
1 

 

 

 

 

 

 

 

An Integer Programming Solution to the   

University Class Scheduling Problem 

 

______________________________________________ 

 

A Thesis Presented to 

The Honors Tutorial College 

Ohio University 

 

______________________________________________ 

 

by  

Megan Thomas 

2009 

 

 

 

 

 



2 

 

 

 

Table of Contents 

 
1 Introduction         3 

  1.1 Linear and Integer Programming . . . . . . . . . . . . . . . . . . . . . . . . . .  4  

 1.2  Applications of Linear Programming . . . . . . . . . . . . . . . . . . . . . . . 5 

1.3 Solution Methods for Linear Programs. . . . . . . . . . . . . . . . . . . . . .  6 

1.4 Solution Methods for Integer Programs . . . . . . . . . . . . . . . . . . . . . 7 

1.5 AMPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

1.6 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

 

2   IP Model for University Class Scheduling Problem    13 

   2.1 Teacher Assignment Model 

   2.1.1 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

   2.1.2 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

   2.1.3 Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . 14 

   2.1.4 Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

   2.1.5 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 

   2.1.6 Objective Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

   2.1 Time Assignment Model  

   2.2.1 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . 21 

   2.2.2 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22 

   2.2.3 Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

   2.2.4 Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . 24 

   2.2.5 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

   2.2.6 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

 

3 Experimental Results        32 

3.1 Explanation of Input and Output of the Model. . . . . . . . . . . . . . . . 33 

3.2 Number of Variables and Time Efficiency . . . . . . . . . . . . . . . . . . .  38 

 

4 Conclusion 

 

Appendix  

 A.1 - Teacher Assignment Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

  A.2 - Time Assignment Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

 

References          50 

 

 

 

 

 

 



3 

 

 

 

Chapter 1  

Introduction 

 This thesis presents methods for solving the University Class Scheduling Problem 

(UCSP) by Integer Programming. Integer Programming is a branch of Operations Research that 

solves intricate real-life problems by modeling them as a set of mathematical equations. The 

UCSP is an example of such a complex system and is a prototypical example of a problem that 

can be solved using mathematical modeling.  

 In the UCSP, professors list their course preferences and are designated two or more  

courses based on their input and availability. Then the courses are scheduled to time periods  

during school hours. The model becomes increasingly complex because of many scheduling  

constraints. Some examples of constraints are professors' course preferences, preferred lecture 

times during the day, and scheduling multisection classes. 

 The Integer Programming model for this thesis will represent each of the above-

mentioned constraints and other constraints using linear inequalities or equations. Concepts from 

disciplines such as applied mathematics, computer science, and systems engineering are 

combined to construct the model. The goal of the model is to find a feasible class assignment 

schedule for a given department while maximizing teacher-assignment satisfaction. 

 The model is written on the mathematical modeling language AMPL. The rest of this 

chapter gives an introduction to Integer Programming, its applications, solution methods and a 

short introduction to AMPL. 

1.1 - Linear and Integer Programming 

 Linear Programming is an area of applied mathematics that deals with special types of 
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optimization problems. A Linear Program is an optimization problem in which a linear objective 

function subject to linear equality or inequality constraints is either maximized or minimized [5]. 

The variables of a Linear Programming (LP) model can be discrete or continuous. An Integer 

Programming (IP) model is a special case of LP in which all or some variables can only take 

integer values. 

To achieve a goal in an optimization problem, quantified decisions are made. Decision 

variables, whose values we wish to determine, will form the solution to the model. These 

variables will be optimized through the use of an objective function. The decision variables {x1, 

… , xn} are subject to various constraints, which are restrictions in the form of linear equations 

or inequalities. One constraint common to IP models is that the variables must take integer 

values. While nonlinear IP problems exist, this thesis will only be using linear IP models, which 

have easier solution methods [7].  

 

The general form of an IP optimization model looks like this: 

 minimize (or maximize)  f (x1, … , xn)  (objective function) 

 subject to  gi (x1, … , xn ) ≤  bi   (functional constraints) 

 x1, … , xn  ≤ 0, integer     (set constraints) 

 

A solution to such an IP model is an assignment of values to the decision variables {x1, 

… , xn} . A feasible solution is one which satisfies all of the constraints of the IP model. An 

optimal solution for a minimization problem is a feasible solution which achieves the lowest 

value in its associated objective function. An Integer Program might have more than one 

solution, that is, there may be more than one solution with the same associated optimal value. 
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1.2 - Applications of Linear Programming 

 Linear Programming has many useful applications in the real world, including 

scheduling, inventory management, network design, facility location problems [5]  [7]. Some of 

them are discussed briefly below. 

  Employee scheduling, as in the University Class Scheduling Problem, is one example of 

a real world LP application. Companies such as United Airlines have also used LP techniques to 

solve employee scheduling problems. The number of flights arriving or departing on any one day 

should be maximized; this should not be at the expense of the safety of the passengers and staff 

of the airplanes.  Other types of scheduling problems exist, such as finding an optimal schedule 

of tasks for an auto repair shop which satisfies as many customers as possible.   

 Other examples of LP applications include inventory management problems. In this 

instance, LP readily helps companies make decisions balancing costs, profit, and demand for 

different items that they may produce.  

 LP may also be used for network design. One example of a network design problem is the 

minimum spanning tree problem, which is applicable to many companies, especially those which 

transport  data. In this case, each node of the network must be connected to the others with 

minimum total distance [5]. 

 Another real world application for LP is facility location. When considering where to 

build a new facility, a company must consider many constraints such as price and proximity to 

other facilities and customers. An LP model can be formulated in this situation to help companies 

make critical decisions involving resources. 

 

1.3 - Solution Methods for Linear Programs 
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 LP models have been thoroughly studied and have established algorithms for solving 

them, such as the Simplex Method and the Interior Point Method [5]. The first method, the 

Simplex Method, was originally developed by George Dantzig in 1947. It has been named one of 

the top ten algorithms having “the greatest influence on the development and practice of science 

and engineering in the 20th century” by the journal Computing in Science & Engineering 

Magazine [8]. The Simplex Method is based on the fact that optimal solutions for LP are along 

the boundary of the feasible region. The Simplex Method involves initializing a Corner Point 

Feasible solution (CPF) and then traveling along the boundary to adjacent CPF solutions of the 

feasible region and testing for optimality. Though the Simplex Method has exponential running 

time in the worst case, it is remarkably efficiently in practice. See Figure 1 for the structure of 

the Simplex algorithm. 

 

If Not, 

Find Better CPF

If Optimal, 

Stop
Initialization

Optimality
Test

 

Figure 1. The Structure of the Simplex Algorithm  

 

 The Interior Point Method was developed in 1984 by Narendra Karmarkar, and has been 

proven to be able to solve larger LP problems than Simplex, as well as solving established 

problems faster [5]. Like Simplex, the Interior Point Method is an iterative algorithm which 

begins with a trial solution. Contrary to Simplex, it optimizes by traversing trial solutions on the 

interior of the feasible region. 
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1.4 - Solution Methods for Integer Programs 

 IP models are harder to solve than their LP counterparts, and thus the IP solution methods 

are less time efficient. Since there are efficient solution methods for LPs, one approach to solve 

an IP problem could be to solve its continuous LP relaxation and then round the values of the 

variables to integers. While this is an intuitive approach to solving an IP problem, it is in no way 

guaranteed to obtain an optimal solution. In fact, it is often far from optimal, and should not be 

considered a valid solution method for IP models. However, it is a technique used as part of other 

main solution methods, discussed below. 

 The main solution methods for IP problems are Branch-and-Bound and Cutting Planes. 

The underlying concept of Branch-and-Bound is to divide and conquer [5]. The original problem 

is divided into smaller and smaller sub-problems, until it can be conquered. Branching partitions 

the problem into subsets which cover the entire feasible region. Then the bounding procedure 

computes a bound for the best value of each subset by solving the continuous LP relaxation for 

that subset. Any subset whose bound is less than the incumbent, or currently best, integer 

solution (in a maximization problem) is discarded. This is called fathoming. Branch-and-Bound 

is guaranteed to return an optimal solution after a finite number of iterations. But since each 

iteration involves solving several LPs, Branch-and-Bound might be inefficient for large instances 

of Integer Programs. 

