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ABSTRACT 

In many airlines, crew expenses are the second most significant direct operational cost after fuel 

expenses. However, unlike fuel costs, a significant portion of crew costs can be mitigated by 

optimizing the airline's internal resources. One key method for achieving these savings is by 

addressing the crew pairing problem. Simultaneously, the rapid development of civil aviation in 

recent decades has not only intensified competition among airlines but also increased operational 

irregularities. These challenges necessitate improved regulations and scheduling to maximize 

profitability. As a result, the airline scheduling optimization problem has garnered considerable 

research interest, serving as a critical foundation for efficiently deploying airline resources and 

meeting market demands amidst complex operational requirements. 
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INTRODUCTION 

Airline crew scheduling is an important task that involves organizing which crew members fly 

on which flights. This process is crucial for airlines because it helps manage one of their biggest 

costs: paying their crew. The goal is to make sure every flight has the right number of qualified 

crew members without breaking any safety rules or labor laws. These rules are in place to ensure 

that crew members do not work too many hours without enough rest, which is important for both 

their safety and the safety of passengers. Labor agreements also play a role in scheduling because 

they define working conditions, such as how long a crew member can work and their benefits. 

By planning crew schedules carefully, airlines can save money, avoid legal issues, and keep 

flights running smoothly. This also helps in keeping crew members happy by respecting their 

time and work-life balance. The better the scheduling, the more efficiently the airline can 

operate, leading to better profits and service. 

When tackling the complexity of crew scheduling, it's practical to start with a simplified model 

that captures the essential elements and then gradually incorporates more complexity as needed. 

This stepwise approach allows for a better understanding and management of various factors 

impacting the scheduling process. 



Model I 

In model one we solve a simple airline problem. The problem is attached below. 

 

Solving this problem using Ampl 

set PLANES; 

set CITIES; 

param cost {PLANES, CITIES} >= 0; 

param revenue {PLANES, CITIES} >= 0; 

param flyingTime {PLANES, CITIES} >= 0; 

param maxHours {PLANES} >= 0; 

param planeCount {PLANES} integer >= 0; 



var x {PLANES, CITIES} integer >= 0; # Number of round trips 

minimize TotalCost: sum {p in PLANES, c in CITIES} cost[p,c] * x[p,c]; 

subject to ServeLA_Twice: sum {p in PLANES} x[p,'LA'] >= 2; 

subject to ServeOthers_FourTimes {c in CITIES: c <> 'LA'}: sum {p in PLANES} 

x[p,c] >= 4; 

subject to MaxHoursATR: sum {c in CITIES} flyingTime['ATR70',c] * 

x['ATR70',c] <= maxHours['ATR70'] * planeCount['ATR70']; 

subject to MaxHours {p in PLANES: p <> 'ATR70'}: sum {c in CITIES} 

flyingTime[p,c] * x[p,c] <= maxHours[p] * planeCount[p]; 

data; 

set PLANES := B737, AB321, ATR70; 

set CITIES := Boston, DC, Miami, LA; 

param cost: Boston DC Miami LA := 

B737 6000 7000 8000 10000 

AB321 4000 3500 6000 10000 

ATR70 1000 2000 99999 99999; # Using 99999 as prohibitive cost. 

param revenue: Boston DC Miami LA := 

B737 5000 7000 10000 18000 

AB321 3000 5500 8000 14000 

ATR70 3000 4000 0 0; 

param flyingTime: Boston DC Miami LA := 

B737 1 2 4 6 



AB321 1 2 5 8 

ATR70 2 4 99999 99999; # Using 99999 as prohibitive flying time. 

param maxHours := 

B737 15 

AB321 15 

ATR70 18; 

param planeCount := 

B737 10 

AB321 15 

ATR70 2; 

The AMPL model outlined is designed to optimize the scheduling of flights for an airline with a 

specific set of aircraft types and city destinations. Each component of the model serves a unique 

purpose in ensuring that the airline's operations are efficient, cost-effective, and meet certain 

operational constraints. Below, I'll explain each component of your AMPL model in detail. 

Sets 

• PLANES: This set includes all types of aircraft that the airline operates. In this model, 

you have three types of aircraft: Boeing 737 (B737), Airbus 321 (AB321), and ATR-70 

(ATR70). Each aircraft type has different characteristics in terms of cost, capacity, and 

allowed flying hours. 

• CITIES: This set lists all destinations that the airline serves from a specific hub. The 

cities in your model are Boston, DC, Miami, and LA. These destinations will influence 

where each aircraft type can fly based on the defined schedules and costs. 

