Optimizing the PGA Tour

Matt Fisher

May 5, 2024

1 Intro

The Professional Golfers' Association (PGA) Tour is golf's main collection of professional golf tournaments. In 2024, they will hold 34 main tournaments (not including sub-tournaments) from January to September across the United States, Mexico, Canada, and Scotland. With this large number of tournaments, the question arises of how to most effectively schedule the tour. Most players who are on the tour play every one of the tournaments and will need to travel all across the world over 9 months. Along with this, there is a camera staff, caddies, commentators, and more who need to travel to every single tournament on the schedule. In order to both reduce travel time and mitigate the carbon footprint of the PGA Tour, we seek to minimize the total distance to travel and still hit every tournament of the tour.

2 Complications with scheduling

Most of the PGA Tour's current schedule is based on tradition. In the current schedule, they have a stint in Florida and Georgia in March and April because this would encourage journalists covering MLB Spring Training to stop by PGA events. Also, there is a stint of events in California in the winter months, this is because in the past, when country clubs in the northern states closed for the winter, people tended to also have memberships in California to play golf in the winter. Because of this and many other traditions, the PGA Tour has not changed substantially in the past years to accommodate for the growing number of events and increased travel.

Many of these traditions can be improved on to minimize travel distance, but some of them have become rules that are set in stone that we must work around when creating our model. One of the most important rules is that of the 4 major tournaments. These are the 4 most popular events, and they are always played on the same weekends every year. These events are The Masters in Augusta, Georgia which takes place on the weekend containing the second Sunday in April, The PGA Championship in Louisville, Kentucky on the weekend before Memorial Day in May, The U.S. Open in Pinehurst, North Carolina taking place on the weekend containing the third Sunday in June, and finally The Open Championship in Troon Scotland, which takes place on the weekend containing the schedule due to the rules of the PGA. A few more events that must take place on certain weeks are The Players in Sawgrass, Florida which must be in March, as well as the FedEx Playoff tournaments. The FedEx events are the last 3 events of the tour, the 2024 events, in order, are the FedEx Championship in Memphis Tennessee, The BMW Championship in Castle Rock, Colorado, and the Tour Championship in Atlanta, Georgia.

Another complication that we will need to keep in mind is that of the weather. The schedule runs from January to September, meaning there will be events scheduled in the winter months. Given that golf can not be played when there is snow on the ground, we must work around this especially since the tour has events in Canada, Minnesota, and other places where snow can be a concern in the winter months.

3 Details of the original model used

As the PGA Tour includes 34 unique stops along with the various restrictions mentioned above, the model used to minimize travel time has various layers and complications, which we will describe here starting with the distance matrix. We needed to retrieve the distance between all 34 country clubs that will be played. In order to retrieve this data, we will utilize the Python package haversine. The haversine package will retrieve the straight line on a map distance between any 2 given points on Earth using latitude and longitude points. We found the latitude and longitude of all clubs on the Tour using Google Maps, then used Python to find the distance in miles between any two clubs.

The code for this, along with all AMPL code used, will be given in the Appendix at the end of this paper. Putting all of the distances into a distance matrix, we get the following:

param distance:																																		
. SE	N SO	ON	AEX	FIO	PBB	PHX	GEN	MEX	COG	API	PLY	VAL	HOU	VTO	MAS	RBC	ZNO	CJC	WFC	PGA	CSC	CAN	MEM	USO	TRV	RMC	JDC	GSO	TOP	TMP	WYN	FDX	BMW	TOR:=
SEN Ø	8	1	2607	2543	2330	2858	2488	3302	4778	4670	4652	4601	3827	3651	4572	4658	4137	3732	4618	4334	3696	4580	4443	4693	4967	4428	4059	6671	6899	3921	4660	4118	3291	4440
SON 81	0		2666	2603	2379	2917	2545	3375	4842	4733	4713	4665	3891	3715	4630	4718	4200	3792	4674	4387	3757	4627	4494	4749	5015	4475	4108	6673	6899	3965	4715	4176	3343	4498
AEX 26	07 20	666	0	80	480	253	129	1122	2198	2081	2052	2017	1254	1087	1964	2052	1552	1129	2014	1745	1095	2055	1875	2090	2425	1890	1511	4840	5082	1459	2060	1512	748	1832
FIO 25	43 20	603	80	0	483	315	109	1117	2252	2137	2111	2072	1304	1135	2029	2115	1606	1189	2082	1817	1154	2132	1949	2158	2500	1967	1588	4918	5160	1538	2129	1578	826	1897
PBB 23	30 2	379	480	483	0	688	373	1599	2586	2459	2414	2403	1669	1515	2293	2393	1945	1504	2321	2018	1479	2251	2117	2393	2637	2097	1730	4775	5019	1597	2354	1839	971	2164
PHX 28	58 29	917	253	315	688	0	379	983	1946	1828	1799	1764	1004	840	1715	1801	1299	876	1767	1507	842	1837	1644	1844	2198	1670	1292	4702	4942	1272	1816	1264	558	1582
GEN 24	88 2	545	129	109	373	379	0	1227	2325	2207	2176	2144	1382	1216	2084	2174	1679	1253	2131	1856	1220	2152	1980	2206	2526	1989	1611	4885	5128	1541	2175	1630	839	1952
MEX 33	02 3	375	1122	1117	1599	983	1227	0	1643	1584	1625	1505	879	755	1677	1703	1136	1009	1787	1694	964	2134	1873	1859	2389	1977	1680	5223	5448	1827	1863	1369	1296	1569
COG 47	78 4	842	2198	2252	2586	1946	2325	1643	0	140	245	183	951	1127	474	369	647	1082	574	847	1109	1132	936	579	1108	1091	1167	3962	4152	1459	635	805	1668	538
API 46	70 4	733	2081	2137	2459	1828	2207	1584	140	0	120	79	845	1022	350	257	533	958	462	713	987	1023	812	480	1038	969	1029	3922	4118	1321	531	666	1534	401
PLY 46	52 4	713	2052	2111	2414	1799	2176	1625	245	120	0	166	840	1018	231	138	526	923	341	602	957	903	694	363	928	850	927	3823	4022	1217	411	592	1472	298
VAL 46	01 4	665	2017	2072	2403	1764	2144	1505	183	79	166	0	775	952	375	301	466	899	497	717	926	1055	831	526	1094	989	1019	3987	4185	1311	571	633	1487	400
HOU 38	27 3	891	1254	1304	1669	1004	1382	879	951	845	840	775	0	178	829	881	314	245	926	816	233	1261	997	1001	1511	1109	856	4356	4578	1071	998	492	857	708
VT0 36	51 3	715	1087	1135	1515	840	1216	755	1127	1022	1018	952	178	0	998	1055	492	260	1089	947	219	1382	1124	1165	1656	1223	931	4467	4693	1108	1158	625	770	874
MAS 45	72 4	630	1964	2029	2293	1715	2084	1677	474	350	231	375	829	998	0	118	540	848	130	380	889	680	463	187	760	620	716	3668	3874	1002	212	456	1331	132
RBC 46	58 4	718	2052	2115	2393	1801	2174	1703	369	257	138	301	881	1055	118	0	576	927	206	497	966	767	568	225	796	722	834	3696	3898	1120	273	554	1436	231
ZNO 41	37 43	200	1552	1606	1945	1299	1679	1136	647	533	526	466	314	492	540	576	0	445	652	636	466	1079	811	723	1270	950	800	4160	4374	1068	731	357	1062	436
CJC 37	32 3	792	1129	1189	1504	876	1253	1009	1082	958	923	899	245	260	848	927	445	0	917	722	48	1142	893	995	1440	979	672	4216	4443	852	977	418	629	717
WFC 46	18 40	674	2014	2082	2321	1767	2131	1787	574	462	341	497	926	1089	130	206	652	917	0	335	961	562	369	77	632	520	678	3539	3746	952	82	505	1352	219
PGA 43	34 4	387	1745	1817	2018	1507	1856	1694	847	713	602	717	816	947	380	497	636	722	335	0	770	448	181	393	718	314	343	3543	3763	623	344	325	1047	318
CSC 36	96 3	757	1095	1154	1479	842	1220	964	1109	987	957	926	233	219	889	966	466	48	961	770	0	1189	941	1038	1488	1026	717	4262	4489	889	1021	464	626	758
CAN 45	80 40	627	2055	2132	2251	1837	2152	2134	1132	1023	903	1055	1261	1382	680	767	1079	1142	562	448	1189	0	268	555	390	169	545	3096	3317	669	498	770	1314	695
MEM 44	43 44	494	1875	1949	2117	1644	1980	1873	936	812	694	831	997	1124	463	568	811	893	369	181	941	268	0	396	558	158	390	3363	3582	618	336	505	1153	447
USO 46	93 4	749		2158														995			1038			0	578				3690		61		1422	
TRV 49				2500																	1488				0	541			3114			1031	1691	838
RMC 44																					1026				541	0	379	3248	3471	537	476	622	1152	603
JDC 40																											0		3781				774	
GS0 66																														3461	3457	3866	4149	3738
TOP 68																															3664	4086	4388	3948
TMP 39																																722	716	921
WYN 46																					1021			61	550				3664		-		1383	
FDX 41																													4086		560	-	884	
BMW 32																													4388			884	-	1205
TOR 44	40 44	498	1832	1897	2164	1582	1952	1569	538	401	298	400	708	874	132	231	436	717	219	318	758	695	447	293	838	603	629	3738	3948	921	295	325	1205	0;

