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1. Introduction
The Vehicle Routing Problem (VRP) represents a fundamental challenge in logistics and
optimization, aiming to determine the most efficient routes for a fleet of vehicles to serve a set of
customers or locations. Initially derived as an extension of the Traveling Salesman Problem
(TSP), the VRP expands the objective to account for multiple vehicles, reflecting practical
scenarios encountered in transportation and distribution networks. As such, the VRP serves as a
foundational model for addressing routing and scheduling dilemmas across various industries,
including freight transportation and last-mile delivery services.

Extensions of the VRP, such as the Capacitated Vehicle Routing Problem (CVRP), have emerged
to address specific real-world constraints. In the CVRP, each vehicle operates under a maximum
load capacity, introducing an additional layer of complexity to the optimization process. This
extension mirrors the operational reality faced by logistics managers and transportation planners,
who must account for vehicle capacities to ensure efficient resource utilization and timely
deliveries.

In solving the VRP and its extensions, several complexities arise. Subtour elimination, for
instance, presents a common issue wherein routes may inadvertently form loops or suboptimal
circuits, leading to inefficiencies and increased operational costs. Moreover, the dynamics of
modern urban environments introduce additional complexities, including traffic congestion, time
windows, and diverse vehicle types, necessitating tailored solutions to address these challenges
effectively.

This paper focuses on the CVRP within the context of urban transportation networks, with a
specific emphasis on road networks in major cities. The paper will analyze a real-world road
network and solve a theoretical CVRP in this network with AMPL software and the CBC solver
to display the complexities and theoretical concerns of the CVRP.
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2. Model formulation
For the general purposes of this paper, we have chosen to model the CVRP in the manner of
vehicle flow formulation, which uses integer variables associated with each edge (road) of the
graph (network), as outlined in Toth and Vigo [1] and Munari et al. [2]. The full formulation is as
follows:

Decision variables.

Sets and parameters.
W = Set of warehouses and depot
W0= Set of warehouses
V = Set of vehicles
K = Number of vehicles
Di = Demand at warehouse i
cap = Capacity of each vehicle

Objective function.

Minimize

Subject to:
1. Each node is visited by exactly one vehicle:

This constraint ensures that each customer node is visited exactly once by exactly one vehicle.

https://www.codecogs.com/eqnedit.php?latex=x_%7Bij%7D%20%3D%20%5Cbegin%7Bcases%7D%20%5C%5C%5C%5C%201%20%26%20%5Ctext%7Bif%20edge%20%7Bi%2Cj%7D%20is%20part%20of%20solution%7D%20%5C%5C%5C%5C%5C%5C%200%20%26%20%5Ctext%7Botherwise%7D%20%5C%5C%5C%5C%20%5Cend%7Bcases%7D#0
https://www.codecogs.com/eqnedit.php?latex=y_%7Biv%7D%20%3D%20%5Cbegin%7Bcases%7D%20%5C%5C%5C%5C%201%20%26%20%5Ctext%7Bif%20node%20i%20is%20visited%20by%20vehicle%20v%7D%5C%5C%5C%5C%5C%5C%200%20%26%20%5Ctext%7Botherwise%7D%20%5C%5C%5C%5C%20%5Cend%7Bcases%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Csum_%7Bi%20%5Cin%20W%7D%20%5Csum_%7Bj%20%5Cin%20W%7D%20c_%7Bi%2Cj%7D%20x_%7Bi%2Cj%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5C%5C%5C%5C%20%5Csum_%7Bv%20%5Cin%20V%7D%20y_%7Biv%7D%20%3D%201%2C%20%5Cquad%20%5Cforall%20i%20%5Cin%20W%5C%5C%5C%5C%20#0
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2. Each non-depot warehouse is visited exactly once:

This constraint guarantees that each non-depot warehouse is visited exactly once by one
vehicle.

3. Flow balance at non-depot warehouses:

This constraint ensures that the flow of vehicles into and out of non-depot warehouses is
balanced, considering whether the warehouse is visited by a particular vehicle.

4. Number of vehicles leaving the depot:

This constraint ensures that exactly K vehicles leave the depot.

5. Number of vehicles returning to the depot:

This constraint ensures that exactly K vehicles return to the depot.

6. Capacity constraint for each vehicle:

This constraint ensures that the sum of demands of the visited warehouses by each vehicle does
not exceed the capacity of the vehicle.