 

 



Parameters 

• cost {PLANES, CITIES}: Represents the operational cost for each aircraft type flying to 

each city. These values are crucial for the objective function, which aims to minimize 

total operational costs. 

• revenue {PLANES, CITIES}: Indicates the potential revenue generated from each 

aircraft flying to each city. While not directly used in the cost-minimization objective, it 

could be used in alternative models focusing on maximizing revenue. 

• flyingTime {PLANES, CITIES}: Specifies the time it takes for each type of aircraft to 

fly to each city. This is essential for ensuring that the flight schedules adhere to maximum 

flying hour regulations. 

• maxHours {PLANES}: The maximum number of hours each aircraft type can fly in a 

day. This is a critical constraint to ensure compliance with aviation safety standards and 

to prevent overuse of aircraft. 

• planeCount {PLANES}: The number of available aircraft for each type. This parameter 

is vital for determining how many flights can be realistically scheduled given the 

available fleet. 

 

Variables 

• x {PLANES, CITIES}: A decision variable that represents the number of round trips 

each aircraft makes to each city per day. It is constrained to be a non-negative integer, 

reflecting the actual number of flights. 

Objective Function 

• minimize TotalCost: The objective is to minimize the total cost of all flights across all 

aircraft and cities. It is calculated by summing up the products of the costs of each 

aircraft flying to each city and the number of trips made. 

 

 



Constraints 

• ServeLA_Twice: Ensures that Los Angeles (LA) is served at least twice a day by any of 

the aircraft in the fleet. This might reflect higher demand or the strategic importance of 

this route. 

 

• ServeOthers_FourTimes: Dictates that all cities other than LA must be served at least 

four times a day, ensuring adequate service levels and possibly meeting minimum 

contractual obligations or demand forecasts. 

 

• MaxHoursATR and MaxHours: These constraints ensure that no aircraft exceeds its 

maximum allowed flying hours in a day (MaxHoursATR is specifically for ATR-70, 

while MaxHours applies to B737 and AB321). This is crucial for safety, maintenance, 

and regulatory compliance. 

 

 

 

Results Section 

This section provides the actual values for all parameters defined in the model, including the 

costs, revenues, flying times, maximum hours, and plane counts for each type of aircraft and city 

destination. The use of 99999 for certain flying times and costs effectively prevents certain 

aircraft from flying specific routes, acting as a prohibition due to either operational incapability 

or extreme cost inefficiency. 

By integrating all these components, the AMPL model strategically schedules the airline's 

operations to minimize costs while adhering to operational, regulatory, and market constraints. 

The result is attached below, 



 

Analysis of Model 1 

Interpretation of the Objective Value 

The objective value of 56,000 represents the total minimum cost that can be achieved given the 

constraints such as aircraft availability, city destinations, demand, and possibly other operational 

limits like airport capacities or flight time regulations. Achieving this figure means that the 

model has effectively found the most cost-efficient way to schedule flights across the fleet, 

optimizing the use of each aircraft to keep operational costs as low as possible. 

Decision Variables (x) Output: 

• AB321: No flights to Boston or DC, 2 flights to LA, and 4 flights to Miami. The 

allocation here suggests focusing on routes that likely offer the lowest operational costs 

per flight or higher cost-efficiency for this aircraft type. 

• ATR70: 4 flights each to Boston and DC, none to LA or Miami, indicating these routes 

are most cost-effective for ATR70 under current model settings. 

• B737: No flights scheduled for any cities, which could imply that operating this aircraft 

type under current conditions is not cost-effective compared to others or does not meet 

the demand/cost efficiency criteria set by the model. 



The table provided offers further details on how specific aircraft types are allocated to various 

destinations. 

Aircraft Destination Trips 

AB321 Boston 0 

AB321 DC 0 

AB321 LA 2 

AB321 Miami 4 

ATR70 Boston 4 

ATR70 DC 4 

ATR70 LA 0 

ATR70 Miami 0 

B737 Boston 0 

B737 DC 0 

B737 LA 0 

B737 Miami 0 

 

The AMPL model output for the airline scheduling problem reveals that the Airbus 321 

efficiently handles the essential routes to Los Angeles and Miami, perfectly meeting the 

regulatory requirement of two daily flights to L.A. and contributing significantly by servicing 

Miami four times daily. The ATR-70, on the other hand, focuses on covering the frequent flights 

to Boston and D.C., where it is deployed for all four required daily services to each city, 

reflecting its suitability for shorter regional routes. Notably, the Boeing 737 is not utilized on any 

of the routes, which suggests that under the current economic conditions and cost considerations 



modeled, deploying the B737 is less economically viable compared to the other aircraft in the 

fleet. 

