with political manipulation in 

which politicians “gerrymander” districts to achieve a competitive advantage in future 

elections. However, the process of redistricting can be aided significantly by 

mathematical models that prioritize key characteristics of a “fair” district. This paper 

details one such integer linear programming model implemented in AMPL that ensures 

just that—a fair district. To ensure fairness, the model produces districts that reflect the 

political distribution of the state, with no party favored to win more districts than their 

share of the statewide vote. At the same time, the model prioritizes even population 

distribution while constraining for contiguous and compact districts. This model is tested 

and evaluated on data from the state of Ohio and details some possible variations and 

future directions that allow the model to adapt to other states and goals. 
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Chapter 1: Introduction 

 Redistricting is the process by which new lines are drawn to create districts for the 

U.S. House of Representatives and state legislatures. This legally required process 

happens in each state every ten years following the recently completed census [1]. As 

new data suggests significant population changes, new districts are required to ensure 

equal representation among states and among districts within the states. Historically, 

however, redistricting has rarely been a process by which “equal representation” is a 

priority. In fact, many states have politically biased legislators and state officials draw the 

maps, making the process a political battle where each party spends millions of dollars to 

find ways to reach a competitive advantage in the next decade of elections [1]. The 

method by which parties gain this advantage is known as “gerrymandering”. Through 

various specialized tactics, politicians are able to achieve district maps in which their 

party is likely to win far greater districts than are proportionally representative of the 

state’s demographic. This ultimately leads to a myriad of issues including 

disenfranchisement, voter apathy, less competitive elections, and reduced motivation for 

representatives to engage with constituents. Even more recognizably, this leads to 

districts that are in many cases strangely shaped or unnecessarily large. Naturally, there 

have to be much better, well-defined ways to draw congressional districts based on 

several criteria. This project aims to employ some of these criteria along with a 

specification for proportional party representation through an integer linear programming 

(ILP) optimization model. Furthermore, this project tests and evaluates its findings by 
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running its model on data from the state of Ohio—a swing state with a history of 

relentless gerrymandering. 

1.1 Criteria and Considerations 

There are several criteria which have been defined for the purpose of creating 

optimal, fair districts. To a certain extent, these are also given as guidelines and/or 

requirements to states when drawing new lines. The National Conference of State 

Legislatures gives many of these [2]: 

A. Population 

o The population of each district should be roughly the same. For 

congressional redistricting, the U.S. Constitution requires districts to be 

virtually equal in population. For state legislative districts, some say 10% 

deviations between districts are acceptable, however based on many court 

rulings, states like Colorado require a maximum deviation less than 5% 

[2]. 

B. Contiguity 

o All parts of the district should be connected to all other parts via a path 

within the district. 

C. Compactness 

o Districts should be in regular geometric shapes and distances between 

parts of a constituency should be minimized. 

D. Integrity 
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o Districts should not divide territorial boundaries. Subdivisions like cities, 

counties, etc. should largely remain intact throughout a single district. 

o Districts also should not divide “communities of interest” which are 

regions by which residents have significant shared interests. 

E. Competitiveness 

o Districts should be relatively balanced to avoid “safety” for one political 

party. This encourages representatives to be as engaging and fair to their 

constituencies as possible. It also encourages greater voter engagement in 

elections. 

F. Voting Rights Act 

o If there exists a racial minority that has a sufficient population, common 

political interest, and geographic cohesiveness, under the Voting Rights 

Act a district plan must not cause that group to have “less opportunity than 

other members of the electorate” to “elect representatives of their choice” 

[3]. Essentially, a district plan cannot purposefully or inadvertently dilute 

the votes of minority voters. 

This project prioritizes one additional quality of “good” districts to ensure fairness 

politically throughout a state: 

G. Proportionality 

o The number of districts in a state that one political party is favored to win 

should correspond to the preference of voters in the state as a whole. This 

criterion of political fairness is one slowly being adopted nationally and 
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has now been adopted by Ohio after the passage of Issue 1 regarding 

legislative redistricting reform [2].  

1.2 Compactness Measures 

As mentioned in Section 1.1, districts should be made to be compact and should 

have regular geometric shapes. As humans, it is easy to look at a shape and judge whether 

we believe it to be sufficiently compact, but especially when using computers to compare 

district shapes, it is necessary to have a metric that quantifies this level of compactness. 

Fortunately, there are a great deal of compactness measures in the literature for us to 

choose from.  

1.2.1 Traditional Compactness Measures 

Here we highlight some of the most common metrics used in redistricting and 

case law:  

A. Polsby-Popper  

o This is a perimeter measure that idealizes the shape of a circle. This 

measure effectively states that a compact district should have a large area 

relative to its perimeter. Specifically, it is the ratio of the area of a district 

to the area of a circle whose circumference is equal to the district’s 

perimeter. The score is computed as follows with higher scores indicating 

more compact districts: 

𝑃𝑃 =
4𝜋𝐴𝐷

2

𝑃𝐷
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where 𝐴𝐷  is the area of the district and 𝑃𝐷 is the perimeter of the district 

[4]. See Figure 1 below demonstrating the relationship between the district 

and the circle we are idealizing. 

 

Figure 1 

A District in Circle whose Circumference Equals District’s Perimeter 

 

Note: Figure reprinted from A. Adhia, D. Grozdanov, M. Ramezanzadeh 

and Z. Fisher, "Measuring Compactness," [Online]. Available: 

https://fisherzachary.github.io/public/r-output.html. [Accessed 15 April 

2021]. 

 

B. Reock  
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o This is a measure of a dispersion, similar to Polsby-Popper in that it 

idealizes a circle. This measure is the area of a district divided by the area 

of its smallest circumscribing circle and is computed as follows with 

higher scores reflecting more compactness: 

𝑅 =
𝐴𝐷
𝐴𝐶

 

where 𝐴𝐷  is the area of the district and 𝐴𝐶  is the area of the smallest circle 

that encloses the district’s geometry [5]. See Figure 2 below 

demonstrating the relationship between the district and the circle being 

targeted in the ratio. 

 

Figure 2 

A District in Smallest Enveloping Circle 
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Note: Figure reprinted from A. Adhia, D. Grozdanov, M. Ramezanzadeh 

and Z. Fisher, "Measuring Compactness," [Online]. Available: 

https://fisherzachary.github.io/public/r-output.html. [Accessed 15 April 

2021]. 

 

C. Convex Hull  

o This measure compares a district area to the area of its minimum enclosing 

convex polygon and is computed as follows with higher scores reflecting 

greater compactness: 

𝐶𝐻 =
𝐴𝐷
𝐴𝑃

 

where 𝐴𝐷  is the area of the district and 𝐴𝑃 is the area of the minimum 

convex polygon that encloses the district’s geometry [6]. See Figure 3 

below demonstrating the relationship between the district and its convex 

hull. 
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Figure 3 

A District Enclosed by its Convex Hull 

 

Note: Figure reprinted from A. Adhia, D. Grozdanov, M. Ramezanzadeh 

and Z. Fisher, "Measuring Compactness," [Online]. Available: 

https://fisherzachary.github.io/public/r-output.html. [Accessed 15 April 

2021]. 

 

D. Length-Width 

o This measure simply uses the ratio of a district’s width to its length as 

found by its minimum enclosing rectangle. This is computed as follows 
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with the longest edge of the rectangle used as the length such that higher 

scores indicate greater compactness: 

𝐿𝑊 =
𝑊𝑅
𝐿𝑅

 

where 𝑊𝑅 is the width of the district’s bounding rectangle and 𝐿𝑅 is the 

length of the district’s bounding rectangle [6]. See below demonstrating 

the relationship between the district and its minimum enclosing rectangle. 

 

Figure 4 

A District Enclosed by its Minimum Bounding Rectangle 

 

Note: Figure reprinted from A. Adhia, D. Grozdanov, M. Ramezanzadeh 

and Z. Fisher, "Measuring Compactness," [Online]. Available: 
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https://fisherzachary.github.io/public/r-output.html. [Accessed 15 April 

2021]. 

 

1.2.2 Limitations of Traditional Compactness Measures 

In theory, each of the compactness measures stated above should effectively 

measure the compactness of most districts. In practice, however, each one has a slew of 

problems which could cause bad shapes to get good scores or vice versa. Duchin and 

Tenner explain that this is largely due to the fact that each of these measures are contour-

based, utilizing Euclidian based computations of area and perimeter [7]. Duchin and 

Tenner outline four main reasons these measures can result in inconsistencies: 

1. Coastline Effects  

o A district can have a highly inflated perimeter simply because it shares an 

edge with a natural feature, like a coastline. These jagged edges inflate 

perimeter aggressively and can lead to poor compactness measures. 

Polsby-Popper in particular is highly sensitive to this. 

2. Resolution Instability 

o The computation of perimeter is heavily impacted by the choice of 

resolution in a digital map. Higher resolutions will capture finer details of 

a shape’s edge and significantly increase its perimeter. Because 

resolutions may vary from one map to the next, it can be highly unstable 

for comparison purposes. 

3. Coordinate Dependence 
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o Naturally, the Earth is spherical but when rendering and performing 

computations on maps, we must project the sphere onto a plane. There are 

many choices for such projections, but none can perfectly preserve both 

area and shape. Thus, computations for area can vary drastically and 

unpredictably when changing from one projection to the next. This has a 

particularly high impact on area-based scores like the Reock score. Duchin 

and Tenner also highlight here that area has no particular relevance to 

redistricting [7]. 

4. Empty Space Effects 

o In redistricting, we optimize for equal population, not equal area. 

Unpopulated regions of a district do not impact election outcomes but can 

still have a very high impact on these traditional compactness measures. 

Thus, these measures can vary drastically simply based on how we 

allocate a mountain or lake to a particular district, which is not relevant to 

the goals we wish to achieve. 

It is also worth noting that the Length-Width measure, which uses neither the area 

nor the perimeter of the district itself, is highly imperfect. To understand this, simply 

visualize a district snaking back and forth through a square. Since the length and width 

will be the same, it will have a perfect compactness score, but a snake-like district such as 

this is certainly not compact. 

1.2.3 Discrete Compactness Measures 



22 

 

Due to the variety of issues related to each of these traditional, Euclidian-based 

compactness measures, Duchin and Tenner advocate for discrete techniques when 

computing compactness. While the Supreme Court requires that population be nearly 

equal between congressional districts, the finest granularity of unit we have available 

with population totals is the Census block. This means that any district plan generally 

must be built from some type of discrete units, like Census blocks, in order to properly 

account for population balance. This lends itself very well to discrete, graph-based 

techniques when analyzing the compactness of a district. 

