
1

An Integer Programming Solution to the

University Class Scheduling Problem

__

A Thesis Presented to

The Honors Tutorial College

Ohio University

__

by

Megan Thomas

2009

2

Table of Contents

1 Introduction 3

 1.1 Linear and Integer Programming . 4

 1.2 Applications of Linear Programming . 5

1.3 Solution Methods for Linear Programs. 6

1.4 Solution Methods for Integer Programs . 7

1.5 AMPL . 9

1.6 Overview of Thesis . 11

2 IP Model for University Class Scheduling Problem 13

 2.1 Teacher Assignment Model

 2.1.1 General Discussion . 13

 2.1.2 Sets . 14

 2.1.3 Input Parameters 14

 2.1.4 Decision Variables . 16

 2.1.5 Constraints .17

 2.1.6 Objective Function . 20

 2.1 Time Assignment Model

 2.2.1 General Discussion 21

 2.2.2 Sets . 22

 2.2.3 Input Parameters . 22

 2.2.4 Decision Variables 24

 2.2.5 Constraints . 25

 2.2.6 Objective Function . 31

3 Experimental Results 32

3.1 Explanation of Input and Output of the Model. 33

3.2 Number of Variables and Time Efficiency 38

4 Conclusion

Appendix

 A.1 - Teacher Assignment Model. 41

 A.2 - Time Assignment Model . 44

References 50

3

Chapter 1

Introduction

 This thesis presents methods for solving the University Class Scheduling Problem

(UCSP) by Integer Programming. Integer Programming is a branch of Operations Research that

solves intricate real-life problems by modeling them as a set of mathematical equations. The

UCSP is an example of such a complex system and is a prototypical example of a problem that

can be solved using mathematical modeling.

 In the UCSP, professors list their course preferences and are designated two or more

courses based on their input and availability. Then the courses are scheduled to time periods

during school hours. The model becomes increasingly complex because of many scheduling

constraints. Some examples of constraints are professors' course preferences, preferred lecture

times during the day, and scheduling multisection classes.

 The Integer Programming model for this thesis will represent each of the above-

mentioned constraints and other constraints using linear inequalities or equations. Concepts from

disciplines such as applied mathematics, computer science, and systems engineering are

combined to construct the model. The goal of the model is to find a feasible class assignment

schedule for a given department while maximizing teacher-assignment satisfaction.

 The model is written on the mathematical modeling language AMPL. The rest of this

chapter gives an introduction to Integer Programming, its applications, solution methods and a

short introduction to AMPL.

1.1 - Linear and Integer Programming

 Linear Programming is an area of applied mathematics that deals with special types of

4

optimization problems. A Linear Program is an optimization problem in which a linear objective

function subject to linear equality or inequality constraints is either maximized or minimized [5].

The variables of a Linear Programming (LP) model can be discrete or continuous. An Integer

Programming (IP) model is a special case of LP in which all or some variables can only take

integer values.

To achieve a goal in an optimization problem, quantified decisions are made. Decision

variables, whose values we wish to determine, will form the solution to the model. These

variables will be optimized through the use of an objective function. The decision variables {x1,

… , xn} are subject to various constraints, which are restrictions in the form of linear equations

or inequalities. One constraint common to IP models is that the variables must take integer

values. While nonlinear IP problems exist, this thesis will only be using linear IP models, which

have easier solution methods [7].

The general form of an IP optimization model looks like this:

 minimize (or maximize) f (x1, … , xn) (objective function)

 subject to gi (x1, … , xn) ≤ bi (functional constraints)

 x1, … , xn ≤ 0, integer (set constraints)

A solution to such an IP model is an assignment of values to the decision variables {x1,

… , xn} . A feasible solution is one which satisfies all of the constraints of the IP model. An

optimal solution for a minimization problem is a feasible solution which achieves the lowest

value in its associated objective function. An Integer Program might have more than one

solution, that is, there may be more than one solution with the same associated optimal value.

5

1.2 - Applications of Linear Programming

 Linear Programming has many useful applications in the real world, including

scheduling, inventory management, network design, facility location problems [5] [7]. Some of

them are discussed briefly below.

 Employee scheduling, as in the University Class Scheduling Problem, is one example of

a real world LP application. Companies such as United Airlines have also used LP techniques to

solve employee scheduling problems. The number of flights arriving or departing on any one day

should be maximized; this should not be at the expense of the safety of the passengers and staff

of the airplanes. Other types of scheduling problems exist, such as finding an optimal schedule

of tasks for an auto repair shop which satisfies as many customers as possible.

 Other examples of LP applications include inventory management problems. In this

instance, LP readily helps companies make decisions balancing costs, profit, and demand for

different items that they may produce.

 LP may also be used for network design. One example of a network design problem is the

minimum spanning tree problem, which is applicable to many companies, especially those which

transport data. In this case, each node of the network must be connected to the others with

minimum total distance [5].

 Another real world application for LP is facility location. When considering where to

build a new facility, a company must consider many constraints such as price and proximity to

other facilities and customers. An LP model can be formulated in this situation to help companies

make critical decisions involving resources.

1.3 - Solution Methods for Linear Programs

6

 LP models have been thoroughly studied and have established algorithms for solving

them, such as the Simplex Method and the Interior Point Method [5]. The first method, the

Simplex Method, was originally developed by George Dantzig in 1947. It has been named one of

the top ten algorithms having “the greatest influence on the development and practice of science

and engineering in the 20th century” by the journal Computing in Science & Engineering

Magazine [8]. The Simplex Method is based on the fact that optimal solutions for LP are along

the boundary of the feasible region. The Simplex Method involves initializing a Corner Point

Feasible solution (CPF) and then traveling along the boundary to adjacent CPF solutions of the

feasible region and testing for optimality. Though the Simplex Method has exponential running

time in the worst case, it is remarkably efficiently in practice. See Figure 1 for the structure of

the Simplex algorithm.

If Not,

Find Better CPF

If Optimal,

Stop
Initialization

Optimality
Test

Figure 1. The Structure of the Simplex Algorithm

 The Interior Point Method was developed in 1984 by Narendra Karmarkar, and has been

proven to be able to solve larger LP problems than Simplex, as well as solving established

problems faster [5]. Like Simplex, the Interior Point Method is an iterative algorithm which

begins with a trial solution. Contrary to Simplex, it optimizes by traversing trial solutions on the

interior of the feasible region.

7

1.4 - Solution Methods for Integer Programs

 IP models are harder to solve than their LP counterparts, and thus the IP solution methods

are less time efficient. Since there are efficient solution methods for LPs, one approach to solve

an IP problem could be to solve its continuous LP relaxation and then round the values of the

variables to integers. While this is an intuitive approach to solving an IP problem, it is in no way

guaranteed to obtain an optimal solution. In fact, it is often far from optimal, and should not be

considered a valid solution method for IP models. However, it is a technique used as part of other

main solution methods, discussed below.

 The main solution methods for IP problems are Branch-and-Bound and Cutting Planes.

The underlying concept of Branch-and-Bound is to divide and conquer [5]. The original problem

is divided into smaller and smaller sub-problems, until it can be conquered. Branching partitions

the problem into subsets which cover the entire feasible region. Then the bounding procedure

computes a bound for the best value of each subset by solving the continuous LP relaxation for

that subset. Any subset whose bound is less than the incumbent, or currently best, integer

solution (in a maximization problem) is discarded. This is called fathoming. Branch-and-Bound

is guaranteed to return an optimal solution after a finite number of iterations. But since each

iteration involves solving several LPs, Branch-and-Bound might be inefficient for large instances

of Integer Programs.

Another technique for solving IP problems is the use of Cutting Planes. This method adds

new functional constraints that do not remove feasible integer solutions, thus the original IP

problem remains the same. At the same time, these new constraints cut off some fractional

solutions from the original feasible region, making the feasible region of the continuous LP

8

relaxation smaller. This tighter formulation makes the search for an optimal IP solution more

efficient.