 

Model 2 

In the revised version of our model, we have introduced two significant constraints: a demand 

constraint and a plane usage constraint. Additionally, we have shifted the objective of the model 

from minimizing costs to maximizing total profit. To further enhance precision in our operational 

planning, we are also assigning each plane to a specific aircraft, ensuring a more tailored and 

efficient allocation of our resources. 

 

Sets 

• aircraft{PLANES}; This line defines a parameterized set called aircraft that is indexed 

by another set called PLANES. Essentially, aircraft{PLANES} indicates that for each 

element in the set PLANES, there is an associated set named aircraft[p]. This can be used 

when different types of planes (represented by PLANES) have their own specific sets of 

aircraft identifiers or characteristics. 

 

• all_aircrafts := union{p in PLANES} aircraft[p]; This line creates a new set called 

all_aircrafts. The := is used for set assignment, defining all_aircrafts as the union of all 

sets aircraft[p] where p is an element of PLANES. The union{p in PLANES} aircraft[p] 

operation gathers all elements from each set aircraft[p] into a single set. This means that 

all_aircrafts will contain every unique element from all the aircraft[p] sets across 

different p in PLANES. 

 

• Time_Slots: This set is named Time_Slots, which suggests that its elements represent 

different units of time during which specific activities or events can be scheduled. These 

elements are typically uniform divisions of time, such as hours, half-hours, or minutes. 



Parameters 

• cost {PLANES, CITIES}: Represents the operational cost for each aircraft type flying to 

each city. These values are crucial for the objective function, which aims to minimize 

total operational costs. 

• revenue {PLANES, CITIES}: Indicates the potential revenue generated from each 

aircraft flying to each city. While not directly used in the cost-minimization objective, it 

could be used in alternative models focusing on maximizing revenue. 

• flyingTime {PLANES, CITIES}: Specifies the time it takes for each type of aircraft to 

fly to each city. This is essential for ensuring that the flight schedules adhere to maximum 

flying hour regulations. 

• maxHours {PLANES}: The maximum number of hours each aircraft type can fly in a 

day. This is a critical constraint to ensure compliance with aviation safety standards and 

to prevent overuse of aircraft. 

• planeCount {PLANES}: The number of available aircraft for each type. This parameter 

is vital for determining how many flights can be realistically scheduled given the 

available fleet. 

• Demand {CITIES}; Indicates the demand for flights in each city. Critical for 

determining how many flights to schedule to or from each city to meet or stimulate 

market demand. 

• Capacity {PLANES} >= 0; The maximum number of passengers that each type of plane 

can carry. Essential for planning capacity and ensuring that flight scheduling aligns with 

passenger demand and plane capabilities. 

• planeType{all_aircrafts} symbolic; Defines the type of each aircraft, which might be 

needed for tracking and operational decisions based on aircraft characteristics. Allows the 

model to handle different types of aircraft with specific operational profiles, such as 

maintenance needs or suitability for certain routes. 

 



Variables 

• x {PLANES, CITIES, Time_Slots}; This variable, x, represents the number of 

round trips that a particular plane makes to a specific city during a specific time slot. 

 

• flight{a in all_aircrafts, c in CITIES, t in Time_Slots} binary; The flight variable 

indicates whether a specific aircraft (a) is scheduled to fly to a specific city (c) during 

a specific time slot (t). This is a binary variable, meaning it can only take the values 0 

or 1 — 0 indicating that the aircraft is not flying to that city in that time slot, and 1 

indicating that it is. 

While x provides a count of trips for resource allocation and operational planning, flight 

gives a yes/no decision for scheduling. 

 

Objective Function 

• Maximizing Total Profit; Shifting the objective from minimizing costs to maximizing 

profit changes the focus of the model. Instead of just trying to spend as little as possible, 

the goal becomes earning as much as possible while keeping costs down. This means 

finding a balance between the expenses of running flights and the money made from 

selling tickets and other services. 

 

Constraints 

• Demand Constraint; The addition of a demand constraint ensures that the number of 

flights scheduled meets or exceeds the demand from passengers for each route. This 

constraint is crucial as it directly impacts revenue generation. Airlines must balance the 

number of flights to avoid both underserving the market (which leads to missed revenue 

opportunities and potentially dissatisfied customers) and overserving (which can lead to 

increased costs without proportional revenue increases). 

 



• MaxHoursEachAircraft Constraint; ensures that each aircraft does not fly more than a 

set number of hours in each time. It checks the total flying time scheduled for each 

aircraft across various cities and ensures it stays within safe and legal limits. This helps to 

keep aircraft usage safe and efficient. 