Another technique for solving IP problems is the use of Cutting Planes. This method adds 

new functional constraints that do not remove feasible integer solutions, thus the original IP 

problem remains the same. At the same time, these new constraints cut off some fractional 

solutions from the original feasible region, making the feasible region of the continuous LP 
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relaxation smaller. This tighter formulation makes the search for an optimal IP solution more 

efficient. 

Unfortunately, Cutting Planes are not guaranteed to give an optimal integer solution. 

Thus, a powerful combination of Branch-and-Bound and Cutting Planes, called Branch-and-Cut, 

was developed to give an efficient algorithmic approach to solving IPs. The use of Cutting 

Planes on the sub-problems rising in Branch-and-Bound gives tighter bounds and thus 

accelerates the solution process. Branch-and-Cut is widely used to solve large IP problems. More 

about these techniques can be found in [3], [5]. 

Another method for solving IPs is the use of meta-heuristics. A heuristic is a procedure 

which is likely to discover a good feasible solution very fast, but does not guarantee an optimal 

solution. A meta-heuristic is a general solution method that provides both a structure and a 

strategy for developing a specific heuristic method to fit a particular type of problem [5].  

Examples of meta-heuristics include Tabu search, Genetic algorithms, and Simulated Annealing.  

These heuristics are mainly based on physical phenomena. These approaches are used for 

very quickly getting a good integer solution, but do not guarantee an optimal solution. Some of 

the heuristics, such as approximation algorithms can guarantee that the solution is within a 

certain factor of the optimal solution, however. Normally, a rigorous mathematical analysis is 

required to prove the existence of the approximation factor. Heuristics can also be used to 

provide a starting point for Branch-and-Bound, as a good incumbent integer solution can greatly 

reduce the number of subproblems, which increases efficiency. For further discussion of 

heuristics see [9], [10]. 

 

1.5 - AMPL  
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 For this thesis, the programming language AMPL was used to write the model. AMPL is 

compatible with several IP solvers, which use a mix of Branch and Bound and Cutting Plane 

techniques. AMPL is noted for its similarity to customary algebraic notation [3], which can make 

it more intuitive to use. The programming language itself is flexible and general, and the 

command environment is designed to communicate with a wide variety of solvers [3]. It is used 

for solving many of the different applications of LP, discussed in an earlier section, on a larger 

scale than would be possible without a computer's aid.  

 Next will be a short discussion on the construction of a basic model in AMPL. This 

discussion is needed to understand the model in Chapter 2. To define the input data to an LP, 

AMPL uses structures called sets and parameters. A set is used for defining a group of objects. 

To declare a set name, the keyword "set" is used.  

  set P; 

For example, if the LP is about a production system, P could denote the set of possible products. 

 The members of set P might possess numerical attributes relevant to the LP. To define 

these attributes AMPL uses a structure called  parameter. Parameters are declared using the 

keyword "param." Parameters may take the form of a single scalar value, or a collection of 

values which are indexed by a set (or several sets). Below, the indexing for parameter c is given 

by { j in P}, so that a value is associated with each product in P. 

  param b; 

  param c { j in P}; 

For example, if P is the set of products, then c[j] might be the unit profit of product j. Keyword 

“var” is used to declare variables. As with parameters, variables may take the form of a single 

scalar value, or a collection of values which are indexed by a set (or several sets). 
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  var X {j in P}; 

For example, the variable X[j] might denote the number of each product j that the company is 

going to produce. These values will be determined by the solver. 

 Objective functions are given an arbitrary name, such as “profit.” An example of a 

declaration of an objective function is listed below. Keywords in the phrase below include 

maximize, which tells the solver to maximize the objective function. 

  maximize profit: sum {j in P} c [j] * X [j]; 

Here, c[j] * X[j] is the profit from product j. Keyword “sum” is used to take the sum of the 

profits from all products j in P. Thus, the objective function maximizes the total profit for the 

production system. 

 Lastly, a constraint is declared with the keyword  subject to. An example is provided 

below.  

  subject to Limit {j in P}: 0 <= X [j] <= u [j]; 

 In this example, u[j] represents the maximum capacity for production for each product j 

in P. Thus, the constraint ensures that the production amount of each product j in P is greater than 

or equal to 0 but no greater than the maximum capacity for j in P. The actual constraint appears 

after the “:” . The expression before the colon, “Limit{j in P}”, provides that there is one of that 

type of constraint for each j in P  

 For further discussion of modeling with AMPL see [3]. 

 

1.6 - Overview of Thesis 

 The IP model for the UCSP was broken into smaller problems that could be tackled more 

easily before trying to obtain a final solution. The two smaller problems are the Teacher 
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Assignment, which matches professors to courses, and the Time Assignment, which mataches the 

professor-course pairs to times of the day. Thus,  the programs are meant to be run in a sequence 

to obtain an optimal solution. The separate parts of the model could be run multiple times with 

different data. For example, the scheduling is intended to be run first with permanent staff and 

later with graduate students, since decisions on admittance of graduate students often makes the 

scheduling of their teaching schedules a last minute process for universities. 

 After the two sections were completed, there was the option of either integrating both 

sections into a larger model or keeping both separate. There are advantages and disadvantages to 

both ways of types of organization. The advantage of a larger program is that everything is done 

at once, and if there is a solution to the complete problem then it is instantly displayed. However, 

larger and more complex programs have a greater risk of being infeasible. Also, the running time 

of such a program could be slowed down because of larger data sets.  

 Separate models require that the programmer submit the output from the initial model as  

input to subsequent sections of the program. In this thesis, each time a solution for the Teacher  

Assignment model is found, it is then submitted to the Time Assignment section in order to run 

the second model. This approach has advantages as well as disadvantages. The drawback to this 

approach is that multiple steps must be taken to reach the final solution. However, separating the 

larger problem into individual pieces allows the program, and thus the department, more 

flexibility in the course scheduling process. For example, last minute time conflicts could easily 

be solved by running the time assignment model again. Separate sections allow the programmer 

to make small changes to the models more easily and to resolve potential conflicts more 

efficiently. Therefore, the multiple sections approach is the most practical for the UCSP and was 

used in this thesis.  
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 The decision of which constraints to include in each model is very important. It is 

possible for some constraints be incompatible with other constraints if too many preferences are 

taken into account. The model should be as realistic as possible, but not at the cost of making the 

model infeasible. In the end, the most important constraints were included in the final version of 

the model, and the models have been tested using realistic-sized data sets. In Chapter 2, the 

UCSP model will be explained in detail and Chapter 3 will discuss the experimental results of 

the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 

 IP Model for University Class Scheduling Problem 
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2.1- Teacher Assignment Model 

2.1.1- General Discussion 

The goal of the Teacher Assignment model is to find satisfactory pairings of professors 

and classes which will fill all of the requirements of the department. One requirement is that the 

model must be able to assign each professor a specific number of classes to instruct. To obtain a 

working schedule, the correct number of sections for each class must also be filled.  

Ideally the professors should be happy with the courses they are assigned. Each professor 

submits a list of three courses ranked in order of their teaching preferences. The integer program 

not only finds a feasible solution of teacher pairings, but it also maximizes the number of 

professors who are assigned to their favorite classes. 

It is important to note that graduate students are assigned classes after the full-time 

professors. The graduate students help to fill out the lower level courses that have multiple 

sections, and they are not generally given a high priority in the scheduling of classes. In fact, an 

administrator may not know which graduate students are attending the university or what their 

schedules will be until the last minute.  

One way to deal with this situation is to assign leftover courses to the graduate students 

by hand after the permanent professors have class assignments. Alternatively, the integer 

programming model could also be run a second time on the remaining courses for the graduate 

students. This would be done by changing the input in the data section-  the classes assigned to 

full-time professors would be taken out of the data set the second time through, and the set of 

professors would be changed to the names of the graduate students.     

A detailed discussion of the AMPL model on the Teacher Assignment model is given in 
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the next five subsections. 