7. Each non-depot warehouse is visited by exactly one vehicle:

This constraint ensures that each non-depot warehouse is visited by exactly one vehicle.

8. Connectivity constraint:

This ensures that if warehouse i is visited by vehicle v, then the edge (i, j) can only be part of
the solution if warehouse j is also visited by the same vehicle v.

https://www.codecogs.com/eqnedit.php?latex=%5C%5C%5C%5C%20%5Csum_%7Bj%20%5Cin%20W%2C%20j%20%5Cneq%20i%7D%20x_%7Bij%7D%20%3D%201%2C%20%5Cquad%20%5Cforall%20i%20%5Cin%20W_0%5C%5C%5C%5C%20#0
https://www.codecogs.com/eqnedit.php?latex=%5C%5C%5C%5C%20%5Csum_%7Bj%20%5Cin%20W%2C%20j%20%5Cneq%20i%7D%20x_%7Bij%7D%20%5Cleq%20%5Csum_%7Bj%20%5Cin%20W%2C%20j%20%5Cneq%20i%7D%20x_%7Bji%7D%20%2B%20(1%20-%20y_%7Biv%7D)%2C%20%5Cquad%20%5Cforall%20i%20%5Cin%20W_0%2C%20%5Cforall%20v%20%5Cin%20V%2C%20i%20%5Cneq%200%5C%5C%5C%5C%20#0
https://www.codecogs.com/eqnedit.php?latex=%5C%5C%5C%5C%20%5Csum_%7Bi%20%5Cin%20W_0%7D%20x_%7Bi0%7D%20%3D%20K%5C%5C%5C%5C%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Csum_%7Bj%20%5Cin%20W_0%7D%20x_%7B0j%7D%20%3D%20K#0
https://www.codecogs.com/eqnedit.php?latex=%5C%5C%5C%5C%20%5Csum_%7Bj%20%5Cin%20W_0%7D%20d_j%20%5Ccdot%20y_%7Bjv%7D%20%5Cleq%20%5Ctext%7Bcap%7D%2C%20%5Cquad%20%5Cforall%20v%20%5Cin%20V%5C%5C%5C%5C%20#0
https://www.codecogs.com/eqnedit.php?latex=%5C%5C%5C%5C%20%5Csum_%7Bv%20%5Cin%20V%7D%20y_%7Biv%7D%20%3D%201%2C%20%5Cquad%20%5Cforall%20i%20%5Cin%20W_0%5C%5C%5C%5C%20#0
https://www.codecogs.com/eqnedit.php?latex=y_%7Biv%7D%20%2B%20x_%7Bij%7D%20%5Cleq%20y_%7Bjv%7D%20%2B%201%2C%20%5Cquad%20%5Cforall%20i%20%5Cin%20W_0%2C%20%5Cforall%20j%20%5Cin%20W_0%2C%20%5Cforall%20v%20%5Cin%20V#0
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9. No self-loops:

This constraint ensures that there are no self-loops, meaning a vehicle cannot visit the same
warehouse more than once.

10. At least one warehouse is visited by each vehicle:

This ensures that each vehicle visits at least one non-depot warehouse.

11. Binary variables:

3. Methods

3.1. AMPL software & initial model
To solve the CVRP model formulated in Section 2 for a specific dataset, we have opted to use
AMPL, an algebraic modeling language used to describe and solve linear and nonlinear
optimization problems. AMPL solves mathematical problems via the many solvers it supports,
including both commercial solvers (CPLEX, Minos, Gurobi, etc.) and open-source solvers (CBC,
HiGHS, SCIP, etc.).

For the purposes of the data set outlined in Section 3.2, an open-source solver is required, as the
demo version of the commercial solvers do not allow for problems beyond a certain number of
variables and constraints, which grow exponentially in proportion to our data. We have opted to
use CBC (or the COIN Branch and Cut solver), an open-source mixed-integer program (MIP)
solver written in C++.

Below is the initial AMPL formulation of the problem. This formulation does not take subtours
into account, which will be discussed in Section 3.3.