 

• Total_flights Constraint; ensures that the total number of scheduled flights for each type 

of plane going to each city at each time matches exactly with the actual flights operated 

by all individual aircraft of that type. This means that the overall flight plan must align 

perfectly with the specific flights each aircraft is assigned to perform, keeping everything 

consistent and organized. 

 

• Plane Usage Constraint; This constraint ensures that each aircraft is used efficiently 

within its operational and economic limits. The idea is to maximize the usage of each 

plane up to its maximum capacity without exceeding maintenance or operational safety 

bounds. 

 

The corresponding Ampl code is as follows; 

set PLANES; 

set CITIES; 

set aircraft{PLANES}; 

set all_aircrafts := union{p in PLANES} aircraft[p]; 

set Time_Slots; 

param cost {PLANES, CITIES} >= 0; 

param revenue {PLANES, CITIES} >= 0; 

param flyingTime {PLANES, CITIES} >= 0; 

param demand {CITIES} >= 0;  



param capacity {PLANES} >= 0; # Max passengers per plane type 

param planeCount {PLANES} integer >= 0; 

param planeType{all_aircrafts} symbolic; 

param maxHours {PLANES} >= 0; 

var x {PLANES, CITIES, Time_Slots} integer >= 0; # Number of round trips 

var flight{a in all_aircrafts, c in CITIES, t in Time_Slots} binary; 

maximize TotalProfit: sum {p in PLANES, a in aircraft[p], c in CITIES, t in 

Time_Slots} (revenue[p,c] - cost[p,c]) * flight[a,c,t]; 

subject to MaxHoursEachAircraft {a in all_aircrafts, t in Time_Slots}:sum {c 

in CITIES} flyingTime[planeType[a],c] * flight[a,c,t] <= 

maxHours[planeType[a]]; 

subject to MeetDemand {c in CITIES}: sum {p in PLANES, t in Time_Slots} 

x[p,c,t] * capacity[p] >= demand[c]; 

subject to Total_flights {p in PLANES, c in CITIES, t in Time_Slots}: x[p, c, 

t] = sum{a in aircraft[p]} flight[a, c, t]; 

subject to PlaneUsageConstraint {p in PLANES, t in Time_Slots}: sum {c in 

CITIES} x[p,c,t] <= 1; 

data; 

set PLANES := B737, AB321, ATR70; 

set aircraft['B737'] := B1 B2 B3; 

set aircraft['AB321'] := AB1 AB2 AB3 AB4; 

set aircraft['ATR70'] := A1 A2; 

set CITIES := Boston, DC, Miami, LA; 

set Time_Slots := 6, 7,8,9,10,11,12; 



param revenue: Boston DC Miami LA := 

B737 6000 8000 11000 8000 

AB321 6500 5500 8000 4000 

ATR70 3500 4000 500 9000 ; 

param cost: Boston DC Miami LA := 

B737 6000 6000 7000 1000 

AB321 4000 2500 5000 1000 

ATR70 8000 1500 3000 7000 ; 

param flyingTime: Boston DC Miami LA := 

B737 10 12 8 6 

AB321 9 12 5 8 

ATR70 12 4 5 7 ;  

param planeCount := 

B737 10 

AB321 15 

ATR70 2; 

param demand := 

Boston 800 

DC 120 

Miami 200 

LA 250; 



param capacity := 

B737 189 

AB321 220 

ATR70 700; 

param planeType := 

B1 'B737' 

B2 'B737' 

B3 'B737' 

AB1 'AB321' 

AB2 'AB321' 

AB3 'AB321' 

AB4 'AB321' 

A1 'ATR70' 

A2 'ATR70'; 

param maxHours := 

B737 15 

AB321 15 

ATR70 18; 

 

 

 



Result Section 

Running this model in Ampl we have the following output. 

 



 

 

 



Analysis of Model 2 

Interpretation of the Objective Value 

The value of 85,500 signifies that, given the constraints (like aircraft availability, flight 

durations, demand in each city, operational costs, etc.) and the setup (like revenue models for 

different routes), this is the maximum profit the airline can expect to achieve. It is the result of an 

optimal balance between generating revenue and minimizing costs across all scheduled flights. 

This profit figure can provide crucial insights into the efficiency of the airline's operational 

strategy. It offers a quantitative measure of how well resources are being utilized, including the 

deployment of various aircraft types on different routes according to their capacities and 

operational costs. The optimal solution confirms that the model is feasible and well-calibrated to 

reflect the airline's operations. If the profit number were unexpectedly low or high, it might 

prompt a review of the input parameters or the assumptions underpinning the model. 