Unfortunately, Cutting Planes are not guaranteed to give an optimal integer solution.

Thus, a powerful combination of Branch-and-Bound and Cutting Planes, called Branch-and-Cut,

was developed to give an efficient algorithmic approach to solving IPs. The use of Cutting

Planes on the sub-problems rising in Branch-and-Bound gives tighter bounds and thus

accelerates the solution process. Branch-and-Cut is widely used to solve large IP problems. More

about these techniques can be found in [3], [5].

Another method for solving IPs is the use of meta-heuristics. A heuristic is a procedure

which is likely to discover a good feasible solution very fast, but does not guarantee an optimal

solution. A meta-heuristic is a general solution method that provides both a structure and a

strategy for developing a specific heuristic method to fit a particular type of problem [5].

Examples of meta-heuristics include Tabu search, Genetic algorithms, and Simulated Annealing.

These heuristics are mainly based on physical phenomena. These approaches are used for

very quickly getting a good integer solution, but do not guarantee an optimal solution. Some of

the heuristics, such as approximation algorithms can guarantee that the solution is within a

certain factor of the optimal solution, however. Normally, a rigorous mathematical analysis is

required to prove the existence of the approximation factor. Heuristics can also be used to

provide a starting point for Branch-and-Bound, as a good incumbent integer solution can greatly

reduce the number of subproblems, which increases efficiency. For further discussion of

heuristics see [9], [10].

1.5 - AMPL

9

 For this thesis, the programming language AMPL was used to write the model. AMPL is

compatible with several IP solvers, which use a mix of Branch and Bound and Cutting Plane

techniques. AMPL is noted for its similarity to customary algebraic notation [3], which can make

it more intuitive to use. The programming language itself is flexible and general, and the

command environment is designed to communicate with a wide variety of solvers [3]. It is used

for solving many of the different applications of LP, discussed in an earlier section, on a larger

scale than would be possible without a computer's aid.

 Next will be a short discussion on the construction of a basic model in AMPL. This

discussion is needed to understand the model in Chapter 2. To define the input data to an LP,

AMPL uses structures called sets and parameters. A set is used for defining a group of objects.

To declare a set name, the keyword "set" is used.

 set P;

For example, if the LP is about a production system, P could denote the set of possible products.

 The members of set P might possess numerical attributes relevant to the LP. To define

these attributes AMPL uses a structure called parameter. Parameters are declared using the

keyword "param." Parameters may take the form of a single scalar value, or a collection of

values which are indexed by a set (or several sets). Below, the indexing for parameter c is given

by { j in P}, so that a value is associated with each product in P.

 param b;

 param c { j in P};

For example, if P is the set of products, then c[j] might be the unit profit of product j. Keyword

“var” is used to declare variables. As with parameters, variables may take the form of a single

scalar value, or a collection of values which are indexed by a set (or several sets).

10

 var X {j in P};

For example, the variable X[j] might denote the number of each product j that the company is

going to produce. These values will be determined by the solver.

 Objective functions are given an arbitrary name, such as “profit.” An example of a

declaration of an objective function is listed below. Keywords in the phrase below include

maximize, which tells the solver to maximize the objective function.

 maximize profit: sum {j in P} c [j] * X [j];

Here, c[j] * X[j] is the profit from product j. Keyword “sum” is used to take the sum of the

profits from all products j in P. Thus, the objective function maximizes the total profit for the

production system.

 Lastly, a constraint is declared with the keyword subject to. An example is provided

below.

 subject to Limit {j in P}: 0 <= X [j] <= u [j];

 In this example, u[j] represents the maximum capacity for production for each product j

in P. Thus, the constraint ensures that the production amount of each product j in P is greater than

or equal to 0 but no greater than the maximum capacity for j in P. The actual constraint appears

after the “:” . The expression before the colon, “Limit{j in P}”, provides that there is one of that

type of constraint for each j in P

 For further discussion of modeling with AMPL see [3].

1.6 - Overview of Thesis

 The IP model for the UCSP was broken into smaller problems that could be tackled more

easily before trying to obtain a final solution. The two smaller problems are the Teacher

11

Assignment, which matches professors to courses, and the Time Assignment, which mataches the

professor-course pairs to times of the day. Thus, the programs are meant to be run in a sequence

to obtain an optimal solution. The separate parts of the model could be run multiple times with

different data. For example, the scheduling is intended to be run first with permanent staff and

later with graduate students, since decisions on admittance of graduate students often makes the

scheduling of their teaching schedules a last minute process for universities.

 After the two sections were completed, there was the option of either integrating both

sections into a larger model or keeping both separate. There are advantages and disadvantages to

both ways of types of organization. The advantage of a larger program is that everything is done

at once, and if there is a solution to the complete problem then it is instantly displayed. However,

larger and more complex programs have a greater risk of being infeasible. Also, the running time

of such a program could be slowed down because of larger data sets.

 Separate models require that the programmer submit the output from the initial model as

input to subsequent sections of the program. In this thesis, each time a solution for the Teacher

Assignment model is found, it is then submitted to the Time Assignment section in order to run

the second model. This approach has advantages as well as disadvantages. The drawback to this

approach is that multiple steps must be taken to reach the final solution. However, separating the

larger problem into individual pieces allows the program, and thus the department, more

flexibility in the course scheduling process. For example, last minute time conflicts could easily

be solved by running the time assignment model again. Separate sections allow the programmer

to make small changes to the models more easily and to resolve potential conflicts more

efficiently. Therefore, the multiple sections approach is the most practical for the UCSP and was

used in this thesis.

12

 The decision of which constraints to include in each model is very important. It is

possible for some constraints be incompatible with other constraints if too many preferences are

taken into account. The model should be as realistic as possible, but not at the cost of making the

model infeasible. In the end, the most important constraints were included in the final version of

the model, and the models have been tested using realistic-sized data sets. In Chapter 2, the

UCSP model will be explained in detail and Chapter 3 will discuss the experimental results of

the model.

Chapter 2

 IP Model for University Class Scheduling Problem

13

2.1- Teacher Assignment Model

2.1.1- General Discussion

The goal of the Teacher Assignment model is to find satisfactory pairings of professors

and classes which will fill all of the requirements of the department. One requirement is that the

model must be able to assign each professor a specific number of classes to instruct. To obtain a

working schedule, the correct number of sections for each class must also be filled.

Ideally the professors should be happy with the courses they are assigned. Each professor

submits a list of three courses ranked in order of their teaching preferences. The integer program

not only finds a feasible solution of teacher pairings, but it also maximizes the number of

professors who are assigned to their favorite classes.

It is important to note that graduate students are assigned classes after the full-time

professors. The graduate students help to fill out the lower level courses that have multiple

sections, and they are not generally given a high priority in the scheduling of classes. In fact, an

administrator may not know which graduate students are attending the university or what their

schedules will be until the last minute.

One way to deal with this situation is to assign leftover courses to the graduate students

by hand after the permanent professors have class assignments. Alternatively, the integer

programming model could also be run a second time on the remaining courses for the graduate

students. This would be done by changing the input in the data section- the classes assigned to

full-time professors would be taken out of the data set the second time through, and the set of

professors would be changed to the names of the graduate students.

A detailed discussion of the AMPL model on the Teacher Assignment model is given in

14

the next five subsections.

 2.1.2- Sets

 #Given sets of professor and class names

set PROFESSORS;

set LOWER;

set UPPER;

set CLASSES:= LOWER union UPPER;

The sets included in the model are professors and the classes available for that quarter. A

problem that arose in the development of the programs was what to do with multi-section

classes. Upon study of historical mathematics class schedules, it seems that almost all the multi-

section classes were lower level classes. The upper and lower level sections of classes in this

model were dealt with separately in order to simplify later constraints, especially the constraints

in the time assignment model.