As proposed by Duchin and Tenner, we can induce a vertex-weighted dual graph 

of a district plan where the vertices are the basic units of Census geography used. Edges 

will then exist between vertices that correspond to adjacent units and each vertex will get 

a weight based on its corresponding unit’s population. With this graph, we can define a 

discrete area measure for a single district’s corresponding subgraph. This measure is 

equal to the order of the subgraph, which is the number of units in the subgraph. We can 

also define a discrete perimeter measure equal to the number of units along the 

subgraph’s boundary. This immediately translates into a discrete analog of Polsby-Popper 

where the discrete area is divided by the square of the discrete perimeter. The same 

computation can also be done weighted by population for an even better measure. Duchin 

and Tenner explain how a discretized Polsby-Popper measure like this majorly avoids the 

pitfalls explained above for Euclidian compactness measures. We effectively eliminate 

the impact caused by coastlines, varying resolutions, and coordinate systems by 
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computing our measures solely based on the way we discretely piece together our 

district’s building blocks [7]. 

1.2.4 Cut Edges 

DeFord and Duchin simplify the use of a district plan’s dual graph even further in  

[8]. Here they measure compactness by computing the number of cut edges in a district 

plan. They define a cut edge as any edge in the graph that exists between two units 

assigned to different districts. A plan with fewer cut edges is more compact as it divides 

the plan into districts with simpler shapes. They evaluate this measure on Virginia and 

find it to be highly superior to area-based measures [8]. Thus, this is the measure we 

ultimately use to constrain compactness in our model due to its simplicity and 

consistency. 

1.3 Partisan Fairness Measures 

Section 1.1 describes one partisan fairness metric which is a key focal point for the 

model described in this project: proportionality. This is a fairly straightforward measure 

of partisan fairness where the proportion of districts that a given party wins should be 

proportional to that party’s voters statewide. However, there are several other measures 

for partisan fairness. We briefly describe two alternative measures here: efficiency gap 

and partisan symmetry. 

1.3.1 Efficiency Gap 

Partisan gerrymandering effectively seeks to force a particular party to waste 

votes by packing that party’s voters in few districts and cracking the favored party’s 

voters into a majority share of as many districts as possible. The efficiency gap, as 
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proposed in [9], seeks to effectively compare how efficient a district plan is for each party 

by comparing the proportion of wasted votes for each party. Votes are considered to be 

wasted when they don’t help a party to win more districts. Any vote for a losing party is 

considered to be wasted and any vote for a winning party beyond the simple majority is 

considered to be wasted. These wasted votes are summed together for each party 

separately and the difference between wasted votes divided by the total number of voters 

statewide yields the efficiency gap. The closer this gap is to 0%, the fairer the district 

plan. The authors of the efficiency gap argue that 8% is a significant threshold for when a 

district plan becomes unacceptable in terms of partisan gerrymandering [9].  

While this metric has significant merit and has gained traction in the Supreme 

Court as an acceptable indicator of partisan gerrymandering, it has its flaws. Bernstein 

and Duchin show that under the assumption of equal voter turnout among districts, the 

efficiency gap effectively boils down to be the statewide vote lean favoring the winning 

party minus half of the statewide seat lean favoring that party: 

𝐸𝐺 ≈
𝑇𝐴 − 𝑇𝐵
𝑇

−
1

2
∗
𝑆𝐴 − 𝑆𝐵
𝑆

 

Here, 𝑇 is the number of voters and 𝑆 is the number of seats with indices 𝐴 and 𝐵 used to 

differentiate votes and seats by party. The biggest problem that this result demonstrates is 

that for the efficiency gap to be 0, the seat lean should be twice the vote lean. This 

directly penalizes proportionality and can cause a district with perfect proportionality to 

be above the 8% threshold for efficiency gap [10]. 

1.3.2 Partisan Symmetry 
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Another way to define partisan fairness in a district plan is by using the partisan 

symmetry standard. This standard requires that each party receive the same proportion of 

legislative seats as the other would have given the same share of the statewide vote [11]. 

For example, if Republicans win 70% of the seats with 55% of the statewide vote, then 

this is considered fair if Democrats would also win 70% of the seats had they won 55% 

of the statewide vote.  

This standard can be measured by a variety of scores with two of the most 

common being the mean-median metric and the partisan bias metric. Each of these are 

based on the core principle that if a party wins half the votes, it should win half the seats. 

The mean-median metric measures how many votes short of half that a party can win 

while still winning half the seats. Partisan bias, however, measures how many seats 

beyond half the seats a party can win while winning half the statewide share of votes. The 

closer these scores are to 0, the fairer the map [12].  

However, like efficiency gap, these metrics and the way they are computed have 

been found to have serious issues. In particular, it is shown in [12] that these metrics do 

not necessarily constrain extreme partisan gerrymandering and can have unforeseen 

consequences on partisan outcomes. In some cases, it is shown that these metrics can 

even fail to identify which party is at an advantage in a district plan [12]. 

1.4 Alternative Computational Approaches to Redistricting 

The mathematical model proposed in this paper is one example of using an 

algorithm for redistricting. To our knowledge, it is one of the only integer linear 

programming applications for redistricting that constrains proportionality. It also defines 
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and proves the correctness of a completely novel method for constraining contiguity. 

However, there have been many other proposed systems of algorithmic redistricting that 

use various other techniques that don’t rely on integer programming. A fairly 

comprehensive summary of redistricting algorithms is given in [13] and here we 

summarize some of the main categories. 

1.4.1 Enumeration 

This is essentially a brute force approach to redistricting in which all possible 

valid plans are generated. While this has been proposed several times in the literature, it 

is impossible to use in practice except in the very smallest of instances. With 

redistricting, as the problem gets larger with more units, the number of valid district plans 

increases exponentially. For example, even in the fairly simple case of building 4 districts 

out of Iowa’s 99 counties, there would be 499 ways to assign districts to counties, which is 

on the order of 1059. Of these, there is estimated to be 1024 valid solutions and well over 

99% of these would be highly non-compact [13]. Thus, enumeration is impractical. 

1.4.2 Random Assignment and Rejection Sampling 

This is a very simple approach to redistricting that simply assigns each unit a 

district label. Naturally, generating a plan randomly this way is unlikely to even achieve 

contiguity, so rejection sampling is used to discard invalid plans. The algorithm continues 

to sample plans until a valid one is found. As you can imagine, with so many possible 

district assignments, this is shown to not only be inefficient, but simply ineffective. 

1.4.3 Flood Fill 
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This class of algorithms uses random seed units from which districts are grown by 

joining adjacent units until a target population is reached. There are several variations on 

this algorithm, but one of the main challenges is that it can get stuck. Districts can be 

grown in a way that does not allow for balanced, contiguous districts so these must be 

rejected, and the algorithm restarted.  

1.4.4 Flip-Step 

Instead of generating plans from scratch, some algorithms start from a valid 

district plan and use it to generate other plans. One of these algorithms is flip-step which 

randomly samples a unit on one of the districts’ boundaries. This unit is then flipped, 

which means it is reassigned to one of the districts it neighbors—so long as this flip does 

not make the plan invalid. This process is repeated up to as many as millions or billions 

of times to create a new plan with little resemblance to the original.  

1.4.5 Recombination 

Recombination is another algorithm that uses a valid plan as input. This algorithm 

takes steps toward a new plan by merging adjacent districts and repartitioning them into 

new ones. Recombination has been used in particular to generate thousands of plans for 

the purpose of representing the distribution of possible plans that meet traditional 

redistricting criteria. This can be used to represent the typical properties that one can 

expect of a state’s plan simply based on its geography and Census data. This provides a 

baseline for comparing some other proposed plan to help argue whether some of its 

characteristics are typical or whether the plan is an outlier—indicating evidence of 

gerrymandering [14]. 
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1.4.6 Random Walk Metaheuristics 

There are also many variations of the random walk algorithms flip-step and 

recombination described in 1.4.4 and 1.4.5. These employ various metaheuristics to take 

steps not just toward other random plans in the state space, but toward more optimal 

ones. This is done by defining some type of scoring method for a district plan based on 

any set of criteria. During any recombination or flip step, instead of choosing the step 

randomly, each possible choice is evaluated against this score. One metaheuristic, hill 

climbing, always chooses the most optimal step to take until there exist no steps that can 

improve the plan’s score. However, this heuristic is likely to lead toward a local 

optimum, so it is typically applied to a variety of starting plans and the best scoring plan 

among all the runs is chosen. Other metaheuristics applied to random walks include a 

simulated annealing variant of hill climbing, Tabu search, and various evolutionary 

algorithms. 

1.4.7 Voroni Approaches  

Other algorithms ignore basic building block units in favor of a purely geometric 

approach that prioritizes compactness. Some such algorithms use Voroni diagrams where 

points are chosen on the map to be district hubs. Every other part of the state is then 

assigned to a district based on whichever hub it is closest too. One of the biggest 

challenges with this approach is in deciding the optimal placement of the district hubs. 

This also does not take population balance into account, so a variation on this method 

uses power diagrams where each hub has an associated weight. With these diagrams, 

balanced and compact districts can be achieved but they suffer from the fact that Census 
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units are not respected. This means that it can be difficult to properly assign population to 

each district and definitively declare that they are balanced. 

1.5 Preview 

In Chapter 2 we describe the general integer linear programming-based 

mathematical model proposed to help draw optimal districts. Here we provide the input 

data, decision variables, objective function, and constraints used to make in the model as 

well as provide arguments and proofs along the way proving its validity. In Chapter 3 we 

apply the mathematical model to Ohio and discuss our process selecting and preparing 

the input data. We also provide a breakdown of computational results from two datasets 

and compare our model’s results to that of the state’s current district plan. Finally, in 

Chapter 4 we offer several future directions to expand on this project to better meet each 

of the redistricting criteria and summarize our model and its potential impact on 

redistricting. 