###-----Sets and parameters-----###
set W; # Set of all warehouses
set W_0; # W without the depot
set V; # List of vehicles
param K >= 0; # Number of available vehicles
param c{W,W}; # Cost of going from node i to j
param cap; # Capacity of each vehicle
param d{W}; # Demand at each warehouse

https://www.codecogs.com/eqnedit.php?latex=%5C%5C%5C%5C%20x_%7Bii%7D%20%3D%200%2C%20%5Cquad%20%5Cforall%20i%20%5Cin%20W%5C%5C%5C%5C%20#0
https://www.codecogs.com/eqnedit.php?latex=%5C%5C%5C%5C%20%5Csum_%7Bi%20%5Cin%20W_0%7D%20y_%7Biv%7D%20%5Cgeq%201%2C%20%5Cquad%20%5Cforall%20v%20%5Cin%20V%5C%5C%5C%5C%20#0
https://www.codecogs.com/eqnedit.php?latex=%5C%5C%5C%5C%20x%2C%20y%20%5Ctext%7B%20binary%7D%5C%5C%5C%5C%20#0
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###-----Decision variables-----###
var x{W,W} binary; # 1 if edge {i,j} is part of solution, 0 o.w.
var y{W_0, V} binary; # 1 if node i is visited by vehicle v, 0 o.w.

###-----Objective function-----###
minimize distance:

sum{i in W, j in W} c[i,j] * x[i,j];

###---------Constraints--------###
subject to VisitOncePerVehicle {i in W_0}:

sum {v in V} y[i,v] = 1;

subject to DepartOncePerVehicle {i in W_0}:
sum {j in W: i != j} x[i,j] = 1;

subject to SubsequentNodeOnSameVehicle {i in W_0, v in V}:
sum {j in W: i != j} x[i,j] <= sum {j in W: i != j} x[j,i] + (1 - y[i,v]);

subject to VehiclesLeavingDepot:
sum{i in W_0} x[i, 0] = K;

subject to VehiclesEnteringDepot:
sum{j in W_0} x[0, j] = K;

subject to RouteFeasibility {v in V}:
sum {j in W_0} d[j] * y[j,v] <= cap;

subject to NodeVisitedOnce {i in W_0}:
sum {v in V} y[i,v] = 1;

subject to RouteContinuity {i in W_0, j in W_0, v in V}:
y[i,v] + x[i,j] <= y[j,v] + 1;

subject to CannotVisitItself {i in W}:
x[i, i] = 0;

subject to UseAllVehicles {v in V}:
sum {i in W_0} y[i,v] >= 1;
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3.2. Real-world road network data
We seek to test the AMPL formulation of our model by testing it on a real-world data set,
wherein real addresses of warehouses are collected, the distances between them are calculated,
and a realistic set of optimal routes is studied in accordance with the capacities of each vehicle
and the demands of each warehouse. For the purposes of this example, the capacities and
demands are fictionalized, and the warehouses are collected from a list of empty warehouses for
rent in Columbus [3]. We then analyze a potential CVRP, made clearer by the real-world choice
of setting and nodes.

Below is our list of addresses for the depot and warehouses, including demand, as well as a
picture showing the locations. Each set of coordinates was geocoded from addresses via
Google’s geocoding API [4].

# Type Latitude Longitude Address Demand

0 Depot 40.0551762 -83.072309 1985 Henderson Rd, Columbus, OH 43220, USA 0

1 Warehouse 39.9891772 -82.9146133 885 Stelzer Rd, Columbus, OH 43219, USA 51

2 Warehouse 39.8927292 -83.0499288 3400 Southpark Pl, Grove City, OH 43123, USA 45

3 Warehouse 40.068717 -82.9959151 5057 Freeway Dr E, Columbus, OH 43229, USA 55

4 Warehouse 39.9877419 -82.831454 321 Outerbelt St, Columbus, OH 43213, USA 59

5 Warehouse 39.9720326 -83.0454325 740 Grandview Ave, Columbus, OH 43215, USA 41

6 Warehouse 39.9939739 -83.0381934 1156 Chambers Rd, Columbus, OH 43212, USA 42

7 Warehouse 39.9862862 -82.9010491 3850 E 5th Ave, Columbus, OH 43219, USA 46

8 Warehouse 39.9189505 -82.9348881 2430 Performance Way, Columbus, OH 43207, USA 50

9 Warehouse 40.11299 -82.9988092 651 Lakeview Plaza Blvd, Worthington, OH 43085, USA 61

Figure 3.2.1. Table of addresses, coordinates, and demand for depot and warehouses
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Figure 3.2.2. Map of Columbus, OH with markers on depot and warehouses.