2.1.3- Input Parameters

The number of classes each professor is required to teach

 param avail{j in PROFESSORS}, default 2;

There are three types of input parameters in the teacher assignment program. The first

type of input parameter is the number of classes the professors are required to teach. The default

workload is two courses. Other amounts of courses could be entered for specific professors, for

example, if a teacher were on early retirement or if he or she was only working part time.

15

A listing of each professor’s favorite classes

param preferences{i in CLASSES, j in PROFESSORS}, default 7;

The second type of input parameter is a crucial part of the decision process. At Ohio

University professors are allowed to indicate several courses, ranked in order of their preference.

A professor’s most favorite class is assigned the value 1. His or her second favorite course is

assigned the value 2, etc. The default value for the professor’s classes is chosen to be 7, which

provides weight to the classes that are not a professor’s favorite. This type of input parameter is

important because one of the goals of the model is to find not only a solution that assigns courses

to professors, but one which satisfies as many professors’ course preferences as possible.

The number of sections of lower level classes

param lower_sections{l in LOWER};

 The third type of input parameter is the number of sections of lower level classes that

need to be filled. Only courses which have multiple sections are included in this type of

parameter, given the way the sets were created. The nature of the lower level course decision

variable (see the following section) allows professors to be assigned to 0, 1, or 2 sections of any

multi-section course.

Note that the specific values for the sets and parameters are given in input data sets which

will be discussed in Chapter 3.

2.1.4- Decision Variables

There are two types of decision variables in the Teacher Assignment of the model.

16

 # Decision variable

If an upper-level class is assigned to a professor

Then the value is 1, otherwise 0

 var chosen_upper{u in UPPER, j in PROFESSORS} binary;

The first is a binary assignment variable for the upper level classes called chosen_upper.

Each upper level course is only taught once per quarter, professors class pairings for this variable

are given the value zero if the professor does not teach that class and a one if it has been assigned

to her.

#Decision variable -

#If a lower level class is assigned to a professor,

#The variable can either be 1 or 2

#Otherwise variable is 0

var chosen_lower{l in LOWER, j in PROFESSORS} integer, >= 0, <=2;

The second type of decision variable, chosen_lower can take integer values between 0

and 2, because this variable assigns professors to lower level, multi-section courses. A professor

may teach one lower level course or none at all, just as in the assignment of upper level courses.

The reason that this type of decision variable is kept separate from the chosen_upper is that

professors may be assigned to two sections of the same lower level course. For example, it is not

uncommon for a professor to be assigned two sections of Calculus I, but the binary nature of the

variable chosen_upper would prevent this sometimes necessary situation from being allowed in

the model. While having more possible values for the chosen_lower assignment variable makes

it less preferable to the binary variable in chosen_upper, it was necessary to make the model

17

more realistic by including as many schedules as possible in the solution set for the model.

2.1.5- Constraints

#Constraint - Each professor is required to teach a certain number of classes

 subject to required_to_teach{j in PROFESSORS}:

 sum{l in LOWER} chosen_lower[l,j] + sum{u in UPPER} chosen_upper[u,j] =

 avail[j];

The first constraint, required_to_teach provides that each professor is assigned the correct

number of classes. The number of classes from the parameter avail, which gives each professor's

workload, must be equal to the sum of all of the upper and lower level classes to which the

professor is assigned. This is an important logical constraint for the model.

#Constraint - Each upper level class needs exactly one teacher

 subject to filling_upper{u in UPPER}:

 sum{j in PROFESSORS} chosen_upper[u,j] = 1;

The second constraint, filling_upper, concerns upper level classes. It provides that each

upper level class is assigned to exactly one professor. Thus, each upper level course is assigned

some professor and no two instructors could be assigned to teach a class that only has one

section per quarter.

#Constraint- Filling lower-level classes

 subject to sections{l in LOWER}:

 sum{j in PROFESSORS} chosen_lower[l,j] <= lower_sections[l];

18

The next constraint, sections, concerns filling of multiple sections of lower level courses.

This inequality provides that the sum of all the teachers assigned to lower level courses should be

less than or equal to the total number of sections for that class. The reason this constraint is not

held to equality is that many times lower level class sections are assigned to graduate students.

As was mentioned earlier in the thesis, there are simply too many sections of lower level courses

to fill with upper level faculty. The courses that do not have all sections filled by the model will

be filled in at a later time by hand with incoming graduate assistants.

#Constraint - Each individual professor should get at least one preferred class

 subject to prof_preferences{j in PROFESSORS}:

 sum{u in UPPER}preferences[u,j]*chosen_upper[u,j] + sum{l in

 LOWER}preferences[l,j]*chosen_lower[l,j] <= 9;

 The final constraint, prof_preference, addresses the need for professors to be assigned to

their preferred courses. As stated earlier, each professor is given the opportunity to rank his or

her favorite courses. The top favorite course is given the value 1, the second favorite course is

given the value 2, and the third favorite course is given the value 3. Recall that all other courses

are given the default value of 7 for that professor. The constraint ensures that each professor is

assigned to at least one class that he or she likes. As explained below, this is accomplished by

multiplying the value of the preference parameter given to each course by the decision variable

associated with that class.

Note that if a course was not assigned to that professor, then the preference parameters

for those courses would all be multiplied by zero. This implies that those courses will not affect

the overall value of the inequality. Thus, only the two classes which have been assigned to that

19

specific professor will affect the value of this constraint. The decision variable for those classes

will be either the value 1 or 2, depending on whether the professor is assigned to one or two

sections of that class. The value 9 on the right hand side of the inequality was chosen to make

certain that each professor is assigned to at least one of his or her top two favorite courses. This

is because any combination of the top preferred courses will certainly be less than 9. Also, if a

professor is assigned to a non-favorite class, then that professor must also be assigned to either

his or her first or second choice of classes as only 1 + 7 and 2 + 7 will make the inequality hold.

Also note that two situations regarding non-favorite classes will be rejected by the model.

If the professor were teaching a third favorite and a non-favorite class, or two non-favorite

classes, the inequality would not hold. The sum of the professor’s preferences would be 10 or 14-

both of which are clearly greater than 9. Thus, one can see that each professor must be assigned

to at least one of his or her favorite classes.

On a final note, the value 9 was chosen for this inequality so that each professor could be

kept as happy as possible by being assigned to at least one of his or her favorite courses. This

number could be changed to tighten or ease the constraint on preferred courses. For example, if

the model could find an optimal solution with a tighter constraint, such as 5, then all professors

would only teach preferred courses. Or, if no solution could be found for the value 9, then the

inequality could be relaxed to 10 or completely removed. Such decisions depend on the

complexity of the attempted schedule and on the preferences of the professors themselves.

2.1.6- Objective Function

#Objective Function- Minimize total sum of preferences

minimize total_preferences:

20

 sum{u in UPPER, j in PROFESSORS}preferences[u,j]*chosen_upper[u,j] + sum{l in

 LOWER, j in PROFESSORS}preferences[l,j]*chosen_lower[l,j];

 The objective function, as mentioned earlier, minimizes the sum of the preferences for the

group of professors as a whole. As the values for favorite courses are closer to 0, minimizing the

preferences provides that the faculty as a whole are as happy with the scheduling decisions. If the

professors are satisfied with their courses then there is a greater chance that students will be

satisfied as well.

 Note that the expression of the objective function is similar to the left hand side of the

inequality of the final constraint. The difference is that the final constraint finds a feasible

combination of courses for each professor separately based on his preferences, whereas the

objective function minimizes the sum of preferences for all professors together. Essentially, the

objective function maximizes overall faculty course satisfaction while the final constraint

provides that the goal is not achieved by satisfying only some professors and ignoring the

preferences of others.

For example, if only the objective function were included, some teachers could be made

very happy by being assigned their most favorite courses and other teachers could be assigned

none of their favorite courses. As long as that situation made the sum of teacher preferences

minimal, it could occur without the inclusion of the final constraint. If only the final constraint

were included, a feasible solution could be that every professor was assigned to his second

favorite course and a course that they do not like. While this is certainly feasible, it is not

optimal. Only both the final constraint and the objective function together provide an optimal

solution for teacher course satisfaction by requiring individual and overall satisfaction.

