Optimizing Resource Allocation and Time Completion in Data Centers Using Integer Linear Programming

Daniel Safavisohi¹ and Dr. Melkonian²

¹Graduate Student, Mathematics Department, Ohio University ²Associate Professor, Mathematics Department, Ohio University

December 13, 2024

Abstract

This study presents optimization models for task assignment and resource allocation in data centers, with a focus on minimizing task completion time, energy consumption, and load imbalance. Two distinct models are developed: one leveraging batching with dynamic sizes and durations, and another incorporating multi-resource allocation and energy-aware scheduling. Experimental evaluations on synthetic datasets demonstrate that the first model effectively assigns tasks to servers within predefined batches, while the second model optimizes task prioritization and load balancing across resources. The results highlight the computational challenges associated with nonlinear constraints and the advantages of linearized models for scalability and efficiency. Future work includes integrating the strengths of both models and applying them to real-world datasets from industry leaders to enhance their applicability and performance in large-scale environments.

1 Introduction

In the era of big data and cloud computing, data centers play a pivotal role in processing and storing vast amounts of information. Efficient resource allocation and minimizing task completion time are critical for optimizing performance and reducing operational costs in data centers. Integer Linear Programming (ILP) offers a mathematical approach to model and solve such optimization problems. This project focuses on formulating an ILP model to optimize resource allocation and task scheduling in data centers, aiming to minimize total completion time while adhering to resource constraints.

2 Overview of Data Centers

Data centers are rapidly expanding across the globe to meet the escalating demand for digital services. The United States leads this growth, hosting approximately 2,670 data centers—the highest number of any country—contributing to a global total of over 8,000 facilities spread across regions like Europe, Asia-Pacific, and Latin America. Constructing and operating these centers involve substantial investments; building costs can range from \$ 10 million for small to medium-sized facilities to over \$1 billion for hyperscale data centers developed by tech giants such as Amazon, Google, and Facebook. Operational expenses, including energy consumption, maintenance, staffing, and technological upgrades, can amount to millions of dollars annually. Notable projects like Google's \$2.5 billion data center in Iowa and Microsoft's investments exceeding \$1 billion in various locations underscore the significant financial commitment required. The construction timeline for a data center typically spans 18 to 24 months, influenced by factors such as the facility's scale, technological requirements, regulatory approvals, and site-specific challenges.

15

19

20

21

22

23

2.1 Types of Projects Handled by Data Centers

Data centers are the backbone of modern digital infrastructure, supporting a wide array of projects critical to today's business operations and services. They provide the essential foundation for cloud computing platforms like Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform, enabling scalable and flexible computing resources. In the realm of big data and analytics,

data centers process massive datasets for industries such as finance, healthcare, and retail, driving informed decision-making and strategic insights. They are instrumental in powering artificial intelligence (AI) and machine learning (ML) applications, hosting the computational resources required to train complex models. Additionally, data centers facilitate content delivery networks (CDNs), ensuring the rapid and efficient global distribution of media content and web applications. They manage data from the Internet of Things (IoT), overseeing interconnected devices and sensors used in smart cities, industrial automation, and consumer electronics. In financial services, data centers support high-frequency trading platforms, online banking, and transaction processing systems, maintaining the robustness and security of financial transactions. Furthermore, they run critical enterprise applications like Enterprise Resource Planning (ERP), Customer Relationship Management (CRM), and Supply Chain Management (SCM) systems, underpinning the operational efficiency of businesses worldwide.

2.2 Main Challenges Facing Data Centers Today

Data centers today face several significant challenges that impact their efficiency, cost-effectiveness, and sustainability. Energy consumption and environmental impact are major concerns, with data centers accounting for about 1 percent of global electricity use. This has led to a concerted effort to reduce carbon footprints through the adoption of renewable energy sources and more efficient technologies. Heat dissipation and cooling present another critical issue; managing the heat generated by high-density computing equipment is essential, and traditional cooling methods are energy-intensive. Innovations like liquid cooling and free-air cooling are being explored to address this. Cybersecurity threats have become increasingly sophisticated, necessitating robust security measures to protect sensitive data and ensure compliance with data protection regulations. The need for scalability and flexibility is a constant challenge due to rapid technological advancements, requiring data centers to implement modular designs and scalable infrastructure. Regulatory compliance adds another layer of complexity, as data centers must navigate complex regulations related to data sovereignty, privacy laws like GDPR, and industry-specific compliance standards. Lastly, supply chain disruptions caused by global events such as pandemics and geopolitical tensions can disrupt the supply of critical components, affecting both construction and maintenance.

2.3 Optimization Techniques in Data Centers

To enhance resource utilization and minimize completion times, data centers employ various optimization techniques that are essential for efficient operations. Load balancing is a fundamental strategy that distributes workloads evenly across servers, preventing both overloading and underutilization, which in turn enhances performance and reliability. Dynamic resource allocation further refines this process by adjusting resources in real-time based on current workload demands, thereby improving efficiency and responsiveness to fluctuating needs. Another critical technique is task consolidation, which groups smaller tasks to run concurrently on the same server, freeing up resources and reducing overall energy consumption. Additionally, data centers leverage predictive analytics, utilizing historical data and machine learning algorithms to forecast workload patterns. This allows for proactive adjustments in resource allocation, ensuring that resources are optimally used and ready to meet future demands.

