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Abstract

This study presents optimization models for task assignment and resource allocation in
data centers, with a focus on minimizing task completion time, energy consumption, and load
imbalance. Two distinct models are developed: one leveraging batching with dynamic sizes and
durations, and another incorporating multi-resource allocation and energy-aware scheduling.
Experimental evaluations on synthetic datasets demonstrate that the first model effectively
assigns tasks to servers within predefined batches, while the second model optimizes task
prioritization and load balancing across resources. The results highlight the computational
challenges associated with nonlinear constraints and the advantages of linearized models for
scalability and efficiency. Future work includes integrating the strengths of both models and
applying them to real-world datasets from industry leaders to enhance their applicability and
performance in large-scale environments.

1 Introduction

In the era of big data and cloud computing, data centers play a pivotal role in processing and
storing vast amounts of information. Efficient resource allocation and minimizing task completion
time are critical for optimizing performance and reducing operational costs in data centers. Integer
Linear Programming (ILP) offers a mathematical approach to model and solve such optimization
problems. This project focuses on formulating an ILP model to optimize resource allocation and
task scheduling in data centers, aiming to minimize total completion time while adhering to resource
constraints.

2 Overview of Data Centers

Data centers are rapidly expanding across the globe to meet the escalating demand for digital ser-
vices. The United States leads this growth, hosting approximately 2,670 data centers—the highest
number of any country—contributing to a global total of over 8,000 facilities spread across regions
like Europe, Asia-Pacific, and Latin America. Constructing and operating these centers involve
substantial investments; building costs can range from $ 10 million for small to medium-sized facili-
ties to over $1 billion for hyperscale data centers developed by tech giants such as Amazon, Google,
and Facebook. Operational expenses, including energy consumption, maintenance, staffing, and
technological upgrades, can amount to millions of dollars annually. Notable projects like Google’s
$2.5 billion data center in Iowa and Microsoft’s investments exceeding $1 billion in various lo-
cations underscore the significant financial commitment required. The construction timeline for
a data center typically spans 18 to 24 months, influenced by factors such as the facility’s scale,
technological requirements, regulatory approvals, and site-specific challenges.

2.1 Types of Projects Handled by Data Centers

Data centers are the backbone of modern digital infrastructure, supporting a wide array of projects
critical to today’s business operations and services. They provide the essential foundation for cloud
computing platforms like Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Plat-
form, enabling scalable and flexible computing resources. In the realm of big data and analytics,
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data centers process massive datasets for industries such as finance, healthcare, and retail, driv-
ing informed decision-making and strategic insights. They are instrumental in powering artificial
intelligence (AI) and machine learning (ML) applications, hosting the computational resources
required to train complex models. Additionally, data centers facilitate content delivery networks
(CDNs), ensuring the rapid and efficient global distribution of media content and web applica-
tions. They manage data from the Internet of Things (IoT), overseeing interconnected devices
and sensors used in smart cities, industrial automation, and consumer electronics. In financial
services, data centers support high-frequency trading platforms, online banking, and transaction
processing systems, maintaining the robustness and security of financial transactions. Further-
more, they run critical enterprise applications like Enterprise Resource Planning (ERP), Customer
Relationship Management (CRM), and Supply Chain Management (SCM) systems, underpinning
the operational efficiency of businesses worldwide.

2.2 Main Challenges Facing Data Centers Today

Data centers today face several significant challenges that impact their efficiency, cost-effectiveness,
and sustainability. Energy consumption and environmental impact are major concerns, with data
centers accounting for about 1 percent of global electricity use. This has led to a concerted
effort to reduce carbon footprints through the adoption of renewable energy sources and more
efficient technologies. Heat dissipation and cooling present another critical issue; managing the heat
generated by high-density computing equipment is essential, and traditional cooling methods are
energy-intensive. Innovations like liquid cooling and free-air cooling are being explored to address
this. Cybersecurity threats have become increasingly sophisticated, necessitating robust security
measures to protect sensitive data and ensure compliance with data protection regulations. The
need for scalability and flexibility is a constant challenge due to rapid technological advancements,
requiring data centers to implement modular designs and scalable infrastructure. Regulatory
compliance adds another layer of complexity, as data centers must navigate complex regulations
related to data sovereignty, privacy laws like GDPR, and industry-specific compliance standards.
Lastly, supply chain disruptions caused by global events such as pandemics and geopolitical tensions
can disrupt the supply of critical components, affecting both construction and maintenance.

2.8  Optimization Techniques in Data Centers

To enhance resource utilization and minimize completion times, data centers employ various op-
timization techniques that are essential for efficient operations. Load balancing is a fundamental
strategy that distributes workloads evenly across servers, preventing both overloading and un-
derutilization, which in turn enhances performance and reliability. Dynamic resource allocation
further refines this process by adjusting resources in real-time based on current workload demands,
thereby improving efficiency and responsiveness to fluctuating needs. Another critical technique is
task consolidation, which groups smaller tasks to run concurrently on the same server, freeing up
resources and reducing overall energy consumption. Additionally, data centers leverage predictive
analytics, utilizing historical data and machine learning algorithms to forecast workload patterns.
This allows for proactive adjustments in resource allocation, ensuring that resources are optimally
used and ready to meet future demands.

2.4  Resource Scheduling Algorithms in Data Centers

Data centers utilize various resource scheduling algorithms to optimize task allocation and enhance
overall efficiency. First-Come, First-Served (FCFS) processes tasks strictly in the order they arrive.
While this method is straightforward, it may not be optimal for resource utilization or for handling
time-sensitive tasks. Shortest Job First (SJF) prioritizes tasks with the shortest expected execution
time, effectively reducing the average waiting time for all tasks. However, this can lead to the
starvation of longer tasks if shorter ones continue to arrive. Priority Scheduling assigns tasks
based on predetermined priority levels, ensuring that critical tasks receive immediate attention.
This approach, though, can result in lower-priority tasks being neglected. Lastly, the Round
Robin (RR) algorithm allocates fixed time slices to each task in a cyclic order, promoting fairness
by giving all tasks equal opportunity to utilize resources. This method can increase overhead due
to the frequent context switching between tasks, potentially impacting performance.
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2.5 Batch Processing vs. Continuous Processing

Understanding the nature of computational tasks is essential for effective resource allocation in
data centers, where tasks are generally categorized into batch processing and continuous processing.
Batch processing involves executing a series of tasks collectively without manual intervention, mak-
ing it suitable for non-interactive, time-insensitive tasks such as data analysis, report generation,
and large-scale computations. This approach offers advantages like resource efficiency—allowing
scheduling during off-peak hours to optimize utilization—and cost reduction by timing operations
to coincide with lower energy rates or peak availability of renewable energy sources. It also sim-
plifies management by reducing the complexity of real-time resource allocation. However, batch
processing is not suitable for tasks requiring immediate results due to latency tolerance and requires
careful scheduling to maximize resource utilization without impacting other operations.