Where all of the headings on the rows and columns are condensed names of the Tournament themselves. For example, The Masters is MAS, the Phoenix Open is PHX, and so on.

We will now discuss the model we produced in AMPL, a mathematical programming language, and the theory behind what we did. Starting with the variables we defined for this model, we have 3 variables defined as the following.

$$X_{i,j} = \begin{cases} 1, & \text{if tournament j follows tournament i} \\ 0, & \text{otherwise} \end{cases}$$
(1)

 $B_i = \begin{cases} 1, & \text{if location of tournament i has more than 15 inches of snow a year} \\ 0, & \text{otherwise} \end{cases}$ (2)

 T_i = number in the Tour cycle that tournament i is

Our objective function will be the following:

$$\sum_{i,j,i\neq j}^{n} D_{i,j} \cdot X_{i,j} \tag{3}$$

Where $D_{i,j}$ is the distance between tournament i and j, and n is the number of tournaments.

Now, we will go over the models' constraints. Something we need to be mindful of is that the tour makes n - 1 trips between tournaments, where n is total number of tournaments (34 for the full tour). So we will implement this constraint into our model by doing the following.

$$\sum_{i,j,i\neq j}^{n} X_{i,j} = n - 1 \tag{4}$$

Along with this, we can observe that when we add up all the orders of tournaments in the tour (1 + 2 + ... + 34) we get $n^{*}(n+1)/2$, this makes sure that our tournament order goes from 1 to 34 and does not take on any other values, this constraint can be added as:

$$\sum_{i}^{n} T_{i} = \frac{n * (n+1)}{2}$$
(5)

Next, we can observe 2 things. For every tournament attended, we will want at most one tournament to follow or precede that tournament. This constraint can prevent our model from assigning 2 or more tournaments arcing from one point, keeping a single straight line path between all 34 tournaments. We can do this by introducing the following:

$$\sum_{i}^{n} X_{i,j} \le 1 \tag{6}$$

$$\sum_{j=1}^{n} X_{i,j} \le 1 \tag{7}$$

These constraints guarantee that when summing over i, at most 1 tournament will precede any given tournament while summing over j guarantees at most 1 will follow.

Now that we have established that we will have one arc to and from every club, we will want the model to ensure that there are no cycles in the path. This will help confirm that every club is visited exactly once in our model, and we can implement it by doing the following.

$$T_i - T_j + (n+1) * X_{i,j} \le n \quad \forall i, j, i \ne j$$

$$\tag{8}$$

These constraints guarantee that there can be no cycles in this given path.