2.4 Resource Scheduling Algorithms in Data Centers

Data centers utilize various resource scheduling algorithms to optimize task allocation and enhance overall efficiency. First-Come, First-Served (FCFS) processes tasks strictly in the order they arrive. While this method is straightforward, it may not be optimal for resource utilization or for handling time-sensitive tasks. Shortest Job First (SJF) prioritizes tasks with the shortest expected execution time, effectively reducing the average waiting time for all tasks. However, this can lead to the starvation of longer tasks if shorter ones continue to arrive. Priority Scheduling assigns tasks based on predetermined priority levels, ensuring that critical tasks receive immediate attention. This approach, though, can result in lower-priority tasks being neglected. Lastly, the Round Robin (RR) algorithm allocates fixed time slices to each task in a cyclic order, promoting fairness by giving all tasks equal opportunity to utilize resources. This method can increase overhead due to the frequent context switching between tasks, potentially impacting performance.

2.5 Batch Processing vs. Continuous Processing

Understanding the nature of computational tasks is essential for effective resource allocation in data centers, where tasks are generally categorized into batch processing and continuous processing. Batch processing involves executing a series of tasks collectively without manual intervention, making it suitable for non-interactive, time-insensitive tasks such as data analysis, report generation, and large-scale computations. This approach offers advantages like resource efficiency—allowing scheduling during off-peak hours to optimize utilization—and cost reduction by timing operations to coincide with lower energy rates or peak availability of renewable energy sources. It also simplifies management by reducing the complexity of real-time resource allocation. However, batch processing is not suitable for tasks requiring immediate results due to latency tolerance and requires careful scheduling to maximize resource utilization without impacting other operations.

80

81

82

83

84

87

90

91

94

99

102

103

105

106

107

109

110

111

112

113

114

115

116

117

118

119

120

121

122

125

126

In contrast, continuous processing handles tasks that require immediate processing, such as real-time data analytics, online transaction processing, and streaming services. Its advantages include low latency, providing immediate responses essential for user-facing applications; scalability through dynamic resource allocation to handle fluctuating workloads; and high availability to ensure services remain accessible at all times. The considerations for continuous processing involve higher resource demands, as it requires constant resource availability, potentially increasing operational costs. It also necessitates complex management with sophisticated scheduling and monitoring systems to maintain optimal performance.

2.6 Energy Management in Data Centers

Energy consumption constitutes a significant operational cost for data centers and has considerable environmental implications, making effective energy management strategies crucial for sustainable operations. A fundamental metric for assessing data center energy efficiency is Power Usage Effectiveness (PUE), defined as the ratio of total facility energy consumption to the energy consumed by IT equipment alone; a PUE value closer to 1 indicates higher efficiency. To optimize energy usage, data centers employ several techniques. Dynamic Voltage and Frequency Scaling (DVFS) adjusts the voltage and frequency of processors based on workload demands, reducing energy consumption during periods of low activity. Server virtualization consolidates multiple virtual servers onto a single physical server, optimizing hardware utilization and reducing the number of active physical servers required. Implementing efficient cooling systems further enhances energy efficiency: free cooling utilizes external environmental conditions, such as cool air or water, to lessen reliance on energy-intensive cooling systems, while hot/cold aisle containment organizes server racks to separate hot and cold air flows, improving cooling efficiency. Additionally, integrating renewable energy sources like solar or wind power reduces the carbon footprint and dependence on non-renewable energy sources. Effective workload management also plays a pivotal role in energy efficiency. Energy-aware scheduling incorporates energy consumption metrics into scheduling algorithms to balance performance with energy usage. Workload shifting transfers computational tasks to data centers in regions with lower energy costs or cooler climates, leveraging geographical advantages. Lastly, idle resource management powers down or places idle servers into low-power states to minimize unnecessary energy consumption. Together, these strategies contribute to more sustainable and cost-effective data center operations.

In the following section, we present three models along with various scenarios. We then select two models for evaluation using two synthetic datasets. Lastly, we conclude the study and provide appendices for additional analysis.

3 Models

 $3.1 \quad First \ Model$

The primary objective is to minimize the total completion time of tasks while efficiently allocating resources. The ILP model will focus on the following objective function:

$$\sum_{i \in T} C_i, \quad \forall i \in T$$

Decision Variables

Let: 128

 x_{ij} be a binary decision variable where:

$$x_{ij} = \begin{cases} 1, & \text{if task } i \text{ is assigned to server } j, \\ 0, & \text{otherwise.} \end{cases}$$

 C_i is a variable and represents the completion time of task i.

Parameters

130

132

133

134

135

136

137

138

139

140

141

143

145

146

147

148

150

151

152

153

154

155

156

157

158

- T is the set of tasks, $i \in T$
- S is the set of servers, $j \in S$
- p_{ij} is the processing time required to complete task i on server j. This is a fixed parameter based on server capabilities and task requirements. For instance, we have an estimate that task A takes 5 hours on my laptop (Server 1) but only 1 hour on a powerful university PC (Server 2).
- r_i is the resource capacity of server j
- d_i is the resource demand of task i

3.2 Scenarios and Constraints

Scenario 1: Single Resource Type

In this scenario, we consider a data center where tasks require a single type of resource, such as CPU or GPU.

Constraints 144

Assignment Constraint: Each task must be assigned to exactly one server.

$$\sum_{i \in S} x_{ij} = 1, \quad \forall i \in T$$

Resource Capacity Constraint: The total resource demand on each server must not exceed its capacity.

$$\sum_{i \in T} d_i x_{ij} \le r_j, \quad \forall j \in S$$

Completion Time Calculation: The completion time for each task is determined by its processing time on the assigned server.

$$C_i = \sum_{j \in S} p_{ij} x_{ij}, \quad \forall i \in T$$

Scenario 2: Multiple Resource Types

Here, tasks require multiple types of resources (such as CPU, memory, and storage).