In contrast, continuous processing handles tasks that require immediate processing, such as
real-time data analytics, online transaction processing, and streaming services. Its advantages
include low latency, providing immediate responses essential for user-facing applications; scala-
bility through dynamic resource allocation to handle fluctuating workloads; and high availability
to ensure services remain accessible at all times. The considerations for continuous processing
involve higher resource demands, as it requires constant resource availability, potentially increas-
ing operational costs. It also necessitates complex management with sophisticated scheduling and
monitoring systems to maintain optimal performance.

2.6  Energy Management in Data Centers

Energy consumption constitutes a significant operational cost for data centers and has considerable
environmental implications, making effective energy management strategies crucial for sustainable
operations. A fundamental metric for assessing data center energy efficiency is Power Usage Effec-
tiveness (PUE), defined as the ratio of total facility energy consumption to the energy consumed
by IT equipment alone; a PUE value closer to 1 indicates higher efficiency. To optimize energy
usage, data centers employ several techniques. Dynamic Voltage and Frequency Scaling (DVFS)
adjusts the voltage and frequency of processors based on workload demands, reducing energy con-
sumption during periods of low activity. Server virtualization consolidates multiple virtual servers
onto a single physical server, optimizing hardware utilization and reducing the number of active
physical servers required. Implementing efficient cooling systems further enhances energy effi-
ciency: free cooling utilizes external environmental conditions, such as cool air or water, to lessen
reliance on energy-intensive cooling systems, while hot/cold aisle containment organizes server
racks to separate hot and cold air flows, improving cooling efficiency. Additionally, integrating
renewable energy sources like solar or wind power reduces the carbon footprint and dependence
on non-renewable energy sources. Effective workload management also plays a pivotal role in en-
ergy efficiency. Energy-aware scheduling incorporates energy consumption metrics into scheduling
algorithms to balance performance with energy usage. Workload shifting transfers computational
tasks to data centers in regions with lower energy costs or cooler climates, leveraging geographical
advantages. Lastly, idle resource management powers down or places idle servers into low-power
states to minimize unnecessary energy consumption. Together, these strategies contribute to more
sustainable and cost-effective data center operations.

In the following section, we present three models along with various scenarios. We then select
two models for evaluation using two synthetic datasets. Lastly, we conclude the study and provide
appendices for additional analysis.

3 Models

3.1 First Model

The primary objective is to minimize the total completion time of tasks while efficiently allocating
resources. The ILP model will focus on the following objective function:

Y Ci, VieT

ieT

Decision Variables

Let:
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x;; be a binary decision variable where:

1, if task ¢ is assigned to server j,
Tij =
7 0, otherwise.

C; is a variable and represents the completion time of task 1.

Parameters
e T is the set of tasks, i € T

e S is the set of servers, j € S

p;j is the processing time required to complete task ¢ on server j. This is a fixed parameter
based on server capabilities and task requirements. For instance, we have an estimate that
task A takes 5 hours on my laptop (Server 1) but only 1 hour on a powerful university PC
(Server 2).

r; is the resource capacity of server j

d; is the resource demand of task 7

3.2  Scenarios and Constraints

Scenario 1: Single Resource Type
In this scenario, we consider a data center where tasks require a single type of resource, such as
CPU or GPU.
Constraints
Assignment Constraint: Each task must be assigned to exactly one server.
Z Tij = 1, YeeT
jes
Resource Capacity Constraint: The total resource demand on each server must not exceed its
capacity.
Zdixijgrj; V_]GS
i€T
Completion Time Calculation: The completion time for each task is determined by its pro-
cessing time on the assigned server.

C; = Zpijl‘ij, YieT
jes
Scenario 2: Multiple Resource Types

Here, tasks require multiple types of resources (such as CPU, memory, and storage).

Additional Parameters
e R is the set of resource types, k € R
e d;; is the demand of resource k by task ¢

e 7;; is the capacity of resource k on server j

New Constraints

Resource Capacity Constraints: For each resource type, the total demand must not exceed
the server’s capacity.

Zdikxij <rj,, VjeSVkeR
ieT
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Scenario 3: Batch Scheduling with Dynamic Batch Sizes and Durations 159

This model allows batches to have variable sizes and durations, optimizing the schedule based on 160

task requirements. The model has a non-linear constraint (constraint 6). 161
Sets and Indices 162
e T: Set of tasks, indexed by 1. 163
e S: Set of servers, indexed by j. 164
e K: Set of batches (cycles), indexed by k. 165
Parameters 166
e p;;: Processing time required to complete task ¢ on server j. 167
e d;: Resource demand of task 1. 168
e 7;: Resource capacity of server j. 160
Decision Variables 170

zi;k € {0,1}: Binary variable equal to 1 if task 7 is assigned to server j in batch k; 0 otherwise. i

e s > 0: Continuous variable representing the start time of batch k. 172
e Dy > 0: Continuous variable representing the duration of batch k. 173
e (C; > 0: Continuous variable representing the completion time of task . 174
Objective Function 175
Minimize the total completion times of all tasks: 176

min Z C; (1)

ieT

Constraints 177
1. Assignment Constraint FEach task must be assigned to exactly one server in one batch: 178

So> wmipp=1, VieT (2)

jeSkek

2. Resource Capacity Constraints For each server in each batch, the total resource demand 17
must not exceed its capacity: 180

Zdixijk <rj, VjesS VkeK (3)
i€T

3. Batch Duration Constraints The duration of each batch must cover the processing times s

of the tasks assigned to it: 182
Dy > pijxijp, YVieT,VjeS, Vke K (4)
4. Batch Sequencing Constraints Batches are processed sequentially; the start time of the 1
next batch begins after the previous one ends: 184
Sg+1 > Sp + Dy, Vke K (5)
5. Batch Start Time The first batch starts at or after time zero: 185
6. Completion Time Calculation (non-linear) The completion time of each task is the start s
time of its batch plus its processing time: 187
C; = Z Z (Sk +pij)xijk7 VieT (7)
jESkEK



Scenario 4: Batch Scheduling with Fized Batch Sizes and Durations 168

This model uses predetermined batch sizes and durations, providing a structured scheduling frame- s

work. 190
Additional Parameters 101
e Dj: Fixed duration of batch k (given). 192
e m: Maximum number of tasks per batch (fixed batch size). 193
Decision Variables 194

o z,;;; € {0,1}: Binary variable equal to 1 if task 7 is assigned to server j in batch k; 0 otherwise. 195

e s; > 0: Continuous variable representing the start time of batch k. 196
e (C; > 0: Continuous variable representing the completion time of task . 107
Objective Function 198
Minimize the total completion times of all tasks: 199

min Z C; (8)

ieT

Constraints 200
1. Assignment Constraint FEach task must be assigned to exactly one server in one batch: 201