 

  2.1.2- Sets 

  #Given sets of professor and class names 

set PROFESSORS;      

set LOWER;        

set UPPER; 

set CLASSES:= LOWER union UPPER;      

The sets included in the model are professors and the classes available for that quarter. A 

problem that arose in the development of the programs was what to do with multi-section 

classes. Upon study of historical mathematics class schedules, it seems that almost all the multi-

section classes were lower level classes. The upper and lower level sections of classes in this 

model were dealt with separately in order to simplify later constraints, especially the constraints 

in the time assignment model. 

 

2.1.3- Input Parameters 

# The number of classes each professor is required to teach 

 param avail{j in PROFESSORS}, default 2;     

There are three types of input parameters in the teacher assignment program. The first 

type of input parameter is the number of classes the professors are required to teach. The default 

workload is two courses. Other amounts of courses could be entered for specific professors, for 

example, if a teacher were on early retirement or if he or she was only working part time.  
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# A listing of each professor’s favorite classes 

param preferences{i in CLASSES, j in PROFESSORS}, default 7; 

The second type of input parameter is a crucial part of the decision process. At Ohio 

University professors are allowed to indicate several courses, ranked in order of their preference. 

A professor’s most favorite class is assigned the value 1. His or her second favorite course is 

assigned the value 2, etc. The default value for the professor’s classes is chosen to be 7, which 

provides weight to the classes that are not a professor’s favorite. This type of input parameter is 

important because one of the goals of the model is to find not only a solution that assigns courses 

to professors, but one which satisfies as many professors’ course preferences as possible.  

 

# The number of sections of lower level classes 

param lower_sections{l in LOWER}; 

 The third type of input parameter is the number of sections of lower level classes that 

need to be filled. Only courses which have multiple sections are included in this type of 

parameter, given the way the sets were created. The nature of the lower level course decision 

variable (see the following section) allows professors to be assigned to 0, 1, or 2 sections of any 

multi-section course. 

Note that the specific values for the sets and parameters are given in input data sets which 

will be discussed in Chapter 3. 

 

2.1.4- Decision Variables 

There are two types of decision variables in the Teacher Assignment of the model. 
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 # Decision variable  

# If an upper-level class is assigned to a professor          

# Then the value is 1, otherwise 0 

 var chosen_upper{u in UPPER, j in PROFESSORS} binary;   

The first is a binary assignment variable for the upper level classes called chosen_upper. 

Each upper level course is only taught once per quarter, professors class pairings for this variable 

are given the value zero if the professor does not teach that class and a one if it has been assigned 

to her. 

 

#Decision variable -  

#If a lower level class is assigned to a professor, 

#The variable can either be 1 or 2 

#Otherwise variable is 0 

var chosen_lower{l in LOWER, j in PROFESSORS} integer, >= 0, <=2; 

The second type of decision variable, chosen_lower can take integer values between 0 

and 2, because this variable assigns professors to lower level, multi-section courses. A professor 

may teach one lower level course or none at all, just as in the assignment of upper level courses. 

The reason that this type of decision variable is kept separate from the chosen_upper is that 

professors may be assigned to two sections of the same lower level course. For example, it is not 

uncommon for a professor to be assigned two sections of Calculus I, but the binary nature of the 

variable chosen_upper would prevent this sometimes necessary situation from being allowed in 

the model. While having more possible values for the chosen_lower assignment variable makes 

it less preferable to the binary variable in chosen_upper, it was necessary to make the model 
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more realistic by including as many schedules as possible in the solution set for the model. 

 

2.1.5- Constraints  

#Constraint - Each professor is required to teach a certain number of classes 

 subject to required_to_teach{j in PROFESSORS}: 

     sum{l in LOWER} chosen_lower[l,j] + sum{u in UPPER} chosen_upper[u,j] =  

  avail[j]; 

The first constraint, required_to_teach provides that each professor is assigned the correct 

number of classes. The number of classes from the parameter avail, which gives each professor's 

workload, must be equal to the sum of all of the upper and lower level classes to which the 

professor is assigned. This is an important logical constraint for the model. 

 

#Constraint - Each upper level class needs exactly one teacher 

 subject to filling_upper{u in UPPER}: 

    sum{j in PROFESSORS} chosen_upper[u,j] = 1; 

The second constraint, filling_upper, concerns upper level classes. It provides that each 

upper level class is assigned to exactly one professor. Thus, each upper level course is assigned 

some professor and no two instructors could be assigned to teach a class that only has one 

section per quarter. 

 

#Constraint- Filling lower-level classes 

 subject to sections{l in LOWER}: 

     sum{j in PROFESSORS} chosen_lower[l,j] <= lower_sections[l]; 
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The next constraint, sections, concerns filling of multiple sections of lower level courses. 

This inequality provides that the sum of all the teachers assigned to lower level courses should be 

less than or equal to the total number of sections for that class. The reason this constraint is not 

held to equality is that many times lower level class sections are assigned to graduate students. 

As was mentioned earlier in the thesis, there are simply too many sections of lower level courses 

to fill with upper level faculty. The courses that do not have all sections filled by the model will 

be filled in at a later time by hand with incoming graduate assistants. 

 

#Constraint - Each individual professor should get at least one preferred class 

 subject to prof_preferences{j in PROFESSORS}: 

  sum{u in UPPER}preferences[u,j]*chosen_upper[u,j] + sum{l in    

  LOWER}preferences[l,j]*chosen_lower[l,j] <= 9; 

 The final constraint, prof_preference, addresses the need for professors to be assigned to 

their preferred courses. As stated earlier, each professor is given the opportunity to rank his or 

her favorite courses. The top favorite course is given the value 1, the second favorite course is 

given the value 2, and the third favorite course is given the value 3. Recall that all other courses 

are given the default value of 7 for that professor. The constraint ensures that each professor is 

assigned to at least one class that he or she likes. As explained below, this is accomplished by 

multiplying the value of the preference parameter given to each course by the decision variable 

associated with that class.  

Note that if a course was not assigned to that professor, then the preference parameters 

for those courses would all be multiplied by zero. This implies that those courses will not affect 

the overall value of the inequality. Thus, only the two classes which have been assigned to that 
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specific professor will affect the value of this constraint. The decision variable for those classes 

will be either the value 1 or 2, depending on whether the professor is assigned to one or two 

sections of that class. The value 9 on the right hand side of the inequality was chosen to make 

certain that each professor is assigned to at least one of his or her top two favorite courses. This 

is because any combination of the top preferred courses will certainly be less than 9. Also, if a 

professor is assigned to a non-favorite class, then that professor must also be assigned to either 

his or her first or second choice of classes as only 1 + 7 and 2 + 7 will make the inequality hold. 

Also note that two situations regarding non-favorite classes will be rejected by the model. 

If the professor were teaching a third favorite and a non-favorite class, or two non-favorite 

classes, the inequality would not hold. The sum of the professor’s preferences would be 10 or 14- 

both of which are clearly greater than 9. Thus, one can see that each professor must be assigned 

to at least one of his or her favorite classes. 

On a final note, the value 9 was chosen for this inequality so that each professor could be 

kept as happy as possible by being assigned to at least one of his or her favorite courses.  This 

number could be changed to tighten or ease the constraint on preferred courses. For example, if 

the model could find an optimal solution with a tighter constraint, such as 5, then all professors 

would only teach preferred courses. Or, if no solution could be found for the value 9, then the 

inequality could be relaxed to 10 or completely removed. Such decisions depend on the 

complexity of the attempted schedule and on the preferences of the professors themselves.  

 

2.1.6- Objective Function 

#Objective Function- Minimize total sum of preferences 

minimize total_preferences:  



20 

 

 

 

    sum{u in UPPER, j in PROFESSORS}preferences[u,j]*chosen_upper[u,j] + sum{l in  

  LOWER, j in PROFESSORS}preferences[l,j]*chosen_lower[l,j]; 

 The objective function, as mentioned earlier, minimizes the sum of the preferences for the 

group of professors as a whole. As the values for favorite courses are closer to 0, minimizing the 

preferences provides that the faculty as a whole are as happy with the scheduling decisions. If the 

professors are satisfied with their courses then there is a greater chance that students will be 

satisfied as well. 