21

2.2 - Time Assignment Model

2.2.1 - General Discussion

 The time scheduling portion of the model is the next step to completing the UCSP. After

the solution to the Teacher Assignment model is obtained, it is used as input for the time

assignment model. The chosen professor-class pairs will now be assigned a time period during

the day. At many universities, classes meet for four (or three) times a week at the same time each

day. Because of this standard four credit hour schedule, there was no distinction made between

days of the week for the model. It is assumed that if a class is scheduled at eight o’clock in the

morning then it will be held at that same time four days a week.

 There are plenty of special constraints to consider for the time assignment model. For

example, a department might allow its mathematics professors to specify a four hour time

window in which they would prefer to teach. This is related to the fact that some universities

have unions which do not allow their professors to teach classes that are separated by too large of

a period of time during the day. Also, teachers may have preferences as to whether they wish to

teach back to back classes, or whether they wish to have breaks in between. For the basic time

assignment model, we are trying to find a feasible solution that satisfies all the constraints rather

than trying to maximize an objective function as in the class scheduling section.

 The details of the model are discussed in the next four subsections.

2.2.2 - Sets

#Given sets: class names, professors and time of day

 set UPPER;

22

 set LOWER;

 set CLASSES:= LOWER union UPPER;

 set TIMES;

 set PROFESSORS;

 The sets in the Time Assignment model are similar to those in the Teacher Assignment

model. Classes are still divided into upper and lower levels in order to differentiate between the

multiple sections of lower level classes.

The new set given is TIMES, which divides the academic day into time periods. In the

data section, the set TIMES is listed as the following:

 set TIMES:= 8 9 10 11 12 13 14 15 16 17 18;

This convention allows teachers to be assigned to a time of the day without having confusion

between A.M. and P.M.

 Finally, we have the set of professors. Professors’ names are still used as an indexing set

in many of the constraints and parameters, thus they are also included in the time assignemnt

model.

2.2.3 - Parameters

#Parameter - Output from the Teacher Assignment model

#Professor-course pairs which have been assigned are given value 1

#All other professor-course pairs are given the default value 0

param inp{j in PROFESSORS, i in CLASSES}, default 0;

 The parameter inp is based on the output of the teacher assignement model. This value

could be 1 or 2 depending on if the professor was assigned to teach one or two sections of the

23

same course. The default value is 0, because a professor will not be assigned to the majority of

classes. Thus, the user of the model only has to enter the list of classes which each professor

teaches by entering inp[j , i] = 1 if professor j was assigned to teach class i in the solution of the

teacher assignment model. These professor-course pairs will be assigned to time periods in this

model.

#Parameter - What time of the day the teacher would prefer to teach class

 param time_pref{j in PROFESSORS, t in TIMES}, default 0;

 Another parameter is called time_pref and it allows professors to choose a four hour time

block in which they would like to teach. If time_pref [j,t] = 1, then professor j has expressed

preference for teaching in the time window [t, t + 4]. For example, some professors enjoy early

classes and they may choose the 8 a.m. time block. This would require that the program schedule

all of his or her classes to start between 8 a.m. and 11 a.m. Other professors prefer to start later

and may choose an afternoon time block.

#Parameter - Professor preferences for back to back classes or not

#1 for back to back, 0 for not back to back, and 2 for no preference

param back_pref{j in PROFESSORS};

 The third parameter is called back_pref and it is assigned based on whether or not the

professor wants to teach his or her classes back to back. Professors who wish to have breaks

between classes will be assigned the value 0, professors who want consecutive classes are

assigned the value 1, and professors with no preference are assigned the value 2.

24

#Parameter - Number of sections of lower level classes

param lower_sections{l in LOWER};

 The fourth parameter, lower_sections, is the number of sections for each lower level

class, as seen before in the teacher assignment model.

#Parameter - The number of rooms available at any one time of the day

 param rooms;

The final parameter is the number of rooms that are available in the building in which the

classes are taught. Certainly, at any given time the number of classes cannot be more than the

number of rooms in the building, and there will be a constraint preventing this situation.

 2.2.4 - Decision Variables

#Decision variable - Binary assignment of times and classes

var assign{j in PROFESSORS, i in CLASSES, t in TIMES : inp[j,i] > 0} binary;

 One of the variables in the time assignment model is a binary assignment of times to

professor-course pairs. Professor-course pairs being taught at a given time will be assigned the

value 1 and all other times will be given the value 0 for that pair.

 Not only should a model be logically correct, but it should also be as small and time-

efficient as possible. This variable includes a crucial time-saving measure that improves the

efficiency of the time assignment model. Notice that the variable assign is only defined for those

professor-time pairs that have value 1 or 2 for the parameter inp. Not defining variables for those

pairs which have inp value 0 (that is, a professor not teaching that class) greatly reduces the

number of variables in this model. Also, each constraint that includes the variable assign will

25

include this input restriction. This prevents the constraints from considering pairs for which the

decision variable is not defined. Now the model includes as few variables as possible and thus

improves overall efficiency. This model will be discussed in more detail in Chapter 3.

#Decision variable – Assigns value 1 to professors who are assigned to teach back to back

#courses

var back_to_back{j in PROFESSORS, t in TIMES: back_pref[j] = 1} binary;

 The decision variable back_to_back concerns the assignment of consecutive courses. The

decision variable back_to_back[j , t] will receive value 1 if professor j is assigned to teach

consecutive courses at times t and t + 1. This is actually an auxiliary variable which is necessary

for writing the corresponding back_to_back constraint. It is only defined for those professors

who have indicated back to back teaching preference. This reduces the number of variables in the

Time Assignment model.

2.2.5 - Constraints

Basic Scheduling Constraints

#Constraint - A professor can only teach one class at a time

subject to prof_one_at_atime{t in TIMES, j in PROFESSORS}:

 sum{i in CLASSES : inp[j,i] > 0}assign[j,i,t] <= 1;

 The constraint prof_one_at_atime provides that each professor may only teach a single

class at a time. This is a fairly straightforward constraint because a teacher cannot be in two

places at once. Recall that this restriction: "inp[j,i] > 0" appears in any constraint having the

variable assign, ensuring that the constraint only includes professor-course variables which are

26

defined in this model.

#Constraint - Upper level classes should be taught once per day

subject to one_time_period{u in UPPER}:

 sum{t in TIMES, j in PROFESSORS : inp[j,u] > 0}assign[j,u,t] = 1;

 The next constraint, one_time_period, is a standard logical constraint for upper level

classes. It requires that each upper level class with a single section to be assigned to exactly one

time period per day.

#Constraint - The number of classes assigned in a time period is limited by the number of rooms

subject to room_constraint{t in TIMES}:

 sum{i in CLASSES, j in PROFESSORS : inp[j,i] > 0} assign[j,i,t]<= rooms;

 This constraint concerns the number of rooms available in the building holding the

classes. Certainly there should not be more classes assigned to a time period than there are rooms

available to hold the classes. Room assignment is the final part of the class scheduling problem.

It was decided that it was not necessary to write an IP model for room assignment as it can easily

be done by hand. The only concern with assigning a class to an arbitrary room would be class

size. A lecture class of 200 people should not be held in a classroom for 30. It could be done by

simple inspection.

Lower-level Course Constraints

 In this subsection, there are two time constraints concerning the assignment of lower level

classes.

27

#Constraint - Professors assigned to lower-level classes

#Must teach the right number of sections

subject to sections{j in PROFESSORS, l in LOWER}:

 sum{t in TIMES : inp[j,l] > 0}assign[j,l,t] = inp[j,l];

 This constraint provides that each professor teaches the right number of sections of a

lower-level class. The left hand side of the constraint is the number of time periods that professor

j is assigned to teach sections of class l, while the right hand side of the equation is the number of

sections of class l assigned to professor j by the teacher assignment model. Note that if a

professor is assigned to teach two sections of the same course, then this constraint would require

that they are scheduled at two different times.

