
Optimizing the PGA Tour

Matt Fisher

May 5, 2024

1

1 Intro

The Professional Golfers’ Association (PGA) Tour is golf’s main collection of professional golf tour-
naments. In 2024, they will hold 34 main tournaments (not including sub-tournaments) from Jan-
uary to September across the United States, Mexico, Canada, and Scotland. With this large number
of tournaments, the question arises of how to most effectively schedule the tour. Most players who
are on the tour play every one of the tournaments and will need to travel all across the world over
9 months. Along with this, there is a camera staff, caddies, commentators, and more who need to
travel to every single tournament on the schedule. In order to both reduce travel time and mitigate
the carbon footprint of the PGA Tour, we seek to minimize the total distance to travel and still hit
every tournament of the tour.

2 Complications with scheduling

Most of the PGA Tour’s current schedule is based on tradition. In the current schedule, they have a
stint in Florida and Georgia in March and April because this would encourage journalists covering
MLB Spring Training to stop by PGA events. Also, there is a stint of events in California in the
winter months, this is because in the past, when country clubs in the northern states closed for the
winter, people tended to also have memberships in California to play golf in the winter. Because
of this and many other traditions, the PGA Tour has not changed substantially in the past years to
accommodate for the growing number of events and increased travel.

Many of these traditions can be improved on to minimize travel distance, but some of them have
become rules that are set in stone that we must work around when creating our model. One of the
most important rules is that of the 4 major tournaments. These are the 4 most popular events, and
they are always played on the same weekends every year. These events are The Masters in Augusta,
Georgia which takes place on the weekend containing the second Sunday in April, The PGA Cham-
pionship in Louisville, Kentucky on the weekend before Memorial Day in May, The U.S. Open in
Pinehurst, North Carolina taking place on the weekend containing the third Sunday in June, and
finally The Open Championship in Troon Scotland, which takes place on the weekend containing
the third Friday in July. These 4 events can not be moved around the schedule due to the rules of
the PGA. A few more events that must take place on certain weeks are The Players in Sawgrass,
Florida which must be in March, as well as the FedEx Playoff tournaments. The FedEx events are
the last 3 events of the tour, the 2024 events, in order, are the FedEx Championship in Memphis Ten-
nessee, The BMW Championship in Castle Rock, Colorado, and the Tour Championship in Atlanta,
Georgia.

Another complication that we will need to keep in mind is that of the weather. The schedule runs
from January to September, meaning there will be events scheduled in the winter months. Given
that golf can not be played when there is snow on the ground, we must work around this especially
since the tour has events in Canada, Minnesota, and other places where snow can be a concern in
the winter months.

3 Details of the original model used

As the PGA Tour includes 34 unique stops along with the various restrictions mentioned above, the
model used to minimize travel time has various layers and complications, which we will describe
here starting with the distance matrix. We needed to retrieve the distance between all 34 country
clubs that will be played. In order to retrieve this data, we will utilize the Python package haversine.
The haversine package will retrieve the straight line on a map distance between any 2 given points
on Earth using latitude and longitude points. We found the latitude and longitude of all clubs on
the Tour using Google Maps, then used Python to find the distance in miles between any two clubs.

2

The code for this, along with all AMPL code used, will be given in the Appendix at the end of this
paper. Putting all of the distances into a distance matrix, we get the following:

Where all of the headings on the rows and columns are condensed names of the Tournament them-
selves. For example, The Masters is MAS, the Phoenix Open is PHX, and so on.

We will now discuss the model we produced in AMPL, a mathematical programming language, and
the theory behind what we did. Starting with the variables we defined for this model, we have 3
variables defined as the following.

Xi,j =

{
1, if tournament j follows tournament i
0, otherwise

(1)

Bi =

{
1, if location of tournament i has more than 15 inches of snow a year
0, otherwise

(2)

Ti = number in the Tour cycle that tournament i is

Our objective function will be the following:

n

∑
i,j,i ̸=j

Di,j · Xi,j (3)

Where Di,j is the distance between tournament i and j, and n is the number of tournaments.