When executing this model in AMPL, the resulting output provides detailed information 

regarding the scheduling of various aircraft types across different cities and time slots. Below is 

an expanded and rephrased explanation of the output, categorized for clarity in understanding 

how the aircraft types and individual aircraft are scheduled: 

Summary of Aircraft Type Scheduling (x Output): 

Aircraft 

Type City 

Time Slot 

6 

Time Slot 

7 

Time Slot 

8 

Time Slot 

9 

Time Slot 

10 

Time Slot 

11 

Time Slot 

12 

AB321 Boston 1 1 1 1 0 0 0 

AB321 Miami 0 0 0 0 1 0 0 

AB321 LA 0 0 0 0 0 1 1 

ATR70 DC 1 1 1 1 1 1 1 

B737 LA 1 1 1 1 1 1 1 



The output tables display the number of round trips scheduled for each aircraft type to different 

cities within specified time slots. Here's what each section of the table indicates: 

• AB321 Aircraft: Scheduled to perform flights primarily to Boston in the earlier time 

slots (6 to 9), shifting focus to Miami at time slot 10, and then to LA at time slots 11 and 

12. This demonstrates a strategic allocation of this aircraft type to various routes 

throughout the day. 

• ATR70 Aircraft: Consistently utilized for flights to DC across all time slots (6 to 12), 

suggesting a high demand or a dedicated service route for this aircraft type on the DC 

line. 

• B737 Aircraft: Exclusively assigned to fly to LA in every time slot from 6 to 12, 

indicating a potential specialization or optimal usage of this aircraft for routes to LA, 

possibly due to its capacity or range capabilities. 

Summary of Individual Aircraft Flight Schedules (flight Output): 

Flights to Boston: 

Aircraft Time Slot 6 Time Slot 7 Time Slot 8 Time Slot 9 Time Slot 10 Time Slot 11 Time Slot 12 

A1 0 0 0 0 0 0 0 

A2 0 0 0 0 0 0 0 

AB1 1 1 1 1 0 0 0 

AB2 0 0 0 0 0 0 0 

B3 0 0 0 0 0 0 0 

 

Flights to DC: 

Aircraft Time Slot 6 Time Slot 7 Time Slot 8 Time Slot 9 Time Slot 10 Time Slot 11 Time Slot 12 

A1 1 1 0 1 1 0 1 



Aircraft Time Slot 6 Time Slot 7 Time Slot 8 Time Slot 9 Time Slot 10 Time Slot 11 Time Slot 12 

A2 0 0 1 0 0 1 0 

 

Flights to LA: 

Aircraft Time Slot 6 Time Slot 7 Time Slot 8 Time Slot 9 Time Slot 10 Time Slot 11 Time Slot 12 

AB4 0 0 0 0 0 1 1 

B3 1 1 1 1 1 1 1 

 

Flights to Miami: 

Aircraft Time Slot 6 Time Slot 7 Time Slot 8 Time Slot 9 Time Slot 10 Time Slot 11 Time Slot 12 

AB1 0 0 0 0 1 0 0 

This part of the table gives an output that identifies which specific aircraft are scheduled to fly to 

each city at each time slot, reinforcing how operational plans are implemented at a more granular 

level: 

• Flights to Boston: The AB1 aircraft handles all early morning flights to Boston from 

time slots 6 to 9, matching the round trips shown in the x output for AB321. This 

confirms the precise scheduling of specific flights. 

• Flights to DC: Aircraft A1 is the main operator for DC routes, especially in time slots 6, 

7, 9, 10, and 12, with A2 contributing during time slots 8 and 11. This suggests 

collaborative use of these aircraft to meet the consistent demand to DC as seen in the x 

output for ATR70. 

• Flights to LA: Aircraft B3 operates consistently to LA across all listed time slots, 

directly correlating with the x data for B737. Additionally, AB4 supports the route in the 

last two slots of the day, enhancing capacity during peak times. 



• Flights to Miami: AB1 uniquely manages a single midday flight to Miami at time slot 

10, demonstrating a specific operational decision likely aimed at optimizing usage based 

on passenger demand or other logistical considerations. 

 

Model 3 

Before addressing crew pairing, a valid flight schedule must be established. Therefore, this third 

model integrates the initial two models and includes two essential constraints critical for 

generating a legitimate and feasible flight schedule. 

subject to at_most_one_flight_any_given_time {c in CITIES, t in Time_Slots}: 

sum {a in all_aircrafts} flight[a,c,t] <= 1; 

subject to SuffficientRest{a in all_aircrafts, c1 in CITIES, t1 in 

Time_Slots, c2 in CITIES, t2 in Time_Slots: (t2 > t1) and (t2 < t1 + 

2*FlightDuration[a,c1] + TurnaroundTime[c1] + buffer_time)}: flight[a,c1,t1] 

<= 1-flight[a,c2,t2];  

• The constraint described, "at_most_one_flight_any_given_time," is designed to regulate 

the scheduling of flights at airports in a way that ensures no more than one aircraft can 

be scheduled to depart from or arrive in any given city at the same time slot. 