Z Z Tijk = 1, VieT (9)

jeSkek

2. Resource Capacity Constraints For each server in each batch, the total resource demand 20
must not exceed its capacity: 203

> diwip <rj, VjeS VkeK (10)

€T

3. Batch Duration Constraints The processing time of any task assigned to a batch must 2
not exceed the fixed duration of that batch: 205

PijTijk < Dy, YVieT, Vjes Vke K (11)

4. Batch Size Constraints The number of tasks assigned to each batch must not exceed the 20
maximum batch size m: 207

Y3 gk <m, VkeK (12)

i€T jES

5. Batch Sequencing Constraints Batches are processed sequentially; the start time of the 20

next batch begins after the fixed duration of the current batch: 200
Sk+1 > Sg + D, Vke K (13)

6. Batch Start Time The first batch starts at or after time zero: 210
5120 (14)

7. Completion Time Calculation The completion time of each task is the start time of its on
batch plus its processing time: 212

Ci = Z Z (sk + pij) Tijr, YVieT (15)

jESkEK



3.8  Second Model

The original objective function aims to minimize the total completion time of tasks. We can
augment this by adding:

e Energy Consumption Minimization: Reduce the total energy consumption of servers.
e Load Balancing: Distribute tasks evenly across servers to prevent overloading.
e Task Prioritization: Prioritize critical tasks by assigning weights.
The new objective function becomes:

Minimize Z w;C; + a Z E;+p Z L;

icT jes jes

Where:
e w; is the priority weight of task q.
e F; is the energy consumption of server j.
e L; is a load balancing term for server j.

e « and [ are scaling coefficients.

New Decision Variables and Parameters
Decision Variables
e y; is a binary variable where:
1, if server j is active,
Yi= {0, otherwise.
Parameters
e ¢; is the energy consumption rate of server j.
e w; is the priority weight of task .

e M is a large constant used in constraints.

Additional Constraints

Server Activation Constraint: A server must be activated if any task is assigned to it.

D wi; < My;, Vjes

ieT
Load Balancing Constraints: Ensure that the number of tasks assigned to each server is within
a certain range.

Lj: R V]ES

o
ij
2
Task Precedence Constraints: Some tasks must be completed before others can start.

Ci+ Si; <Cy, VY(i,k)eP
Where:
e P is the set of task pairs with precedence relations.
e §;; is the setup time between tasks ¢ and k.

Time Window Constraints: Tasks must start and finish within specific time windows.

si<Ci<fi, YieT
Where:

e s; is the earliest start time of task 1.

e f; is the latest finish time of task 3.
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3.4 Third Model

To create a more accurate and efficient resource allocation model for data centers, we can include
additional separate load balancing terms for each critical resource, incorporating utilization ratios.
This enhancement allows us to balance the load of each resource type (such as CPU, GPU, Memory,
Storage) across servers, ensuring that no single resource becomes a bottleneck. The updated model
builds upon the original objective function, which aims to minimize the total completion time of
tasks, energy consumption, and load imbalance.

New Objective Function
The new objective function is:

Minimize Z = Zwi Zpi’jmi’j + Oéz € <Z(pi’j + S@j)l‘@j) + ﬂz Z Lk

i€T  jES jeS i€T jESkER

To better show it:

Minimize Z = Z w;C; + a Z Ei+p Z Z Lj

ieT jes jESkER
Where:

e w;: Priority weight of task i.

C;: Completion time of task i.

E;: Energy consumption of server j.

e;j: is the energy consumption rate of server j

e p;;: Processing time required to complete task ¢ on server j.

L; 1: Load imbalance term for server j for each resource k in the set of resources R.

S;;: is the setup time between tasks ¢ and k.

«, B: Scaling coefficients.
e T: Set of tasks.

S: Set of servers.

R: Set of resources.

Definitions
e Resources (R): The set of key resources (GPU, CPU, Memory, Storage).
e Utilization Ratio (U;): The utilization of resource k on server j.
o Average Utilization (Uayvgx): The average utilization of resource k across all servers.

e Load Imbalance (L;): The absolute difference between U; j, and Uavg, k-

Parameters

o d; ;: Demand of resource k by task 7.

e 7;1: Capacity of resource k on server j.

ej: Energy consumption rate of server j.

p;,;: Processing time of task i on server j.

e w;: Priority weight of task 1.

M: A large constant for server activation constraints.

«, B: Scaling coefficients.
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Decision Variables

x;; € {0,1}: Assignment of task i to server j.

y; € {0,1}: Server activation indicator.

C; > 0: Completion time of task 1.

E; > 0: Energy consumption of server j.

Uj i, > 0: Utilization of resource k£ on server j.

L; 1, > 0: Load imbalance of resource k on server j.

Constraints
1. Assignment Constraint
Each task must be assigned to exactly one server:
Zwi’j =1, VieT
jeSs
2. Server Activation Constraint
A server must be activated if any task is assigned to it:
D mij < My;, Vje€S
ieT
3. Resource Capacity Constraints
For each resource k, the total demand on a server cannot exceed its capacity:
Zdi,kxi,j <rjwyj, Vie€eSVkeR
ieT
4. Completion Time Calculation
The completion time for each task is determined by its processing time on the assigned server:
Ci = Zpi,ijﬁ VieT
JES
5. Energy Consumption Calculation

The total energy consumption of a server over the period processing a set of sequential tasks (setup
time included):

Ej =€y Z(pi’j + Si,j)acim VjesS

€T

6. Utilization Ratio Calculation

Calculate the utilization of each resource on each server:

o i T
Ujk = @ Vje S, VkeR
ik
7. Average Utilization Calculation
Compute the average utilization for each resource across all servers:
Zjes’ Y ier di ki

, VkeR
Zjes T4,k

Uavg,k =
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8. Load Imbalance Constraints

Calculate the load imbalance for each resource on each server:

Lj,k > |Uj7k — Uavg,k| s Vj eS,VkeR
Alternatively:

Lir>Ujp—Usgr, YVj€ESVEECR

Ljk 2 Usvgr — Ujk, Vjie S, VkeR

4 Assessment of Optimization Models

In this study, we examined Model One, Scenario Three to evaluate the impact of batching on the
optimal completion time for each server. Our objective was to determine whether the model could
effectively assign tasks with varying demands to servers with different resource capacities across
a set of predetermined batches. In this scenario, both the duration and size of each batch are
unknown and are determined by the model itself. The model’s sole issue is a non-linear constraint,
which imposes certain limitations on solver selection.