Additional Parameters

- R is the set of resource types, $k \in R$
- d_{ik} is the demand of resource k by task i
- r_{jk} is the capacity of resource k on server j

New Constraints

Resource Capacity Constraints: For each resource type, the total demand must not exceed the server's capacity.

$$\sum_{i \in T} d_{ik} x_{ij} \le r_{jk}, \quad \forall j \in S, \forall k \in R$$

Scenario 3: Batch Scheduling with Dynamic Batch Sizes and Durations

This model allows batches to have variable sizes and durations, optimizing the schedule based on task requirements. The model has a non-linear constraint (constraint 6).

Sets and Indices

- T: Set of tasks, indexed by i.
- S: Set of servers, indexed by j.
- K: Set of batches (cycles), indexed by k.

Parameters 166

- p_{ij} : Processing time required to complete task i on server j.
- d_i : Resource demand of task i.
- r_j : Resource capacity of server j.

Decision Variables

- $x_{ijk} \in \{0,1\}$: Binary variable equal to 1 if task i is assigned to server j in batch k; 0 otherwise.
- $s_k \ge 0$: Continuous variable representing the start time of batch k.
- $D_k \ge 0$: Continuous variable representing the duration of batch k.
- $C_i \ge 0$: Continuous variable representing the completion time of task i.

Objective Function 175

Minimize the total completion times of all tasks:

$$\min \quad \sum_{i \in T} C_i \tag{1}$$

160

161

163

172

176

180

182

183

185

187

Constraints

1. Assignment Constraint Each task must be assigned to exactly one server in one batch:

$$\sum_{j \in S} \sum_{k \in K} x_{ijk} = 1, \quad \forall i \in T$$
 (2)

2. Resource Capacity Constraints For each server in each batch, the total resource demand must not exceed its capacity:

$$\sum_{i \in T} d_i x_{ijk} \le r_j, \quad \forall j \in S, \ \forall k \in K$$
(3)

3. Batch Duration Constraints The duration of each batch must cover the processing times of the tasks assigned to it:

$$D_k \ge p_{ij}x_{ijk}, \quad \forall i \in T, \ \forall j \in S, \ \forall k \in K$$
 (4)

4. Batch Sequencing Constraints Batches are processed sequentially; the start time of the next batch begins after the previous one ends:

$$s_{k+1} \ge s_k + D_k, \quad \forall k \in K \tag{5}$$

5. Batch Start Time The first batch starts at or after time zero:

$$s_1 \ge 0 \tag{6}$$

6. Completion Time Calculation (non-linear) The completion time of each task is the start time of its batch plus its processing time:

$$C_i = \sum_{j \in S} \sum_{k \in K} (s_k + p_{ij}) x_{ijk}, \quad \forall i \in T$$
 (7)

Scenario 4: Batch Scheduling with Fixed Batch Sizes and Durations

This model uses predetermined batch sizes and durations, providing a structured scheduling framework.

Additional Parameters

- D_k : Fixed duration of batch k (given).
- m: Maximum number of tasks per batch (fixed batch size).

Decision Variables

- $x_{ijk} \in \{0,1\}$: Binary variable equal to 1 if task i is assigned to server j in batch k; 0 otherwise.
- $s_k \ge 0$: Continuous variable representing the start time of batch k.
- $C_i \ge 0$: Continuous variable representing the completion time of task i.

Objective Function

Minimize the total completion times of all tasks:

$$\min \quad \sum_{i \in T} C_i \tag{8}$$

189

191

192

193

194

196

197

198

199

201

205

206

207

210

212

Constraints

1. Assignment Constraint Each task must be assigned to exactly one server in one batch:

$$\sum_{j \in S} \sum_{k \in K} x_{ijk} = 1, \quad \forall i \in T$$

$$\tag{9}$$

2. Resource Capacity Constraints For each server in each batch, the total resource demand must not exceed its capacity:

$$\sum_{i \in T} d_i x_{ijk} \le r_j, \quad \forall j \in S, \ \forall k \in K$$
 (10)

3. Batch Duration Constraints The processing time of any task assigned to a batch must not exceed the fixed duration of that batch:

$$p_{ij}x_{ijk} \le D_k, \quad \forall i \in T, \ \forall j \in S, \ \forall k \in K$$
 (11)

4. Batch Size Constraints The number of tasks assigned to each batch must not exceed the maximum batch size m:

$$\sum_{i \in T} \sum_{j \in S} x_{ijk} \le m, \quad \forall k \in K$$
 (12)

5. Batch Sequencing Constraints Batches are processed sequentially; the start time of the next batch begins after the fixed duration of the current batch:

$$s_{k+1} \ge s_k + D_k, \quad \forall k \in K \tag{13}$$

6. Batch Start Time The first batch starts at or after time zero:

$$s_1 \ge 0 \tag{14}$$

7. Completion Time Calculation The completion time of each task is the start time of its batch plus its processing time:

$$C_i = \sum_{j \in S} \sum_{k \in K} (s_k + p_{ij}) x_{ijk}, \quad \forall i \in T$$

$$(15)$$

3.3 Second Model

The original objective function aims to minimize the total completion time of tasks. We can augment this by adding:

- Energy Consumption Minimization: Reduce the total energy consumption of servers.
- Load Balancing: Distribute tasks evenly across servers to prevent overloading.
- Task Prioritization: Prioritize critical tasks by assigning weights.

214

216

217

219

221

223

225

226

227

230

231

233

234

235

236

237

240

The new objective function becomes:

$$Minimize \sum_{i \in T} w_i C_i + \alpha \sum_{j \in S} E_j + \beta \sum_{j \in S} L_j$$

Where:

- w_i is the priority weight of task i.
- E_j is the energy consumption of server j.
- L_j is a load balancing term for server j.
- α and β are scaling coefficients.