Chapter 2: Mathematical Model 

 In an effort to achieve optimized districts with so many competing district 

qualities, we propose an integer linear programming (ILP) optimization model which can 

be implemented to formalize and optimize this process. The mathematical model is 

implemented and tested using the algebraic modeling language AMPL. The complete 

AMPL code used to implement and test this model can be found in Appendix A. In this 

chapter we give the data, variables, objective function, and functional constraints used to 

build the model. We also give arguments proving the validity of the model. 
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2.1 Input Data: Sets and Parameters 

Let 𝑼𝒏𝒊𝒕𝒔 be a set of 𝑵 basic geographic units in Ohio. Let 𝑫𝒊𝒔𝒕𝒓𝒊𝒄𝒕𝒔 be a set of 

𝑴 electoral districts. A unique subset of units should be assigned to each district. 

2.1.1 Defining Restricted Possibilities  

While we could allow the model free range to assign any possible unit to any 

possible district, this would require 𝑁 ∗ 𝑀 decision variables, which would be an 

excessive waste of time and memory as it is impractical to consider units on opposite 

sides of the state for the same district. To alleviate this complexity, we define a parameter 

for whether a particular unit is allowed to be included in a given district thus eliminating 

any possible district assignments that would never make sense. Thus, we define the 

following binary parameter: 

Let 𝑝𝑖𝑗 = {
1, if unit 𝑖 can be included in district 𝑗 

0, otherwise
 

∀ 𝑖 ∈ 𝑈𝑛𝑖𝑡𝑠, 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 

2.1.2 Defining Unit Relationships 

In order to implement constraints that guarantee connectivity and compactness 

within a district, we must define the relative distance between any pair of units. The 

distance defined by this model is the length of the shortest path between two units in 

terms of the number of adjacent units that must be traveled through to reach the opposing 

one. If units are adjacent, this distance is 1. More information on how these distances can 

be computed based on adjacency data for the units in a state can be found in Appendix B. 

We also define a tuning parameter here that expresses the maximum allowable distance 
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between any pair of units in a chosen district. Thus, we define the following two 

parameters: 

Let 𝑑𝑖𝑠𝑡𝑖𝑘   ∀ 𝑖, 𝑘 ∈ 𝑈𝑛𝑖𝑡𝑠 

be the minimum number of edges that must be 

traversed to reach 𝑘 from 𝑖 

Let 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 be the maximum allowable distance between any two 

units in a district 

2.1.3 Expressing Demographics 

One of the primary features of this ILP model is that it chooses districts such that 

the number of districts leaning toward any particular party are proportional to the 

political leanings of the state. To achieve this, we need a number of pieces of 

demographic political data regarding the number of Democrats, Republicans, and total 

voters in each unit. We also define a value 𝐿𝐴𝑅𝐺𝐸 that is initialized to the total number 

of voters in the state. This value acts as a maximum, or relative infinity value, in the 

context of the model for later logical constraints. Thus, we define: 

Let 𝑑𝑒𝑚𝑖 be the number of Democrats in unit 𝑖, ∀ 𝑖 ∈ 𝑈𝑛𝑖𝑡𝑠 

Let 𝑟𝑒𝑝𝑖 be the number of Republicans in unit 𝑖, ∀ 𝑖 ∈ 𝑈𝑛𝑖𝑡𝑠 

Let 𝑣𝑜𝑡𝑖 = 𝑑𝑖 + 𝑟𝑖 , ∀ 𝑖 ∈ 𝑈𝑛𝑖𝑡𝑠 

Let 𝐿𝐴𝑅𝐺𝐸 = ∑ 𝑣𝑖
𝑖∈𝑈𝑛𝑖𝑡𝑠

 

Next, the model defines two important target values: the fair number of Democrat 

districts and the ideal population of each district. The targeted fair number of Democratic 

districts, 𝑡𝑎𝑟𝑔𝐷𝑒𝑚, is defined by the proportion of Democratic voters multiplied by the 
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number of districts. It is important to note that we choose Democrat here arbitrarily. 

Since this model assumes a two-party system, the fair number of Republican districts is 

uniquely determined by targDem and the result would be the same if the model were 

formulated in terms of the target number of Republican districts. Thus, targDem is 

defined as follows: 

Let 𝑡𝑎𝑟𝑔𝐷𝑒𝑚 = 𝑟𝑜𝑢𝑛𝑑 (
∑ 𝑑𝑒𝑚𝑖𝑖∈𝑈𝑛𝑖𝑡𝑠

∑ 𝑣𝑜𝑡𝑖𝑖∈𝑈𝑛𝑖𝑡𝑠
∗ 𝑀) 

The ideal population for a district, 𝑡𝑎𝑟𝑔𝑃𝑜𝑝, is defined as the number of 

statewide voters divided by the number of districts:  

Let 𝑡𝑎𝑟𝑔𝑃𝑜𝑝 = 𝑟𝑜𝑢𝑛𝑑 (
∑ 𝑣𝑜𝑡𝑖𝑖∈𝑈𝑛𝑖𝑡𝑠

𝑀
) 

Finally, we define a tuning parameter, 𝜀, for the allowable error of the actual 

number of Democrat districts from the ideal number of these districts in theory. We also 

define a hyperparameter for the maximum number of cut edges allowed in the district 

plan which is explained further in (2.4.5.2). Thus, we define: 

Let 0 ≤ 𝜀 ≤ 𝑡𝑎𝑟𝑔𝐷𝑒𝑚 (𝜀 ∈ ℤ) be the allowable error of the actual  

number of Democrat districts from the target 

Let 𝑚𝑎𝑥𝐶𝑢𝑡 be the maximum number of cut edges allowed in the 

model′s produced district plan 
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2.2 Decision Variables 

We now define the variables needed by the model. The first of these is our 

primary decision variable, which is a binary variable used to decide whether a particular 

unit is included in a particular district. This variable, 𝑥𝑖𝑗, is defined:  

Let 𝑥𝑖𝑗 =  {
1, if unit 𝑖 is chosen for district 𝑗

0, otherwise
  

∀ 𝑖 ∈ 𝑈𝑛𝑖𝑡𝑠, 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 s. t. 𝑝𝑖𝑗 = 1 

The next variable, 𝑧, is an auxiliary variable needed for the objective function as 

this variable will be minimized in (2.3). This is defined as follows: 

Let 𝑧 be the largest difference (by absolute value) from 

the target population 

Each of the remaining variables are auxiliary variables needed for writing 

corresponding constraints. The first of these, 𝑦𝑗, is used in (2.4.4) to help constrain the 

political distribution of the district plan: 

Let 𝑦𝑗 = {
1, if more Democrat voters in 𝑗 than Republican voters

0, otherwise
   

∀ 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 

The final variables are all used in (2.4.5.2) to help constraint the model to ensure 

compact districts by limiting the number of cut edges. These are defined as follows: 

Let 𝑠𝑖𝑘 = {
1, if adjacent units 𝑖 and k are in the same district

0, otherwise
   

∀ 𝑖, 𝑘 ∈ 𝑈𝑛𝑖𝑡𝑠, s. t. 𝑑𝑖𝑠𝑡𝑖𝑘 = 1 

Let 𝑤𝑖𝑘𝑗 be an auxillary binary variable  
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∀ 𝑖, 𝑘 ∈ 𝑈𝑛𝑖𝑡𝑠, 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠  

s. t. 𝑑𝑖𝑠𝑡𝑖𝑘 = 1, 𝑝𝑖𝑗 = 1, 𝑎𝑛𝑑 𝑝𝑘𝑗 = 1 

2.3 Objective Function 

Currently, the strictest requirement during redistricting is that districts remain 

near equal. This requirement is one strictly upheld by the courts under constitutional law 

in the 14th amendment [2]. For this reason, the model given here will seek to produce a 

solution with the smallest possible maximum deviation from a district’s target population. 

This is done by minimizing the decision variable 𝑧 and requiring that variable to be the 

largest population deviation from the target population of all districts. This objective 

function is as follows: 

min 𝑧 = max
𝑗∈𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠

|( ∑ 𝑥𝑖𝑗 ∗ 𝑣𝑖
𝑖∈𝑈𝑛𝑖𝑡𝑠,   𝑠.𝑡.  𝑝𝑖𝑗=1

)− 𝑡𝑎𝑟𝑔𝑃𝑜𝑝| 

The way this objective function is linearized for the mathematical model is explained 

further in (2.4.1). 

2.4 Functional Constraints 

 With everything in place to generate optimal districts in terms of even population, 

we can begin constraining the model to pick a map that is valid, contiguous, fair, and 

compact. 

2.4.1 Constraining Objective Function Decision Variable 𝒛 

First and foremost, we must constrain the decision variable 𝑧 to be the value of 

the objective function. Unfortunately, the objective function given for 𝑧 in (2.3) is 

nonlinear. In order to linearize it, we require 𝑧 to be equal to the objective function 
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through two constraints, one for positive deviations from 𝑡𝑎𝑟𝑔𝑃𝑜𝑝, (C1), and one for 

negative deviations (C2). 

𝑧 ≥  ( ∑ 𝑥𝑖𝑗 ∗ 𝑣𝑖
𝑖∈𝑈𝑛𝑖𝑡𝑠: 𝑝𝑖𝑗=1

) − 𝑡𝑎𝑟𝑔𝑃𝑜𝑝, ∀ 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 (C1) 

𝑧 ≥  𝑡𝑎𝑟𝑔𝑃𝑜𝑝 − ( ∑ 𝑥𝑖𝑗 ∗ 𝑣𝑖
𝑖∈𝑈𝑛𝑖𝑡𝑠: 𝑝𝑖𝑗=1

) ,∀ 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 (C2) 

 Notice that through these two constraints, we require 𝑧 to be greater than the 

population deviation by absolute value for all of the districts. This in turn has the same 

result as making 𝑧 larger than the maximum deviation, allowing us to then minimize 𝑧 in 

the objective function to achieve our desired result. 

2.4.2 Constraining Unit-District Relationship 

Next, we must force the model to use the decision variable 𝑥 properly such that 

each unit is assigned to exactly one district. Using (C3), we are able to force this. Note 

that we don’t explicitly require the converse, that each district is assigned at least one 

unit. This is because an empty district would produce a very large population deviation 

equal to the target population. Thus, this constraint is captured by the objective which 

optimally evens out the population distribution among all districts. 

 ∑ 𝑥𝑖𝑗
𝑗∈𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠: 𝑝𝑖𝑗=1

= 1, ∀ 𝑖 ∈ 𝑈𝑛𝑖𝑡𝑠 (C3) 

2.4.3 Constraining Contiguity 

 It is now important to ensure that any generated districts are made up of units that 

are contiguous. This means there must always exist a path between two units in the same 
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district such that all units along that path are also in the same district. Constraint (C4), 

below, accomplishes this. However, writing a linear constraint that guarantees contiguity 

is non-trivial. Thus, we provide both an intuitive explanation for this constraint’s 

functionality as well as a formal proof guaranteeing each district’s contiguity. 