Additionally, we analyzed Model Three to investigate how a diverse range of resources, energy
efficiency, and load balancing influence the model’s task assignment strategy. This model operates
without the complexities associated with batching, allowing us to assess task assignments in a more
straightforward context.

We applied these optimization models to two distinct datasets to evaluate their effectiveness
in enhancing data center operations. Each model requires a specific dataset, and given the com-
putational resources available for this project, we carefully considered the size of each dataset
accordingly.

First FExperiment

The dataset for Model One, Scenario Three comprises 60 tasks, 4 servers, and 4 batches. Each
server’s capacity is a randomly assigned integer between 20 and 30, while each task’s demand is a
randomly assigned value between 3 and 8. Predicted processing time of task on each server is also
provided. This setup allows the model to determine the optimal assignment of tasks to servers
within the specified batches.

For this specific application, each solver presents its own advantages and disadvantages. Through
a trial-and-error approach, we ultimately selected the solver that offered the lowest computation
time. The solver chosen for this model is FiIMINT, which is based on the LP/NLP algorithm devel-
oped by Quesada and Grossmann and implemented within a branch-and-cut framework. FiIMINT
was developed by a group of scientists, Kumar Abhishek, Sven Leyffer, and Jeff Linderoth. We
utilized NEOS Server to run these experiments.

Here is a brief summary of model 1 scenario 3 statistics.

Table I: Model 1 Scenario 3 Statistics

Parameter Value
Number of Constraints 1,040
Number of Variables 1,029
Number of Continuous Variables 69
Number of Binary Variables 960

The FilMINT solver employed a robust Branch and Cut methodology integrated with Sequen-
tial Quadratic Programming (filterSQP) to efficiently identify the optimal solution for the given
Mixed-Integer Nonlinear Programming (MINLP) problem. Initially, the solver performed presolve
operations to eliminate redundant constraints, thereby simplifying the problem structure. FiIMINT
strategically handled the 60 nonlinear constraints by solving a single NLP relaxation, leveraging
filterSQP to manage nonlinearity while maintaining a linear objective function for enhanced com-
putational efficiency. The solver generated seven lifted knapsack covers as cutting planes to tighten
the feasible region, effectively reducing the solution space without extensive cut generation. Addi-
tionally, active primal heuristics and bound improvement techniques facilitated rapid convergence
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by quickly identifying feasible solutions and refining objective bounds. Notably, the Branch and
Bound process concluded at the root node with a tree depth of zero, indicating that the optimal so-
lution was attained without further branching. Overall, FiIMINT demonstrated high efficiency by
solving the problem within 0.44 seconds, underscoring its capability to handle large-scale MINLPs
through a combination of advanced preprocessing, selective cut generation, and effective heuristic
strategies.

The files included in Appendix A are modell.mod, datal.dat, and jobl.run, all written in
AMPL. Additionally, the data generator file, written in Python (datagenl.py), is attached in
Appendix A for further analysis.

The results show that the model works fine and correctly assign tasks in various batches to
each server based on the optimum processing time. The result table is shown in Figure 1. The
complete table is attached in Appendix A. Figure 2 is also provided to show the completion time
for each task. By allowing the model to determine batch sizes and durations dynamically, we
observe that tasks are grouped in batches that minimize idle times and reduce total completion
time. Figure 3 shows the distribution of tasks across batches, highlighting how the model leverages
batching to enhance scheduling efficiency. The model considers the varying processing times of
tasks on different servers, assigning tasks to servers where they can be completed more quickly.
This strategic assignment contributes to the minimization of total completion time, as depicted in
Figure 5, which shows the assigned processing time by server and batch.

Task t1 t10 t11 t12 t13 t14 t15 t16 t17 t18 .. t55 t56 t57 t58 t59 6 t60 t7 t8 19
Server s3 s4 s3 s1 s1 s3 s3 s4 s4 s4 ... s1 sl sl s2 s2 s3 sl s2 s2 s2
Batch 2 17 3 4 4 2 1 1 3 1 .. 2 1 1 3 2 1 1 1 2 1

Figure 1: A sample of tasks assigned to each server in each batch

Completion Time per Task

25

Completion Time
[ [ N
o w o

w
s

Figure 2: Completion time for each task

Second FExperiment

The dataset for Model 3 includes 60 tasks, 4 servers, and 4 resources: CPU, GPU, Memory, and
Storage. The processing time for tasks is randomly assigned as an integer between 1 and 10, while
setup time ranges from 0 to 3. The resource demand for each task ranges from 12 to 25, and the
available resources for each server fall between 50 and 100. Task priority weights are randomly
assigned as integers between 1 and 5. Additionally, the energy consumption rate for each server is
randomly selected within the range of 5 to 15.

To address this model, we employed Cplex which is a well known model for solving mixed integer
linear programing. We used IBM ILOG CPLEX Optimizer provided by NEOS to implement this
experiment. A summary of model 3 statistics is provided in table 2.

The CPLEX solver version 22.1.1.0 efficiently tackled the Mixed-Integer Programming (MIP)
problem by utilizing its advanced multi-threaded capabilities, employing four threads to enhance
computational performance. The solver implemented a primal simplex algorithm, executing 154
MIP simplex iterations to methodically explore the feasible region and optimize the objective
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25
20

15

Number of Tasks

17.6

15.0

-
38
(4]

MNumber of Tasks
3
o

75

25

0.0

10
| -
0
1 2 3 4

Distribution of Tasks Across Batches

Batch Number

Figure 3: Distribution of tasks across batches

Distribution of Tasks Across Servers

53 s4 51 52

Server

Figure 4: Distribution of tasks across servers
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Distribution of Processing Times by Server and Baich