 Note that the expression of the objective function is similar to the left hand side of the 

inequality of the final constraint. The difference is that the final constraint finds a feasible 

combination of courses for each professor separately based on his preferences, whereas the 

objective function minimizes the sum of preferences for all professors together. Essentially, the 

objective function maximizes overall faculty course satisfaction while the final constraint 

provides that the goal is not achieved by satisfying only some professors and ignoring the 

preferences of others. 

For example, if only the objective function were included, some teachers could be made 

very happy by being assigned their most favorite courses and other teachers could be assigned 

none of their favorite courses. As long as that situation made the sum of teacher preferences 

minimal, it could occur without the inclusion of the final constraint. If only the final constraint 

were included, a feasible solution could be that every professor was assigned to his second 

favorite course and a course that they do not like. While this is certainly feasible, it is not 

optimal. Only both the final constraint and the objective function together provide an optimal 

solution for teacher course satisfaction by requiring individual and overall satisfaction. 
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2.2 - Time Assignment Model 

2.2.1 - General Discussion 

 The time scheduling portion of the model is the next step to completing the UCSP. After 

the solution to the Teacher Assignment model is obtained, it is used as input for the time 

assignment model. The chosen professor-class pairs will now be assigned a time period during 

the day. At many universities, classes meet for four (or three) times a week at the same time each 

day. Because of this standard four credit hour schedule, there was no distinction made between 

days of the week for the model. It is assumed that if a class is scheduled at eight o’clock in the 

morning then it will be held at that same time four days a week. 

 There are plenty of special constraints to consider for the time assignment model. For 

example, a department might allow its mathematics professors to specify a four hour time 

window in which they would prefer to teach. This is related to the fact that some universities 

have unions which do not allow their professors to teach classes that are separated by too large of 

a period of time during the day. Also, teachers may have preferences as to whether they wish to 

teach back to back classes, or whether they wish to have breaks in between. For the basic time 

assignment model, we are trying to find a feasible solution that satisfies all the constraints rather 

than trying to maximize an objective function as in the class scheduling section.  

 The details of the model are discussed in the next four subsections. 

 

2.2.2 - Sets 

#Given sets: class names, professors and time of day 

 set UPPER; 
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 set LOWER; 

 set CLASSES:= LOWER union UPPER; 

 set TIMES; 

 set PROFESSORS; 

 The sets in the Time Assignment model are similar to those in the Teacher Assignment 

model. Classes are still divided into upper and lower levels in order to differentiate between the 

multiple sections of lower level classes.  

The new set given is TIMES, which divides the academic day into time periods. In the 

data section, the set TIMES is listed as the following: 

 set TIMES:= 8 9 10 11 12 13 14 15 16 17 18; 

This convention allows teachers to be assigned to a time of the day without having confusion 

between A.M. and P.M.  

 Finally, we have the set of professors. Professors’ names are still used as an indexing set 

in many of the constraints and parameters, thus they are also included in the time assignemnt 

model. 

 

2.2.3 - Parameters 

#Parameter - Output from the Teacher Assignment model 

#Professor-course pairs which have been assigned are given value 1 

#All other professor-course pairs are given the default value 0 

param inp{j in PROFESSORS, i in CLASSES}, default 0; 

 The parameter inp is based on the output of the teacher assignement model. This value 

could be 1 or 2 depending on if the professor was assigned to teach one or two sections of the 
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same course. The default value is 0, because a professor will not be assigned to the majority of 

classes. Thus, the user of the model only has to enter the list of classes which each professor 

teaches by entering inp[ j , i] = 1 if professor j was assigned to teach class i in the solution of the 

teacher assignment model. These professor-course pairs will be assigned to time periods in this 

model.  

 

#Parameter - What time of the day the teacher would prefer to teach class 

 param time_pref{j in PROFESSORS, t in TIMES}, default 0;  

 Another parameter is called time_pref and it allows professors to choose a four hour time 

block in which they would like to teach. If time_pref [j,t] = 1, then professor j has expressed 

preference for teaching in the time window [ t, t + 4]. For example, some professors enjoy early 

classes and they may choose the 8 a.m. time block. This would require that the program schedule 

all of his or her classes to start between 8 a.m. and 11 a.m. Other professors prefer to start later 

and may choose an afternoon time block. 

 

#Parameter - Professor preferences for back to back classes or not 

#1 for back to back, 0 for not back to back, and 2 for no preference 

param back_pref{j in PROFESSORS}; 

 The third parameter is called back_pref and it is assigned based on whether or not the 

professor wants to teach his or her classes back to back. Professors who wish to have breaks 

between classes will be assigned the value 0, professors who want consecutive classes are 

assigned the value 1, and professors with no preference are assigned the value 2. 
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#Parameter - Number of sections of lower level classes 

param lower_sections{l in LOWER}; 

 The fourth parameter, lower_sections, is the number of sections for each lower level 

class, as seen before in the teacher assignment model. 

 

#Parameter - The number of rooms available at any one time of the day 

 param rooms; 

The final parameter is the number of rooms that are available in the building in which the 

classes are taught. Certainly, at any given time the number of classes cannot be more than the 

number of rooms in the building, and there will be a constraint preventing this situation. 

 

 2.2.4 - Decision Variables 

#Decision variable - Binary assignment of times and classes 

var assign{j in PROFESSORS, i in CLASSES, t in TIMES : inp[j,i] > 0} binary; 

 One of the variables in the time assignment model is a binary assignment of times to 

professor-course pairs. Professor-course pairs being taught at a given time will be assigned the 

value 1 and all other times will be given the value 0 for that pair.  

 Not only should a model be logically correct, but it should also be as small and time-

efficient as possible. This variable includes a crucial time-saving measure that improves the 

efficiency of the time assignment model.  Notice that the variable assign is only defined for those 

professor-time pairs that have value 1 or 2 for the parameter inp. Not defining variables for those 

pairs which have inp value 0 (that is, a professor not teaching that class) greatly reduces the 

number of variables in this model. Also, each constraint that includes the variable assign will 
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include this input restriction. This prevents the constraints from considering pairs for which the 

decision variable is not defined. Now the model includes as few variables as possible and thus 

improves overall efficiency. This model will be discussed in more detail in Chapter 3. 

 

#Decision variable – Assigns value 1 to professors who are assigned to teach back to back 

#courses 

var back_to_back{j in PROFESSORS, t in TIMES: back_pref[j] = 1} binary; 

 The decision variable back_to_back concerns the assignment of consecutive courses. The 

decision variable back_to_back[ j , t ] will receive value 1 if professor j is assigned to teach 

consecutive courses at times t and t + 1. This is actually an auxiliary variable which is necessary 

for writing the corresponding back_to_back constraint. It is only defined for those professors 

who have indicated back to back teaching preference. This reduces the number of variables in the 

Time Assignment model. 

 

2.2.5 - Constraints 

Basic Scheduling Constraints 

#Constraint - A professor can only teach one class at a time 

subject to prof_one_at_atime{t in TIMES, j in PROFESSORS}: 

    sum{i in CLASSES : inp[j,i] > 0}assign[j,i,t] <= 1; 

 The constraint prof_one_at_atime provides that each professor may only teach a single 

class at a time. This is a fairly straightforward constraint because a teacher cannot be in two 

places at once. Recall that this restriction: "inp[j,i] > 0" appears in any constraint having the 

variable assign, ensuring that the constraint only includes professor-course variables which are 
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defined in this model. 

 

#Constraint - Upper level classes should be taught once per day 

subject to one_time_period{u in UPPER}: 

     sum{t in TIMES, j in PROFESSORS : inp[j,u] > 0}assign[j,u,t] = 1; 

 The next constraint, one_time_period, is a standard logical constraint for upper level 

classes. It requires that each upper level class with a single section to be assigned to exactly one 

time period per day.  