Now, we will go over the models’ constraints. Something we need to be mindful of is that the tour
makes n − 1 trips between tournaments, where n is total number of tournaments (34 for the full
tour). So we will implement this constraint into our model by doing the following.

n

∑
i,j,i ̸=j

Xi,j = n − 1 (4)

Along with this, we can observe that when we add up all the orders of tournaments in the tour (1 +
2 + ... + 34) we get n*(n+1)/2, this makes sure that our tournament order goes from 1 to 34 and does
not take on any other values, this constraint can be added as:

n

∑
i

Ti =
n ∗ (n + 1)

2
(5)

3

Next, we can observe 2 things. For every tournament attended, we will want at most one tourna-
ment to follow or precede that tournament. This constraint can prevent our model from assigning
2 or more tournaments arcing from one point, keeping a single straight line path between all 34
tournaments. We can do this by introducing the following:

n

∑
i

Xi,j ≤ 1 (6)

n

∑
j

Xi,j ≤ 1 (7)

These constraints guarantee that when summing over i, at most 1 tournament will precede any given
tournament while summing over j guarantees at most 1 will follow.

Now that we have established that we will have one arc to and from every club, we will want the
model to ensure that there are no cycles in the path. This will help confirm that every club is visited
exactly once in our model, and we can implement it by doing the following.

Ti − Tj + (n + 1) ∗ Xi,j ≤ n ∀ i, j, i ̸= j (8)

These constraints guarantee that there can be no cycles in this given path.

Another factor we will want to consider is the weather of the tournaments. With there being tourna-
ments in the northern United States, Canada, and Scotland, where snow is a very large risk if played
in the earlier months of the year, we need to implement a constraint to attempt to avoid tournaments
being played in the snow. We can do this in the following way:

Ti ≥ Bi ∗ k (9)

Where k is the 14th event in the Tour. This constraint ensures that any tournament that is at a
location where the average snowfall is at or above 15 inches will be pushed back in the order to at
least the 14th spot in the tour. This will push any of these tournaments back until at least mid-April,
that way it is incredibly unlikely that snow will be a hindrance on the tour.

Finally, we need to carry out constraints so that all of the majors and FEDEX Playoff tournaments
take place on their specific weeks. This is a fairly simple constraint that can be done in the following
way:

TSpecific Tournament = i (10)

Where i is the specific week that the tournament must fall on. With this constraint, we now have
our finalized initial model.

4 Revisions of original model

Whwn testing the original model presented above, using n = 34, we used the CPLEX solver on a
NEOS server. A problem arose in testing, as The NEOS server only allows for a given problem to
use up to 3 GB of RAM to solve a problem, and our model used more. Because of this, we were
given an error statement and were unable to get a result. We then had to rethink the model, in order
to minimize the amount of memory used in the server so we can get our optimal result.

The first thing that came to mind was minimizing the amount of information that has to go through
the optimization process, starting at the distance matrix, as that almost definitely is a factor in the
high memory usage. We can start by attempting to disregard useless data. We can do this by get-
ting rid of distance data that is over a certain threshold, say 900 miles. When minimizing the total
distance traveled, it is very unlikely that there will be any travel paths over 900 miles unless there

4

are specific circumstances. These exceptions being that we are traveling to or from one of the in-
ternational tournaments in Scotland or Mexico, or if they are going to or from one of the 2 Hawaii
tournaments. A way to add this constraint is by adding a new parameter to our model. This param-
eter will be the following.

Bi,j =

{
1, i ̸= j ∧ (i or j are one of the previously stated tournaments ∨ Di,j ≤ 900)
0, otherwise

With this new parameter, we will substitute Bi,j = 1 into all variables and constraints in which the
condition i ̸= j was needed. We will substitute it into the objective function as well. This will lessen
the amount of variables that the solver needs to intake, lowering the amount of RAM used.

Another adjustment made was removing a chunk of the tournaments. As we are using CPLEX,
which uses the simplex algorithm, it can take very long, almost as long as brute force. The NEOS
Server times out at 8 hours, which we have exceeded multiple times in testing. We removed a chunk
of the beginning of the Tour, as this is mainly optimized for distance anyway. The first bunch of tour-
naments are in Hawaii, California, Arizona, and Mexico all places that are close together for the most
part. We had to make some changes to the code itself, such as dropping the events from the distance
matrix, adjusting our n, as well removing Hawaii and Mexico from the new parameter stated in the
last paragraph. After testing various different models, we found that the most tournaments we can
include is 24 (we will discuss this more in section 6), meaning we will drop 10.