Below is the AMPL data for the model. The distance matrix, signified by the param c in the
code, represents the distance from warehouse i to warehouse j. One may note that, unlike many
example distance matrices for VRPs and their variants, this matrix is not symmetrical across the
diagonal. That is, the distance from warehouse i to warehouse j is not the same as the distance
from warehouse j to warehouse i, although they are always close. This is a consequence of using
real-world data collected from the Google Maps Routes API [5], as differences can be induced
by traffic features such as one-way entrances and exits. The code used to obtain this data can be
referenced in the appendix in Section 8.
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set W := 0 1 2 3 4 5 6 7 8 9; # Set of all warehouses
set W_0 := 1 2 3 4 5 6 7 8 9;# W without the depot
set V := 1 2 3 4; # List of vehicles
param K := 4; # Number of available vehicles

param c : 0 1 2 3 4 5 6 7 8 9 :=
0 0 25760 28247 8934 40273 13165 8874 24855 25197 14890
1 23322 0 24338 17897 10276 13300 14911 1567 10542 23814
2 27751 22977 0 28299 31418 11452 19340 22072 13553 42090
3 8915 19282 28038 0 29164 16698 13498 18377 21176 6174
4 34135 12191 32839 28710 0 24113 25723 8216 19459 31195
5 13056 15249 11454 18339 25131 0 3394 14344 16004 24088
6 9507 17821 20308 12919 27703 3363 0 16916 20911 18873
7 23732 1876 24747 18307 8868 13710 15321 0 11432 24224
8 27624 10280 14319 21365 17648 16118 19213 12131 0 35128
9 15839 26045 33769 5983 31387 22429 21185 27422 26906 0 ;

param cap := 150; # Capacity of each vehicle
param d := # Demand at each warehouse

0 0
1 51
2 45
3 55
4 59
5 41
6 42
7 46
8 50
9 61;

3.3. Addressing subtours & final AMPL model
Naturally, in the process of solving the AMPL formulation of this model, subtours arise. A
subtour is a tour (a route, in our case) in the model that, instead of returning to the depot, forms a
cycle within itself, disconnected from the rest of the routes. This can happen for many reasons,
often due to how the solver uniquely solves the problem (its heuristics, etc.). Subtours can be
addressed with constraints, but not efficiently eliminated with one fell swoop, as the number of
constraints required to fully eliminate all possible subtours grows very quickly in proportion to
the number of nodes.

In order to address subtours in our example real-world problem, then, we run the initial model
and determine where our first subtours are. The results of running and solving the model in
AMPL are below:
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cbc 2.10.10: cbc 2.10.10: optimal solution; objective 157235
3508 simplex iterations
3508 barrier iterations
90 branching nodes
x [*,*]
: 0 1 2 3 4 5 6 7 8 9 :=
0 0 0 0 1 0 1 1 0 0 1
1 0 0 0 0 0 0 0 0 1 0
2 1 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 1 0 0
5 0 0 1 0 0 0 0 0 0 0
6 1 0 0 0 0 0 0 0 0 0
7 0 0 0 0 1 0 0 0 0 0
8 0 1 0 0 0 0 0 0 0 0
9 1 0 0 0 0 0 0 0 0 0
;

y [*,*]
: 1 2 3 4 :=
1 0 1 0 0
2 1 0 0 0
3 0 0 1 0
4 0 0 0 1
5 1 0 0 0
6 0 0 0 1
7 0 0 0 1
8 0 1 0 0
9 0 0 1 0
;

The routes above can be more clearly written as follows:
0-2-5-0
0-3-0
0-6-0
0-9-0
1-8-1
4-7-4

We see two subtours: one between warehouses 1 and 8, and another between warehouses 4 and
7. We eliminate them with the following constraints:
subject to SubtourElimination1:

sum{i in S1, j in W diff S1} x[i,j] >= 1;
subject to SubtourElimination2:

sum{i in S2, j in W diff S2} x[i,j] >= 1;

and define our subtour sets in the data section:
set S1 := 1 8;
set S2 := 4 7;
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After implementing this subtour elimination, we run the model again, and determine if there are
any more subtours. We repeat this process, writing new elimination constraints each time, until
no subtours remain. Below is the full AMPL code, including both the model and data, with all
subtour elimination constraints.