New Decision Variables and Parameters

Decision Variables

• y_i is a binary variable where:

$$y_j = \begin{cases} 1, & \text{if server } j \text{ is active,} \\ 0, & \text{otherwise.} \end{cases}$$

Parameters

- e_j is the energy consumption rate of server j.
- w_i is the priority weight of task i.
- ullet M is a large constant used in constraints.

Additional Constraints

Server Activation Constraint: A server must be activated if any task is assigned to it.

$$\sum_{i \in T} x_{ij} \le M y_j, \quad \forall j \in S$$

Load Balancing Constraints: Ensure that the number of tasks assigned to each server is within a certain range.

$$L_j = \left| \sum_{i \in T} x_{ij} - \frac{|T|}{|S|} \right|, \quad \forall j \in S$$

 ${\bf Task\ Precedence\ Constraints} . \ {\bf Some\ tasks\ must\ be\ completed\ before\ others\ can\ start}.$

$$C_i + S_{ij} \le C_k, \quad \forall (i,k) \in P$$

Where:

- ullet P is the set of task pairs with precedence relations.
- S_{ij} is the setup time between tasks i and k.

Time Window Constraints: Tasks must start and finish within specific time windows.

$$s_i \le C_i \le f_i, \quad \forall i \in T$$

Where:

- s_i is the earliest start time of task i.
- f_i is the latest finish time of task i.

3.4 Third Model

To create a more accurate and efficient resource allocation model for data centers, we can include additional separate load balancing terms for each critical resource, incorporating utilization ratios. This enhancement allows us to balance the load of each resource type (such as CPU, GPU, Memory, Storage) across servers, ensuring that no single resource becomes a bottleneck. The updated model builds upon the original objective function, which aims to minimize the total completion time of tasks, energy consumption, and load imbalance.

245

247

248

249

251

252

260

266

278

New Objective Function

The new objective function is:

Minimize
$$Z = \sum_{i \in T} w_i \sum_{j \in S} p_{i,j} x_{i,j} + \alpha \sum_{j \in S} e_j \left(\sum_{i \in T} (p_{i,j} + S_{i,j}) x_{i,j} \right) + \beta \sum_{j \in S} \sum_{k \in R} L_{j,k}$$

To better show it:

$$\text{Minimize } Z = \sum_{i \in T} w_i C_i + \alpha \sum_{j \in S} E_j + \beta \sum_{j \in S} \sum_{k \in R} L_{j,k}$$

Where:

- w_i : Priority weight of task i.
- C_i : Completion time of task i.
- E_j : Energy consumption of server j.
- e_j : is the energy consumption rate of server j
- p_{ij} : Processing time required to complete task i on server j.
- $L_{j,k}$: Load imbalance term for server j for each resource k in the set of resources R.
- S_{ij} : is the setup time between tasks i and k.
- α, β : Scaling coefficients.
- T: Set of tasks.
- S: Set of servers.
- R: Set of resources.

Definitions

- Resources (R): The set of key resources (GPU, CPU, Memory, Storage).
- Utilization Ratio $(U_{j,k})$: The utilization of resource k on server j.
- Average Utilization ($U_{avg,k}$): The average utilization of resource k across all servers.
- Load Imbalance $(L_{j,k})$: The absolute difference between $U_{j,k}$ and $U_{\text{avg},k}$.

Parameters

- $d_{i,k}$: Demand of resource k by task i.
- $r_{i,k}$: Capacity of resource k on server j.
- e_j : Energy consumption rate of server j.
- $p_{i,j}$: Processing time of task i on server j.
- w_i : Priority weight of task i.
- M: A large constant for server activation constraints.
- α, β : Scaling coefficients.

Decision Variables

- $x_{i,j} \in \{0,1\}$: Assignment of task i to server j.
- $y_j \in \{0,1\}$: Server activation indicator.

280

287

288

289

291

294

296

297

298

299

300

- $C_i \ge 0$: Completion time of task i.
- $E_j \ge 0$: Energy consumption of server j.
- $U_{j,k} \ge 0$: Utilization of resource k on server j.
- $L_{j,k} \ge 0$: Load imbalance of resource k on server j.

Constraints 286

1. Assignment Constraint

Each task must be assigned to exactly one server:

$$\sum_{j \in S} x_{i,j} = 1, \quad \forall i \in T$$

2. Server Activation Constraint

A server must be activated if any task is assigned to it:

$$\sum_{i \in T} x_{i,j} \le M y_j, \quad \forall j \in S$$

3. Resource Capacity Constraints

For each resource k, the total demand on a server cannot exceed its capacity:

$$\sum_{i \in T} d_{i,k} x_{i,j} \le r_{j,k} y_j, \quad \forall j \in S, \forall k \in R$$

4. Completion Time Calculation

The completion time for each task is determined by its processing time on the assigned server:

$$C_i = \sum_{j \in S} p_{i,j} x_{i,j}, \quad \forall i \in T$$

5. Energy Consumption Calculation

The total energy consumption of a server over the period processing a set of sequential tasks (setup time included):

$$E_j = e_j \sum_{i \in T} (p_{i,j} + S_{i,j}) x_{i,j}, \quad \forall j \in S$$

6. Utilization Ratio Calculation

Calculate the utilization of each resource on each server:

$$U_{j,k} = \frac{\sum_{i \in T} d_{i,k} x_{i,j}}{r_{j,k}}, \quad \forall j \in S, \forall k \in R$$