#Constraint - Sections of a lower-level class should be scheduled at different times

subject to dif_time_lower{l in LOWER,t in TIMES}:

 sum{j in PROFESSORS : inp[j,l] > 0}assign[j,l,t] <= 1;

 The next lower level constraint, diff_time_lower, is a practical convention that makes

students’ scheduling easier. The constraint requires that for any pair of a lower level class and

time period, no more than one section can be held at that time. This ensures that the sections of

class j will be held at different times of the day. Thus, if a student’s schedule could not fit a

particular section of a class because of a time conflict, then there would be other times available

as well. Many of the lower level classes have many sections because they are requirements for

different colleges and this constraint is a very practical way of ensuring that as many students as

possible can take the course that they need to graduate

28

Blocking Constraint

 This constraint provides the four- hour time windows for each professor as specified in

the parameter blocking.

.#Constraint - Teachers give classes within a four-hour preferred time block

subject to blocking{j in PROFESSORS, t in TIMES : time_pref[j,t] = 1 and

t<=14}:

sum{i in CLASSES : inp[j,i]>0}(assign[j,i,t] + assign[j,i,t+1] + assign[j,i,t+2] + assign[j,i,t+3]) =

sum{i in CLASSES : inp[j,i] >0}inp[j,i];

 The constraint, blocking, takes into account professors’ preferences for time periods for

instruction. Recall, that if a professor were to specify the 10 a.m. time block, then all of his or her

courses would be scheduled between 10 a.m. and 2 p.m. The left hand side of the equation is the

number of courses that professor j is assigned to at times t, t + 1, t +2, and t +3 where t is the

beginning of the professor’s preferred four hour time block specified by the value 1 for the

parameter time_pref[j , t]. The right hand side of the equation is the number of courses assigned

to professor j. Thus, the constraint requires that the classes that a professor teaches must be

during his preferred four-hour time block. The restriction t <= 14 is included to ensure that the

model does not begin the time blocks any later than 2pm.

Back to Back Teaching Constraints

 The next several constraints concern whether or not professors prefer to teach courses

back to back or not.

29

#Constraint – Determines the teaching time for teachers who want to teach back-to-back courses

subject to back_assignment{j in PROFESSORS: back_pref[j] = 1}:

 sum{t in TIMES : t <= 16}back_to_back[j,t] = 1;

 This constraint, back_assignment, does not immediately change the solution to the UCSP

in any way. It does, however, set up the variable back_to_back for use in the following

constraint, back_constraint. Here, all the professors who indicated that they would like to teach

consecutive courses have the binary decision variable back_to_back set to the value 1 for exactly

one time period during the day.

#Constraint - If a back_to_back is 1 then professor j is assigned to teach at times t and t + 1

#Note - If back to back is 0, then nothing is enforced

subject to back_constraint{j in PROFESSORS, t in TIMES : back_pref[j] = 1 and

t <= 16}:

 sum{i in CLASSES : inp[j,i] >0}assign[j,i,t] + sum{i in CLASSES : inp[j,i]

>0}assign[j,i,t+1] ≥ 2*back_to_back[j,t];

 The constraint back_constraint makes use of the decision variable back_to_back that was

just a value 0 or 1. Recall that for each professor who wants to teach consecutive classes, the

variable back-to-back was chosen to be 1 for exactly one time period. For each professor and

time pair, if back_to_back[j , t] = 1, the constraint requires that at time t, which is the time

chosen for the preferred time block for that teacher, professor j must be assigned to teach at both

time t and time t + 1. For example, if for professor Thomas the variable back-to-back has value 1

for 9 a.m., then the inequality requires that the number of courses that professor Thomas instructs

30

at 9 a.m. and 10a.m. is greater than or equal to 2. If back_to_back[j , t] = 0, the constraint

requires that the number of courses that the professor teaches at times t and t + 1 is greater than

or equal to 0. Essentially, this does not enforce any change in the solution to the model. This

constraint guarantees that each professor who wants to teach back to back courses will teach

consecutively at some point during his or her preferred time block.

 The constraints back_assignment and back_constraint complement each other. Together

they provide that consecutive classes are scheduled for the time period which has variable

back_to_back equal to 1.

#Constraint - Professors who don't want to teach back to back courses

subject to not_back{j in PROFESSORS, t in TIMES : t <= 16 and back_pref[j]= 0}:

 sum{i in CLASSES : inp[j,i] >0}assign[j,i,t] + sum{i in CLASSES : inp[j,i]

>0}assign[j,i,t+1] <= 1;

 In this constraint, only professors for whom back_pref[j] = 0 are considered. That is,

only those professors who wish to have a break in between classes will be included in this

constraint. The constraint not_back provides that for these professors the number of courses

taught at time t and t + 1 must always be less than or equal to 1 for each time t. This means that

for every grouping of back to back times, say 9 a.m. and 10a.m., or 10 a.m. and 11 a.m., a

professor could only teach at most one course.

2.2.6 - Objective Function

 There is no objective function for the basic model of the Time Assignment model. The

goal is to find a feasible solution only. However, there are situations where it could be advisable

31

to add an objective function. For example, if the Time Assignment model fails to deliver a

feasible solution, then certain professor preferences may need to be relaxed. In that case some of

the preference constraints would be relaxed, and instead the objective function would try to

satisfy as many teacher preferences as possible.

32

Chapter 3

Experimental Results

 In Chapter 2, the logic of each constraint of the IP model for the UCSP is discussed in

detail. However, it is also important to check the correctness of the model computationally. The

model was tested on different data sets throughout the process of writing the model to test new

constraints as they were added. Finally, the model was tested on a realistic data set based on the

faculty of the mathematics department of Ohio University. In all data sets tested, the output of

the IP model for the UCSP has been logically correct in pairing teachers, courses, and times, as

well as correct in respecting the preferences of all professors listed.

 Time efficiency was another important consideration when writing the model. Recall

from Chapter 2 that the way to achieve a smaller running time was to decrease the number of

binary variables in the model. Thus, once the model has been checked for logic, it must also be

checked for a reasonable running time. The IP model for the UCSP has been tested on data sets

of varying sizes. The running time was very small for the initial data sets that were meant to test

the various constraints. Later, when the model was tested on a realistic-sized faculty data set, it

was still remarkably efficient. In practice, the running time of the program for a realistic size data

set is less than 0.1 seconds.

 Chapter 3 is organized the following way. Sections 3.1 and 3.2 give the results for small

and large examples correspondingly. Section 3.3 discusses issues related to time efficiency.

33

3.1 Small Example

Input - Teacher Assignment

 In this section, a small example is given to demonstrate the format of the input into the

program and its output. The AMPL syntax of the data is explained, and a table format is used for

a better visual understanding of the output.

 Recall that the input is given by sets and parameters. The elements of each set used in the

model are explicitly listed in the input data section. Examples of sets below are class titles and

professors' names.

 set PROFESSORS:= Thomas, Kreuzer, Schoenefeld, Veleta, Irwin;

 set LOWER:= math113, math1115, math250;

 set UPPER:= math300, math340, math443, math450;

 Parameters can define single values associated with each element of a set as seen below

in lower_sections and avail. The number listed in lower_sections for each class denotes the

number of sections for that particular class. The parameter avail lists the number of courses each

professor should be assigned to teach.

 param lower_sections:=

 math250 2

 math113 2

 math115 3;

 param avail:=

 Thomas 2

 Kreuzer 2

 Schoenefeld 2

 Veleta 2

 Irwin 2;

 Recall that the parameter preference associates a value with each professor-course pair

based on that professor's teaching preference. A professor's top three courses are given values 1,

34

2, or 3, with one being the most favorite. All other professor-course pairs for that professor are

given value 7. In the input data, parameter preference is indexed by two sets, PROFESSORS and

CLASSES. The value associated with that professor-course pair is listed immediately after the

course title in the same row. For example, professor Irwin has given math340 a value of 1. All

courses not explicitly listed in parameter preference have been given the default value of 7.

 param preferences:=

 [*,Irwin] math340 1 math250 2 math113 3

 [*,Thomas] math113 1 math115 2 math250 3

 [*, Kreuzer] math443 1 math250 2 math340 3

 [*,Schoenefeld] math115 1 math113 2 math250 3

 [*,Veleta] math250 1 math450 2 math300 3;

 These sets and parameters are all of the input data needed for the small example of the

Teacher Assignment model. In the next section, the output of this example is given and

explained.