 

• The constraint described, "SufficientRest," is designed to ensure that aircraft have an 

adequate rest or downtime period between flights. This is crucial for a variety of 

operational reasons, including maintenance, safety checks, crew rest, and other logistical 

needs. 

By integrating these two constraints into Model 2, we have developed the following model to 

ensure a valid flight scheduling: 

set PLANES; 



set CITIES; 

set aircraft{PLANES}; 

set all_aircrafts := union{p in PLANES} aircraft[p]; 

set Time_Slots; 

param cost {PLANES, CITIES} >= 0; 

param revenue {PLANES, CITIES} >= 0; 

param flyingTime {PLANES, CITIES} >= 0; 

param demand {CITIES} >= 0;  

param capacity {PLANES} >= 0; # Max passengers per plane type 

param planeCount {PLANES} integer >= 0; 

param planeType{all_aircrafts} symbolic; 

param FlightDuration {all_aircrafts, CITIES}; # One-way flight duration 

param TurnaroundTime {CITIES}; # Turnaround time at each destination 

param maxHours {PLANES} >= 0; 

param buffer_time; 

var x {PLANES, CITIES, Time_Slots} integer >= 0; # Number of round trips 

var flight{a in all_aircrafts, c in CITIES, t in Time_Slots} binary; 

maximize TotalProfit: sum {p in PLANES, a in aircraft[p], c in CITIES, t in 

Time_Slots} (revenue[p,c] - cost[p,c]) * flight[a,c,t]; 

subject to MaxHoursEachAircraft {a in all_aircrafts, t in Time_Slots}:sum {c 

in CITIES} flyingTime[planeType[a],c] * flight[a,c,t] <= 

maxHours[planeType[a]]; 

subject to MeetDemand {c in CITIES}: sum {p in PLANES, t in Time_Slots} 

x[p,c,t] * capacity[p] >= demand[c]; 

subject to Total_flights {p in PLANES, c in CITIES, t in Time_Slots}: x[p, c, 

t] = sum{a in aircraft[p]} flight[a, c, t]; 

subject to PlaneUsageConstraint {p in PLANES, t in Time_Slots}: sum {c in 

CITIES} x[p,c,t] <= 1; 

subject to at_most_one_flight_any_given_time {c in CITIES, t in Time_Slots}: 

sum {a in all_aircrafts} flight[a,c,t] <= 1; 



subject to SuffficientRest{a in all_aircrafts, c1 in CITIES, t1 in 

Time_Slots, c2 in CITIES, t2 in Time_Slots: (t2 > t1) and (t2 < t1 + 

2*FlightDuration[a,c1] + TurnaroundTime[c1] + buffer_time)}: flight[a,c1,t1] 

<= 1-flight[a,c2,t2];  

data; 

set PLANES := B737, AB321, ATR70; 

set aircraft['B737'] := B1 B2 B3; 

set aircraft['AB321'] := AB1 AB2 AB3 AB4; 

set aircraft['ATR70'] := A1 A2; 

set CITIES := Boston, DC, Miami, LA; 

set Time_Slots := 6, 7,8,9,10,11,12; 

param revenue: Boston DC Miami LA := 

B737 6000 8000 11000 8000 

AB321 6500 5500 8000 4000 

ATR70 3500 4000 500 9000 ; 

param cost: Boston DC Miami LA := 

B737 6000 6000 7000 1000 

AB321 4000 2500 5000 1000 

ATR70 8000 1500 3000 7000 ; 

param flyingTime: Boston DC Miami LA := 

B737 10 12 8 6 

AB321 9 12 5 8 

ATR70 12 4 5 7 ;  

param planeCount := 

B737 10 

AB321 15 

ATR70 2; 



param demand := 

Boston 800 

DC 120 

Miami 200 

LA 250; 

param capacity := 

B737 189 

AB321 220 

ATR70 700; 

param planeType := 

B1 'B737' 

B2 'B737' 

B3 'B737' 

AB1 'AB321' 

AB2 'AB321' 

AB3 'AB321' 

AB4 'AB321' 

A1 'ATR70' 