Ahy [u

s3

oW N =

AssignedProcessingTime
o (=]

w

Server

Figure 5: Distribution of assigned processing time by server and batch

Table II: Model 3 Statistics

Parameter Value
Number of Equality Constraints 140
Number of Inequality Constraints 52
Number of Linear Variables 96
Number of Binary Variables 244

function, ultimately achieving an optimal integer solution with an objective value of 1728.301497 in
less than two seconds. Notably, the optimization process concluded without initiating any branch-
and-bound nodes, indicating that the linear programming relaxation of the problem was either
inherently integer-feasible or that CPLEX’s sophisticated presolving and cutting-plane techniques
were sufficiently effective in identifying the optimal solution without the need for further branching.
The essential files associated with this model, including model2.mod, data2.dat, and job2.run, are
provided in Appendix B. These files are all written in AMPL, ensuring consistency and ease of
use within the modeling environment. Additionally, we have included the Python-based data
generator script, datagen2.py, in Appendix B to support further analysis and replication of our
results. Figure 6 presents the results for Model 3, highlighting the outcomes of our optimization
efforts and offering insights into the performance and efficiency of task assignments across servers
based on task priorities. The model achieves a balanced utilization of critical resources (CPU,
GPU, Memory, and Storage) across all servers. Figure 7 demonstrates that the load imbalance
for each resource is minimized, preventing any single resource from becoming a bottleneck. By
incorporating energy consumption into the objective function, the model assigns tasks in a way
that reduces the total energy usage. Servers with lower energy consumption rates are preferred
for tasks with higher processing times, leading to an overall reduction in energy expenditure. The
inclusion of task priority weights ensures that critical tasks are prioritized in the scheduling process.
This is reflected in Figure 8, where high-priority tasks are assigned to servers capable of completing
them more efficiently.
Comparing the results from both experiments, several insights emerge:

e Model Complexity versus Scalability: The nonlinear constraints in Model One (constraint 6),
while allowing for dynamic batching, increase computational complexity and limit scalability.
In contrast, the linearized Model Three handles larger datasets more efficiently, making it
more suitable for real-world applications where computational resources may be limited.

e Flexibility in Scheduling: Model One offers greater flexibility in scheduling through dynamic
batching, which can be advantageous in environments with highly variable workloads. How-
ever, this flexibility comes at the cost of increased computational overhead.

e Comprehensive Resource Management: Model Three’s incorporation of multiple resource
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types and energy considerations provides a more holistic approach to resource management.
This model effectively balances the utilization of different resources and aligns with sustain-
ability objectives by minimizing energy consumption.

Task Assignment to Servers
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Figure 6: Task assignment to servers

5 Conclusion

In this project, we developed several optimization models aimed at enhancing task assignments
within data center operations. Specifically, we proposed a couple of distinct models and applied
two of them to synthetic datasets to evaluate their performance and effectiveness. Through these
applications, we observed that the inherent nonlinearity within the models had a detrimental
impact on both computation time and overall efficiency. The complex nonlinear constraints not
only increased the computational burden, making the models less practical for larger datasets, but
also resulted in out-of-disk or out-of-memory errors when scaling up, thereby further limiting their
applicability in real-world, large-scale environments.

We analyzed various models designed for the first scenario, which involved nonlinear constraints.
Our analysis revealed that the lack of proper documentation often creates confusion, limiting re-
searchers’ ability to fully leverage these models. Among the models tested, FIIMINT demonstrated
the best performance for the first scenario. However, we remain uncertain whether the limitations
we encountered arose from the data generation process or from resource constraints on the NEOS
server—particularly limited disk space for less commonly used solvers like FiIMINT—which pre-
vented us from testing larger datasets. In contrast, the model used in the second experiment,
which was linear, posed fewer challenges when applied to large-scale datasets.

For future projects, we recommend adopting a strategic approach that combines the strengths
of the two models explored. By linearizing these models, we can simplify complex relationships and
reduce computational overhead, thereby improving both speed and efficiency. Linearized models
are typically more tractable and faster to solve, making them suitable for real-time applications and
larger datasets. Integrating the two models would address resource limitations on servers, enhance
energy efficiency, and accommodate task prioritization. Additionally, distributing tasks across
different batches would pave the way for more efficient models and improved overall performance.

Additionally, we propose applying these refined models to real-world datasets sourced from
industry leaders such as Google and Microsoft. Utilizing actual data from these organizations will
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Figure 7: Server utilization and load imbalance for each server
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Figure 8: Completion time of assigned tasks on servers

15

Servers
sl

il
&

3PP VPP I PP F P CEREREEER PP 0L PSP LEPP P @0



provide a more accurate assessment of the models’ applicability and performance in practical, large-
scale environments. This real-world testing is essential for validating the models’ effectiveness and
ensuring they can meet the operational demands of modern data centers. Ultimately, this approach
will contribute to the development of more robust and efficient task assignment solutions, leading
to improved data center management and resource utilization.
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7 Appendix A

e model 1 scenario 3 result

Table IIT: Model 1 Scenario 3 Results

Task Demand

Server Resource Batch

tl

t10
t11
t12
t13
t14
t15
t16
t17
t18
t19
t2

t20
t21
t22
t23
t24
t25
t26
t27
t28
t29
t3

t30
t31
t32
t33
t34
t35
t36
t37
t38
t39
t4

t40
t41
t42
t43
t44
t45
t46
t47
t48
t49
t5

t50
t51
t52
t53
th4
t55

00 OO W 0O IO 0 JWHER WTIHrm00W Wk WU 0O WWHEWWWOOTHrRODHDWDHOUTUTTO WWI0 0

s3 30 2
s4 28 1
s3 30 3
sl 24 4
sl 24 4
s3 30 2
s3 30 1
s4 28 1
s4 28 3
s4 28 1
s4 28 2
s4 28 2
s2 22 3
s3 30 1
s3 30 3
s4 28 1
s3 30 4
sl 24 4
s3 30 1
s4 28 2
s4 28 1
s3 30 1
s4 28 1
s3 30 1
s3 30 4
s2 22 3
sl 24 2
sl 24 1
s3 30 1
s3 30 1
sl 24 3
s2 22 1
s3 30 3
s2 22 1
s3 30 3
s3 30 4
sl 24 1
s2 22 2
sl 24 1
sl 24 2
s3 30 2
sl 24 1
s2 22 3
s2 22 1
sl 24 3
s3 30 4
s3 30 1
sl 24 2
s3 30 2
sl 24 3
sl 24 2

Continued on next page
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Table III: Model 1 Scenario 3 Results

Task Demand Server Resource Batch

t56 3 sl 24 1
t57 3 sl 24 1
t58 5 s2 22 3
t59 6 s2 22 2
t6 3 83 30 1
t60 3 sl 24 1
t7 5 82 22 1
t8 8 82 22 2
t9 4 s2 22 1
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e modell.mod