Output – Teacher Assignment

 The output of the Teacher Assignment model represents the values of decision variables.

For the Teacher Assignment model, the set of variables "chosen_upper" is assigned value 1 if the

professor is teaching that course. The set of variables "chosen_lower" can take value 1 or 2

depending on how many section of that course the professor is teaching. Each professor-course

pair that was not assigned received value 0 for these decision variables, and are not listed here.

 chosen_upper['Irwin','math340'] 1

 chosen_lower['Irwin','math250'] 1

 chosen_upper['Kreuzer','math443'] 1

 chosen_lower['Kreuzer','math250'] 1

 chosen_upper['Veleta','math450'] 1

35

 chosen_upper['Veleta','math300'] 1

 chosen_lower['Thomas','math113'] 2

 chosen_lower['Schoenefeld','math115'] 2

 The value of each variable for an assigned professor-course pair is the number of sections

of that course that the professor will be teaching. For example, professor Schoenefeld is teaching

two sections of math115.

Input – Time Assignment

 Below, new parameters for the Time Assignment model are listed. The sets

PROFESSORS, UPPER, and LOWER, as well as the parameter lower_sections, are included in

this data set but are omitted in this section.

 The set TIMES is simply the times from 8 a.m. to 5 p.m. The parameter rooms, is a

restriction on the number of rooms available during a single time period for instruction. The

parameters listed below follow the same conventions as in the input of the Teacher Assignment

model.

 set TIMES:= 8 9 10 11 12 13 14 15 16 17;

 param rooms:= 10;

 Recall that parameter input, below, lists the assigned professor-course pairs generated by

the Teacher Assignment model.

 param inp:=

 [Irwin,*] math340 1 math250 1

 [Kreuzer,*] math443 1 math250 1

 [Veleta,*] math450 1 math300 1

 [Thomas,*] math113 2

 [Schoenefeld,*] math115 2;

36

 Also recall the value assigned to each variable in back_pref is the preference for back-to-

back courses. If a professor does want to teach back-to-back courses, that professor receive value

1, those professors who do not wish to teach back to back receive value 0 and those have no

preference receive value 2 and do not have back-to-back constraints enforced.

 param back_pref:=

 Thomas 0

 Kreuzer 1

 Schoenefeld 2

 Irwin 2

 Veleta 1;

 Lastly, parameter time_pref associated value 1 to the beginning of each professor's

preferred four-hour time block. In the example below, professor Thomas wishes to teach courses

between 8 a.m. and 12 p.m. so time_pref[Thomas, 8] is assigned value 1.

 param time_pref:=

 [Thomas,*] 8 1

 [Kreuzer,*] 12 1

 [Schoenefeld,*] 10 1

 [Irwin,*] 8 1

 [Veleta,*] 12 1;

Output – Time Assignment

 The output of the Time Assignment model is similar to that of the Teacher Assignment

model. For the variable "assign," the professor, course, and time period that have been assigned

are given value 1. All other combinations are given value 0 and are not listed below. For

example, professor Thomas is assigned to teach math113 at 8 a.m. as well as at 10 a.m.

 assign['Thomas','math113',8]" 1

 assign['Thomas','math113',10]" 1

37

 assign['Schoenefeld','math115',10]" 1

 assign['Schoenefeld','math115',11]" 1

 assign['Irwin','math250',9]" 1

 assign['Irwin','math340',8]" 1

 assign['Kreuzer','math250',13]" 1

 assign['Kreuzer','math443',12]" 1

 assign['Veleta','math450',13]" 1

 assign['Veleta','math300',12]" 1

 Lastly, for easier understanding, the same information as above is presented in table form.

Professors Times

 8 a.m. 9 a.m. 10 a.m. 11 a.m. 12 p.m. 1 p.m.

Thomas math113 math113

Schoenefeld math115 math115

Veleta math300 math450

Irwin math340 math250

Kreuzer math443 math250

3.2 Number of Variables and Time Efficiency

 The time efficiency of IP solution methods largely depends on the number of integer

variables. The number of LP subproblems solved by Branch-and-Bound increases exponentially

as a result of the increase in the number of variables. In this section, the number of variables and

the running time for the UCSP model will be discussed.

 var chosen_upper{u in UPPER, j in PROFESSORS} binary;

 var chosen_lower{l in LOWER, j in PROFESSORS} integer, >= 0, <=2;

38

 In the Teacher Assignment model, there are two sets of decision variables, listed below as

a reminder. The variable chosen_upper is indexed on two sets. If the number of upper level

courses is m and the number of professors is n, then the number variables for chosen_upper is

m * n. Similarly, if the number of lower level courses is k, then the number of variables created

for chosen_lower is k * n.

 In the large data set used to test the model, the number of upper level courses is 27 and

the number of professors is 22. So the number of variables for chosen_upper is 594. Also, as the

number of lower level courses is 10, the number of variables for chosen_lower is 220. Solvers

today are routinely solving IP problems with over well one thousand variables [5]. The solver

used for this thesis easily handled a data set with 814 variables. For a bigger department with

about 40 to 50 professors, the number of variables would be no more than 2000 which would still

be solvable by today's solvers.

 In the Time Assignment model there are also two sets of variables, assign and

back_to_back.

 var assign{j in PROFESSORS, i in CLASSES, t in TIMES : inp[j,i] > 0} binary;

 var back_to_back{j in PROFESSORS, t in TIMES: back_pref[j] = 1} binary;

Variable assign is indexed by three sets, and with n professors, u classes and v times, the total

number of variables would be n*u*v if a variable were defined for every possible combination.

With 22 professors, 37 courses and 10 times defined, there could be a total of 8140 variables in

the large example. This is a significantly large number for today's best solvers. Fortunately, the

restriction "inp[j,i] > 0" greatly reduces the number of variables. This restriction guarantees that

only the professors-course pairs that were matched from the Teacher Assignment model are used

to create variables in the model. In the large example given in a later section, the number of

39

professor-course pairs used as input for the Time Assignment model is 45, reducing the total

number of variables for assign from 8140 to 450.

 For the variable back_to_back, the number of variables depends on the number of

teachers who wish to teach back to back courses. Even if every professor chose to instruct back

to back courses, this would only add 220 variables in the case of the large example.

 Thus, the number of variables for both the Teacher Assignment or Time Assignment

models is within the capabilities of modern computer solvers. Especially due to the use of

variable reducing techniques in the case of the Time Assignment model, the UCSP should be

solvable using this model for even the largest departments.

40

Conclusion and Future Direction

 The goal of this thesis was to find an Integer Programming solution to the University

Class Scheduling Problem. More specifically, to find a feasible class assignment schedule for a

given department in a university while maximizing teacher-assignment satisfaction. The model,

which was broken into the separate Teacher Assignment and Time Assignment models has been

shown to be logically correct. Initial results have produced feasible results for realistic-sized data

sets.

 There is room for improvement in the model, and future work could be done in several

areas. One concept that was not explored in this thesis is the possibility of keeping future quarter

or semester schedules as close to previous quarters as possible. Since many professors will not

change their teaching preferences from year to year, it could be desirable to change future

schedules as little as possible. Constraints could be added or the objective function changed to

track changes and include as few as possible.