###-----Sets and parameters-----###
set W; # Set of all warehouses
set W_0; # W without the depot
set V; # List of vehicles
param K >= 0; # Number of available vehicles
param c{W,W}; # Cost of going from node i to j
param cap; # Capacity of each vehicle
param d{W}; # Demand at each warehouse
set S1;
set S2;
set S3;
set S4;
set S5;
set S6;
set S7;
set S8;
set S9;
set S10;
set S11;
set S12;
set S13;
set S14;
set S15;

###-----Decision variables-----###
var x{W,W} binary; # 1 if edge {i,j} is part of solution, 0 o.w.
var y{W_0, V} binary; # 1 if node i is visited by vehicle v, 0 o.w.

###-----Objective function-----###
minimize distance:

sum{i in W, j in W} c[i,j] * x[i,j];

###---------Constraints--------###
subject to VisitOncePerVehicle {i in W_0}:

sum {v in V} y[i,v] = 1;

subject to DepartOncePerVehicle {i in W_0}:
sum {j in W: i != j} x[i,j] = 1;

subject to SubsequentNodeOnSameVehicle {i in W_0, v in V}:
sum {j in W: i != j} x[i,j] <= sum {j in W: i != j} x[j,i] + (1 - y[i,v]);

subject to VehiclesLeavingDepot:
sum{i in W_0} x[i, 0] = K;

subject to VehiclesEnteringDepot:
sum{j in W_0} x[0, j] = K;
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subject to RouteFeasibility {v in V}:
sum {j in W_0} d[j] * y[j,v] <= cap;

subject to NodeVisitedOnce {i in W_0}:
sum {v in V} y[i,v] = 1;

subject to RouteContinuity {i in W_0, j in W_0, v in V}:
y[i,v] + x[i,j] <= y[j,v] + 1;

subject to CannotVisitItself {i in W}:
x[i, i] = 0;

subject to UseAllVehicles {v in V}:
sum {i in W_0} y[i,v] >= 1;

# Subtour Elimination constraint template
#subject to SubtourElimination1:
# sum{i in S1, j in W diff S1} x[i,j] >= 1;

subject to SubtourElimination1:
sum{i in S1, j in W diff S1} x[i,j] >= 1;

subject to SubtourElimination2:
sum{i in S2, j in W diff S2} x[i,j] >= 1;

subject to SubtourElimination3:
sum{i in S3, j in W diff S3} x[i,j] >= 1;

subject to SubtourElimination4:
sum{i in S4, j in W diff S4} x[i,j] >= 1;

subject to SubtourElimination5:
sum{i in S5, j in W diff S5} x[i,j] >= 1;

subject to SubtourElimination6:
sum{i in S6, j in W diff S6} x[i,j] >= 1;

subject to SubtourElimination7:
sum{i in S7, j in W diff S7} x[i,j] >= 1;

subject to SubtourElimination8:
sum{i in S8, j in W diff S8} x[i,j] >= 1;

subject to SubtourElimination9:
sum{i in S9, j in W diff S9} x[i,j] >= 1;

subject to SubtourElimination10:
sum{i in S10, j in W diff S10} x[i,j] >= 1;

subject to SubtourElimination11:
sum{i in S11, j in W diff S11} x[i,j] >= 1;

subject to SubtourElimination12:
sum{i in S12, j in W diff S12} x[i,j] >= 1;
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subject to SubtourElimination13:
sum{i in S13, j in W diff S13} x[i,j] >= 1;

subject to SubtourElimination14:
sum{i in S14, j in W diff S14} x[i,j] >= 1;

subject to SubtourElimination15:
sum{i in S15, j in W diff S15} x[i,j] >= 1;

data;
set W := 0 1 2 3 4 5 6 7 8 9; # Set of all warehouses
set W_0 := 1 2 3 4 5 6 7 8 9; # W without the depot
set V := 1 2 3 4; # List of vehicles
param K := 4; # Number of available vehicles
param c : 0 1 2 3 4 5 6 7 8 9 :=