7. Average Utilization Calculation

Compute the average utilization for each resource across all servers:

$$U_{\text{avg},k} = \frac{\sum_{j \in S} \sum_{i \in T} d_{i,k} x_{i,j}}{\sum_{j \in S} r_{j,k}}, \quad \forall k \in R$$

8. Load Imbalance Constraints

Calculate the load imbalance for each resource on each server:

$$L_{j,k} \ge |U_{j,k} - U_{\text{avg},k}|, \quad \forall j \in S, \forall k \in R$$

Alternatively:

$$L_{j,k} \ge U_{j,k} - U_{\text{avg},k}, \quad \forall j \in S, \forall k \in R$$

$$L_{j,k} \ge U_{\text{avg},k} - U_{j,k}, \quad \forall j \in S, \forall k \in R$$

4 Assessment of Optimization Models

In this study, we examined Model One, Scenario Three to evaluate the impact of batching on the optimal completion time for each server. Our objective was to determine whether the model could effectively assign tasks with varying demands to servers with different resource capacities across a set of predetermined batches. In this scenario, both the duration and size of each batch are unknown and are determined by the model itself. The model's sole issue is a non-linear constraint, which imposes certain limitations on solver selection.

Additionally, we analyzed Model Three to investigate how a diverse range of resources, energy efficiency, and load balancing influence the model's task assignment strategy. This model operates without the complexities associated with batching, allowing us to assess task assignments in a more straightforward context.

We applied these optimization models to two distinct datasets to evaluate their effectiveness in enhancing data center operations. Each model requires a specific dataset, and given the computational resources available for this project, we carefully considered the size of each dataset accordingly.

First Experiment

The dataset for Model One, Scenario Three comprises 60 tasks, 4 servers, and 4 batches. Each server's capacity is a randomly assigned integer between 20 and 30, while each task's demand is a randomly assigned value between 3 and 8. Predicted processing time of task on each server is also provided. This setup allows the model to determine the optimal assignment of tasks to servers within the specified batches.

For this specific application, each solver presents its own advantages and disadvantages. Through a trial-and-error approach, we ultimately selected the solver that offered the lowest computation time. The solver chosen for this model is FilMINT, which is based on the LP/NLP algorithm developed by Quesada and Grossmann and implemented within a branch-and-cut framework. FilMINT was developed by a group of scientists, Kumar Abhishek, Sven Leyffer, and Jeff Linderoth. We utilized NEOS Server to run these experiments.

Here is a brief summary of model 1 scenario 3 statistics.

Table I: Model 1 Scenario 3 Statistics

Parameter	Value
Number of Constraints	1,040
Number of Variables	1,029
Number of Continuous Variables	69
Number of Binary Variables	960

The FilMINT solver employed a robust Branch and Cut methodology integrated with Sequential Quadratic Programming (filterSQP) to efficiently identify the optimal solution for the given Mixed-Integer Nonlinear Programming (MINLP) problem. Initially, the solver performed presolve operations to eliminate redundant constraints, thereby simplifying the problem structure. FilMINT strategically handled the 60 nonlinear constraints by solving a single NLP relaxation, leveraging filterSQP to manage nonlinearity while maintaining a linear objective function for enhanced computational efficiency. The solver generated seven lifted knapsack covers as cutting planes to tighten the feasible region, effectively reducing the solution space without extensive cut generation. Additionally, active primal heuristics and bound improvement techniques facilitated rapid convergence

by quickly identifying feasible solutions and refining objective bounds. Notably, the Branch and Bound process concluded at the root node with a tree depth of zero, indicating that the optimal solution was attained without further branching. Overall, FilMINT demonstrated high efficiency by solving the problem within 0.44 seconds, underscoring its capability to handle large-scale MINLPs through a combination of advanced preprocessing, selective cut generation, and effective heuristic strategies.

The files included in Appendix A are model1.mod, data1.dat, and job1.run, all written in AMPL. Additionally, the data generator file, written in Python (datagen1.py), is attached in Appendix A for further analysis.

The results show that the model works fine and correctly assign tasks in various batches to each server based on the optimum processing time. The result table is shown in Figure 1. The complete table is attached in Appendix A. Figure 2 is also provided to show the completion time for each task. By allowing the model to determine batch sizes and durations dynamically, we observe that tasks are grouped in batches that minimize idle times and reduce total completion time. Figure 3 shows the distribution of tasks across batches, highlighting how the model leverages batching to enhance scheduling efficiency. The model considers the varying processing times of tasks on different servers, assigning tasks to servers where they can be completed more quickly. This strategic assignment contributes to the minimization of total completion time, as depicted in Figure 5, which shows the assigned processing time by server and batch.

Task	t1	t10	t11	t12	t13	t14	t15	t16	t17	t18	 t55	t56	t57	t58	t59	t6	t60	t7	t8	t9
Server	s3	s4	s3	s1	s1	s3	s3	s4	s4	s4	 s1	s1	s1	s2	s2	s3	s1	s2	s2	s2
Batch	2	1	3	4	4	2	1	1	3	1	 2	1	1	3	2	1	1	1	2	1

Figure 1: A sample of tasks assigned to each server in each batch

Figure 2: Completion time for each task

Second Experiment

The dataset for Model 3 includes 60 tasks, 4 servers, and 4 resources: CPU, GPU, Memory, and Storage. The processing time for tasks is randomly assigned as an integer between 1 and 10, while setup time ranges from 0 to 3. The resource demand for each task ranges from 12 to 25, and the available resources for each server fall between 50 and 100. Task priority weights are randomly assigned as integers between 1 and 5. Additionally, the energy consumption rate for each server is randomly selected within the range of 5 to 15.