# Scenario 3
# Batch Scheduling with Dynamic Batch Sizes and Durations

# Sets and Indices

set T; # Set of tasks

set S; # Set of servers

param N integer > 0; # Number of batches
set K; # Set of batches

# Parameters

param p {T, S8} >= 0; # Processing time required to complete task i
on server j

param d {T} >= 0; # Resource demand of task i

param r {S} >= 0; # Resource capacity of server j

# Decision Variables

var x {T, S, K} binary; # 1 if task i is assigned to server j in
batch k

var s {K} >= 0; # Start time of batch k

var D {K} >= 0; # Duration of batch k

var C {T} >= 0; # Completion time of task i

# Objective Function
minimize TotalCompletionTime:
sum {i in T} CI[il;

# Constraints

# 1. Assignment Constraint
subject to Assignment {i in T}:
sum {j in S, k in K} x[i,j,k] = 1;

# 2. Resource Capacity Constraints
subject to ResourceCapacity {j in S, k in K}:
sum {i in T} d[i] * x[i,j,k] <= r[jl;

# 3. Batch Duration Constraints
subject to BatchDuration {i in T, j in S, k in K}:
D[kx] >= pl[i,j] * x[i,j,k];

# 4. Batch Sequencing Constraints
subject to BatchSequencing {k in K: k < N}:
s[k+1] >= s[k] + D[k];

# 5. Batch Start Time
subject to BatchStartTime:
s[1] >= 0;

# 6. Completion Time Calculation
subject to CompletionTime {i in T}:
C[i] = sum {j in S, k in K} (s[k] + pli,jl) * x[i,j,k];

e datal.dat

set T := t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 ti11 t12 t13 t14 t15 t16 t17
t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30 t31 t32 t33
t34 t35 t36 t37 t38 t39 t40 t41 t42 t43 t44 t45 t46 t47 t48 t49
t50 tb1 t52 tb53 tb4 tb5 tb6 t57 t58 t59 t60;

set S := sl s2 s3 s4;

param N := 4;

set K := 1 2 3 4;

param p : sl s2 s3 s4 :=

t1 77 15

t2 9 8 75
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T2

73

T4

t3 8
t4 9
t5 2
t6 10
t7 2
t8 2
t9 1
t10
ti1
t12
t13
t14
t15
t16
t17
t18
t19
t20
t21
t22
t23
t24
t25
t26
t27
t28
t29
t30
t31
t32
t33
t34
t35
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param
sl 24
s2 22
s3 30
s4 28

e jobl.run

T

24
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696
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698
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700
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# Load the model file
#model modell_scenario3.mod;

# Load the data file
#data datal.dat;

# Solve the model
solve;

# Display the decision variables and parameters
display x;
display s;
display D;
display C;

datagenl.py

import random
import math

# Set random seed for reproducibility
random.seed (0)

num_tasks = 60
num_servers = 4
#num_batches = 8
batch_duration = 10

tasks = [£"t{i}" for i in range(l, num_tasks + 1)]
servers = [f"s{j}" for j in range(l, num_servers + 1)]

# Generate processing times

processing_times = {}
for t in tasks:
processing_times[t] = {}
for s in servers:
processing_times[t][s] = random.randint (1, 10)

# Generate resource demands
resource_demands = {t: random.randint (3, 8) for t in tasks}

# Generate resource capacities
resource_capacities = {s: random.randint (20, 30) for s in servers}

# Compute total processing time (minimum across servers for each task)

total_processing_time = 0
for t in tasks:
min_p = min(processing_times[t][s] for s in servers)

total_processing_time += min_p
# Compute total processing capacity per batch
processing_capacity_per_batch = len(servers) * batch_duration

# Estimate minimum number of batches based on processing time
min_batches_processing = math.ceil(total_processing_time /

processing_capacity_per_batch)

# Compute total resource demand
total_resource_demand = sum(resource_demands[t] for t in tasks)

# Compute total resource capacity per batch
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total_resource_capacity_per_batch = sum(resource_capacities[s] for s
in servers)

# Estimate minimum number of batches based on resource capacities
min_batches_resource = math.ceil(total_resource_demand /
total_resource_capacity_per_batch)

# Compute the overall minimum number of batches required
min_batches_required = max(min_batches_processing,
min_batches_resource)

# Print the minimum number of batches required
#print (f"Minimum number of batches required: {min_batches_required}")

batches = [str(k) for k in range(l, min_batches_required + 1)]
# Write data to AMPL data file
with open(’data_synthetic_decl.dat’, ’w’) as f:

# Write sets

f.write(’set T := ’> + > ’.join(tasks) + ’;\n’)
f.write(’set S := > + ’ ’.join(servers) + ’;\n’)
f.write(f’param N := {min_batches_required};\n’)
f.write(’set K := ’> + ’ ’.join(batches) + ’;\n\n’)
#f . write(f’param DO := {batch_duration};\n’)

# Write processing times
f.write(’param p : ’ + ’ ’.join(servers) + ’ :=\n’)
for t in tasks:
f.write(t + 7 )
for s in servers:
f.write(str(processing_times[t][s]) + ’ )
f.write(’\n’)
f.write(’;\n\n’)

# Write resource demands
f.write(’param d :=\n’)
for t in tasks:
f.write(t + > ’ + str(resource_demands[t]) + ’\n’)
f.write(’;\n\n’)

# Write resource capacities

f.write(’param r :=\n’)
for s in servers:
f.write(s + ’> ’ + str(resource_capacities[s]) + ’\n’)

f.write(’;\n?)
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e model2.mod

# Optimization Model3
# Objective: Minimize weighted completion time, energy consumption,
and load imbalance

# ___________________________________________________
# Sets

set T; # Set of Tasks

set S; # Set of Servers

set R; # Set of Resources

# Parameters

param w {T}; # Priority weight of task i
param e {S}; # Energy consumption rate of server
J
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param p {T, S}; # Processing time of task i on
server j

param S_time {T, S}; # Setup time between task i and
server j

param d {T, R}; # Demand of resource k by task i

param r {S, R}; # Capacity of resource k on server

param alpha; # Scaling coefficient for emnergy
consumption

param beta; # Scaling coefficient for load
imbalance

param M; # Large constant for server

activation constraints
# Precomputed Parameters
param sum_r_k {k in R} := sum {j in S} r[j, k]; # Sum of capacities

for each resource

# Decision Variables

var x {T, S} binary; # Assignment of task i to server j
var y {S} binary; # Server activation indicator
var C {T} >= 0; # Completion time of task i
var E {8} >= 0; # Energy consumption of server j
#

var U {S, R} >= 0;
server j

var L {S, R} >= 0; # Load imbalance of resource k on
server j

Utilization of resource k on

# Objective Function
minimize Z:
sum {i in T} wlil = C[il
+ alpha * sum {j in S} E[j]
+ beta * sum {j in S, k in R} LI[j, kI];

# Constraints

# 1. Assignment Constraint
subject to Assignment {i in T}:
sum {j in 8} x[i, jl = 1;

# 2. Server Activation Constraint
subject to ServerActivation {j in S}:
sum {i in T} x[i, j]l <= M * y[jl;

# 3. Resource Capacity Constraints
subject to ResourceCapacity {j in S, k in R}:
sum {i in T} d[i, k] * x[i, j] <= r[j, k] * y[jl;