Another factor we will want to consider is the weather of the tournaments. With there being tournaments in the northern United States, Canada, and Scotland, where snow is a very large risk if played in the earlier months of the year, we need to implement a constraint to attempt to avoid tournaments being played in the snow. We can do this in the following way:

$$T_i \ge B_i * k \tag{9}$$

Where k is the 14th event in the Tour. This constraint ensures that any tournament that is at a location where the average snowfall is at or above 15 inches will be pushed back in the order to at least the 14th spot in the tour. This will push any of these tournaments back until at least mid-April, that way it is incredibly unlikely that snow will be a hindrance on the tour.

Finally, we need to carry out constraints so that all of the majors and FEDEX Playoff tournaments take place on their specific weeks. This is a fairly simple constraint that can be done in the following way:

$$T_{\text{Specific Tournament}} = i \tag{10}$$

Where i is the specific week that the tournament must fall on. With this constraint, we now have our finalized initial model.

4 **Revisions of original model**

Whwn testing the original model presented above, using n = 34, we used the CPLEX solver on a NEOS server. A problem arose in testing, as The NEOS server only allows for a given problem to use up to 3 GB of RAM to solve a problem, and our model used more. Because of this, we were given an error statement and were unable to get a result. We then had to rethink the model, in order to minimize the amount of memory used in the server so we can get our optimal result.

The first thing that came to mind was minimizing the amount of information that has to go through the optimization process, starting at the distance matrix, as that almost definitely is a factor in the high memory usage. We can start by attempting to disregard useless data. We can do this by getting rid of distance data that is over a certain threshold, say 900 miles. When minimizing the total distance traveled, it is very unlikely that there will be any travel paths over 900 miles unless there

are specific circumstances. These exceptions being that we are traveling to or from one of the international tournaments in Scotland or Mexico, or if they are going to or from one of the 2 Hawaii tournaments. A way to add this constraint is by adding a new parameter to our model. This parameter will be the following.

$$B_{i,j} = \begin{cases} 1, & i \neq j \land (i \text{ or } j \text{ are one of the previously stated tournaments } \lor D_{i,j} \leq 900) \\ 0, & \text{otherwise} \end{cases}$$

With this new parameter, we will substitute $B_{i,j} = 1$ into all variables and constraints in which the condition $i \neq j$ was needed. We will substitute it into the objective function as well. This will lessen the amount of variables that the solver needs to intake, lowering the amount of RAM used.

Another adjustment made was removing a chunk of the tournaments. As we are using CPLEX, which uses the simplex algorithm, it can take very long, almost as long as brute force. The NEOS Server times out at 8 hours, which we have exceeded multiple times in testing. We removed a chunk of the beginning of the Tour, as this is mainly optimized for distance anyway. The first bunch of tournaments are in Hawaii, California, Arizona, and Mexico all places that are close together for the most part. We had to make some changes to the code itself, such as dropping the events from the distance matrix, adjusting our n, as well removing Hawaii and Mexico from the new parameter stated in the last paragraph. After testing various different models, we found that the most tournaments we can include is 24 (we will discuss this more in section 6), meaning we will drop 10.

The events dropped are

- The Sentry
- Sony Open
- The American Express
- Farmers Insurance Open
- AT&T Pebble Beach Pro-Am
- WM Pheonix Open
- The Genesis Invitational
- Mexico Open
- BMW Championship
- Tour Championship

Excluding the BMW Championship and the Tour Championship, these are all the first 8 tournaments. We chose to exclude these as the beginning of the tour mostly includes of tournaments that are fairly close together (It is mainly all on the West Coast), so optimizing the final portion will be more beneficial.

The last 2 events of the tour, BMW Championship and the Tour Championship, are excluded from the model, as we know these both follow the FedEx Championship, as the last 3 events are set in stone as previously mentioned. Now with this reduced mode, we can run it in the NEOS CPLEX server without error.