To address this model, we employed Cplex which is a well known model for solving mixed integer linear programing. We used IBM ILOG CPLEX Optimizer provided by NEOS to implement this experiment. A summary of model 3 statistics is provided in table 2.

The CPLEX solver version 22.1.1.0 efficiently tackled the Mixed-Integer Programming (MIP) problem by utilizing its advanced multi-threaded capabilities, employing four threads to enhance computational performance. The solver implemented a primal simplex algorithm, executing 154 MIP simplex iterations to methodically explore the feasible region and optimize the objective

Figure 3: Distribution of tasks across batches

Figure 4: Distribution of tasks across servers

Figure 5: Distribution of assigned processing time by server and batch

Table II: Model 3 Statistics	
Parameter	Value
Number of Equality Constraints	140
Number of Inequality Constraints	52
Number of Linear Variables	96
Number of Binary Variables	244

376

377

379

380

382

383

384

386

387

388

389

390

391

393

394

395

396

397

398

399

400

401

function, ultimately achieving an optimal integer solution with an objective value of 1728.301497 in less than two seconds. Notably, the optimization process concluded without initiating any branchand-bound nodes, indicating that the linear programming relaxation of the problem was either inherently integer-feasible or that CPLEX's sophisticated presolving and cutting-plane techniques were sufficiently effective in identifying the optimal solution without the need for further branching. The essential files associated with this model, including model2.mod, data2.dat, and job2.run, are provided in Appendix B. These files are all written in AMPL, ensuring consistency and ease of use within the modeling environment. Additionally, we have included the Python-based data generator script, datagen2.py, in Appendix B to support further analysis and replication of our results. Figure 6 presents the results for Model 3, highlighting the outcomes of our optimization efforts and offering insights into the performance and efficiency of task assignments across servers based on task priorities. The model achieves a balanced utilization of critical resources (CPU, GPU, Memory, and Storage) across all servers. Figure 7 demonstrates that the load imbalance for each resource is minimized, preventing any single resource from becoming a bottleneck. By incorporating energy consumption into the objective function, the model assigns tasks in a way that reduces the total energy usage. Servers with lower energy consumption rates are preferred for tasks with higher processing times, leading to an overall reduction in energy expenditure. The inclusion of task priority weights ensures that critical tasks are prioritized in the scheduling process. This is reflected in Figure 8, where high-priority tasks are assigned to servers capable of completing them more efficiently.

Comparing the results from both experiments, several insights emerge:

- Model Complexity versus Scalability: The nonlinear constraints in Model One (constraint 6), while allowing for dynamic batching, increase computational complexity and limit scalability.
 In contrast, the linearized Model Three handles larger datasets more efficiently, making it more suitable for real-world applications where computational resources may be limited.
- Flexibility in Scheduling: Model One offers greater flexibility in scheduling through dynamic batching, which can be advantageous in environments with highly variable workloads. However, this flexibility comes at the cost of increased computational overhead.
- Comprehensive Resource Management: Model Three's incorporation of multiple resource

types and energy considerations provides a more holistic approach to resource management. This model effectively balances the utilization of different resources and aligns with sustainability objectives by minimizing energy consumption.

Figure 6: Task assignment to servers

5 Conclusion

In this project, we developed several optimization models aimed at enhancing task assignments within data center operations. Specifically, we proposed a couple of distinct models and applied two of them to synthetic datasets to evaluate their performance and effectiveness. Through these applications, we observed that the inherent nonlinearity within the models had a detrimental impact on both computation time and overall efficiency. The complex nonlinear constraints not only increased the computational burden, making the models less practical for larger datasets, but also resulted in out-of-disk or out-of-memory errors when scaling up, thereby further limiting their applicability in real-world, large-scale environments.

We analyzed various models designed for the first scenario, which involved nonlinear constraints. Our analysis revealed that the lack of proper documentation often creates confusion, limiting researchers' ability to fully leverage these models. Among the models tested, FilMINT demonstrated the best performance for the first scenario. However, we remain uncertain whether the limitations we encountered arose from the data generation process or from resource constraints on the NEOS server—particularly limited disk space for less commonly used solvers like FilMINT—which prevented us from testing larger datasets. In contrast, the model used in the second experiment, which was linear, posed fewer challenges when applied to large-scale datasets.

For future projects, we recommend adopting a strategic approach that combines the strengths of the two models explored. By linearizing these models, we can simplify complex relationships and reduce computational overhead, thereby improving both speed and efficiency. Linearized models are typically more tractable and faster to solve, making them suitable for real-time applications and larger datasets. Integrating the two models would address resource limitations on servers, enhance energy efficiency, and accommodate task prioritization. Additionally, distributing tasks across different batches would pave the way for more efficient models and improved overall performance.

Additionally, we propose applying these refined models to real-world datasets sourced from industry leaders such as Google and Microsoft. Utilizing actual data from these organizations will

Figure 7: Server utilization and load imbalance for each server

Figure 8: Completion time of assigned tasks on servers

provide a more accurate assessment of the models' applicability and performance in practical, large-scale environments. This real-world testing is essential for validating the models' effectiveness and ensuring they can meet the operational demands of modern data centers. Ultimately, this approach will contribute to the development of more robust and efficient task assignment solutions, leading to improved data center management and resource utilization.