The events dropped are

• The Sentry

• Sony Open

• The American Express

• Farmers Insurance Open

• AT&T Pebble Beach Pro-Am

• WM Pheonix Open

• The Genesis Invitational

• Mexico Open

• BMW Championship

• Tour Championship

Excluding the BMW Championship and the Tour Championship, these are all the first 8 tourna-
ments. We chose to exclude these as the beginning of the tour mostly includes of tournaments that
are fairly close together (It is mainly all on the West Coast), so optimizing the final portion will be
more beneficial.

The last 2 events of the tour, BMW Championship and the Tour Championship, are excluded from
the model, as we know these both follow the FedEx Championship, as the last 3 events are set in
stone as previously mentioned. Now with this reduced mode, we can run it in the NEOS CPLEX
server without error.

5

5 Results

When running our program using a CPLEX solver, we get the following order of tournaments, with
our results on the left and original schedule on the right:

1. Zurich New Orleans Classic (New Orleans, LA) / Cognizant Classic (Palm Beach Gardens, FL)

2. Valspar Championship (Palm Harbor, FL) / Arnold Palmer Invitational (Orlando, FL)

3. The Players Championship (Sawgrass, FL) / The Players Championship (Sawgrass, FL)

4. Arnold Palmer Invitational (Orlando, FL) / Valspar Championship (Palm Harbor, FL)

5. Cognizant Classic (Palm Beach Gardens, FL) / Houston Open (Houston, TX)

6. RBC Heritage (Hilton Head, SC) / Valero Texas Open (San Antonio, TX)

7. The Masters (Augusta, GA) / The Masters (Augusta, GA)

8. Houston Open (Houston, TX) / RBC Heritage (Hilton Head, SC)

9. Valero Texas Open (San Antonio, TX) / Zurich New Orleans Classic (New Orleans, LA)

10. Charles Schwab Challenge (Fort Worth, TX) / The CJ Cup (McKinney, TX)

11. The CJ Cup (McKinney, TX) / Wells Fargo Championship (Charlotte, NC)

12. PGA Championship (Louisville, KY) / PGA Championship (Louisville, KY)

13. 3M Open (Blaine, MN) / Charles Schwab Challenge (Fort Worth, TX)

14. John Deere Classic (Silvis, IL) / RBC Canadian Open (Hamilton, Canada)

15. Wells Fargo Championship (Charlotte, NC) / The Memorial Tournament (Dublin, OH)

16. US Open (Pinehurst, NC) / US Open (Pinehurst, NC)

17. Wyndham Championship (Greensboro, NC) / Travelers Championship (Cromwell, CT)

18. The Memorial Tournament (Dublin, OH) / Rocket Mortgage Classic (Detroit, MI)

19. Rocket Mortgage Classic (Detroit, MI) / John Deere Classic (Silvis, IL)

20. RBC Canadian Open (Hamilton, Canada) / Genesis Scottish Open (North Berwick, Scotland)

21. The Open (Troon, Scotland) / The Open (Troon, Scotland)

22. Genesis Scottish Open (North Berwick, Scotland) / 3M Open (Blaine, MN)

23. Travelers Championship (Cromwell, CT) / Wyndham Championship (Greensboro, NC)

24. FedEx Championship (Memphis, TN) / FedEx Championship (Memphis, TN)

25. BMW Championship (Castle Rock, CO) / BMW Championship (Castle Rock, CO)

26. Tour Championship (Atlanta, GA) / Tour Championship (Atlanta, GA)

6

Ones in bold are major Tournaments that place in the schedule are set, and cannot change.

This is a fairly different result than what the PGA Tour currently uses. But even just by observation,
we can see that distance is fairly minimized, with all of the events in Texas and Florida all bunched
together, there are stints in the northern US, and so on. Something notable is that, much like the
original schedule, places in the northern US are played later in the schedule, this most likely isn’t
due to our weather constraints. I likely believe that this is due to where the major tournaments are.
The Players and The Masters are in Florida and Georgia respectively, and are both tournaments that
are on a set week. In order to minimize travel distance, it is likely that the tournaments in the north,
where snow is most prevalent, will not be played until later in the year.

6 Time Analysis

In testing, I wanted to see how many tournaments we could add to this model before the remote
server could not take it anymore. So we started with the last 18 tournaments, that way we include
all of the 4 major tournaments, as well as we include the last portion, as that is the section of the
tour with the most distance traveled prior to optimization. The model with only 18 tournaments
ran in less than one minute, so we slowly added in tournaments one at a time. This way when n =
19 it is the last 19 tournaments of the original PGA schedule, n = 20 is the last 20 tournaments of the
original PGA schedule, and so on. We did this until it wouldn’t allow us anymore and observed the
run time, the following is the results of running this model with increasing n.