# 4. Completion Time Calculation
subject to CompletionTime {i in T}:
Cl[il = sum {j in S} pli, jI * x[i, jI1;

# 5. Energy Consumption Calculation
subject to EnergyConsumption {j in S}:
E[j] = e[j] * sum {i in T} (pli, jl + S_timeli, jI) * x[i, jl;

# 6. Utilization Ratio Calculation
subject to UtilizationRatio {j in S, k in R}:
U[j, k¥] = sum {i in T} d[i, k] * x[i, j) / r[j, kJ];

# 7. Load Imbalance Constraints
subject to LoadImbalanceUpper {j in S, k in R}:
L[{j, k] >= U[j, k]l - (sum {j2 in S} sum {i in T} d4[i, k] * x[i,
j21 / sum_r_k[k]);

subject to LoadImbalancelLower {j in S, k in R}:
L[j, k] >= (sum {j2 in S} sum {i in T} d[i, k] * x[i, j2] /
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sum_r_k[k]) - U[j, kI;

e data2.dat

set T
t18
t34
t50

set S

set R

param w
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t35 t36 t37 t38 t39 t40 t41 t42 t43 t44 t45 t46 t47 t48 t49
t51 t52 t53 t54 t55 tb56 tb57 t58 t59 t60;

:= sl s2 s3 s4;
:= GPU CPU Memory Storage;
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1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476



t49
t49
t49
t49
t50
t50
t50
t50
t51
t51
t51
t51
t52
t52
t52
t52
t53
t53
t53
t53
t54
t54
t54
t54
t55
t55
t55
t55
t56
t56
t56
t56
t57
t57
t57
t57
t58
t58
t58
t58
t59
t59
t59
t59
t60
t60
t60
t60

param d
t1
t1
t1
t1
t2
t2
t2
t2
t3
t3
t3
t3
t4
t4

s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4

WHFPF O WWNORFRFPOWFRFROWFRLRNRPFPONRFEFWOWOOWRF WF WWNONORFRFNNDNNWWNNDNEDNDE

GPU 1

CPU 3
Memory 4
Storage 5
GPU 4

CPU 1
Memory 1
Storage 4
GPU 7

CPU 8
Memory 1
Storage 6
GPU 9

CPU 2
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1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542



t4
t4
t5
t5
t5
t5
t6
t6
t6
t6
t7
t7
t7
t7
t8
t8
t8
t8
t9
t9
t9
t9
t10
t10
t10
t10
ti1
t11
ti1
ti1
t12
t12
t12
t12
t13
t13
t13
t13
t14
t14
t14
t14
t15
t15
t15
t15
t16
t16
t16
t16
t17
t17
t17
t17
t18
t18
t18
t18
t19
t19
t19
t19
t20
t20
t20
t20

Memory 1
Storage 3
GPU 8
CPU 4
Memory 1
Storage 3
GPU 8
CPU 5
Memory 4
Storage 1
GPU 9
CPU 4
Memory 5
Storage 3
GPU 8
CPU 1
Memory 9
Storage 8
GPU 2
CPU 4
Memory 8
Storage 8
GPU 9

CPU 1
Memory 9
Storage 3
GPU 7

CPU 5
Memory 2
Storage 9
GPU 9

CPU 1
Memory 7
Storage 2
GPU 5

CPU 7
Memory 8
Storage 5
GPU 4

CPU 1
Memory 8
Storage 1
GPU 1

CPU 3
Memory 1
Storage 8
GPU 1

CPU 5
Memory 1
Storage 1
GPU 1

CPU 8
Memory 3
Storage 4
GPU 2

CPU 1
Memory 10
Storage 7
GPU 7

CPU 6
Memory 4
Storage 9
GPU 2

CPU 9
Memory 8
Storage 3
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1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608



705

706

707

708

709

710

711

712

714

715

716

71T

718

719

t21
t21
t21
t21
t22
t22
t22
t22
t23
t23
t23
t23
t24
t24
t24
t24
t25
t25
t25
t25
t26
t26
t26
t26
t27
t27
t27
t27
t28
t28
t28
t28
t29
t29
t29
t29
t30
t30
t30
t30
t31
t31
t31
t31
t32
t32
t32
t32
t33
t33
t33
t33
t34
t34
t34
t34
t35
t35
t35
t35
t36
t36
t36
t36
t37
t37

GPU 5

CPU 2
Memory 1
Storage 1
GPU 7

CPU 7
Memory 6
Storage 3
GPU 4

CPU 3
Memory 9
Storage 1
GPU 8

CPU 4
Memory 4
Storage 1
GPU 2

CPU 9
Memory 9
Storage 9
GPU 2

CPU 8
Memory 2
Storage 7
GPU 5

CPU 4
Memory 9
Storage 6
GPU 2

CPU 3
Memory 1
Storage 8
GPU 6

CPU 1
Memory 1
Storage 3
GPU 9

CPU 1
Memory 8
Storage 4
GPU 2

CPU 7
Memory 10
Storage 6
GPU 1

CPU 7
Memory 4
Storage 2
GPU 1

CPU 10
Memory 1
Storage 3
GPU 9

CPU 10
Memory 8
Storage 1
GPU 4

CPU 9
Memory 6
Storage 6
GPU 4

CPU 6
Memory 6
Storage 2
GPU 8

CPU 8
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1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674



762

763

764

765

766

767

768

769

771

772

773

774

775

776

T

778

780

781

782

783

784

785

t37
t37
t38
t38
t38
t38
t39
t39
t39
t39
t40
t40
t40
t40
t41
t41
t41
t41
t42
t42
t42
t42
t43
t43
t43
t43
t44
t44
t44
t44
t45
t45
t45
t45
t46
t46
t46
t46
t47
t47
t47
t47
t48
t48
t48
t48
t49
t49
t49
t49
t50
t50
t50
t50
t51
t51
t51
t51
t52
t52
t52
t52
t53
t53
t53
t53

Memory 4
Storage 5
GPU 1

CPU 10
Memory 7
Storage 1
GPU 2

CPU 9
Memory 8
Storage 2
GPU 9

CPU 3
Memory 1
Storage 8
GPU 9

CPU 1
Memory 3
Storage 9
GPU 3

CPU 5
Memory 1
Storage 1
GPU 7

CPU 4
Memory 3
Storage 9
GPU 9

CPU 1
Memory 9
Storage 3
GPU 9

CPU 1
Memory 8
Storage 7
GPU 2

CPU 3
Memory 4
Storage 1
GPU 3

CPU 1
Memory 8
Storage 8
GPU 9

CPU 9
Memory 5
Storage 7
GPU 3

CPU 9
Memory 9
Storage 2
GPU 1

CPU 1
Memory 7
Storage 5
GPU 7

CPU 3
Memory 9
Storage 2
GPU 1

CPU 9
Memory 5
Storage 2
GPU 5

CPU 5
Memory 5
Storage 2
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1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740