6 References

	Barroso, L. A., Hölzle, U. (2009). The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines. Morgan and Claypool Publishers.	439 440
	Beloglazov, A., Abawajy, J., Buyya, R. (2012). "Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing." Future Generation Computer Systems, 28(5), 755-768.	441 442 443
	Abhishek, K., Leyffer, S., and Linderoth, J. T. 2010. FilMINT: An Outer-Approximation-Based Solver for Nonlinear Mixed Integer Programs. INFORMS Journal on Computing 22: 555-567. DOI:10.1287/ijoc.1090.0373.	444 445 446
	Quesada, I. and I. E. Grossmann. 1992. An LP/NLP based branch-and-bound algorithm for convex MINLP optimization problems. Computers and Chemical Engineering 16: 937-947.	447 448
	IBM. 2023. IBM ILOG CPLEX Optimization Studio. Version 22.1.1.0. IBM. www.ibm.com/precplex-optimization-studio.	oducts/ilog-
•	Koomey, J. G. (2011). "Growth in data center electricity use 2005 to 2010." Analytics Press.	451
	Kliazovich, D., Bouvry, P., Khan, S. U. (2010). "GreenCloud: a packet-level simulator of energy-aware cloud computing data centers." The Journal of Supercomputing, 62(3), 1263-1283.	452 453 454
	Garg, S. K., Yeo, C. S., Anandasivam, A., Buyya, R. (2011). "Energy-efficient scheduling of HPC applications in cloud computing environments." Computing, 91(9), 1199-1219.	455 456
	OpenAI. (2024). Generative Pre-trained Transformer (November 7 Version). Retrieved from https://chat.openai.com	457 458
•	Anthropic. (2024). Claude [Large Language Model]. Retrieved from https://www.anthropic.com	m ₅ claude
•	Overleaf. (2024). [Online LaTeX Editor]. Retrieved from https://www.overleaf.com	460
•	Google Inc. (2019). Google Cluster Data V3.	461
	Fourer, R., Gay, D. M., & Kernighan, B. W. (2002). AMPL: A Modeling Language for Mathematical Programming (2nd ed.). Duxbury Press/Brooks/Cole Publishing Company.	462 463
	AMPL Optimization Inc. (2024). AMPL [Mathematical Programming Software]. Retrieved from https://ampl.com	464 465
	NEOS Server. (2024). Wisconsin Institute for Discovery at the University of Wisconsin in Madison. Retrieved from https://neos-server.org	466 467
	Vidyarthi, D. P., & Bhattacharya, B. (2008). Scheduling in distributed computing systems: Analysis, design and models. Springer.	468 469
•	Marinescu, D. C. (2013). Cloud computing: Theory and practice. Morgan Kaufmann.	470
•	Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Retrieved from https://matplotl	ibnorg/
•	The pandas development team. (2023).Zenodo. https://doi.org/10.5281/zenodo.3509134	472
	Plotly Technologies Inc. (2023). Plotly: Open-source graphing library for Python. Retrieved from https://plotly.com/python/	473 474
	Microsoft. (2021). Azure Data Center Workload Dataset. Microsoft Research. Retrieved from https://github.com/Azure/azure-datacenter-workload-dataset	475 476
•	GitHub. (2024). GitHub Copilot. GitHub. Retrieved from https://github.com/features/copilo	t 477
	CBRE Group, Inc. (2022). Data Center Solutions Market Update. Retrieved from https://www.cbre.com/.	478 479
	Uptime Institute. (2022). Global Data Center Survey. Retrieved from https://uptimeinstitucom/.	1 tae.

• Cushman & Wakefield. (2022). Global Data Center Market Comparison. Retrieved from https://www.cushmanwakefield.com/.

483

484

485

486

488

490

491

492

493

494

496

497

500

501

502

504

506

508

510

513

514

515

516

517

518

520

521

522

523

524

525

528

- Statista. (2023). Number of data centers worldwide from 2015 to 2022, with forecasts until 2025. Retrieved from https://www.statista.com/.
- Turner & Townsend. (2022). Data Center Cost Index. Retrieved from https://www.turnerandtownsend.com/.
- Google. (2023). Google Data Centers. Retrieved from https://www.google.com/about/datacenters/.
- Microsoft. (2023). Inside Microsoft's Datacenters. Retrieved from https://www.microsoft.com/en-us/datacenters.
- Amazon Web Services (AWS). (2023). AWS Cloud Products. Retrieved from https://aws.amazon.com/products/.
- Microsoft Azure. (2023). Azure Products by Category. Retrieved from https://azure.microsoft.com/.
- Google Cloud. (2023). Google Cloud Services. Retrieved from https://cloud.google.com/products/.
- IDC (International Data Corporation). (2021). Worldwide Big Data and Analytics Software Forecast. Retrieved from https://www.idc.com/.
- Gartner. (2022). Emerging AI and ML Use Cases in Data Centers. Retrieved from https://www.gartner.com/.
- Akamai Technologies. (2023). Content Delivery Network (CDN) Services. Retrieved from https://www.akamai.com/.
- Cisco. (2023). Internet of Things (IoT). Retrieved from https://www.cisco.com/.
- Bank for International Settlements (BIS). (2021). Technology in Financial Services. Retrieved from https://www.bis.org/.
- International Energy Agency (IEA). (2021). Data Centres and Data Transmission Networks. Retrieved from https://www.iea.org/reports/data-centres-and-data-transmission-networks.
- Koomey, J. (2011). Growth in Data Center Electricity Use 2005 to 2010. Analytics Press. Retrieved from http://www.analyticspress.com/datacenters.html.
- ASHRAE Technical Committee 9.9. (2021). Thermal Guidelines for Data Processing Environments. Retrieved from https://www.ashrae.org/.
- ENISA (European Union Agency for Cybersecurity). (2022). Cyber Threat Landscape Report. Retrieved from https://www.enisa.europa.eu/.
- European Commission. (2020). General Data Protection Regulation (GDPR). Retrieved from https://gdpr.eu/.
- Supply Chain Management Review. (2021). Data Center Supply Chain Challenges. Retrieved from https://www.scmr.com/.
- Cardosa, M., Singh, A., Mirhoseini, A., & Bruno, J. (2009). Exploiting Dynamic Resource Allocation for Efficient Parallel Data Processing in the Cloud. IEEE Cloud.
- Beloglazov, A., Buyya, R., Lee, Y. C., & Zomaya, A. (2011). A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems. Advances in Computers, Elsevier.
- Gmach, D., Rolia, J., Cherkasova, L., & Kemper, A. (2009). Resource Pool Management: Reactive versus Proactive or Let's be Friends. IEEE Computer Society.
- Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts (10th ed.). Wiley.