• n = 18: Less than a minute

• n = 19: 3 minutes

• n = 20: 8 minutes

• n = 21: 11 minutes

• n = 22: 17 minutes

• n = 23: 90 minutes

• n = 24: 6 hours 50 minutes

• n = 25: Exceeded allotted RAM

This does many things, not only did it help us settle on having a 24 Tournament model, but also
illustrates the rate at which adding more tournaments increases the run time. Another observation
can be made by looking at the number of simplex iterations and branch-and-bound nodes that are
needed to be done to solve the problem. These are retrieved from the CPLEX output for the AMPL
problems.

• n = 18: 61,096 simplex iterations, 8,879 branch-and-bound nodes

• n = 24: 1,023,371,273 simplex iterations, 75,182,228 branch-and-bound nodes

We can see just how fast this problem grows by increasing the n by only 6. When n = 18, it only does
.00597% the amount of simplex iterations compared to n = 24. This also demonstrates why doing
the full model of n = 34 would be impossible without heavily adjusting our model.

7

7 Future work

Many refinements can be added to this model in order to account for more scenarios that the Tour
takes into consideration.

• Look into ways to condense variables so that we can run this code for the whole PGA Tour.

• The Super Bowl heavily affects all other TV ratings for the whole weekend that it airs. If we
were able to access the TV ratings of the PGA Tour, which I have been unable to find, we could
prioritize less popular tournaments to air the week of the Super Bowl. This way the PGA will
minimize their revenue loss throughout the year.

• Investigate the possibility of switching haversine distance with flight/driving distance to more
accurately measure the distance the players/crew will have to travel.

8 References

https://www.espn.com/golf/schedule
Used to find PGA Tour locations and events
https://www.pgatour.com/
Used to gather info on Tour traditions and customs
https://www.google.com/maps
Used for latitude and longitude of the event locations
https://s2.smu.edu/ olinick/cse3360/lectures/brute force.htm
Used to gather info about CPLEX algorithms

8

9 Appendix

Python Code Used For Distance Matrix
!pip install haversine
from haversine import haversine, Unit
from haversine import haversine vector, Unit
import numpy as np
SEN = (20.9946001248632, -156.653473270624541)
SON = (21.3069447444130, -157.858337667429032)
AEX = (33.6654015556922, -116.30798311112099)
FIO = (32.8419910471217, -117.27301882351397)
PBB = (38.1290731941269, -122.88434386277191)
PHX = (33.64070144886564, -111.90910886569488)
GEN = (34.04997103007352, -118.50219732895634)
MEX = (20.681043251427173, -105.28686333663033)
COG = (26.830633649876166, -80.13832785015691)
API = (28.458628889079844, -81.50963138724956)
PLY = (30.19889198964165, -81.3942001176103)
VAL = (28.111027597022275, -82.75374281522284)
HOU = (29.773931383507033, -95.42836188444284)
VTO = (29.666126567067618, -98.39446091355777)
MAS = (33.50238699892952, -82.02178538638701)
RBC = (32.13572691226164, -80.80936554405868)
ZNO = (29.90254329690623, -90.18820495776565)
CJC = (33.14092173707245, -96.71862829432696)
WFC = (35.11649093625573, -80.8414662538495)
PGA = (38.24273076940281, -85.47084527898363)
CSC = (32.716171589705326, -97.37133580781949)
CAN = (43.21957285400244, -79.97530827940336)
MEM = (40.1401518527829, -83.14097123665532)
USO = (35.19414802532097, -79.47333643635238)
TRV = (41.6320876375511, -72.63809930596864)
RMC = (42.42661261589339, -83.1248997311028)
JDC = (41.47744798225558, -90.39136269987951)
GSO = (57.83980492222196, -9.511702403890528)
TOP = (55.53282059279759, -4.648627367341988)
TMP = (45.17726081811669, -93.21209672316282)
WYN = (36.01449583864608, -79.88558216178946)
FDX = (35.05745887091684, -89.7781591538495)
BMW = (39.44078685686753, -104.89738163295364)
TOR = (33.74351942073119, -84.30191918638701)
place vec = [SEN, SON, AEX, FIO, PBB, PHX, GEN, MEX, COG, API, PLY, VAL, HOU, VTO, MAS,
RBC, ZNO, CJC, WFC, PGA, CSC, CAN, MEM, USO, TRV, RMC, JDC, GSO, TOP, TMP, WYN, FDX,
BMW, TOR]
v = haversine vector(place vec, place vec, Unit.MILES, comb=True)
v = np.around(v)
print((v))