A2 'ATR70'; 

param FlightDuration: Boston DC Miami LA := 

B1 2 5 2.1 5 # Adjusted for rounding up and respecting the gap 

B2 2 6 2.2 6 

B3 3 7 2.3 7 

AB1 2.5 3.5 5.5 6.5 # Noticeable delays due to longer ReturnTime in previous 

cities 

AB2 3 1 2 3 



AB3 10 2 4 3 

AB4 5 3 7 4 

A1 2 1 3 6 # Miami to LA is a tight schedule; respecting minimal 1-hour gap 

A2 4 2 4 7; 

param maxHours := 

B737 15 

AB321 15 

ATR70 18; 

param TurnaroundTime := 

Boston 1 

DC 1 

Miami 1 

LA 2; 

param buffer_time := 5; # Example: buffer time set to 1 time unit 

 

 

 

 

 

 

 

 

 

 

 



Result Section 

Executing this model in Neos Server yielded the subsequent results. 

 



 

 

 



Analysis of Model 3 

Interpretation of the Objective Value 

The objective value of $31,000 represents the peak revenue achievable with the current setup of 

operations. This peak is determined within the framework of existing constraints—such as 

aircraft capacity, flight frequencies, and route selections. The achievement of this revenue figure 

under these specific conditions underscores the efficiency of the resource allocation (aircraft and 

routes) and scheduling within the model's parameters. The model considers various market 

factors such as how many passengers want to fly, how crowded certain routes are, and how 

prices are set. The result, a revenue of $31,000, shows that this is the most money the airline can 

expect to make under current market conditions and competition. 

The provided output from the AMPL model gives a comprehensive look at the optimal flight 

scheduling achieved using CPLEX as the solver. Here’s a breakdown of the results, showcasing 

how different aircraft types are scheduled across various cities and time slots, and how individual 

aircraft are assigned to specific flights: 

Summary of Aircraft Type Schedules (x output): 

This portion of the output details the number of flights scheduled for each aircraft type to 

different cities during various time slots: 

Aircraft Type Schedules (Table x Output) 

Aircraft 

Type Destination 

Time 

Slot 6 

Time 

Slot 7 

Time 

Slot 8 

Time 

Slot 9 

Time Slot 

10 

Time Slot 

11 

Time Slot 

12 

AB321 Boston 0 1 1 1 0 1 0 

AB321 DC 0 0 0 0 0 0 0 

AB321 LA 0 0 0 0 0 0 1 

AB321 Miami 0 0 0 0 0 0 4 

ATR70 Boston 0 0 0 0 0 0 4 



Aircraft 

Type Destination 

Time 

Slot 6 

Time 

Slot 7 

Time 

Slot 8 

Time 

Slot 9 

Time Slot 

10 

Time Slot 

11 

Time Slot 

12 

ATR70 DC 0 0 0 0 0 1 0 

ATR70 LA 0 0 0 0 0 0 0 

ATR70 Miami 1 0 0 0 0 0 0 

B737 Boston 0 0 0 0 0 0 0 

B737 DC 0 0 0 0 0 0 0 

B737 LA 1 0 1 0 0 0 1 

B737 Miami 0 0 0 0 0 0 0 

 

• AB321: Primarily utilized for flights to LA (2 flights) and Miami (4 flights), with no 

flights to Boston or DC. 

• ATR70: Concentrated on routes to Boston (4 flights) and DC (1 flight), with no flights 

scheduled to LA or Miami. 

• B737: Utilized exclusively for flights to LA (3 flights total across different time slots), 

indicating a specific deployment for routes possibly needing larger capacity or longer 

range. 

Detailed Individual Aircraft Flight Schedules (flight output): 

This section maps out which individual aircraft are flying to each city at each given time slot: 

Individual Aircraft Flight Assignments (Table flight Output) 

Aircraft Destination 

Time Slot 

6 

Time Slot 

7 

Time Slot 

8 

Time Slot 

9 

Time Slot 

10 

Time Slot 

11 

Time Slot 

12 

A1 Boston 0 0 0 0 0 0 0 

A2 Boston 0 0 0 0 0 0 0 



Aircraft Destination 

Time Slot 

6 

Time Slot 

7 

Time Slot 

8 

Time Slot 

9 

Time Slot 

10 

Time Slot 

11 

Time Slot 

12 

AB1 Boston 0 0 1 0 0 0 0 

AB2 Boston 0 0 0 0 0 1 0 

AB3 Boston 0 0 0 1 0 0 0 

AB4 Boston 0 1 0 0 0 0 0 

B3 LA 1 0 0 0 0 0 0 

B2 LA 0 0 0 0 0 0 1 

A2 Miami 1 0 0 0 0 0 0 

This part of the table gives an output that identifies which specific aircraft are scheduled to fly to 

each city at each time slot, reinforcing how operational plans are implemented at a more granular 

level: 

 

• Flights to Boston: Handled by various AB321 aircraft at different times, specifically 

highlighting the detailed scheduling of aircraft like AB1 through AB4 at various time 

slots. 