 Another possible future direction would be to track which teachers are assigned to teach

their most favorite classes and which teachers are not satisfied as fully as possible with their

teaching schedule. Rotating the sum of the teacher preferences that are satisfied for each teacher

could be a fair way of maintaining overall faculty satisfaction.

 Also, though it did not occur with any data sets tested for this thesis, it is possible that

teacher preferences could make the Time Assignment model infeasible. If this were to happen, it

would still be necessary to find a feasible solution. One possibility would be to turn the teacher

preference constraint into an objective function. This would require that the solver satisfy as

many teacher time preferences as possible, but it would allow more feasible solutions to be

considered.

41

 Lastly, though it is not related to a Mathematics thesis, it would be useful to create a

Graphical User Interface so that the model could be put into practice by an administrator. At this

point in the solution process, one would have to be familiar with Integer Programming and

AMPL to use these models. It would be wonderful if this thesis could be useful in the real world

and not solely as an exercise in Integer Programming.

 In conclusion, this thesis has been an enjoyable and challenging problem that has been

largely sucessful. The goal of solving the UCSP has been achieved with the IP models included

here. With more effort, this thesis could be of real world use to universities.

42

Appendix

A.1 - Teacher Assignment

Teacher Assignment Model

#Given: sets of professor and class names

set PROFESSORS;

set LOWER;

set UPPER;

set CLASSES:= LOWER union UPPER;

#number of classes each professor needs to teach, with default value!

param avail{j in PROFESSORS}, default 2;

#list of each professors fav classes - now with data-saving default!

param preferences{j in PROFESSORS, i in CLASSES}, default 7;

Number of sections of lower level classes

param lower_sections{l in LOWER};

#if upper-level class is assigned to a professor

#then the value is 1, otherwise 0

var chosen_upper{j in PROFESSORS, u in UPPER} binary;

#if lower level class is assigned to a professor

#variable can either be one or two

#otherwise variable is 0

var chosen_lower{j in PROFESSORS, l in LOWER} integer, >= 0, <=2;

#Constraint - upper level classes happen once and need exactly one teacher

subject to filling_upper{u in UPPER}:

 sum{j in PROFESSORS} chosen_upper[j,u] = 1;

#Constraint- assign as many lower level classes as possible

subject to filling_lower{j in PROFESSORS}:

 sum{l in LOWER} chosen_lower[j,l] <= avail[j];

#Constraint - each professor needs to teach the right number of classes

subject to required_to_teach{j in PROFESSORS}:

 sum{l in LOWER} chosen_lower[j,l] + sum{u in UPPER} chosen_upper[j,u] = avail[j];

43

#Constraint- all sections of lower classes should be filled

subject to sections{l in LOWER}:

 sum{j in PROFESSORS} chosen_lower[j,l] <= lower_sections[l];

#Constraint - each class should have exactly one professor

subject to one_prof_per_class{u in UPPER}:

 sum{j in PROFESSORS} chosen_upper[j,u] = 1;

#Constraint - each prof gets classes they like

subject to prof_preferences{j in PROFESSORS}:

 sum{u in UPPER}preferences[j,u]*chosen_upper[j,u] + sum{l in

LOWER}preferences[j,l]*chosen_lower[j,l] <= 9;

#Objective function- minimize total sum of preferences

minimize total_preferences:

 sum{u in UPPER, j in PROFESSORS}preferences[j,u]*chosen_upper[j,u] + sum{l in

LOWER, j in PROFESSORS}preferences[j,l]*chosen_lower[j,l];

Teacher Assignment Data

data;

set PROFESSORS:= Aftabizadeh, Aizicovici, Arhangelskii, Barsamian, Chapin, Eisworth,

Gulisashvili, Huynh, Just, Kaufman, Klein, Lin, Melkonian, Mohlenkamp, Pavel, Savin, Shen,

Uspenskiy, Vinogradov, Vu, Wolf, Young;

set LOWER:= math163A, math163B, math211, math250, math251, math263A, math263B,

math263C, math263D, math266B;

set UPPER:= math147 math300, math306, math307, math308, math314, math330A, math330B,

math340, math344, math410, math412, math441, math446, math449, math450C, math451,

math452, math460C, math470, math480B, math615, math645C, math649, math660C,

math670C, math680C;

param lower_sections:=

math163A 7

math163B 1

math211 1

math250 8

math251 1

math263A 4

math263B 5

math263C 3

math263D 2

44

math266B 2;

param preferences:=

[Aftabizadeh,*] math163A 1 math263B 2 math263A 3

[Aizicovici,*] math645C 1 math340 2 math460C 3

[Arhangelskii,*] math680C 1 math211 2 math306 3

[Barsamian,*] math163A 1 math330A 2 math263A 3

[Chapin,*] math441 1 math344 2 math163A 3

[Eisworth,*] math480B 1 math263B 2 math263C 3

[Gulisashvili,*] math670C 1 math263D 2 math263C 3

[Huynh,*] math263B 1 math263C 2 math307 3

[Just,*] math266B 1 math340 2 math263B 3

[Kaufman,*] math147 1 math340 2 math250 3

[Klein,*] math300 1 math330A 2 math330B 3

[Lin,*] math450C 1 math452 2 math250 3

[Melkonian,*] math308 1 math250 2 math306 3

[Mohlenkamp,*] math649 1 math446 2 math344 3

[Pavel,*] math470 1 math163A 2 math449 3

[Savin,*] math410 1 math263B 2 math266B 3

[Shen,*] math250 1 math211 2 math446 3

[Uspenskiy,*] math263D 1 math263C 2 math263B 3

[Vinogradov,*] math441 1 math250 2 math450C 3

[Vu,*] math410 1 math263A 2

[Wolf,*] math615 1 math410 2

[Young,*] math660C 1 math344 2;

param avail:=

Eisworth 4;

45

A.2 - Time Assignment

Time Assignment Model

#Given sets: class names, professors and time of day

set UPPER;

set LOWER;

set CLASSES:= LOWER union UPPER;

set TIMES;

set PROFESSORS;

param rooms;

#Output from previous problem- given

param inp{j in PROFESSORS, i in CLASSES}, default 0;

Number of sections of lower level classes

param lower_sections{l in LOWER};

#What time of the day the teacher would prefer to teach class

param time_pref{j in PROFESSORS, t in TIMES}, default 0;

#Professor preferences for back to back classes or not

#1 for back to back, 0 for not back to back, and 2 for no preference

param back_pref{j in PROFESSORS};

var back_to_back{j in PROFESSORS, t in TIMES: back_pref[j] = 1} binary;

#Binary assignment of times and classes

var assign{j in PROFESSORS, i in CLASSES, t in TIMES : inp[j,i] > 0} binary;

#Constraint- Teachers give classes within

46

#a four hour preferred time block

subject to blocking{j in PROFESSORS, t in TIMES : time_pref[j,t]>0 and

t<=14}:

 sum{i in CLASSES : inp[j,i] >0}inp[j,i] = sum{i in CLASSES : inp[j,i]

>0}(assign[j,i,t] + assign[j,i,t+1] + assign[j,i,t+2] + assign[j,i,t+3]);

#Constraint - A professor can only teach one class at a time

subject to prof_one_at_atime{t in TIMES, j in PROFESSORS}:

 sum{i in CLASSES : inp[j,i] > 0}assign[j,i,t] <= 1;

#Constraint - Lower level classes must have the right amount of professors

#assigned

subject to lower_time_periods{l in LOWER}:

 sum{t in TIMES, j in PROFESSORS : inp[j,l] > 0}assign[j,l,t] = sum{j in

PROFESSORS}inp[j,l];

#Constraint - Upper level classes should be once per day

subject to one_time_period{u in UPPER}:

 sum{t in TIMES, j in PROFESSORS : inp[j,u] > 0}assign[j,u,t] = 1;