∑ 𝑥𝑖𝑗
𝑖∈𝑈𝑛𝑖𝑡𝑠: 

(𝑑𝑖𝑠𝑡𝑖𝑘=1 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡𝑖𝑙=𝑑−1)
𝑜𝑟 (𝑑𝑖𝑠𝑡𝑖𝑘=𝑑−1 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡𝑖𝑙=1)

≥ 𝑥𝑘𝑗 + 𝑥𝑙𝑗 − 1,

∀ 𝑘, 𝑙 ∈ 𝑈𝑛𝑖𝑡𝑠, 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠,

𝑠. 𝑡.  𝑑 = 𝑑𝑖𝑠𝑡𝑘𝑙 ∈ [2,𝑚𝑎𝑥𝐷𝑖𝑠𝑡], 𝑝𝑘𝑗 = 1, 𝑝𝑙𝑗 = 1 

(C4) 

2.4.3.1 Intuition for the Contiguity Constraint’s Functionality  

What constraint (C4) says in layman’s terms is that for every pair of units 

included in the same district and a distance 𝑑 ≥ 2 apart, we require that one of that pair’s 

bridge units also be included in the district. A bridge unit is a term we coined and is 

defined as follows: 

Definition. For any two units that are a distance 𝑑 ≥ 2 apart (i.e., there are 

at least two edges separating them), a bridge unit is defined to be a unit 

that is adjacent to one of them and exactly a distance of 𝑑 − 1 from the 

other. 

Consider the graphic in Figure 5. Let every enclosed space be a unit in the state. 

Consider 𝑘 and 𝑙 to have already been chosen for the same district. Let 𝑑𝑖𝑠𝑡𝑘 be the 

distance of a given unit from 𝑘 and 𝑑𝑖𝑠𝑡𝑙  be the distance of a given unit from 𝑙. Notice 

that 𝑘 and 𝑙 are a distance of 5 from one another. Let those units highlighted light blue be 
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the set of bridge units (as they are a distance of 1 from either 𝑘 or 𝑙 and a distance of 

5– 1 = 4 from the other).  

Intuitively, via the constraint above, we require that at least one of these light blue 

bridge units also be included in the district. Notice that the summation selects for 

candidate bridge units. Only when both units k and l are included in the same district will 

the right-hand side be equal to 1. When this is the case, the constraint will force the 

model to include at least one of the candidate bridge units highlighted in Figure 5.  

Since these bridge units bring the connectedness of the disjoint subgraphs 

containing 𝑘 and 𝑙 closer together and the included bridge unit will then require its own 

bridge unit to be included in the district, from a recursive perspective, bridge units will 

continue to be added until these subgraphs are connected via some path. 

 

Figure 5 

Diagram Demonstrating Bridge Unit Definition 
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2.4.3.2 Contiguity Proof  

We now provide a formal proof that constraint (C4) achieves connectedness. 

First, recall the definition of a connected graph: 

Definition. A graph G is connected if and only if for any two nodes 

𝑥, 𝑦 ∈ 𝐺, ∃ a sequence of nodes 𝑏1, 𝑏2 , … , 𝑏𝑛 s.t. 𝑑𝑖𝑠𝑡𝑥𝑏1 = 1,  

𝑑𝑖𝑠𝑡𝑦𝑏𝑛 = 1, and ∀ 𝑖 ∈ [2, 𝑛], 𝑑𝑖𝑠𝑡𝑏𝑖−1𝑏𝑖 = 1 

The main connectedness result is given in the following theorem: 

Theorem. All resulting districts from the redistricting model will always 

contain a set of units 𝑈 which can be expressed as a connected graph 

where nodes are the units in a district and edges exist between adjacent 

units. 

Proof. We must show that for any pair of units in 𝑈 corresponding to its 

district 𝑗, that they are guaranteed to be connected by some subset (or 

component) of nodes from the district graph. We will show it by induction 

over possible distances 𝑑 in the range [1,𝑚𝑎𝑥𝐷𝑖𝑠𝑡] for a pair of units in 

the district. 

Base Cases: 

𝑑 = 1 (Trivial Case):  

Consider any two nodes 𝑘, 𝑙 in a district graph to be distance 1 

apart. If this is the case 𝑘 and 𝑙 are connected by default (by the definition 

of connectedness). 

𝑑 = 2: 
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Consider any two nodes 𝑘, 𝑙 in a district graph to be distance 2 

apart. By the (C4) constraint, some node 𝑖 in the set of  

{

𝑖 ∈ 𝑈𝑛𝑖𝑡𝑠,   𝑠. 𝑡.
(𝑑𝑖𝑠𝑡𝑖𝑘 = 1 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡𝑖𝑙 = 2 − 1)
𝑜𝑟 (𝑑𝑖𝑠𝑡𝑖𝑘 = 2 − 1 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡𝑖𝑙 = 1)

} 

must be included in the district graph. By the definition of this set in (C4), 

𝑖 must be a distance of 1 from both 𝑘 and 𝑙. Thus, by the definition of 

connectedness, 𝑘 and 𝑙 are connected via 𝑖. 

Inductive Step: 

Thus, by proving the above base cases we can assume the 

following inductive hypothesis: Assume that any two nodes (units) in the 

district graph distance 𝑑 from one another are connected for any 𝑑 s.t. 0 <

𝑑 < 𝑚𝑎𝑥𝐷𝑖𝑠𝑡. 

We must now show that any two nodes 𝑘, 𝑙 in the district graph, 

such that 𝑘, 𝑙 are distance 𝑚 =  𝑑 +  1 apart, are connected. 

By the constraint (C4), some node 𝑖 such that 𝑖 is adjacent to 𝑘 and 

distance 𝑚 –  1 from 𝑙 or such that 𝑖 is adjacent to 𝑙 and distance 𝑚 –  1 

from 𝑘 must be included in the district graph.  

By the inductive hypothesis, we have that for any two nodes in the 

district graph of distance less than 𝑚 are connected. Thus, in the first case 

for 𝑖 it must be the case that 𝑖 is adjacent to 𝑘 and connected to 𝑙 by the 

inductive hypothesis. In the second case for 𝑖 it must be that 𝑖 is adjacent 
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to 𝑙 and connected to 𝑘 by the inductive hypothesis. In either case, by the 

definition of connectivity, 𝑘 is connected to 𝑙 via the included node 𝑖. 

Qed. 

2.4.3.3 Additional Restrictiveness 

It is important to note that while this constraint, (C4), guarantees connected 

districts as shown in the proof, having this constraint prohibits a few possible ensembles 

of districts. Consider a modification to Figure 5 as shown in Figure 6. 

 

Figure 6 

Diagram Demonstrating Contiguity Constraint Restrictiveness 

 

 

Let all the dark blue units be included in the same district as 𝑘 and 𝑙. Notice that 

the inclusion of these units would make the dark blue district fully contiguous. However, 

it is clear by inspection that none of these units fit the criteria to be considered a bridge 



41 

 

unit for the pair of units 𝑘 and 𝑙. Thus, their inclusion will not be sufficient for our model 

to consider 𝑘 and 𝑙 to be connected and it will require additional bridge units (one of the 

light blue shaded units) to be included as a result. Thus, a resulting district including only 

those units highlighted dark blue as above would not be possible under the constraints 

given in this model. This creates an additional, unintended restrictive property by 

including the contiguity constraint. It is important to realize this side effect and the cost 

of having it, however it can largely be seen as a bonus benefit to the connectivity 

constraint. It is evident that districts like the one considered here are visibly not compact 

and would tend to produce enclaves. These are not desirable qualities anyway so omitting 

these possibilities has little cost to the targeted solution space of the model. 

2.4.4 Constraining Political Distribution 

 Next, we constrain the model to produce districts that provide partisan fairness 

through proportionality. This means the model will be forced to choose districts such that 

the proportion of districts that favor one party will be close to the proportion of that 

party’s voters statewide. In order to implement such a constraint, we require a 

constrained variable, 𝑦𝑗, that indicates whether a particular district has more Democrats 

than Republicans in it.  

𝐿𝐴𝑅𝐺𝐸 ∗ 𝑦𝑗 ≥  ∑ (𝑥𝑖𝑗 ∗ 𝑑𝑒𝑚𝑖 − 𝑥𝑖𝑗 ∗ 𝑟𝑒𝑝𝑖)

𝑖∈𝑈𝑛𝑖𝑡𝑠: 𝑝𝑖𝑗=1

,

∀ 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 

(C5) 

This binary variable is set to 1 by constraint (C5), above, if this is the case. This 

works because the right-hand side will be positive when there are more Democrats, thus 

forcing 𝑦𝑗 to be nonzero. Note that 𝐿𝐴𝑅𝐺𝐸 will always satisfy this inequality since it is 
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initialized to the total number of voters in the state and must be greater than the 

difference between the parties’ voters.  

In the case where there are more Republicans, (C5) provides no constraint to 𝑦𝑗. 

Thus, we also utilize (C6), below, which in the case of a district having more 

Republicans, is positive on the right-hand side. This works similarly and forces (1 − 𝑦𝑗) 

to be nonzero, thus forcing 𝑦𝑗 to be 0. 

𝐿𝐴𝑅𝐺𝐸 ∗ (1 − 𝑦𝑗) ≥  ∑ (𝑥𝑖𝑗 ∗ 𝑟𝑒𝑝𝑖 − 𝑥𝑖𝑗 ∗ 𝑑𝑒𝑚𝑖)

𝑖∈𝑈𝑛𝑖𝑡𝑠: 𝑝𝑖𝑗=1

,

∀ 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 

(C6) 

Now that the model can keep track of the number of districts that favor each 

party, we can constrain this number using our predefined target, 𝑡𝑎𝑟𝑔𝐷𝑒𝑚. In order to 

allow some leeway on this target number, we use the hyperparameter 𝜀. Through (C7) 

and (C8), we force the model to choose districts such that the number of them that lean 

Democrat is equal to 𝑡𝑎𝑟𝑔𝐷𝑒𝑚 ± 𝜀. 