• Flights to DC: Shows a more focused use with A1 being the only aircraft utilized for DC 

at time slot 11, indicating possibly limited demand or specific operational planning for 

this route. 

• Flights to LA: Reflects a more distributed use of aircraft, with B737 models B1, B2, and 

B3 each taking different flights at different times, maximizing the use of this aircraft type 

on a presumably high-demand or long-distance route. 

• Flights to Miami: Primarily covered by A2 at time slot 6, suggesting a specific 

operational strategy, perhaps focusing on peak times or efficient use of smaller aircraft 

for cost-effective operations. 

 



Analysis and Strategic Implications: 

• Operational Efficiency: The scheduling demonstrates effective utilization of aircraft 

based on their capabilities and route demands. For instance, using B737s for LA suggests 

a match between aircraft capacity and route requirements. 

• Cost Minimization: The absence of flights for certain aircraft types in some cities 

indicates a strategic choice to minimize operational costs by not deploying flights where 

they may not be economically viable or necessary. 

• Resource Allocation: The deployment of specific aircraft at specific times to specific 

cities suggests detailed planning to align flight schedules with passenger demand, 

operational constraints, and cost considerations. 

Observation 

From the analysis of the AMPL model outputs, several key observations regarding the airline's 

scheduling and resource utilization strategies are evident: 

• Strategic Route Allocation: The model effectively allocates different aircraft types to 

routes based on operational efficiency and market demand. For instance, AB321 aircraft 

are predominantly used for flights to LA and Miami, likely due to these destinations' 

higher passenger volumes or revenue potential. Conversely, ATR70 aircraft focus on 

shorter, possibly less profitable routes like Boston and DC. 

 

• Optimal Aircraft Utilization: Each aircraft type is utilized in a manner that maximizes 

its operational efficiency and cost-effectiveness. The B737, for instance, is deployed 

exclusively for LA flights, which could indicate its suitability for longer distances or 

larger passenger capacities, aligning with the route's demand characteristics. 

 

• Dynamic Scheduling: The scheduling reflects a dynamic approach to meet varying time 

slots and city demands, demonstrating the airline's flexibility in adapting to market 

conditions and operational constraints. This is particularly evident in how different 

AB321 aircraft are assigned to various cities across different time slots, optimizing 

coverage and capacity utilization. 

 

 



• Cost Management: The absence of certain aircraft types on some routes indicates a 

strategic decision to minimize costs by avoiding less economically viable flights. This 

demonstrates an awareness of cost implications and a strategic approach to managing 

expenses while still meeting market needs. 

 

• Compliance with Operational Constraints: The model adheres to crucial operational 

constraints such as maximum flying hours and demand requirements, ensuring regulatory 

compliance and safety standards while optimizing for profitability and efficiency. 

Conclusion 

The strategic application of the AMPL model in optimizing flight schedules and aircraft 

utilization demonstrates significant strengths in operational planning and efficiency. The airline 

effectively aligns its resources with market demands and operational constraints, leading to an 

optimized network that maximizes profitability while ensuring compliance and safety. The 

detailed scheduling and strategic route allocation enhance resource utilization, reduce 

unnecessary operational costs, and adapt dynamically to market conditions. This model's success 

in achieving a balance between cost minimization and revenue maximization, along with its 

strategic allocation of aircraft to routes and precise scheduling, suggests a robust operational 

strategy. 

Recommended Future Work 

• To further refine the model, it is recommended to expand its capability to manage 

operations from multiple bases, rather than a single base. This enhancement will allow for 

more complex and realistic scheduling scenarios, accommodating a wider range of 

operational needs and improving the model's applicability to larger airline networks. 

 

• For the subsequent phase of this project, it is recommended to incorporate crew 

assignments into the existing flight scheduling model which was the goal for this work 

but time couldn’t permit. This enhancement will aim to optimize crew utilization in 

alignment with the validated flight schedules. 

 

• Perform checks and sensitivity analyses to evaluate how the model responds to changes 

in key parameters such as demand fluctuations, cost variations, and operational 

constraints. This could help in understanding the impact of uncertainty in market 

conditions and operational data on the scheduling decisions. 



 

• Develop models that also consider crew satisfaction factors, such as preferred bases, 

commuting times, and layover durations. 
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