 

#Constraint - The number of classes assigned in a time period is limited by the number of rooms 

subject to room_constraint{t in TIMES}: 

     sum{i in CLASSES, j in PROFESSORS : inp[j,i] > 0} assign[j,i,t]<= rooms;

 This constraint concerns the number of rooms available in the building holding the 

classes. Certainly there should not be more classes assigned to a time period than there are rooms 

available to hold the classes. Room assignment is the final part of the class scheduling problem.  

It was decided that it was not necessary to write an IP model for room assignment as it can easily 

be done by hand. The only concern with assigning a class to an arbitrary room would be class 

size. A lecture class of 200 people should not be held in a classroom for 30. It could be done by 

simple inspection. 

 

Lower-level Course Constraints 

 In this subsection, there are two time constraints concerning the assignment of lower level 

classes. 
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#Constraint - Professors assigned to lower-level classes  

#Must teach the right number of sections 

subject to sections{j in PROFESSORS, l in LOWER}: 

          sum{t in TIMES : inp[j,l] > 0}assign[j,l,t] = inp[j,l]; 

 This constraint  provides that each professor teaches the right number of sections of a 

lower-level class. The left hand side of the constraint is the number of time periods that professor 

j is assigned to teach sections of class l, while the right hand side of the equation is the number of 

sections of class l assigned to professor j by the teacher assignment model. Note that if a 

professor is assigned to teach two sections of the same course, then this constraint would require 

that they are scheduled at two different times.   

 

#Constraint -  Sections of a lower-level class should be scheduled at different times 

subject to dif_time_lower{l in LOWER,t in TIMES}: 

     sum{j in PROFESSORS : inp[j,l] > 0}assign[j,l,t] <= 1; 

 The next lower level constraint, diff_time_lower, is a practical convention that makes 

students’ scheduling easier. The constraint requires that for any pair of a lower level class and 

time period, no more than one section can be held at that time. This ensures that the sections of 

class j will be held at different times of the day. Thus, if a student’s schedule could not fit a 

particular section of a class because of a time conflict, then there would be other times available 

as well. Many of the lower level classes have many sections because they are requirements for 

different colleges and this constraint is a very practical way of ensuring that as many students as 

possible can take the course that they need to graduate 
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Blocking Constraint 

 This constraint provides the four- hour time windows for each professor as specified in 

the parameter blocking. 

 

.#Constraint - Teachers give classes within a four-hour preferred time block 

subject to blocking{j in PROFESSORS, t in TIMES : time_pref[j,t] = 1 and 

t<=14}: 

sum{i in CLASSES : inp[j,i]>0}(assign[j,i,t] + assign[j,i,t+1] + assign[j,i,t+2] + assign[j,i,t+3]) = 

sum{i in CLASSES : inp[j,i] >0}inp[j,i]; 

 The constraint, blocking, takes into account professors’ preferences for time periods for 

instruction. Recall, that if a professor were to specify the 10 a.m. time block, then all of his or her 

courses would be scheduled between 10 a.m. and 2 p.m. The left hand side of the equation is the 

number of courses that professor j is assigned to at times t, t + 1, t +2, and t +3 where t is the 

beginning of the professor’s preferred four hour time block specified by the value 1 for the 

parameter time_pref[ j , t ]. The right hand side of the equation is the number of courses assigned 

to professor j. Thus, the constraint requires that the classes that a professor teaches must be 

during his preferred four-hour time block. The restriction t <= 14 is included to ensure that the 

model does not begin the time blocks any later than 2pm.  

 

Back to Back Teaching Constraints 

 The next several constraints concern whether or not professors prefer to teach courses 

back to back or not. 
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#Constraint – Determines the teaching time for teachers who want to teach back-to-back courses 

subject to back_assignment{j in PROFESSORS: back_pref[j] = 1}: 

     sum{t in TIMES : t <= 16}back_to_back[j,t] = 1; 

 This constraint, back_assignment, does not immediately change the solution to the UCSP 

in any way. It does, however, set up the variable back_to_back for use in the following 

constraint, back_constraint. Here, all the professors who indicated that they would like to teach  

consecutive courses have the binary decision variable back_to_back set to the value 1 for exactly 

one time period during the day.  

 

#Constraint - If a back_to_back is 1 then professor j is assigned to teach at times t and t + 1 

#Note - If back to back is 0, then nothing is enforced 

subject to back_constraint{j in PROFESSORS, t in TIMES : back_pref[j] = 1 and  

t <= 16}: 

     sum{i in CLASSES : inp[j,i] >0}assign[j,i,t] + sum{i in CLASSES : inp[j,i] 

>0}assign[j,i,t+1] ≥ 2*back_to_back[j,t]; 

 The constraint back_constraint makes use of the decision variable back_to_back that was 

just a value 0 or 1. Recall that for each professor who wants to teach consecutive classes, the 

variable back-to-back was chosen to be 1 for exactly one time period. For each professor and 

time pair, if back_to_back[ j , t ] = 1, the constraint requires that at time t, which is the time 

chosen for the preferred time block for that teacher, professor j must be assigned to teach at both 

time t and time t + 1. For example, if for professor Thomas the variable back-to-back has value 1 

for 9 a.m., then the inequality requires that the number of courses that professor Thomas instructs 
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at 9 a.m. and 10a.m. is greater than or equal to 2. If  back_to_back[ j , t ] = 0, the constraint 

requires that the number of courses that the professor teaches at times t and t + 1 is greater than 

or equal to 0. Essentially, this does not enforce any change in the solution to the model. This 

constraint guarantees that each professor who wants to teach back to back courses will teach 

consecutively at some point during his or her preferred time block. 

 The constraints back_assignment and back_constraint complement each other. Together 

they provide that consecutive classes are scheduled for the time period which has variable 

back_to_back equal to 1. 

 

#Constraint - Professors who don't want to teach back to back courses 

subject to not_back{j in PROFESSORS, t in TIMES : t <= 16 and back_pref[j]= 0}: 

     sum{i in CLASSES : inp[j,i] >0}assign[j,i,t] + sum{i in CLASSES : inp[j,i] 

>0}assign[j,i,t+1] <= 1; 

 In this constraint, only professors for whom back_pref[ j ] = 0 are considered. That is, 

only those professors who wish to have a break in between classes will be included in this 

constraint. The constraint not_back provides that for these professors the number of courses 

taught at time t and t + 1 must always be less than or equal to 1 for each time t. This means that 

for every grouping of back to back times, say 9 a.m. and 10a.m., or 10 a.m. and 11 a.m., a 

professor could only teach at most one course.  

 

2.2.6 - Objective Function 

 There is no objective function for the basic model of the  Time Assignment model. The 

goal is to find a feasible solution only. However, there are situations where it could be advisable 
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to add an objective function. For example, if the Time Assignment model fails to deliver a 

feasible solution, then certain professor preferences may need to be relaxed. In that case some of 

the preference constraints would be relaxed, and instead the objective function would try to 

satisfy as many teacher preferences as possible.  
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Chapter 3 

Experimental Results 

 In Chapter 2, the logic of each constraint of the IP model for the UCSP is discussed in 

detail. However, it is also important to check the correctness of the model computationally. The 

model was tested on different data sets throughout the process of writing the model to test new 

constraints as they were added. Finally, the model was tested on a realistic data set based on the 

faculty of the mathematics department of Ohio University. In all data sets tested, the output of 

the IP model for the UCSP has been logically correct in pairing teachers, courses, and times, as 

well as correct in respecting the preferences of all professors listed.  

 Time efficiency was another important consideration when writing the model. Recall 

from Chapter 2 that the way to achieve a smaller running time was to decrease the number of 

binary variables in the model. Thus, once the model has been checked for logic, it must also be 

checked for a reasonable running time. The IP model for the UCSP has been tested on data sets 

of varying sizes. The running time was very small for the initial data sets that were meant to test 

the various constraints. Later, when the model was tested on a realistic-sized faculty data set, it 

was still remarkably efficient. In practice, the running time of the program for a realistic size data 

set is less than 0.1 seconds. 

 Chapter 3 is organized the following way. Sections 3.1 and 3.2 give the results for small 

and large examples correspondingly. Section 3.3 discusses issues related to time efficiency. 
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3.1 Small Example 

Input - Teacher Assignment 

 In this section, a small example is given to demonstrate the format of the  input into the 

program and its output. The AMPL syntax of the data is explained, and a table format is used for 

a better visual understanding of the output. 