#Constraint - Professors professors assigned to lower classes

#Must teach the right amount of sections

subject to sections{j in PROFESSORS, l in LOWER}:

 sum{t in TIMES : inp[j,l] > 0}assign[j,l,t] = inp[j,l];

#Constraint - The number of classes assigned in a time period is limited by the number of rooms

subject to room_constraint{t in TIMES}:

 sum{i in CLASSES, j in PROFESSORS : inp[j,i] > 0} assign[j,i,t]<= rooms;

#Constraint - Lower sections should be scheduled at different times

subject to dif_time_lower{l in LOWER,t in TIMES}:

47

 sum{j in PROFESSORS : inp[j,l] > 0}assign[j,l,t] <= 1;

#Constraint - 1 for teachers who want back to back

subject to back_assignment{j in PROFESSORS: back_pref[j] = 1}:

 sum{t in TIMES : t <= 16}back_to_back[j,t] = 1;

#Constraint - If a teacher is assigned a time and he also wants back to back

#classes, then he must also be assigned to the following time period

#Note - If back to back is 0, then nothing is enforced

subject to back_constraint{j in PROFESSORS, t in TIMES : back_pref[j] = 1

and t <= 16}:

 sum{i in CLASSES : inp[j,i] >0}assign[j,i,t] + sum{i in CLASSES : inp[j,i]

>0}assign[j,i,t+1] >= 2*back_to_back[j,t];

#Constraint - Professors who don't want back to back can't teach the time period

#immediately following the one they are assigned

subject to not_back{j in PROFESSORS, t in TIMES : t <= 16 and back_pref[j]

= 0}:

 sum{i in CLASSES : inp[j,i] >0}assign[j,i,t] + sum{i in CLASSES : inp[j,i]

>0}assign[j,i,t+1] <= 1;

Time Assignment Data

data;

set LOWER:= math163A, math163B, math211, math250, math251, math263A, math263B,

math263C, math263D, math266B;

set UPPER:= math147 math300, math306, math307, math308, math314, math330A, math330B,

math340, math344, math410, math412, math441, math446, math449, math450C, math451,

math452, math460C, math470, #math480B, math615, math645C, math649, math660C,

math670C, math680C;

set PROFESSORS:= Aftabizadeh, Aizicovici, Arhangelskii,

Barsamian, Chapin, Eisworth, Gulisashvili, Huynh, Just, Kaufman, Klein, Lin,

Melkonian, Mohlenkamp, Pavel, Savin,

Shen, Uspenskiy, Vinogradov, Vu, Wolf, Young;

48

set TIMES:= 8 9 10 11 12 13 14 15 16 17;

param rooms:= 30;

param lower_sections:=

math163A 7

math163B 1

math211 1

math250 8

math251 1

math263A 4

math263B 5

math263C 3

math263D 2

math266B 2;

param inp:=

[Aftabizadeh,*] math163A 2

[Aizicovici,*] math460C 1 math645C 1

[Arhangelskii,*] math680C 1 math211 1

[Barsamian,*] math330A 1 math163A 1

[Chapin,*] math441 1 math451 1

[Eisworth,*] math263B 2 math263C 1

[Gulisashvili,*] math412 1 math670C 1

[Huynh,*] math263B 1 math307 1

[Just,*] math266B 2

[Kaufman,*] math147 1 math340 1

[Klein,*] math300 1 math330B 1

[Lin,*] math450C 1 math452 1

[Melkonian,*] math306 1 math308 1

[Mohlenkamp,*] math446 1 math649 1

[Pavel,*] math449 1 math470 1

[Savin,*] math263B 2

[Shen,*] math250 2

[Uspenskiy,*] math263D 2

[Vinogradov,*] math250 2

[Vu,*] math263A 1 math410 1

[Wolf,*] math314 1 math615 1

[Young,*] math344 1 math660C 1;

param time_pref:=

[Aftabizadeh,*] 8 1

[Aizicovici,*] 8 1

[Arhangelskii,*] 10 1

[Barsamian,*] 12 1

[Chapin,*] 12 1

[Eisworth,*] 12 1

49

[Gulisashvili,*] 10 1

[Huynh,*] 10 1

[Just,*] 12 1

[Kaufman,*] 12 1

[Klein,*] 12 1

[Lin,*] 8 1

[Melkonian,*] 10 1

[Mohlenkamp,*] 8 1

[Pavel,*] 12 1

[Savin,*] 10 1

[Shen,*] 12 1

[Uspenskiy,*] 12 1

[Vinogradov,*] 8 1

[Vu,*] 12 1

[Wolf,*] 12 1

[Young,*] 10 1;

param back_pref:=

Aftabizadeh 0

Aizicovici 2

Arhangelskii 0

Barsamian 1

Chapin 0

Eisworth 1

Gulisashvili 0

Huynh 1

Just 1

Kaufman 0

Klein 0

Lin 1

Melkonian 2

Mohlenkamp 2

Pavel 1

Savin 2

Shen 0

Uspenskiy 1

Vinogradov 1

Vu 0

Wolf 1

Young 2;

50

Time Assignment Output

Professors Times

 8a.m 9a.m 10a.m 11a.m 12p.m 1p.m 2p.m 3p.m 4p.m

Aftabizadeh 163A 163A

Aizicovici 460C 645C

Arhangelskii 680C 211

Barsamian 330A 163A

Chapin 451 441

Eisworth 263C 263A 263B

Gulisashvili 670C 412

Huynh 307 263B

Just 266B 266B

Kaufman 340 147

Klein 330B 300

Lin 452 450C

Melkonian 308 306

Mohlenkamp 649 446

Pavel 470 449

Savin 263A 263B

Shen 250 250

Uspenskiy 263D 263D

Vinogradov 250 250

Vu 410 263A

Wolf 615 314

Young 660C 344

51

References

[1] Aloul, F., and A. Wasfy. 4th IEEE GCC Conference, Nov. 2007, Bahrain. Solving the

University Class Scheduling Problem Using Advanced ILP Techniques. American

University of Sharjah. 30 Oct. 2008 http://www.aloul.net/Papers/faloul_sch_gcc07.pdf.

[2] Boland, Natasha, Barry D. Hughes, Liam T. Merlot, and Peter J. Stuckley. "New Integer

Linear Programming Approaches for Course Timetabling." Computers and Operations

Research. 35 (2008): 2209-233.

[3] Fourer, Robert, David M. Gay, and Brian W. Kernighan. AMPL- A Modeling Language

 For Mathematical Programming. Davers: Boyd and Fraser Publishing Company, 1993.

[4] Gunawan, Aldy, Kein M. Ng, and Kim L. Po. "Solving the Teacher Assignment-Course

 Scheduling Problem by a Hybrid Algorithm." International Journal of Computer,

 Information, and Systems Science, and Engineering 1 (2007).

[5] Hillier, Frederick S., and Gerald J. Lieberman. Introduction to Mathematical Programming.

 New York: McGraw-Hill, 1995.

[6]Savelsbergh, Martin W., R. N. Uma, and Joel Wein. "An Experimental Study of LP-Base

Approximation Algorithms for Scheduling Problems." INFORMS Journal on Computing

17 (2005): 123-36.

52

[7] Taha, Hamdy. Integer Programming- Theory, Applications, and Computations. New York:

 Academic Press, 1975.

[8] Barry, Cipra. "The Best of the 20th Century: Editors Name Top 10 Algorithms." Applied

 Mathematics. SIAM News. 1 Mar 2009

 <http://amath.colorado.edu/resources/archive/topten.pdf>.

[9] Hochbaum, Dorit S, ed. Approximation Algorithms for NP-Hard Problems. Boston: PWS

 Publishing Company, 1997.

[10] Michalewicz, Zbigniew, and David B. Fogel. How to Solve It: Modern Heuristics. 2nd ed.

 Berlin: Springer-Verlag, 2004.