5 Results

When running our program using a CPLEX solver, we get the following order of tournaments, with our results on the left and original schedule on the right:

- 1. Zurich New Orleans Classic (New Orleans, LA) / Cognizant Classic (Palm Beach Gardens, FL)
- 2. Valspar Championship (Palm Harbor, FL) / Arnold Palmer Invitational (Orlando, FL)

3. The Players Championship (Sawgrass, FL) / The Players Championship (Sawgrass, FL)

- 4. Arnold Palmer Invitational (Orlando, FL) / Valspar Championship (Palm Harbor, FL)
- 5. Cognizant Classic (Palm Beach Gardens, FL) / Houston Open (Houston, TX)
- 6. RBC Heritage (Hilton Head, SC) / Valero Texas Open (San Antonio, TX)

7. The Masters (Augusta, GA) / The Masters (Augusta, GA)

- 8. Houston Open (Houston, TX) / RBC Heritage (Hilton Head, SC)
- 9. Valero Texas Open (San Antonio, TX) / Zurich New Orleans Classic (New Orleans, LA)
- 10. Charles Schwab Challenge (Fort Worth, TX) / The CJ Cup (McKinney, TX)
- 11. The CJ Cup (McKinney, TX) / Wells Fargo Championship (Charlotte, NC)

12. PGA Championship (Louisville, KY) / PGA Championship (Louisville, KY)

- 13. 3M Open (Blaine, MN) / Charles Schwab Challenge (Fort Worth, TX)
- 14. John Deere Classic (Silvis, IL) / RBC Canadian Open (Hamilton, Canada)
- 15. Wells Fargo Championship (Charlotte, NC) / The Memorial Tournament (Dublin, OH)

16. US Open (Pinehurst, NC) / US Open (Pinehurst, NC)

- 17. Wyndham Championship (Greensboro, NC) / Travelers Championship (Cromwell, CT)
- 18. The Memorial Tournament (Dublin, OH) / Rocket Mortgage Classic (Detroit, MI)
- 19. Rocket Mortgage Classic (Detroit, MI) / John Deere Classic (Silvis, IL)
- 20. RBC Canadian Open (Hamilton, Canada) / Genesis Scottish Open (North Berwick, Scotland)

21. The Open (Troon, Scotland) / The Open (Troon, Scotland)

- 22. Genesis Scottish Open (North Berwick, Scotland) / 3M Open (Blaine, MN)
- 23. Travelers Championship (Cromwell, CT) / Wyndham Championship (Greensboro, NC)
- 24. FedEx Championship (Memphis, TN) / FedEx Championship (Memphis, TN)
- 25. BMW Championship (Castle Rock, CO) / BMW Championship (Castle Rock, CO)
- 26. Tour Championship (Atlanta, GA) / Tour Championship (Atlanta, GA)

Ones in bold are major Tournaments that place in the schedule are set, and cannot change.

This is a fairly different result than what the PGA Tour currently uses. But even just by observation, we can see that distance is fairly minimized, with all of the events in Texas and Florida all bunched together, there are stints in the northern US, and so on. Something notable is that, much like the original schedule, places in the northern US are played later in the schedule, this most likely isn't due to our weather constraints. I likely believe that this is due to where the major tournaments are. The Players and The Masters are in Florida and Georgia respectively, and are both tournaments that are on a set week. In order to minimize travel distance, it is likely that the tournaments in the north, where snow is most prevalent, will not be played until later in the year.

6 Time Analysis

In testing, I wanted to see how many tournaments we could add to this model before the remote server could not take it anymore. So we started with the last 18 tournaments, that way we include all of the 4 major tournaments, as well as we include the last portion, as that is the section of the tour with the most distance traveled prior to optimization. The model with only 18 tournaments ran in less than one minute, so we slowly added in tournaments one at a time. This way when n = 19 it is the last 19 tournaments of the original PGA schedule, n = 20 is the last 20 tournaments of the original PGA schedule, and so on. We did this until it wouldn't allow us anymore and observed the run time, the following is the results of running this model with increasing n.