 Recall that the input is given by sets and parameters. The elements of each set used in the 

model are explicitly listed in the input data section. Examples of sets below are class titles and  

professors' names.  

 set PROFESSORS:= Thomas, Kreuzer, Schoenefeld, Veleta, Irwin;         

 set LOWER:= math113, math1115,  math250; 

 set UPPER:=  math300, math340, math443, math450; 

 Parameters can define single values associated with each element of a set as seen below 

in lower_sections and avail. The number listed in lower_sections for each class denotes the 

number of sections for that particular class. The parameter avail lists the number of courses each 

professor should be assigned to teach. 

 param lower_sections:= 

 math250  2 

 math113  2 

 math115  3; 

 

 param   avail:= 

 Thomas               2 

 Kreuzer             2 

 Schoenefeld   2 

 Veleta     2 

 Irwin                 2; 

  

 Recall that the parameter preference associates a value with each professor-course pair 

based on that professor's teaching preference. A professor's top three courses are given values 1, 
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2, or 3, with one being the most favorite. All other professor-course pairs for that professor are 

given value 7. In the input data, parameter preference is indexed by two sets, PROFESSORS and 

CLASSES. The value associated with that professor-course pair is listed immediately after the 

course title in the same row. For example, professor Irwin has given math340 a value of 1. All 

courses not explicitly listed in parameter preference have been given the default value of 7.  

 param preferences:= 

 [*,Irwin]   math340  1  math250  2   math113 3 

 [*,Thomas]    math113  1  math115  2   math250 3 

 [*, Kreuzer]   math443  1  math250  2   math340 3 

 [*,Schoenefeld]   math115  1  math113  2   math250 3 

 [*,Veleta]     math250  1  math450  2   math300 3; 

 

 These sets and parameters are all of the input data needed for the small example of the 

Teacher Assignment model. In the next section, the output of this example is given and 

explained.  

 

Output – Teacher Assignment 

 The output of the Teacher Assignment model represents the values of decision variables. 

For the Teacher Assignment model, the set of variables "chosen_upper" is assigned value 1 if the  

professor is teaching that course. The set of variables "chosen_lower" can take value 1 or 2 

depending on how many section of that course the professor is teaching. Each professor-course 

pair that was not assigned received value 0 for these decision variables, and are not listed here. 

  chosen_upper['Irwin','math340']            1 

   chosen_lower['Irwin','math250']           1 

   chosen_upper['Kreuzer','math443']        1 

   chosen_lower['Kreuzer','math250']         1 

   chosen_upper['Veleta','math450']           1 



35 

 

 

 

   chosen_upper['Veleta','math300']           1 

   chosen_lower['Thomas','math113']          2 

   chosen_lower['Schoenefeld','math115']   2 

 

 The value of each variable for an assigned professor-course pair is the number of sections 

of that course that the professor will be teaching. For example, professor Schoenefeld is teaching 

two sections of math115. 

 

Input – Time Assignment 

 

 Below, new parameters for the Time Assignment model are listed. The sets 

PROFESSORS, UPPER, and LOWER, as well as the parameter lower_sections, are  included in 

this data set but are omitted in this section. 

 The set TIMES is simply the times from 8 a.m. to 5 p.m. The parameter rooms, is a 

restriction on the number of rooms available during a single time period for instruction. The 

parameters listed below follow the same conventions as in the input of the Teacher Assignment 

model. 

 set TIMES:= 8 9 10 11 12 13 14 15 16 17; 

 param rooms:= 10; 

 Recall that parameter input, below, lists the assigned professor-course pairs generated by 

the Teacher Assignment model.  

 param inp:= 

 [Irwin,*]    math340   1  math250 1 

 [Kreuzer,*]   math443   1  math250 1 

 [Veleta,*]    math450   1  math300 1 

 [Thomas,*]    math113   2 

 [Schoenefeld,*]    math115   2; 



36 

 

 

 

 Also recall the value assigned to each variable in back_pref is the preference for back-to-

back courses. If a professor does want to teach back-to-back courses, that professor receive value  

1, those professors who do not wish to teach back to back receive value 0 and those have no 

preference receive value 2 and do not have back-to-back constraints enforced. 

 param back_pref:= 

 Thomas           0 

 Kreuzer          1 

 Schoenefeld    2 

 Irwin               2 

 Veleta         1; 

 

 Lastly, parameter time_pref associated value 1 to the beginning of each professor's 

preferred four-hour time block. In the example below, professor Thomas wishes to teach courses 

between 8 a.m. and 12 p.m. so time_pref[Thomas, 8] is assigned value 1.  

 

 param time_pref:= 

 [Thomas,*]         8       1 

 [Kreuzer,*]           12     1 

 [Schoenefeld,*]          10      1 

 [Irwin,*]                8       1 

 [Veleta,*]           12      1; 

 

 

Output – Time Assignment  

 

 The output of the Time Assignment model is similar to that of the Teacher Assignment 

model. For the variable "assign," the professor, course, and time period that have been assigned 

are given value 1. All other combinations are given value 0 and are not listed below. For 

example, professor Thomas is assigned to teach math113 at 8 a.m. as well as at 10 a.m. 

 

 

   assign['Thomas','math113',8]"                1 

  assign['Thomas','math113',10]"           1 
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  assign['Schoenefeld','math115',10]"        1 

   assign['Schoenefeld','math115',11]"        1 

 

   assign['Irwin','math250',9]"               1 

   assign['Irwin','math340',8]"               1 

 

   assign['Kreuzer','math250',13]"         1 

    assign['Kreuzer','math443',12]"          1 

 

   assign['Veleta','math450',13]"            1 

    assign['Veleta','math300',12]"            1 

 

 Lastly, for easier understanding, the same information as above is presented in table form. 

Professors   Times    

 8 a.m. 9 a.m. 10 a.m. 11 a.m. 12 p.m. 1 p.m. 

Thomas math113  math113    

Schoenefeld   math115 math115   

Veleta     math300 math450 

Irwin math340 math250     

Kreuzer     math443 math250 
 

 

 

 

3.2  Number of Variables and Time Efficiency 

 The time efficiency of IP solution methods largely depends on the number of integer 

variables. The number of LP subproblems solved by Branch-and-Bound increases exponentially 

as a result of the increase in the number of variables. In this section, the number of variables and 

the running time for the UCSP model will be discussed. 

 

 var chosen_upper{u in UPPER, j in PROFESSORS} binary;   

 var chosen_lower{l in LOWER, j in PROFESSORS} integer, >= 0, <=2;  
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 In the Teacher Assignment model, there are two sets of decision variables, listed below as 

a reminder. The variable chosen_upper is indexed on two sets. If the number of upper level 

courses is m and the number of professors is n, then the number variables for chosen_upper is  

m * n. Similarly, if the number of lower level courses is k, then the number of variables created 

for chosen_lower is k * n. 

 In the large data set used to test the model, the number of upper level courses is 27 and 

the number of professors is 22. So the number of variables for chosen_upper is 594. Also, as the 

number of lower level courses is 10, the number of variables for chosen_lower is 220. Solvers  

today are routinely solving IP problems with over well one thousand variables [5]. The solver 

used for this thesis easily handled a data set with 814 variables. For a bigger department with 

about 40 to 50 professors, the number of variables would be no more than 2000 which would still 

be solvable by today's solvers. 

 In the Time Assignment model there are also two sets of variables, assign and 

back_to_back.  

 var assign{j in PROFESSORS, i in CLASSES, t in TIMES : inp[j,i] > 0} binary; 

 var back_to_back{j in PROFESSORS, t in TIMES: back_pref[j] = 1} binary; 

Variable assign is indexed by three sets, and with n professors, u classes and v times, the total 

number of variables would be n*u*v if a variable were defined for every possible combination.  