 ∑ 𝑦𝑗
𝑗∈𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠

≤ 𝑡𝑎𝑟𝑔𝐷𝑒𝑚 + 𝜀, ∀ 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 (C7) 

 ∑ 𝑦𝑗
𝑗∈𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠

≥ 𝑡𝑎𝑟𝑔𝐷𝑒𝑚 − 𝜀, ∀ 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 (C8) 

2.4.5 Constraining Compactness 

We want to make sure our model captures another key criterion of good 

districts—compactness. Typically, in districts that are more spread out, voters are 

unlikely to share as strong of a geographic and cultural identity, and therefore might have 

fewer shared concerns. This makes it harder for effective representation and in addition, 



43 

 

non-compact district can be a tell-tale sign of a gerrymandered map. Thus, we provide 

two methods for constraining compactness in order to ensure as compact of districts as 

possible. 

2.4.5.1 Maximum Distance 

First, we can constrain for compact districts by setting a maximum distance 

between any two units in a particular district. We create this constraint by considering 

every pair of units greater than the maximum distance and not allowing them to be in the 

same district. 

𝑥𝑖𝑗 + 𝑥𝑘𝑗 ≤  1, ∀ 𝑖, 𝑘 ∈ 𝑈𝑛𝑖𝑡𝑠, 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 𝑠. 𝑡. 𝑝𝑖𝑗 = 1,

𝑝𝑘𝑗 = 1, 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡𝑖𝑘 > 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 
(C9) 

2.4.5.2 Limiting Cut Edges 

A more sophisticated measure we can utilize to ensure we have a compact district 

is known as the number of cut edges.  

Definition. A cut edge is an edge between two adjacent units in a state 

that have been separated into different districts. 

District plans with fewer cut edges are more compact. As an illustrative example, see in 

Map 1 a district plan of Iowa, which is used here since Iowa districts must be built from 

large county-level units, making for a simple, practical example. Cut edges are marked by 

red dashes along unit boundaries. Notice that the districts in this plan are not compact at 

all and sprawl throughout the state. This plan has 68 cut edges. Then, see in Map 2 a 

district plan of Iowa with highly compact districts. Notice that this plan has far fewer cut 

edges with only 30 as opposed to 68. 
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Map 1 

Congressional District Plan of Iowa with Non-Compact Districts and 68 Cut Edges  
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Map 2  

Congressional District Plan of Iowa with Highly Compact Districts and 30 Cut Edges 

 

 

Thus, we can utilize this measure to constrain the model to only choose a plan up 

to a certain number of cut edges. In order to do this, we require a few auxiliary variables 

as defined in (2.2). The first of these, 𝑠𝑖𝑘, is used to determine whether neighboring units 

are in the same district and is equal to 1 if this is the case or 0 if not. The following three 

constraints ensure this using an additional auxiliary variable, 𝑤𝑖𝑘𝑗: 

𝑠𝑖𝑘 ≥ 𝑐𝑖𝑗 + 𝑐𝑘𝑗 − 1,

∀ 𝑖, 𝑘 ∈ 𝑈𝑛𝑖𝑡𝑠, 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 𝑠. 𝑡.  𝑑𝑖𝑠𝑡𝑖𝑘 = 1,

𝑝𝑖𝑗 = 1, 𝑎𝑛𝑑 𝑝𝑘𝑗 = 1 

(C10) 
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𝑠𝑖𝑘 ≤ 0.5 ∗ (𝑐𝑖𝑗 + 𝑐𝑘𝑗) + (1 − 𝑤𝑖𝑘𝑗),

∀ 𝑖, 𝑘 ∈ 𝑈𝑛𝑖𝑡𝑠, 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 𝑠. 𝑡.  𝑑𝑖𝑠𝑡𝑖𝑘 = 1,

𝑝𝑖𝑗 = 1, 𝑎𝑛𝑑 𝑝𝑘𝑗 = 1 

(C11) 

∑ 𝑤𝑖𝑘𝑗
𝑗∈𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠: 

𝑝𝑖𝑘=1 𝑎𝑛𝑑 𝑝𝑘𝑗=1

≥  1, ∀ 𝑖, 𝑘 ∈ 𝑈𝑛𝑖𝑡𝑠, 𝑠. 𝑡.  𝑑𝑖𝑠𝑡𝑖𝑘 = 1 
(C12) 

Notice that the first constraint, (C10), will ensure 𝑠𝑖𝑘 is 1 any time two 

neighboring units are in the same district, as the right-hand side will be 1. If the units are 

not included in the same district, (C10) places no restriction on 𝑠𝑖𝑘.  

The second constraint, (C11), in conjunction with (C12) ensure that 𝑠𝑖𝑘 is 0 if 𝑖 

and 𝑘 are not included in the same district, without placing any restriction on 𝑠𝑖𝑘 if they 

are in the same district. To understand this, first consider the case where 𝑖 and 𝑘 are not 

included in the same district. This means given any particular district, 𝑗, 0.5 ∗ (𝑐𝑖𝑗 + 𝑐𝑘𝑗) 

can only be at most 0.5. Constraint (C12) ensures that for at least one district 𝑗, 𝑤𝑖𝑘𝑗 ≥ 1 

and therefore 1 − 𝑤𝑖𝑘𝑗 ≤ 0. Summing these terms on the right-hand side of (C11) means 

that for at least one district 𝑗, this constraint will force that 𝑠𝑖𝑘 ≤ 0.5 and since 𝑠𝑖𝑘 is a 

binary variable, it must be 0. 

Now consider the case where 𝑖 and 𝑘 are included in the same district. Constraint 

(C10) will force 𝑠𝑖𝑘 to be 1, but we must make sure that (C11) provides no contradictory 

restriction. This is where the slack variable 𝑤𝑖𝑘𝑗 serves its main purpose. When the 

constraint considers the districts 𝑖 and 𝑘 are not included within, 0.5 ∗ (𝑐𝑖𝑗 + 𝑐𝑘𝑗) = 0, 

but 𝑤𝑖𝑘𝑗 can be 0 as well still making the right-hand side equal to 1, thus placing no 
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restriction. When the constraint considers the district which 𝑖 and 𝑘 are both included in, 

0.5 ∗ (𝑐𝑖𝑗 + 𝑐𝑘𝑗) will be 1, placing no restriction on 𝑠𝑖𝑘, and 𝑤𝑖𝑘𝑗 can be 1 as well in 

order to still satisfy (C12). 

 Now that we have a variable indicating whether two neighboring units are in the 

same district, we can write a constraint that sums up and limits the number of cut edges:  

1

2
∗

(

 
 

∑ (1 − 𝑠𝑖𝑘)

𝑖,𝑘∈𝑈𝑛𝑖𝑡𝑠: 
𝑑𝑖𝑠𝑡𝑖𝑘=1 )

 
 
≤ 𝑚𝑎𝑥𝐶𝑢𝑡 (C13) 

First, notice that the right-hand side of (C13) sums together all of the 𝑠𝑖𝑘 

variables, but first subtracts each from 1. The effect of this transformation is to make 𝑠𝑖𝑘 

1 if it was originally 0 and to make 𝑠𝑖𝑘 0 if it was originally 1. Without this 

transformation, we would get the sum of all the uncut edges in a district plan, where both 

units are in the same district. By applying this linear transformation and then summing 

the variables, we in effect compute twice the number of cut edges. This is because the 𝑠𝑖𝑘 

variables resemble a symmetric matrix where 𝑠𝑖𝑘 is the same variable as 𝑠𝑘𝑖. Thus, we 

can multiply this summation by ½ and after computing this number of cut edges, we can 

limit that value by the parameter 𝑚𝑎𝑥𝐶𝑢𝑡.  

2.5 Summary of Model 

Here we provide a summary of the model’s objective and constraints in one place. 

Objective 

min 𝑧 

subject to: 
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𝑧 ≥  ( ∑ 𝑥𝑖𝑗 ∗ 𝑣𝑖
𝑖∈𝑈𝑛𝑖𝑡𝑠: 𝑝𝑖𝑗=1

) − 𝑡𝑎𝑟𝑔𝑃𝑜𝑝, ∀ 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 (C1) 

𝑧 ≥  𝑡𝑎𝑟𝑔𝑃𝑜𝑝 − ( ∑ 𝑥𝑖𝑗 ∗ 𝑣𝑖
𝑖∈𝑈𝑛𝑖𝑡𝑠: 𝑝𝑖𝑗=1

) ,∀ 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 (C2) 

Unit-District Relationship 

∑ 𝑥𝑖𝑗
𝑗∈𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠: 𝑝𝑖𝑗=1

= 1, ∀ 𝑖 ∈ 𝑈𝑛𝑖𝑡𝑠 
(C3) 

Contiguity 

∑ 𝑥𝑖𝑗
𝑖∈𝑈𝑛𝑖𝑡𝑠: 

(𝑑𝑖𝑠𝑡𝑖𝑘=1 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡𝑖𝑙=𝑑−1)
𝑜𝑟 (𝑑𝑖𝑠𝑡𝑖𝑘=𝑑−1 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡𝑖𝑙=1)

≥ 𝑥𝑘𝑗 + 𝑥𝑙𝑗 − 1,

∀ 𝑘, 𝑙 ∈ 𝑈𝑛𝑖𝑡𝑠, 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠,

𝑠. 𝑡.  𝑑 = 𝑑𝑖𝑠𝑡𝑘𝑙 ∈ [2,𝑚𝑎𝑥𝐷𝑖𝑠𝑡], 𝑝𝑘𝑗 = 1, 𝑝𝑙𝑗 = 1 

(C4) 

Political Distribution 

𝐿𝐴𝑅𝐺𝐸 ∗ 𝑦𝑗 ≥  ∑ (𝑥𝑖𝑗 ∗ 𝑑𝑒𝑚𝑖 − 𝑥𝑖𝑗 ∗ 𝑟𝑒𝑝𝑖)

𝑖∈𝑈𝑛𝑖𝑡𝑠: 𝑝𝑖𝑗=1

,

∀ 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 

(C5) 

𝐿𝐴𝑅𝐺𝐸 ∗ (1 − 𝑦𝑗) ≥  ∑ (𝑥𝑖𝑗 ∗ 𝑟𝑒𝑝𝑖 − 𝑥𝑖𝑗 ∗ 𝑑𝑒𝑚𝑖)

𝑖∈𝑈𝑛𝑖𝑡𝑠: 𝑝𝑖𝑗=1

,

∀ 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 

(C6) 