- n = 18: Less than a minute
- n = 19: 3 minutes
- n = 20: 8 minutes
- n = 21: 11 minutes
- n = 22: 17 minutes
- n = 23: 90 minutes
- n = 24: 6 hours 50 minutes
- n = 25: Exceeded allotted RAM

This does many things, not only did it help us settle on having a 24 Tournament model, but also illustrates the rate at which adding more tournaments increases the run time. Another observation can be made by looking at the number of simplex iterations and branch-and-bound nodes that are needed to be done to solve the problem. These are retrieved from the CPLEX output for the AMPL problems.

- n = 18: 61,096 simplex iterations, 8,879 branch-and-bound nodes
- n = 24: 1,023,371,273 simplex iterations, 75,182,228 branch-and-bound nodes

We can see just how fast this problem grows by increasing the n by only 6. When n = 18, it only does .00597% the amount of simplex iterations compared to n = 24. This also demonstrates why doing the full model of n = 34 would be impossible without heavily adjusting our model.

7 Future work

Many refinements can be added to this model in order to account for more scenarios that the Tour takes into consideration.

- Look into ways to condense variables so that we can run this code for the whole PGA Tour.
- The Super Bowl heavily affects all other TV ratings for the whole weekend that it airs. If we were able to access the TV ratings of the PGA Tour, which I have been unable to find, we could prioritize less popular tournaments to air the week of the Super Bowl. This way the PGA will minimize their revenue loss throughout the year.
- Investigate the possibility of switching haversine distance with flight/driving distance to more accurately measure the distance the players/crew will have to travel.

8 References

https://www.espn.com/golf/schedule Used to find PGA Tour locations and events https://www.pgatour.com/ Used to gather info on Tour traditions and customs https://www.google.com/maps Used for latitude and longitude of the event locations https://s2.smu.edu/ olinick/cse3360/lectures/brute_force.htm Used to gather info about CPLEX algorithms

9 Appendix

Python Code Used For Distance Matrix

!pip install haversine from haversine import haversine, Unit from haversine import haversine_vector, Unit import numpy as np SEN = (20.9946001248632, -156.653473270624541) SON = (21.3069447444130, -157.858337667429032) AEX = (33.6654015556922, -116.30798311112099) FIO = (32.8419910471217, -117.27301882351397) PBB = (38.1290731941269, -122.88434386277191) PHX = (33.64070144886564, -111.90910886569488) GEN = (34.04997103007352, -118.50219732895634) MEX = (20.681043251427173, -105.28686333663033) COG = (26.830633649876166, -80.13832785015691) API = (28.458628889079844, -81.50963138724956) PLY = (30.19889198964165, -81.3942001176103) VAL = (28.111027597022275, -82.75374281522284) HOU = (29.773931383507033, -95.42836188444284)VTO = (29.666126567067618, -98.39446091355777) MAS = (33.50238699892952, -82.02178538638701) RBC = (32.13572691226164, -80.80936554405868) ZNO = (29.90254329690623, -90.18820495776565) CJC = (33.14092173707245, -96.71862829432696) WFC = (35.11649093625573, -80.8414662538495) PGA = (38.24273076940281, -85.47084527898363) CSC = (32.716171589705326, -97.37133580781949) CAN = (43.21957285400244, -79.97530827940336) MEM = (40.1401518527829, -83.14097123665532)USO = (35.19414802532097, -79.47333643635238) TRV = (41.6320876375511, -72.63809930596864) RMC = (42.42661261589339, -83.1248997311028) JDC = (41.47744798225558, -90.39136269987951) GSO = (57.83980492222196, -9.511702403890528) TOP = (55.53282059279759, -4.648627367341988) TMP = (45.17726081811669, -93.21209672316282) WYN = (36.01449583864608, -79.88558216178946) FDX = (35.05745887091684, -89.7781591538495) BMW = (39.44078685686753, -104.89738163295364) TOR = (33.74351942073119, -84.30191918638701) place_vec = [SEN, SON, AEX, FIO, PBB, PHX, GEN, MEX, COG, API, PLY, VAL, HOU, VTO, MAS, RBC, ZNO, CJC, WFC, PGA, CSC, CAN, MEM, USO, TRV, RMC, JDC, GSO, TOP, TMP, WYN, FDX, BMW, TOR] v = haversine_vector(place_vec, place_vec, Unit.MILES, comb=True) v = np.around(v)

print((v))