With 22 professors, 37 courses and 10 times defined, there could be a total of 8140 variables in 

the large example. This is a significantly large number for today's best solvers. Fortunately, the 

restriction "inp[j,i] > 0" greatly reduces the number of variables. This restriction guarantees that 

only the professors-course pairs that were matched from the Teacher Assignment model are used 

to create variables in the model. In the large example given in a later section, the number of 
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professor-course pairs used as input for the Time Assignment model is 45, reducing the total 

number of variables for assign from 8140 to 450. 

 For the variable back_to_back, the number of variables depends on the number of 

teachers who wish to teach back to back courses. Even if every professor chose to instruct back 

to back courses, this would only add 220 variables in the case of the large example.  

 Thus, the number of variables for both the Teacher Assignment or Time Assignment 

models is within the capabilities of modern computer solvers. Especially due to the use of 

variable reducing techniques in the case of the Time Assignment model, the UCSP should be 

solvable using this model for even the largest departments. 
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Conclusion and Future Direction 

 The goal of this thesis was to find an Integer Programming solution to the University 

Class Scheduling Problem. More specifically, to find a feasible class assignment schedule for a 

given department in a university while maximizing teacher-assignment satisfaction. The model, 

which was broken into the separate Teacher Assignment and Time Assignment models has been 

shown to be logically correct. Initial results have produced feasible results for realistic-sized data 

sets. 

 There is room for improvement in the model, and future work could be done in several 

areas. One concept that was not explored in this thesis is the possibility of keeping future quarter 

or semester schedules as close to previous quarters as possible. Since many professors will not 

change their teaching preferences from year to year, it could be desirable to change future 

schedules as little as possible. Constraints could be added or the objective function changed to 

track changes and include as few as possible. 

 Another possible future direction would be to track which teachers are assigned to teach 

their most favorite classes and which teachers are not satisfied as fully as possible with their 

teaching schedule. Rotating the sum of the teacher preferences that are satisfied for each teacher 

could be a fair way of maintaining overall faculty satisfaction. 

 Also, though it did not occur with any data sets tested for this thesis, it is possible that 

teacher preferences could make the Time Assignment model infeasible. If this were to happen, it 

would still be necessary to find a feasible solution. One possibility would be to turn the teacher 

preference constraint into an objective function. This would require that the solver satisfy as 

many teacher time preferences as possible, but it would allow more feasible solutions to be 

considered.  
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 Lastly, though it is not related to a Mathematics thesis, it would be useful to create a 

Graphical User Interface so that the model could be put into practice by an administrator. At this 

point in the solution process, one would have to be familiar with Integer Programming and 

AMPL to use these models. It would be wonderful if this thesis could be useful in the real world 

and not solely as an exercise in Integer Programming. 

 In conclusion, this thesis has been an enjoyable and challenging problem that has been 

largely sucessful. The goal of solving the UCSP has been achieved with the IP models included 

here. With more effort, this thesis could be of real world use to universities. 
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Appendix  

 

A.1 - Teacher Assignment 
 

Teacher Assignment Model 

#Given: sets of professor and class names 

set PROFESSORS;      

set LOWER;        

set UPPER; 

set CLASSES:= LOWER union UPPER;       

 

#number of classes each professor needs to teach, with default value!  

param avail{j in PROFESSORS}, default 2;     

 

#list of each professors fav classes - now with data-saving default! 

param preferences{j in PROFESSORS, i in CLASSES}, default 7;   

 

# Number of sections of lower level classes 

param lower_sections{l in LOWER}; 

 

#if upper-level class is assigned to a professor         

  

#then the value is 1, otherwise 0 

var chosen_upper{j in PROFESSORS, u in UPPER} binary;   

 

#if lower level class is assigned to a professor 

#variable can either be one or two 

#otherwise variable is 0 

var chosen_lower{j in PROFESSORS, l in LOWER} integer, >= 0, <=2; 

 

 

#Constraint - upper level classes happen once and need exactly one teacher 

subject to filling_upper{u in UPPER}: 

   sum{j in PROFESSORS} chosen_upper[j,u] = 1; 

 

 

#Constraint- assign as many lower level classes as possible 

subject to filling_lower{j in PROFESSORS}: 

  sum{l in LOWER} chosen_lower[j,l] <= avail[j]; 

 

#Constraint - each professor needs to teach the right number of classes 

subject to required_to_teach{j in PROFESSORS}: 

   sum{l in LOWER} chosen_lower[j,l] + sum{u in UPPER} chosen_upper[j,u] = avail[j]; 
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#Constraint- all sections of lower classes should be filled 

subject to sections{l in LOWER}: 

   sum{j in PROFESSORS} chosen_lower[j,l] <= lower_sections[l]; 

 

 

#Constraint - each class should have exactly one professor 

subject to one_prof_per_class{u in UPPER}: 

   sum{j in PROFESSORS} chosen_upper[j,u] = 1; 

 

 

#Constraint - each prof gets classes they like 

subject to prof_preferences{j in PROFESSORS}: 

   sum{u in UPPER}preferences[j,u]*chosen_upper[j,u] + sum{l in 

LOWER}preferences[j,l]*chosen_lower[j,l] <= 9; 

 

 

#Objective function- minimize total sum of preferences 

minimize total_preferences:  

   sum{u in UPPER, j in PROFESSORS}preferences[j,u]*chosen_upper[j,u] + sum{l in 

LOWER, j in PROFESSORS}preferences[j,l]*chosen_lower[j,l]; 

 

 

Teacher Assignment Data 

data; 

set PROFESSORS:= Aftabizadeh, Aizicovici, Arhangelskii, Barsamian, Chapin, Eisworth, 

Gulisashvili, Huynh, Just, Kaufman, Klein, Lin, Melkonian, Mohlenkamp, Pavel, Savin, Shen, 

Uspenskiy, Vinogradov, Vu, Wolf, Young; 

 

set LOWER:= math163A, math163B, math211, math250, math251, math263A, math263B, 

math263C, math263D, math266B; 

 

set UPPER:= math147 math300, math306, math307, math308, math314, math330A, math330B, 

math340, math344, math410, math412, math441, math446, math449, math450C, math451, 

math452, math460C, math470, math480B, math615, math645C, math649, math660C, 

math670C, math680C; 

 

param lower_sections:= 

math163A    7 

math163B    1 

math211    1 

math250    8 

math251    1 

math263A   4 

math263B   5 

math263C   3 

math263D   2 
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math266B   2; 

 

param preferences:= 

[Aftabizadeh,*] math163A 1 math263B  2 math263A  3 

[Aizicovici,*]  math645C  1 math340  2 math460C  3  

[Arhangelskii,*] math680C  1 math211     2 math306  3   

[Barsamian,*]  math163A  1 math330A  2 math263A  3 

[Chapin,*]  math441     1 math344    2 math163A  3 

[Eisworth,*]  math480B  1 math263B  2 math263C  3   

[Gulisashvili,*] math670C  1 math263D  2 math263C  3 

[Huynh,*]  math263B  1 math263C  2 math307  3 

[Just,*]  math266B  1  math340  2 math263B  3  

  

[Kaufman,*]  math147  1 math340  2 math250  3 

[Klein,*]  math300   1 math330A  2 math330B  3 

[Lin,*]   math450C  1 math452  2 math250  3 

[Melkonian,*]  math308  1 math250  2 math306  3  

[Mohlenkamp,*] math649  1 math446  2 math344  3 

[Pavel,*]  math470  1 math163A  2 math449  3   

[Savin,*]  math410  1 math263B  2 math266B  3 

[Shen,*]  math250  1 math211    2 math446  3 

[Uspenskiy,*]  math263D  1 math263C  2 math263B  3 

[Vinogradov,*] math441  1 math250  2 math450C  3 

[Vu,*]   math410  1 math263A  2 

[Wolf,*]  math615  1 math410  2 

[Young,*]  math660C  1 math344  2; 

 

param      avail:= 

Eisworth  4; 
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A.2 - Time Assignment 
 

Time Assignment Model 

#Given sets: class names, professors and time of day 

set UPPER; 

set LOWER; 

set CLASSES:= LOWER union UPPER; 

set TIMES; 

set PROFESSORS; 

 

param rooms; 

#Output from previous problem- given 

param inp{j in PROFESSORS, i in CLASSES}, default 0; 

 