787

788

789

790

791

792

793

794

796

797

798

799

801

802

803

806

807

808

810

811

812

814
815

816

819

820

821

823

824

825

826

828

829

830

832

833

834

835

837

838

839

841

t54 GPU 5

t54 CPU 9

t54 Memory 1

t54 Storage 1
t55 GPU 2

t55 CPU 1

t55 Memory 8

t55 Storage 7
t56 GPU b5

t56 CPU 9

t56 Memory 7

t56 Storage 5
t57 GPU 5

t57 CPU 8

t57 Memory 4

tb7 Storage 6
t58 GPU 7

t58 CPU 5

t58 Memory 1

t58 Storage 2
t59 GPU 8

t59 CPU 7

t59 Memory 2

t59 Storage 7
t60 GPU 4

t60 CPU 3

t60 Memory 7

t60 Storage 6

param r :=
sl GPU 78
s1 CPU 100
sl Memory 88
sl Storage 79
s2 GPU 84
s2 CPU 80
s2 Memory 74
s2 Storage b5
s3 GPU 70
s3 CPU 82
s3 Memory 76
s3 Storage 75
s4 GPU 100
s4 CPU 66
s4 Memory 98
s4 Storage 82

param alpha := 0.5;
param beta = 0.3;
param M := 1000;
(4

job2.run
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1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

1795

1788

1798

1799
1800

1801
1802
1803
1804
1805

1806



10

11

12

13

14

16
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

solve;

display
display
display
display
display

Hama X

e datagen2.py

H o wno o =

for

import random

def generate_ampl_data(num_tasks=60, num_servers=4,
output_file=’dataset_model3_nov30.dat’):

{3
{3
{3

_time = {}

{3
{3

task in tasks:
wltask] = random.randint (1, 5)

41

tasks = [f’t{i}’ for i in range(l, num_tasks + 1)]
servers = [f’s{j}’ for j in range(l, num_servers + 1)]
resources = [’GPU’, ’CPU’, ’Memory’, ’Storage’]

for server in servers:
e[server] = random.randint (5, 15)
r = {server: {} for server in servers}
for server in servers:
for resource in resources:
r[server] [resource] = random.randint (50, 100)
d = {task: {} for task in tasks}
for task in tasks:
for resource in resources:
max_demand = min(r[server][resource] for server in
servers) // 4
d[task] [resource] = random.randint (1, max_demand)
p = {}
S_time = {}
for task in tasks:
pltask]l = {}
S_time[task] = {}
for server in servers:
pltask][server] = random.randint (1, 10)
S_time[task] [server] = random.randint (0, 3)
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1840
1841
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52

54

55

56

60

61

62

63

64

66

67

68

69

70

71

T2

73

T4

75

76

T

78

79

80

81

82

83

84

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

104

105

total_demand = {resource: 0O for resource in resources}

total_capacity = {resource: 0 for resource in resources}
for resource in resources:
total_demand[resource] = sum(d[task][resource] for task in
tasks)
total_capacity[resource] = sum(r([server][resource] for server

in servers)
if total_demand[resource] > total_capacityl[resource]:

print (f"Adjusting,,demands for resource {resource} toy
ensurefeasibility.")

# Scale down demands proportionally

scaling_factor = total_capacity[resource] /
total_demand [resource]

for task in tasks:
d[task] [resource] = max(l, int(d[task][resource] *

scaling_factor))

# Recalculate total demand

total_demand[resource] = sum(d[task] [resource] for task
in tasks)

# 2. Ensure each task can be assigned to at least one server
for task in tasks:
assignable = False
for server in servers:
can_assign = all(d[task][resource] <= r[server][resource]
for resource in resources)
if can_assign:
assignable = True
break
if not assignable:
print (f"Adjusting,demands for task, {task}_ to ensure it
can  beassigned.")
# Adjust demands to fit the smallest capacity server
for resource in resources:

min_capacity = min(r[server][resource] for server in
servers)
d[task] [resource] = min(d[task][resourcel],

min_capacity)

# Write data to file
with open(output_file, ’w’) as f:
f.write("#,

f.write("#_Data File for Task Assignment to,Servers Model\n")
.write("#,_,Generated by, generate_data.py\n")
.write ("#,

Hh

Sets

.write("#_,Sets\n")

.write(f"set Ty:=u{’y’.join(tasks)};\n")
.write(f"set Sy:=u{’y’.join(servers)};\n")
.write(f"set Ry:=,{’y’.join(resources)};\n\n")

Fho kb bh Hh 3

+H+

Parameters

# Priority weights
f.write("#_ ,Parameters\n")
f.write("#_ Priority_ weight_of each,task\n")
f.write("param w,:=\n")
for task in tasks:

f.write(f" uu{task} {wltask]}\n")
f.write(";\n\n")

# Energy consumption rates
f.write("#,Energy consumption_ rateof each server\n")
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1907
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134
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147

150

151

152

153

155

156

if

f.write("param_ e, :=\n")
for server in servers:

f.write(f" uuu{server} {elserver]}\n")
f.write(";\n\n")

# Processing times
f.write("#_,Processing, time 0f each task oneach server\n")
f.write("param p,:=\n")
for task in tasks:
for server in servers:
f.write(f" Luuu{task} {server} {pltask][server]}\n")
f.write(";\n\n")

# Setup times
f.write("#,Setupytime between tasks on,servers\n")
f.write("param,S_time,:=\n")
for task in tasks:
for server in servers:
f.write(f" ,uu{task} {server},
{S_time[task] [server]}\n")

f.write(";\n\n")

# Resource demands
f.write("#_,Demand, of jeach resource by each task\n")
f.write("param_ d,:=\n")
for task in tasks:
for resource in resources:
f.write(f" Luu{task} {resourcel}
{d[task] [resource]l}\n")
f.write(";\n\n")

# Resource capacities
f.write("#,Capacityof each resource on each server\n")
f.write("param,r,:=\n")
for server in servers:
for resource in resources:
f.write(f"  Luu{server} {resourcel},
{r[server] [resource]l}\n")
f.write(";\n\n")

Scaling coefficients and large constant
.write("#,Scaling coefficients and large constant\n")
.write("paramgalpha;:=,0.5;\n")

.write("param_ beta,,:=,0.3;\n")
.write("param M, uuu:=u1000;\n\n")

Fhobh kbbb 3

f.write("#,
f.write("#_,End_ of Data_ File\n")

f.write ("#,

print (f"Datayfile, ’{output_filel}’ ,generated, successfully with
{num_tasks}_ tasks_ and_ {num_servers} servers.")

__name == " main "

generate_ampl_data ()
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