AMPL Code Used

```
set Tournament;
set Weather;
param downfall{Weather, Tournament};
param distance{i in Tournament, j in Tournament: i!=j};
#if an arc is less then 900 miles dont include (unless one is in Scotland)
param allowed_travel{i in Tournament, j in Tournament}:=
 if (i!=j and (i == 'GSO' or i =='TOP'or j =='GSO' or j =='TOP'or distance[i,j]<=900))
 then 1
  else 0;
###VARIABLE
var next_tournament{i in Tournament, j in Tournament: allowed_travel[i,j]=1} binary;
var included{Tournament} binary;
var Tournament_Order{Tournament} >= 0, <= 24;</pre>
subject to all_must_occur:
                               #Makes sure all Tournaments are included
sum {i in Tournament} included[i] = 24;
# sum of all tournament orders should add up to n(n+1)/2
subject to sum_order:
sum {i in Tournament} Tournament_Order[i] = 300;
#Exactly n-1 arcs in total
subject to tournaments_following:
sum{i in Tournament, j in Tournament:
allowed_travel[i,j]=1} next_tournament[i,j] = 23;
#at most one tournament follows
subject to at_most_one_tournament_follows {i in Tournament}:
sum {j in Tournament: allowed_travel[i,j]=1} next_tournament[i,j] <= 1;</pre>
#at most one tournament precedes
subject to at_most_one_tournament_precedes {j in Tournament}:
sum {i in Tournament: allowed_travel[i,j]=1} next_tournament[i,j] <= 1;</pre>
#Keep it a path, let no cycles form
subject to prevent_cycle {i in Tournament, j in Tournament:
allowed_travel[i,j]=1}: Tournament_Order[i] - Tournament_Order[j] +
 25*next_tournament[i,j] <= 24;</pre>
##if there is snow, play it after mid-April
subject to snowfall {i in Tournament}:
```

```
Tournament_Order[i] >= downfall["Snow", i]*7;
```

```
### If a Tournament is always played on a certain week, set that here.
subject to Players {i in Tournament}:
Tournament_Order ["PLY"] = 3;
subject to Masters {i in Tournament}:
Tournament_Order ["MAS"] = 7;
subject to PGA_Champ {i in Tournament}:
Tournament_Order ["PGA"] = 12;
subject to US_Open {i in Tournament}:
Tournament_Order ["USO"] = 16;
subject to The_Open {i in Tournament}:
Tournament_Order ["TOP"] = 21;
subject to FedEx {i in Tournament}:
Tournament_Order ["FDX"] = 24;
### OBJ Function
minimize total_distance: sum {i in Tournament, j in Tournament:
allowed_travel[i,j]=1} distance[i,j]*next_tournament[i,j];
```

data;

set Tournament := COG API PLY VAL HOU VTO MAS RBC ZNO CJC WFC PGA CSC CAN MEM USO TRV RMC JDC GSO TOP TMP WYN FDX;

set Weather:= Snow;

distance:	