∑ 𝑦𝑗
𝑗∈𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠

≤ 𝑡𝑎𝑟𝑔𝐷𝑒𝑚 + 𝜀, ∀ 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 
(C7) 
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 ∑ 𝑦𝑗
𝑗∈𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠

≥ 𝑡𝑎𝑟𝑔𝐷𝑒𝑚 − 𝜀, ∀ 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 
(C8) 

Compactness—Maximum Distance 

𝑥𝑖𝑗 + 𝑥𝑘𝑗 ≤  1, ∀ 𝑖, 𝑘 ∈ 𝑈𝑛𝑖𝑡𝑠, 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 𝑠. 𝑡. 𝑝𝑖𝑗 = 1,

𝑝𝑘𝑗 = 1, 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡𝑖𝑘 > 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 
(C9) 

Compactness—Cut Edges  

𝑠𝑖𝑘 ≥ 𝑐𝑖𝑗 + 𝑐𝑘𝑗 − 1,

∀ 𝑖, 𝑘 ∈ 𝑈𝑛𝑖𝑡𝑠, 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 𝑠. 𝑡.  𝑑𝑖𝑠𝑡𝑖𝑘 = 1,

𝑝𝑖𝑗 = 1, 𝑎𝑛𝑑 𝑝𝑘𝑗 = 1 

(C10) 

𝑠𝑖𝑘 ≤ 0.5 ∗ (𝑐𝑖𝑗 + 𝑐𝑘𝑗) + (1 − 𝑤𝑖𝑘𝑗),

∀ 𝑖, 𝑘 ∈ 𝑈𝑛𝑖𝑡𝑠, 𝑗 ∈ 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 𝑠. 𝑡.  𝑑𝑖𝑠𝑡𝑖𝑘 = 1,

𝑝𝑖𝑗 = 1, 𝑎𝑛𝑑 𝑝𝑘𝑗 = 1 

(C11) 

∑ 𝑤𝑖𝑘𝑗
𝑗∈𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠: 

𝑝𝑖𝑘=1 𝑎𝑛𝑑 𝑝𝑘𝑗=1

≥  1, ∀ 𝑖, 𝑘 ∈ 𝑈𝑛𝑖𝑡𝑠, 𝑠. 𝑡.  𝑑𝑖𝑠𝑡𝑖𝑘 = 1 
(C12) 

∑ (1− 𝑠𝑖𝑘)

𝑖,𝑘∈𝑈𝑛𝑖𝑡𝑠: 
𝑑𝑖𝑠𝑡𝑖𝑘=1

≤ 𝑚𝑎𝑥𝐶𝑢𝑡 (C13) 

Chapter 3: Computational Results 

Here we provide a summary of our data preparation and experimental results 

when validating the model on the state of Ohio. Additional results alongside the code 

used in each section will be made available on the project’s public repository at 

https://github.com/benjamincarman/repairing-redistricting. 

https://github.com/benjamincarman/repairing-redistricting
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3.1 Data Preparation 

For our proposed model to function, we require a set of base-level geographic 

units from which the model will build districts by grouping these units together. 

Furthermore, we need data attached to these geographic units in order to use objectives 

and constraints related to population balance, partisan balance, connectedness, and 

compactness. In particular, this data includes population totals, vote totals in past 

elections, and the relative “distance” between any two units as determined by the 

minimum number of edges one must travel through to reach the other. 

3.1.1 Granularity of units 

We focus on testing and validating our model using the heavily gerrymandered 

state of Ohio. In order to begin choosing and collecting base units for Ohio one primary 

concern is that we require election data attached to the geographic units. In Ohio, the 

smallest geographic unit at which election totals are reported are known as precincts. This 

means the smallest granularity of units we can provide the model would be a precinct 

map of the state of Ohio. Unfortunately, Ohio has 8,882 precincts and in testing, these 

units were too computationally intensive given our limited computing power and time. 

This means we had to determine and collect some other unit options with decreased 

granularity in order to reduce the computational complexity. First, the following options 

were all prepared and tested: 

• Precincts 

o Ohio does not publish or maintain a digitized precinct map of the state. In 

order to build maps from basic precincts, we use data and maps collected 
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and prepared by the Metric Gerrymandering and Geometry Group 

(MGGG) based out of Tufts University [15]. This dataset contains 8,882 

units and was too computationally intensive to be used but was used to 

build all of other datasets explained below. 

• Places 

o These units were manually created to provide fine granularity but with 

only 1,204 units. These were generated using the set of Census designated 

places as downloaded from NHGIS [16]. Census places are simply points 

in Ohio that correspond to local cities, towns, and villages. Precincts were 

then grouped together based on the closest Census designated place in the 

same county to make a map of small geographic areas centered around 

Census places.  

• Counties with three densest divided into places 

o Since precincts nest perfectly into counties and preserving counties is a 

goal (integrity) during redistricting anyway, we considered using a county-

level map. Still, at the very least the three most populous counties in 

Ohio—Cuyahoga, Franklin, and Hamilton—need to be split into smaller 

units as they are generally too dense to entirely fit within one district. For 

these counties, we split them into the place-level units as described above. 

This left us with 253 units in total. 

Through the creation of each of these options from precents to places to counties, the 

granularity of the base units decreases, which also decreases the computational 
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complexity of the model by reducing the number of variables. On the other hand, by 

using smaller units (higher granularity) we provide the model with more flexibility to 

find the most optimal result. Given our limited computational resources and time, we still 

discovered that each of these first three options for base units were too computationally 

complex. We needed to reduce the number of units even further and settled on using the 

county-level map of Ohio where some of the largest counties were split into sub-units 

units as seen in Map 3 and Map 4 below. These datasets ultimately used for validating 

our model are described next. 

3.1.1.1 Dataset 1 

This dataset is built off of the counties dataset where the 3 densest counties were 

split into place units. We reduced the granularity of this dataset further by manually 

grouping the place-level units in the three densest counties into five separate units of 

roughly similar area. This left 100 units and they can be seen in Map 3. 
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Map 3 

County map of Ohio with 3 most populous counties divided manually 

 

3.1.1.2 Dataset 2 

This dataset is similar to Dataset 1 as most units are simply Ohio’s counties. 

However, in this dataset in order to make population as equal as possible among units, 

the nine most populous counties were divided into sub-units: Cuyahoga, Franklin, 

Hamilton, Summit, Stark, Lucas, Montgomery, Butler, and Lorain. While these counties 
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were divided by hand, extra care was taken to make sure each of the sub-units were as 

equal in population as possible. This left 105 units and they can be seen in Map 4.  

Map 4 

County map of Ohio with 9 most populous counties divided manually into even sub-units 

 

  

3.1.2 Supplying model parameters 

Given a map of units, vote and population totals were aggregated using the 

Geopandas Python library from precinct totals provided by data from MGGG [15]. For 
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the purposes of these tests, the number of Democrats and Republicans in each unit were 

simply determined based on the 2016 US presidential election vote totals. A more 

methodical approach could be used in production for determining an accurate 

representation of a unit’s political leanings.  

The parameter 𝑝𝑖𝑗, given in 2.1.1, for whether a unit was able to be included in a 

given district was defined methodically such that a given unit could be included in its 

current district (from the 2012-2022 map) or any district adjacent to its current district. 

This still allowed for a great amount of flexibility in the model’s options while also 

ensuring many unnecessary decision variables were removed, thus improving the model’s 

complexity.  

Finally, data was included for the distances between each pair of units. This was 

generated by determining an adjacency matrix for the set of base units using Geopandas. 

This adjacency matrix was then fed into a C++ implementation of Dijkstra’s algorithm to 

compute the minimum number of edges that must be traversed in order to reach one unit 

from another. For more details on this methodology, see Appendix B.  

3.2 Mathematical Model Results 

Before considering the results of running this model on the state of Ohio, we first 

reference the current district plan in Ohio, as shown in Map 5. Notice that this plan 

includes districts that are widespread and have visibly awkward shapes. While the current 

districts manage to get within a margin of 1 person from the target population, it is 

clearly not compact, nor does it represent the political leanings of the state proportionally. 

Based on election results from the 2016 U.S. presidential election, 43.2% of Ohio’s 
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voters vote Democrat and 51.3% vote Republican. However, 75% of the state’s U.S. 

congressional districts have more Republican voters than Democrat voters. Thus, the map 

was clearly drawn with partisan goals in mind and aggressively violates proportionality. 

Map 5 

Map of Ohio’s 2012-2022 U.S. Congressional District Plan 

 



57 

 

Note: Map reprinted from F. LaRose, "U.S. Congressional Districts 2012-2022 in Ohio," 

February 2018. [Online]. Available: 

https://www.ohiosos.gov/globalassets/publications/maps/2012-2022/congressional_2012-

2020_districtmap.pdf. [Accessed 17 April 2021]. 

 

3.2.1 Dataset 1 Results 

First, the model was tested on Dataset 1 as shown in Map 3, a map of county-level 

units where the 3 densest counties were split manually into sub-units of roughly equal 

area. In all experiments we used the solver Gurobi, either as hosted on the NEOS server 

or within a local installation of AMPL [17], [18], [19], [20], [21]. In all experiments we 

used an 𝜀 value of 1. We tested the model using a variety of settings for the maximum 

distance parameter, 𝑚𝑎𝑥𝐷𝑖𝑠𝑡, as well as the limit on cut edges, 𝑚𝑎𝑥𝐶𝑢𝑡. We treated 

these as model hyperparameters and effectively ran a grid search on values of 

𝑚𝑎𝑥𝐷𝑖𝑠𝑡 ∈ [5,6,7,8] and values of 𝑚𝑎𝑥𝐶𝑢𝑡 between 100 and 130 in increments of 5 to 

find the most compact results possible. Since each of these results ended up yielding the 

same objective value, we choose the two most compact results to summarize here.  

Each of these best experiments use a 𝑚𝑎𝑥𝐶𝑢𝑡 value of 110, the minimum value 

given to the model that still returned a result. One experiment used a 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 value of 5 

while the other used 6. Each of their results are summarized in Table 1. In the table we 

include the number of enclaves as defined by the number of units that border only one 

other unit of the same district (for districts with 3 or more units). When computing 

enclaves and cut edges for the state’s current plan, we define any county or subsection of 
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a county (as divided by the state’s district lines) to be its own unit. It is important to note 

these computed values for the state’s current plan are not perfectly comparable since our 

plans are built from different basic-level units—but still provide a decent depiction. 