0 0 25760 28247 8934 40273 13165 8874 24855 25197 14890
1 23322 0 24338 17897 10276 13300 14911 1567 10542 23814
2 27751 22977 0 28299 31418 11452 19340 22072 13553 42090
3 8915 19282 28038 0 29164 16698 13498 18377 21176 6174
4 34135 12191 32839 28710 0 24113 25723 8216 19459 31195
5 13056 15249 11454 18339 25131 0 3394 14344 16004 24088
6 9507 17821 20308 12919 27703 3363 0 16916 20911 18873
7 23732 1876 24747 18307 8868 13710 15321 0 11432 24224
8 27624 10280 14319 21365 17648 16118 19213 12131 0 35128
9 15839 26045 33769 5983 31387 22429 21185 27422 26906 0 ;

param cap := 150; # Capacity of each vehicle
param d := # Demand at each warehouse

0 0
1 51
2 45
3 55
4 59
5 41
6 42
7 46
8 50
9 61;

set S1 := 1 8;
set S2 := 4 7;
set S3 := 1 7;
set S4 := 4 8;
set S5 := 1 4;
set S6 := 2 8 7;
set S7 := 1 4;
set S8 := 1 8 7;
set S9 := 2 5;
set S10 := 7 8;
set S11 := 1 2 8;
set S12 := 4 5 7;
set S13 := 1 5;
set S14 := 2 8;
set S15 := 2 4 7;
end;
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4. Results

4.1. AMPL results
After loading the model formulation at the end of Section 3.3 into AMPL, and selecting the CBC
solver, we receive the following results:

cbc 2.10.10: cbc 2.10.10: optimal solution; objective 193815
125828 simplex iterations
125828 barrier iterations
5040 branching nodes
x [*,*]
: 0 1 2 3 4 5 6 7 8 9 :=
0 0 0 1 0 0 1 1 0 0 1
1 1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 1 0
3 1 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 1 0 0
5 0 0 0 0 1 0 0 0 0 0
6 1 0 0 0 0 0 0 0 0 0
7 1 0 0 0 0 0 0 0 0 0
8 0 1 0 0 0 0 0 0 0 0
9 0 0 0 1 0 0 0 0 0 0
;

y [*,*]
: 1 2 3 4 :=
1 0 0 1 0
2 0 0 1 0
3 0 0 0 1
4 1 0 0 0
5 1 0 0 0
6 0 1 0 0
7 1 0 0 0
8 0 0 1 0
9 0 0 0 1
;

The routes are as follows:
Vehicle 1: 0-7-4-5-0
Vehicle 2: 0-6-0
Vehicle 3: 0-1-8-2-0
Vehicle 4: 0-3-9-0

with a total cumulative distance between all routes of 193,815 meters.
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4.2. Route pictures

Figure 4.2.1. Map of Columbus, OH with all optimal routes outlined in blue.

Figure 4.2.2. Optimal route taken by Vehicle 1.
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Figure 4.2.3. Optimal route taken by Vehicle 2.

Figure 4.2.4. Optimal route taken by Vehicle 3.
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Figure 4.2.5. Optimal route taken by Vehicle 4.

5. Discussion
Looking at the visual representation of the routes brings several things into focus: firstly, that the
warehouses on a route are physically close to each other. Barring special circumstances, it would
be much more prohibitive for a vehicle to travel across town to a low-demand warehouse than to
travel nearby to a high-demand one, even if the low-demand warehouse would affect its capacity
constraints less. Many traveling salesman and vehicle routing problem formulations have an
explicit integration of the triangle inequality to formalize this.

Secondly, there is little overlap between routes, but the overlap that does exist is of interest.
Warehouse 1 and Warehouse 7 in the northeast section of Columbus, near the airport, are notably
very close to each other, with Vehicles 4 and Vehicles 3 traveling to them respectively. Both of
these routes were closer to their capacities (having three stops as opposed to Vehicle 1’s two and
Vehicle 2’s one), and swapping either of these Warehouses for each other would have resulted in
Vehicle 3 carrying 151 units of load, one unit over its maximum of 150. The visual
representation alone can therefore be somewhat deceiving, as the proximity of the two may lead
one to believe that another route could have been possible.
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6. Conclusion
Our goal in formulating and solving the Capacitated Vehicle Routing Problem (CVRP) in order
to explore how it applies to real-world urban transportation networks. By using both theoretical
models and actual road network data from Columbus, OH, as well as leveraging AMPL software
and the CBC solver, we have tackled the complexities of optimizing routes for a fleet of vehicles
serving different warehouses with specific demands and capacity limitations.