para	Jaram distance:																							
	COG	API	PLY	VAL	HOU	VTO	MAS	RBC	ZNO	CJC	WFC	PGA	CSC	CAN	MEM	USO	TRV	RMC	JDC	GSO	TOP	TMP	WYN	FDX:=
COG	0	140	245	183	951	1127	474	369	647	1082	574	847	1109	1132	936	579	1108	1091	1167	3962	4152	1459	635	805
API	140	0	120	79	845	1022	350	257	533	958	462	713	987	1023	812	480	1038	969	1029	3922	4118	1321	531	666
PLY	245	120	0	166	840	1018	231	138	526	923	341	602	957	903	694	363	928	850	927	3823	4022	1217	411	592
VAL	183	79	166	0	775	952	375	301	466	899	497	717	926	1055	831	526	1094	989	1019	3987	4185	1311	571	633
HOU	951	845	840	775	0	178	829	881	314	245	926	816	233	1261	997	1001	1511	1109	856	4356	4578	1071	998	492
νто	1127	1022	1018	952	178	0	998	1055	492	260	1089	947	219	1382	1124	1165	1656	1223	931	4467	4693	1108	1158	625
MAS	474	350	231	375	829	998	0	118	540	848	130	380	889	680	463	187	760	620	716	3668	3874	1002	212	456
RBC	369	257	138	301	881	1055	118	0	576	927	206	497	966	767	568	225	796	722	834	3696	3898	1120	273	554
ZNO	647	533	526	466	314	492	540	576	0	445	652	636	466	1079	811	723	1270	950	800	4160	4374	1068	731	357
CJC	1082	958	923	899	245	260	848	927	445	0	917	722	48	1142	893	995	1440	979	672	4216	4443	852	977	418
WFC	574	462	341	497	926	1089	130	206	652	917	0	335	961	562	369	77	632	520	678	3539	3746	952	82	505
PGA	847	713	602	717	816	947	380	497	636	722	335	0	770	448	181	393	718	314	343	3543	3763	623	344	325
CSC	1109	987	957	926	233	219	889	966	466	48	961	770	0	1189	941	1038	1488	1026	717	4262	4489	889	1021	464
CAN	1132	1023	903	1055	1261	1382	680	767	1079	1142	562	448	1189	0	268	555	390	169	545	3096	3317	669	498	770
MEM	936	812	694	831	997	1124	463	568	811	893	369	181	941	268	0	396	558	158	390	3363	3582	618	336	505
USO	579	480	363	526	1001	1165	187	225	723	995	77	393	1038	555	396	0	578	537	733	3485	3690	998	61	582
TRV	1108	1038	928	1094	1511	1656	760	796	1270	1440	632	718	1488	390	558	578	0	541	916	2907	3114	058	550	103
RMC	1091	969	850	989	1109	1223	620		950	979	520	314	1026		158	537	541	0	379	3248	3471	537	476	622
		1029							800	672	678	343					916	379	0		3781	292	680	445
						4467														-	244		3457	
						4693															0		3664	
						1108					952	623	889	669		998	1058		292		3697	-	941	722
WYN		531	411	571		1158			731	977	82	344	1021			61	550	476	680		3664		0	560
FDX	805	666	592	633	492	625	456	554	357	418	505	325	464	770	505	582	1031	622	445	3866	4086	722	560	0;

 param
 downfall:

 COG API PLY VAL HOU VTO MAS RBC ZNO CJC WFC PGA CSC CAN MEM USO TRV RMC JDC GSO TOP TMP WYN FDX:=

 Snow
 0
 0
 0
 0
 0
 1
 1
 1
 1
 0
 0;

AMPL Output:

```
Error at _cmdno 4 executing "solve" command
(file amplin, line 135, offset 6027):
error processing param distance:
        24 invalid subscripts discarded:
        distance['COG','COG']
        distance['API', 'API']
        distance['PL
Presolve eliminates 229 constraints and 71 variables.
Adjusted problem:
373 variables:
        355 binary variables
        18 linear variables
386 constraints, all linear; 1938 nonzeros
        2 equality constraints
        384 inequality constraints
1 linear objective; 355 nonzeros.
CPLEX 22.1.1.0: threads=4
CPLEX 22.1.1.0: optimal integer solution within mipgap or absmipgap; objective 12326
1023371273 MIP simplex iterations
75182228 branch-and-bound nodes
absmipgap = 1.23256, relmipgap = 9.99966e-05
Tournament_Order [*] :=
                                    PLY 3
API 4
        COG 5
                 GSO 22
                           MAS 7
                                             TMP 13
                                                      USO 16
                                                               WFC 15
                           MEM 18
CAN 20
        CSC 10
                 HOU 8
                                    RBC 6
                                             TOP 21
                                                      VAL 2
                                                               WYN 17
CJC 11
        FDX 24
                  JDC 14
                           PGA 12
                                    RMC 19
                                             TRV 23
                                                      VTO 9
                                                               ZNO 1
;
```