 

Table 1 

Summary of Mathematical Model’s Best Results on Dataset 1 

Map 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 
Cut 

Edges 
Enclaves 

Max Population 

Deviation 

Dem/Rep Districts 

(Target Dem/Rep) 

Map 6 5 110 10 7.3% 6/10 (7/9) 

Map 7 6 109 10 7.3% 6/10 (7/9) 

Current Plan, 

Map 5 
10 142 19 <0.1% 4/12 (7/9) 

 

 

The corresponding maps to these results follow in Map 6 and Map 7. Note that in each of 

the maps, districts colored with a reddish hue lean Republican while districts with a 

bluish hue lean Democrat.  
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Map 6 

Map of Model’s Result on Dataset 1 with 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 = 5, 𝑚𝑎𝑥𝐶𝑢𝑡 = 110, and 

𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 1 
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Map 7 

Map of Model’s Result on Dataset 1 with 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 = 6, 𝑚𝑎𝑥𝐶𝑢𝑡 = 110, and 

𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 1 
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As shown, the model is clearly outputting a contiguous, sensible district map for 

the state of Ohio. On the account of proportionality, it meets the 𝑡𝑎𝑟𝑔𝑑𝑒𝑚 ± 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 

threshold as required by the model, far beating the current plan on proportionality. In 

terms of compactness, both maps pass the eyeball test very well as districts appear quite 

compact, far better than the current plan. Map 7, which allows the 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 to be 1 

greater, actually output a map with 1 fewer cut edge. For further comparison on the 

impact of the compactness constraints, see the additional results in Appendix C. 

It is only on the account of maximum population deviation that our model 

struggles to compete with the current plan. The current districts manage to get within 1 

person of their target population while ours has a maximum deviation of 7.3%. Since 

minimizing population deviation was our objective and these were optimal results—this 

is clearly a side effect of the base data layer of units fed into the model. Upon closer 

inspection of all our experimental results, it was found that they all actually reached the 

same objective value. This was due to the way the units were chosen in Cuyahoga 

county. All maps yielded the same 3-unit district entirely contained within Cuyahoga 

county and this district, while optimal for the plan, was the limiting factor for minimizing 

population deviation. 

3.2.2 Dataset 2 Results 

Since all results using Dataset 1 yielded the same objective value, Dataset 2 was 

created with the goal of using a similar number of units, while being extra careful to 

make them as even in population as possible. This was achieved by dividing 6 more of 
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the dense counties into sub-units and more carefully choosing the boundaries of these 

sub-units based on the amount of population contained within.  

We tested the model on this dataset under similar conditions as we tested Dataset 

1, but found the computation to take significantly longer and were unable to retrieve an 

optimal result from the solver Gurobi. This suggests that with Dataset 1 the model was 

able to find an optimal solution sooner due to the spurious patterns related to population 

totals within units—especially around Cuyahoga county. 

Thus, in order to still see what types of plans could be output by the model under 

this dataset, we gave Gurobi the option to return a result early once it had reached a 

certain value in the objective. We kept 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 1 and tested various options for this 

early stopping value as well as values of 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 and 𝑚𝑎𝑥𝐶𝑢𝑡. Our best result occurred 

with 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 = 6, 𝑚𝑎𝑥𝐶𝑢𝑡 = 110, and an early stopping value of 𝑧 = 19000. We 

provide our best result here in Table 2 and Map 8 for comparison with the outputs using 

Dataset 1 and the state’s current plan. 

 

Table 2 

Summary of Mathematical Model’s Best Results on Dataset 2 

Map 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 
Cut 

Edges 
Enclaves 

Maximum 

Population 

Deviation 

Dem/Rep Districts 

(Target Dem/Rep) 

Map 8 6 109 10 5.6% 6/10 (7/9) 

Current Plan, 

Map 5 
10 142 19 <0.1% 4/12 (7/9) 
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Map 8 

Map of Model’s Result on Dataset 2 with 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 = 6, 𝑚𝑎𝑥𝐶𝑢𝑡 = 110, 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 1, 

and an early stopping value of 𝑧 = 19000 
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 Clearly this result meets the goals of proportionality and compactness just as well 

as both of the results from using Dataset 1 while also reducing the maximum population 

deviation from 7.3% to 5.6%. This demonstrates the capability for the model to produce 

more optimal districts with respect to population deviation while highlighting that the 

limiting factor here is in the granularity of units we are able to provide the model. 

Providing more, smaller units could give the model greater flexibility to reduce the 

objective value, but this appears to become computationally expensive quickly.  

Chapter 4: Future Directions and Summary 

Based on these computational results, the model is doing a very good job of 

producing compact and contiguous districts that achieve proportionality, especially in 

comparison to Ohio’s current districts. However, there is clearly room for improvement 

in several of the redistricting criteria discussed in Section 1.1 as well as in the model’s 

overall complexity. Here we provide some suggestions for several areas of future work to 

extend this project. 

4.1 Model Complexity 

There is work to be done to further analyze the complexity of the model in terms 

of the number of decision variables, parameters, and constraints based on the units 

provided to the model. In particular, this analysis is necessary to begin considering ways 

to reduce the model’s complexity. The reason for this is to better enable the model to 

return effective results on datasets with more units than those tested in this paper. 

Running the model on datasets with units at a higher granularity is clearly the key to 
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achieving smaller population deviations and if additional computational resources aren’t 

an option, then a model with fewer variables or constraints could enable this.  

In particular, our constraints related to both contiguity and compactness are 

costly. The cut edge constraint is implemented in a way that requires 𝑤𝑖𝑘𝑗 auxiliary 

variables for every pair of neighboring units and every district in the state. Simply to 

achieve contiguity, we could require as many as 𝑁2 ∗ 𝑀 constraints. Could either of these 

criteria be met using a smaller model? 

4.2 Partisan Fairness 

Currently, the model uses proportionality to ensure that a resulting district plan is 

fair in a partisan sense. However, there are many other popular metrics used to measure 

partisan fairness. In the future, one could try to model and evaluate metrics like partisan 

symmetry or the efficiency gap with this model, as these metrics are explained in Section 

1.3. 

4.3 Compactness 

In section 1.2, we give a wide variety of popular metrics for compactness. In our 

model we chose cut edges as our means of constraining for compactness due to its 

flexibility and simplicity in a number of geographic situations. However, it could be 

interesting to incorporate one or more of the other measures of compactness for 

comparison. Perhaps a different measure, or multiple measures together could yield a 

more compact plan. Perhaps using a different measure could result in similarly compact 

results but with fewer decision variables. Similarly, to promote compactness, constraints 

could be added to limit the number of enclaves, or units that only border one other unit in 
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the same district. See Appendix D for a modeling technique we propose using to 

constrain this but did not have time to evaluate in this project. 

4.4 Integrity 

Another key criterion of good districts was integrity where we aim to preserve 

other geographic subdivisions like counties, cities, townships, and communities of 

interest. Our current results achieve this fairly well by using basic-level units that are 

primarily chosen to be counties in the first place. If a future person were able to test the 

model on datasets with finer granularity like precincts, modeling would be necessary to 

limit the number of subdivisions, such as counties, that get split between districts.  

4.5 Competitiveness 

While this model goes out of the way to promote partisan proportionality, 

competitiveness is one criterion that we did not end up including in the model but could 

be considered for a future one. A future work could consider how best to define and 

constrain for competitiveness. Should all districts be made as competitive as possible and 

have partisan leanings be within a certain margin of one another? Should a certain 

number of districts be made as competitive as possible while the rest are proportionally 

made ‘safe’ districts for each particular party? Since the geographic concentration of 

certain voters tends to vary widely throughout a state (for example Democrats being 

concentrated in larger cities), this could be a difficult criterion to achieve while 

maintaining compactness. Further thought to the existing policy and fairness surrounding 

competitiveness should be taken and then this criterion could be evaluated as an 

additional modeling component. 
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4.6 Voting Rights Act 

While partisan gerrymandering is still legal to a certain extent in many states, 

racial gerrymandering is explicitly prohibited by the Voting Rights Act. This current 

model does not take into account the demographics of a state nor the ability for minority 

groups to elect a candidate of choice. This type of analysis is essential when designing a 

new district plan in order to comply with the VRA and have a fair map. Considering how 

to use a model like this one to combat racial gerrymandering is a major future direction 

that we see as a priority for the model going forward. 

4.7 Additional Experimentation 

Beyond continuing to improve the model’s performance under a variety of 

criteria, a major area for future work is in simply applying and evaluating the model in a 

variety of other situations. We offer the state of Ohio as a proof of concept, but the model 

should be applied and evaluated in other states with their own unique geographic and 

political characteristics. How do the results compare when applied to larger states like 

Texas? What type of results would the model return in a state like Iowa which requires 

basic-level units to be counties in the first place?  

Furthermore, the model should not only be applied to other states but could also 

be applied to other levels of government. Here we consider the model being used to 

generate congressional districts, but perhaps it is better suited to produce a state’s 

legislative districts which tend to have more lenient requirements on population balance. 

How does the model perform on situations like this? What might need tweaked?  
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4.8 Alternative Modeling Approaches 

In the process of applying the model to other states and types of districts, the 

model is likely to need adjusted. As a future direction, one could consider other ways to 

more significantly restructure the model. Should population balance actually be the 

objective? Perhaps this objective could be made a constraint and the model could 

minimize for compactness. It would also be interesting to consider a multi-objective 

approach to the model. Could compactness and population balance be combined in the 

objective function? How should each goal be weighted? 

4.9 Summary and Impact 

This project ultimately acts as a proof of concept for applying integer linear 

programming-based techniques to optimize the process of redistricting. We are able to 

create a mathematical model that prioritizes population balance while also forcing that a 

state’s district plan is compact and fair. We achieve impressive results on the state of 

Ohio, especially when compared to the state’s current, heavily gerrymandered plan. This 

exhibits a strong potential for an ILP-based optimization model to have a seat at the 

redistricting table and be used to help generate fairer districts. There are a variety of other 

technologies and techniques used to help combat gerrymandering, but this type of model 

has significant potential to serve as yet another tool in a map drawer’s tool belt.  