Moreover, through subtour elimination techniques, we sought to find routes that not only
balanced proximity between warehouses and the vehicles' capacity limits, but actually existed as
feasible solutions to a real-world problem. The visual representation of our routes in Section 4.2
underscores the spatial relationships in these routes, and sheds light on the challenges and
considerations involved in optimizing urban transportation networks, contributing to a better
understanding of CVRP solutions in practical logistics scenarios.

Moving forward, Toth and Vigo outline several possible extensions to the CVRP, including
implementing backhauling, time windows, and mixed service, and exploring further possibilities
by combining these extensions into a complex class of problems. In any case, AMPL and the
solvers integrated in it serve as solid and fundamental tools that aid in the formulation of these
problems as well as solving them.
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8. Appendix

8.1. Batch file for collecting distance data

curl -X POST -d '{
"origins": [
{
"waypoint": {
"location": {
"latLng": {
"latitude": 40.0551762,
"longitude": -83.072309

}
}

}
},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 39.9891772,
"longitude": -82.9146133

}
}

}
},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 39.8927292,
"longitude": -83.0499288

}
}

}
},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 40.068717,
"longitude": -82.9959151

}
}

}
},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 39.9877419,
"longitude": -82.831454

}
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}
}

},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 39.9720326,
"longitude": -83.0454325

}
}

}
},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 39.9939739,
"longitude": -83.0381934

}
}

}
},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 39.9862862,
"longitude": -82.9010491

}
}

}
},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 39.9189505,
"longitude": -82.9348881

}
}

}
},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 40.11299,
"longitude": -82.9988092

}
}

}
}

],
"destinations": [

{
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"waypoint": {
"location": {
"latLng": {
"latitude": 40.0551762,
"longitude": -83.072309

}
}

}
},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 39.9891772,
"longitude": -82.9146133

}
}

}
},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 39.8927292,
"longitude": -83.0499288

}
}

}
},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 40.068717,
"longitude": -82.9959151

}
}

}
},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 39.9877419,
"longitude": -82.831454

}
}

}
},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 39.9720326,
"longitude": -83.0454325

}
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}
}

},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 39.9939739,
"longitude": -83.0381934

}
}

}
},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 39.9862862,
"longitude": -82.9010491

}
}

}
},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 39.9189505,
"longitude": -82.9348881

}
}

}
},
{
"waypoint": {
"location": {
"latLng": {
"latitude": 40.11299,
"longitude": -82.9988092

}
}

}
}

],
"travelMode": "DRIVE",
"routingPreference": "TRAFFIC_AWARE"

}' > output.txt \
-H 'Content-Type: application/json' -H 'X-Goog-Api-Key: REDACTED' \
-H 'X-Goog-FieldMask: originIndex,destinationIndex,duration,distanceMeters,status,condition'
\
'https://routes.googleapis.com/distanceMatrix/v2:computeRouteMatrix'
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8.2. Python code for converting distance data to matrix

import json

def create_distance_matrix(text):
# Parse the input text
data = json.loads("[" + text.replace("} , {", "}, {") + "]")

# Find the maximum index to determine the matrix size
max_index = max(max(item["originIndex"], item["destinationIndex"]) for item in data if

"distanceMeters" in item)

# Initialize an empty matrix
distance_matrix = [[0] * (max_index + 1) for _ in range(max_index + 1)]

# Fill the distance matrix
for item in data:

if "distanceMeters" in item:
origin_index = item["originIndex"]
destination_index = item["destinationIndex"]
distance = item["distanceMeters"]
distance_matrix[origin_index][destination_index] = distance

return distance_matrix

def print_distance_matrix(matrix):
size = len(matrix) - 1
print(" ", end="")
for i in range(size + 1):

print(f"{i:10}", end="")
print(" :=")
for i in range(size + 1):

print(f" {i}", end="")
for j in range(size + 1):

print(f"{matrix[i][j]:10}", end="")
print()

8.3. Google Maps with route data
Below is a link to an interactive Google Maps page with warehouse locations and route data. You
can use the checkbox on the left hand side to see individual routes.
https://www.google.com/maps/d/u/0/edit?mid=1NkvVEPoi9VJ9SIm-ElXwLa36US2j7o8&usp=s
haring

https://www.google.com/maps/d/u/0/edit?mid=1NkvVEPoi9VJ9SIm-ElXwLa36US2j7o8&usp=sharing
https://www.google.com/maps/d/u/0/edit?mid=1NkvVEPoi9VJ9SIm-ElXwLa36US2j7o8&usp=sharing