9

AMPL Code Used

set Tournament;

set Weather;

param downfall{Weather, Tournament};

param distance{i in Tournament, j in Tournament: i!=j};

#if an arc is less then 900 miles dont include (unless one is in Scotland)

param allowed_travel{i in Tournament, j in Tournament}:=

if (i!=j and (i == ’GSO’ or i ==’TOP’or j ==’GSO’ or j ==’TOP’or distance[i,j]<=900))

then 1

else 0;

###VARIABLE

var next_tournament{i in Tournament, j in Tournament: allowed_travel[i,j]=1} binary;

var included{Tournament} binary;

var Tournament_Order{Tournament} >= 0, <= 24;

subject to all_must_occur: #Makes sure all Tournaments are included

sum {i in Tournament} included[i] = 24;

sum of all tournament orders should add up to n(n+1)/2

subject to sum_order:

sum {i in Tournament} Tournament_Order[i] = 300;

#Exactly n-1 arcs in total

subject to tournaments_following:

sum{i in Tournament, j in Tournament:

allowed_travel[i,j]=1} next_tournament[i,j] = 23;

#at most one tournament follows

subject to at_most_one_tournament_follows {i in Tournament}:

sum {j in Tournament: allowed_travel[i,j]=1} next_tournament[i,j] <= 1;

#at most one tournament precedes

subject to at_most_one_tournament_precedes {j in Tournament}:

sum {i in Tournament: allowed_travel[i,j]=1} next_tournament[i,j] <= 1;

#Keep it a path, let no cycles form

subject to prevent_cycle {i in Tournament, j in Tournament:

allowed_travel[i,j]=1}: Tournament_Order[i] - Tournament_Order[j] +

25*next_tournament[i,j] <= 24;

##if there is snow, play it after mid-April

subject to snowfall {i in Tournament}:

Tournament_Order[i] >= downfall["Snow", i]*7;

10

If a Tournament is always played on a certain week, set that here.

subject to Players {i in Tournament}:

Tournament_Order ["PLY"] = 3;

subject to Masters {i in Tournament}:

Tournament_Order ["MAS"] = 7;

subject to PGA_Champ {i in Tournament}:

Tournament_Order ["PGA"] = 12;

subject to US_Open {i in Tournament}:

Tournament_Order ["USO"] = 16;

subject to The_Open {i in Tournament}:

Tournament_Order ["TOP"] = 21;

subject to FedEx {i in Tournament}:

Tournament_Order ["FDX"] = 24;

OBJ Function

minimize total_distance: sum {i in Tournament, j in Tournament:

allowed_travel[i,j]=1} distance[i,j]*next_tournament[i,j];

11

AMPL Output:

Error at _cmdno 4 executing "solve" command

(file amplin, line 135, offset 6027):

error processing param distance:

24 invalid subscripts discarded:

distance[’COG’,’COG’]

distance[’API’,’API’]

distance[’PL

Presolve eliminates 229 constraints and 71 variables.

Adjusted problem:

373 variables:

355 binary variables

18 linear variables

386 constraints, all linear; 1938 nonzeros

2 equality constraints

384 inequality constraints

1 linear objective; 355 nonzeros.

CPLEX 22.1.1.0: threads=4

CPLEX 22.1.1.0: optimal integer solution within mipgap or absmipgap; objective 12326

1023371273 MIP simplex iterations

75182228 branch-and-bound nodes

absmipgap = 1.23256, relmipgap = 9.99966e-05

Tournament_Order [*] :=

API 4 COG 5 GSO 22 MAS 7 PLY 3 TMP 13 USO 16 WFC 15

CAN 20 CSC 10 HOU 8 MEM 18 RBC 6 TOP 21 VAL 2 WYN 17

CJC 11 FDX 24 JDC 14 PGA 12 RMC 19 TRV 23 VTO 9 ZNO 1

;

12

	Intro
	Complications with scheduling
	Details of the original model used
	Revisions of original model
	Results
	Time Analysis
	Future work
	References
	Appendix