However, it is important to note that it is not necessarily the intention of this paper 

to propose that algorithmic redistricting using a model like this one replaces the current 

redistricting processes where mapmaking commission are convened, public input is 

taken, and inappropriate districting decisions are challenged in court. Creating districts is 
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an inherently complex problem where computers stand to offer significant assistance—

but it is also an inherently human problem. It is virtually impossible to incorporate and 

properly prioritize all of the human and geographic nuances that are particular to a certain 

state in a one-size-fits-all application. Human commissions and public input are 

ultimately necessary to properly represent a state’s electorate. While we want to eliminate 

partisan gerrymandering from the redistricting process, redistricting is an inherently 

political decision and must be kept as such. The solution space for a state’s district plan is 

extremely large with many viable solutions under a given set of criteria, so humans are 

required to be in the loop to help make that final decision on a truly optimal solution 

among many theoretically optimal solutions.  

That said, with models like this one, mapmakers have a much greater ability to 

explore the solution space of redistricting and are able to find optimal possibilities under 

any given set of chosen criteria. We see this model being a significant tool to explore 

what solutions are possible when various criteria are optimized and constrained for 

simultaneously. With that goal in mind, this model has the ability to make a significant 

impact on the redistricting process in the future and we are optimistic that the country is 

moving towards a brighter future of fair redistricting.  
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Appendix A: AMPL Implementation of Mathematical Model 

param N; #number of units in the state 

 

param M; #number of electoral districts 

 

set Units; #the set of state units 

 

set Districts := 1..M;  #the set of districts 

 

param p{i in Units, j in Districts} binary; 

#is 1 if unit i can be included in district j 

 

set possiblePairs := {i in Units, j in Districts: p[i,j] == 1}; 

#set of possible unit/district pairings 

 

param dist{i in Units, k in Units} integer; 

#distance between units i and j measured by how many adjacent units away i is 

from j 

 

param maxDist; #maximum allowable distance between two units in a district 

 

param maxCut; #maximum number of cut edges in district plan 

 

param dem{i in Units}; #the number of Democrat voters in a unit 

 

param rep{i in Units}; #the number of Republican voters in a unit 

 

param vot{i in Units} := dem[i] + rep[i]; 

#the number of total Democrat and Republican voters in unit 

 

param LARGE := sum{i in Units}vot[i]; #sum of all voters in state 

 

param targDem := round(((sum{i in Units}dem[i]) / (sum{i in Units}vot[i]))*M); 

#proportion of Democrat voters multiplied by total number of districts 

 

param targPop := round((sum{i in Units}vot[i]) / M); 

 

param epsilon; #a tuning parameter for the allowable error of actual Democrat 

districts from the ideal 

 

var y{j in Districts} binary; 

#is 1 if more Democrats in a district, 0 if not 

 

 



75 

 
var s{i in Units, k in Units: dist[i,k] == 1} binary; 

#is 1 if neighboring units i and j are in the same district 

 

set possibleSameDistrict{i in Units, k in Units: dist[i,k] == 1} := 

    {j in Districts: p[i,j] == 1 and p[k,j] == 1}; 

 

var w{i in Units, k in Units, j in possibleSameDistrict[i,k]: dist[i,k] == 1}  

    binary; 

#auxiliary variable for cut edge constraint 

 

var x{i in Units, j in Districts: p[i,j] == 1} binary; 

#is 1 if unit i is chosen for district j 

 

var z; #the largest difference from target population among all districts 

 

minimize LargestDifference: z; 

 

subject to zIsLargestDifferencePos{j in Districts}: 

    z >= (sum{(i,j) in possiblePairs}x[i,j]*vot[i]) - targPop; 

 

subject to zIsLargestDifferenceNeg{j in Districts}: 

    z >= targPop - (sum{(i,j) in possiblePairs}x[i,j]*vot[i]); 

 

subject to Exactly1DistrictPerUnit{i in Units}: 

    sum{(i,j) in possiblePairs}x[i,j]=1; 

 

set bridgeUnits{k in Units, l in Units, d in 2..maxDist: dist[k,l] == d} := 

    {i in Units: (dist[i,k] == 1 and dist[i,l] == d - 1) or  

    (dist[i,k] == d - 1 and dist[i,l] == 1)}; 

 

subject to unitBridge{k in Units, l in Units, j in Districts, d in 2..maxDist: 

                      dist[k,l] == d and p[k,j] == 1 and p[l,j] == 1}: 

    sum{i in bridgeUnits[k,l,d]: p[i,j] == 1}x[i,j] >= x[k,j] + x[l,j] - 1; 

 

subject to setOneIfLeansDemocrat{j in Districts}: 

    LARGE * y[j] >= sum{(i,j) in possiblePairs}(x[i,j]*dem[i] - x[i,j]*rep[i]); 

 

subject to setZeroIfLeansRepublican{j in Districts}: 

    LARGE * (1 - y[j]) >= sum{(i,j) in possiblePairs}(x[i,j]*rep[i] –  

 x[i,j]*dem[i]); 

 

subject to lessThanMaxDemocratDistricts: 

    sum{j in Districts}y[j] <= targDem + epsilon; 

 

subject to greaterThanMinDemocratDistricts: 
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    sum{j in Districts}y[j] >= targDem - epsilon; 

 

subject to maxDistance{i in Units, k in Units, j in Districts: 

                       p[i,j] == 1 and p[k,j] == 1 and dist[i,k] > maxDist}: 

    x[i,j] + x[k,j] <= 1; 

 

subject to setSSameDistrict{i in Units, k in Units, j in Districts: 

                            dist[i,k] == 1 and p[i,j] == 1 and p[k,j] == 1}: 

    s[i,k] >= x[i,j] + x[k,j] - 1; 

 

subject to setSDifferentDistrict{i in Units, k in Units, j in Districts: 

                                 dist[i,k] == 1 and p[i,j] == 1 and  

p[k,j] == 1}: 

    s[i,k] <= 0.5 * (x[i,j] + x[k,j]) + (1 - w[i,k,j]); 

 

subject to setY{i in Units, k in Units: dist[i,k] == 1}: 

    sum{j in possibleSameDistrict[i,k]}w[i,k,j] >= 1; 

 

subject to maxCutEdges: 

    sum{i in Units, k in Units: dist[i,k] == 1}(1-s[i,k]) <= maxCut; 
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Appendix B: Using Dijkstra’s Algorithm to Compute Unit Distances 

A key component to the constraints of the model considered in this project is a 

‘distances’ parameter. By defining a distance between any two units in a state, we can 

constrain our model to select districts that never have two units more than some 

maximum distance value apart. This distance parameter could be defined as the direct 

distance in miles between two units for example. In the case of our testing on the state of 

Ohio, we employ a distance defined in the following way due to its benefit for logical 

constraints regarding contiguity: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑘)  s. t.  𝑖, 𝑘 ∈ 𝑈𝑛𝑖𝑡𝑠

= minimum number of edges that must be traversed to reach j from i 

Thus, in order to generate this data, we can first obtain adjacency information for 

all the units in a state (i.e. for every pair of units we record whether they are adjacent to 

one another). Then we can create an instance of a graph from the units in the state where 

each node is defined to be a unit and there exists an edge between two nodes if the 

corresponding units are adjacent.  

Using this graph structure modeling the state as a whole, we simply apply 

Dijkstra’s shortest path algorithm to find the shortest path between every pair of nodes in 

the graph. The length of this shortest path between two nodes is then defined to be the 

distance between the nodes’ corresponding units. 

For more details on the implementation of this algorithm, see the project 

repository and its corresponding subdirectory on ‘shortestDistances’:  

https://github.com/benjamincarman/repairing-redistricting/tree/master/shortestDistances 
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Appendix C: Additional Results 

Here we provide a selection of additional computational results from Dataset 1. In 

particular, these results depict the impact had by our compactness constraints as inputs 

for 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 and 𝑚𝑎𝑥𝐶𝑢𝑡 vary. All results reached the same objective value. 

Results with 𝒎𝒂𝒙𝑫𝒊𝒔𝒕 = 𝟓 

 
Cut Edges: Top-Left = 110, Top-Right = 115, Bottom-Left = 115, Bottom-Right = 125 
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Results with 𝒎𝒂𝒙𝑫𝒊𝒔𝒕 = 𝟔 

 
Cut Edges: Top-Left = 109, Top-Right = 113, Bottom-Left = 119 
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Results with 𝒎𝒂𝒙𝑫𝒊𝒔𝒕 = 𝟕 

 
Cut Edges: Top-Left = 110, Top-Right = 113, Bottom-Left = 119, Bottom-Right = 125 
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Results with 𝒎𝒂𝒙𝑫𝒊𝒔𝒕 = 𝟖 

 
Cut Edges: Top-Left = 110, Top-Right = 113, Bottom-Left = 118, Bottom-Right = 127 
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Appendix D: Modeling Technique for Preventing Enclaves 

Here we propose a modeling technique to constrain enclaves—units that only 

border one other unit in the same district. We did not have time to evaluate and include 

this in the main model but provide it here as a resource for future extensions. 

Let 𝑚𝑎𝑥𝐸𝑛𝑐𝑙𝑎𝑣𝑒𝑠 be the maximum number of enclaves allowed 

Let 𝑒𝑖 = {
1, if unit 𝑖 is an enclave 

0, otherwise
 

∀ 𝑖 ∈ 𝑈𝑛𝑖𝑡𝑠 

∑ 𝑠𝑖𝑘
𝑘∈𝑈𝑛𝑖𝑡𝑠: 𝑑𝑖𝑠𝑡𝑖𝑘=1

≥ 2 ∗ (1 − 𝑒𝑖), ∀ 𝑖 ∈ 𝑈𝑛𝑖𝑡𝑠 (C14) 

∑ 𝑒𝑖
𝑖∈𝑈𝑛𝑖𝑡𝑠

≤ 𝑚𝑎𝑥𝐸𝑛𝑐𝑙𝑎𝑣𝑒𝑠 (C15) 

This set of constraints works by generally forcing the sum of 𝑠𝑖𝑘 variables for a given 

Unit, 𝑖, to be at least 2, meaning Unit 𝑖 must be in the same district as at least 2 of its 

neighbors. We multiply the right-hand side of (C14) by (1 − 𝑒𝑖) thus placing no limit on 

𝑠𝑖𝑘 if the model chooses Unit 𝑖 to be an enclave. We can then limit this number of chosen 

enclaves by the value 𝑚𝑎𝑥𝐸𝑛𝑐𝑙𝑎𝑣𝑒𝑠 in (C15). Allowing a certain number of maximum 

enclaves this way could be necessary to allow for some 1-Unit and 2-Unit districts. A set 

of constraints like this one regarding enclaves could be a very beneficial future direction 

for the model. 
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