# Number of sections of lower level classes 

param lower_sections{l in LOWER}; 

 

#What time of the day the teacher would prefer to teach class 

param time_pref{j in PROFESSORS, t in TIMES}, default 0; 

 

#Professor preferences for back to back classes or not 

#1 for back to back, 0 for not back to back, and 2 for no preference 

param back_pref{j in PROFESSORS}; 

 

var back_to_back{j in PROFESSORS, t in TIMES: back_pref[j] = 1} binary; 

 

#Binary assignment of times and classes 

var assign{j in PROFESSORS, i in CLASSES, t in TIMES : inp[j,i] > 0} binary; 

 

#Constraint- Teachers give classes within  
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#a four hour preferred time block 

subject to blocking{j in PROFESSORS, t in TIMES : time_pref[j,t]>0 and 

t<=14}: 

   sum{i in CLASSES : inp[j,i] >0}inp[j,i] = sum{i in CLASSES : inp[j,i] 

>0}(assign[j,i,t] + assign[j,i,t+1] + assign[j,i,t+2] + assign[j,i,t+3]); 

 

#Constraint - A professor can only teach one class at a time 

subject to prof_one_at_atime{t in TIMES, j in PROFESSORS}: 

   sum{i in CLASSES : inp[j,i] > 0}assign[j,i,t] <= 1; 

 

#Constraint - Lower level classes must have the right amount of professors 

#assigned 

subject to lower_time_periods{l in LOWER}: 

   sum{t in TIMES, j in PROFESSORS : inp[j,l] > 0}assign[j,l,t] = sum{j in 

PROFESSORS}inp[j,l]; 

 

#Constraint - Upper level classes should be once per day 

subject to one_time_period{u in UPPER}: 

   sum{t in TIMES, j in PROFESSORS : inp[j,u] > 0}assign[j,u,t] = 1; 

 

#Constraint - Professors professors assigned to lower classes  

#Must teach the right amount of sections 

subject to sections{j in PROFESSORS, l in LOWER}: 

        sum{t in TIMES : inp[j,l] > 0}assign[j,l,t] = inp[j,l]; 

 

#Constraint - The number of classes assigned in a time period is limited by the number of rooms 

subject to room_constraint{t in TIMES}: 

   sum{i in CLASSES, j in PROFESSORS : inp[j,i] > 0} assign[j,i,t]<= rooms; 

 

#Constraint - Lower sections should be scheduled at different times 

subject to dif_time_lower{l in LOWER,t in TIMES}: 
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   sum{j in PROFESSORS : inp[j,l] > 0}assign[j,l,t] <= 1; 

 

#Constraint - 1 for teachers who want back to back 

subject to back_assignment{j in PROFESSORS: back_pref[j] = 1}: 

   sum{t in TIMES : t <= 16}back_to_back[j,t] = 1; 

 

#Constraint - If a teacher is assigned a time and he also wants back to back 

#classes, then he must also be assigned to the following time period 

#Note - If back to back is 0, then nothing is enforced 

subject to back_constraint{j in PROFESSORS, t in TIMES : back_pref[j] = 1 

and t <= 16}: 

   sum{i in CLASSES : inp[j,i] >0}assign[j,i,t] + sum{i in CLASSES : inp[j,i] 

>0}assign[j,i,t+1] >= 2*back_to_back[j,t]; 

 

#Constraint - Professors who don't want back to back can't teach the time period 

#immediately following the one they are assigned 

subject to not_back{j in PROFESSORS, t in TIMES : t <= 16 and back_pref[j] 

= 0}: 

   sum{i in CLASSES : inp[j,i] >0}assign[j,i,t] + sum{i in CLASSES : inp[j,i] 

>0}assign[j,i,t+1] <= 1; 

 

Time Assignment Data 

data; 

set LOWER:= math163A, math163B, math211, math250, math251, math263A, math263B, 

math263C, math263D, math266B; 

 

set UPPER:= math147 math300, math306, math307, math308, math314, math330A, math330B, 

math340, math344, math410, math412, math441, math446, math449, math450C, math451, 

math452, math460C, math470, #math480B, math615, math645C, math649, math660C, 

math670C, math680C; 

 

set PROFESSORS:= Aftabizadeh, Aizicovici, Arhangelskii,  

Barsamian, Chapin, Eisworth, Gulisashvili, Huynh, Just, Kaufman, Klein, Lin,  

Melkonian, Mohlenkamp, Pavel, Savin,  

Shen, Uspenskiy, Vinogradov, Vu, Wolf, Young; 
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set TIMES:= 8 9 10 11 12 13 14 15 16 17; 

 

param rooms:= 30; 

param lower_sections:= 

math163A    7 

math163B    1 

math211    1 

math250    8 

math251    1 

math263A   4 

math263B   5 

math263C   3 

math263D   2 

math266B   2; 

 

param inp:= 

[Aftabizadeh,*] math163A   2 

[Aizicovici,*]  math460C   1 math645C  1 

[Arhangelskii,*] math680C   1 math211   1 

[Barsamian,*]  math330A   1 math163A  1 

[Chapin,*]  math441    1 math451   1 

[Eisworth,*]  math263B   2  math263C  1 

[Gulisashvili,*] math412    1 math670C  1 

[Huynh,*]  math263B   1 math307   1 

[Just,*]  math266B   2  

[Kaufman,*]  math147   1 math340   1 

[Klein,*]  math300    1 math330B  1 

[Lin,*]   math450C   1 math452   1 

[Melkonian,*]  math306    1 math308   1  

[Mohlenkamp,*] math446    1 math649   1 

[Pavel,*]  math449    1 math470   1   

[Savin,*]  math263B   2 

[Shen,*]  math250    2 

[Uspenskiy,*]  math263D   2 

[Vinogradov,*] math250    2 

[Vu,*]   math263A   1 math410  1 

[Wolf,*]  math314    1     math615   1 

[Young,*]  math344    1 math660C  1; 

 

param time_pref:= 

[Aftabizadeh,*] 8 1 

[Aizicovici,*]  8 1 

[Arhangelskii,*] 10 1  

[Barsamian,*]  12 1  

[Chapin,*]  12 1 

[Eisworth,*]  12 1  
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[Gulisashvili,*] 10 1 

[Huynh,*]  10 1 

[Just,*]  12 1   

[Kaufman,*]  12 1 

[Klein,*]  12 1  

[Lin,*]   8 1   

[Melkonian,*]  10 1   

[Mohlenkamp,*] 8 1  

[Pavel,*]  12 1   

[Savin,*]  10 1 

[Shen,*]  12 1 

[Uspenskiy,*]  12 1   

[Vinogradov,*] 8 1   

[Vu,*]   12 1  

[Wolf,*]  12 1  

[Young,*]  10 1; 

param back_pref:= 

Aftabizadeh  0 

Aizicovici  2 

Arhangelskii   0 

Barsamian  1 

Chapin   0 

Eisworth  1 

Gulisashvili  0 

Huynh   1 

Just   1 

Kaufman  0 

Klein   0 

Lin    1 

Melkonian  2 

Mohlenkamp  2 

Pavel   1 

Savin    2 

Shen    0 

Uspenskiy  1 

Vinogradov  1 

Vu   0 

Wolf   1 

Young   2; 

 

 

 

 

 

 

 



50 

 

 

 

 

Time Assignment Output 

 

 
Professors     Times     

 8a.m 9a.m 10a.m 11a.m 12p.m 1p.m 2p.m 3p.m 4p.m 

Aftabizadeh 163A   163A      

Aizicovici 460C 645C        

Arhangelskii   680C    211   

Barsamian       330A 163A  

Chapin     451    441 

Eisworth       263C 263A 263B 

Gulisashvili   670C    412   

Huynh    307 263B     

Just        266B 266B 

Kaufman     340    147 

Klein     330B    300 

Lin   452 450C      

Melkonian   308 306      

Mohlenkamp 649   446      

Pavel       470 449  

Savin   263A 263B      

Shen     250    250 

Uspenskiy        263D 263D 

Vinogradov   250 250      

Vu     410    263A 

Wolf       615 314  

Young   660C  344     
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