• Xu, J., & Fortes, J. A. B. (2010). Multi-Objective Virtual Machine Placement in Virtualized Data Center Environments. IEEE/ACM International Conference on Green Computing and Communications.

- Mishra, M., & Sahoo, A. (2011). On Theory of VM Placement: Anomalies in Existing Methodologies and Their Mitigation Using a Novel Vector Based Approach. IEEE Cloud.
- Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified Data Processing on Large Clusters. Communications of the ACM, 51(1), 107-113.
- Kumar, V., Grama, A., Gupta, A., & Karypis, G. (2003). Introduction to Parallel Computing. Addison-Wesley.
- The Green Grid. (2020). Green Grid Data Center Power Efficiency Metrics: PUE and DCiE. Retrieved from https://www.thegreengrid.org/.
- Fan, X., Weber, W.-D., & Barroso, L. A. (2007). Power Provisioning for a Warehouse-sized Computer. ACM SIGARCH Computer Architecture News, 35(2), 13-23.
- Beloglazov, A., & Buyya, R. (2012). Optimal Online Deterministic Algorithms and Adaptive Heuristics for Energy and Performance Efficient Dynamic Consolidation of Virtual Machines in Cloud Data Centers. Concurrency and Computation: Practice and Experience, 24(13), 1397-1420.
- ASHRAE Datacom Series. (2015). Liquid Cooling Guidelines for Datacom Equipment Centers. American Society of Heating, Refrigerating and Air-Conditioning Engineers.
- Shehabi, A., Smith, S. J., Masanet, E., & Koomey, J. (2018). Data center growth in the United States: decoupling the demand for services from electricity use. Energy & Environmental Science, 11(3), 623-635.
- Google Sustainability. (2023). Our Data Centers: Efficiency and Sustainability. Retrieved from https://sustainability.google/projects/data-centers/.

554

• model 1 scenario 3 result

Table III: Model 1 Scenario 3 Results

Task	Demand	Server	Resource	Batch
t1	8	s3	30	2
t10	6	s4	28	1
t11	7	s3	30	3
t12	6	s1	24	4
t13	7	s1	24	4
t14	7	s3	30	2
t15	3	s3	30	1
t16	3	s4	28	1
t17	6	s4	28	3
t18	5	s4	28	1
t19	5	s4	28	$\overline{2}$
t2	8	s4	28	$\frac{-}{2}$
t20	6	s2	22	3
t21	3	s3	30	1
t22	6	s3	30	3
t23	4	s4	28	1
t24	7	s3	30	4
t25	8	s1	24	4
t26	3	s3	30	1
t27	8	s4	28	2
t28	4	s4	28	1
t29	3	s3	30	1
t3	3	s4	28	1
t30	6	s3	30	1
t31	8	s3	30	4
t32	6	s2	$\frac{30}{22}$	3
t33	5	s1	24	2
t34	3	s1	24	1
t35	4	s3	30	1
t36	3	s3	30	1
t37	8	s1	24	3
t38	3	s2	22	1
t39	8	s3	30	3
t4	4	s2	$\frac{33}{22}$	1
t40	7	s3	30	3
t41	7	s3	30	4
t42	3	s1	24	1
t43	4	s2	22	2
t44	3	s1	24	1
t45	7	s1	24	2
t46	8	s3	30	2
t47	4	s1	$\frac{30}{24}$	1
t48	5	s2	$\frac{24}{22}$	3
t49	5	s2	$\frac{22}{22}$	1
t5	6	s2 s1	$\frac{22}{24}$	3
t50	8	s3	30	4
t50	4	s3	30	1
t51	3	s1	24	2
t52	6	s_3	30	$\frac{2}{2}$
t54	6	s1	24	3
t55	8	s1	$\frac{24}{24}$	2
- 000		D.I.	2-1	

Continued on next page

Table III: Model 1 Scenario 3 Results

Task	Demand	Server	Resource	Batch
t56	3	s1	24	1
t57	3	s1	24	1
t58	5	s2	22	3
t59	6	s2	22	2
t6	3	s3	30	1
t60	3	s1	24	1
t7	5	s2	22	1
t8	8	s2	22	2
t9	4	s2	22	1

• model1.mod

```
556
   # Scenario 3
   # Batch Scheduling with Dynamic Batch Sizes and Durations
                                                                                      559
   # Sets and Indices
                                                                                      560
   set T; # Set of tasks
                                                                                      561
   set S; # Set of servers
                                                                                      562
   param N integer > 0; # Number of batches
                                                                                      563
   set K; # Set of batches
                                                                                      564
                                                                                      565
   # Parameters
10
                                                                                      566
   param p {T, S} >= 0; # Processing time required to complete task i
                                                                                      567
       on server j
                                                                                      568
                            # Resource demand of task i
   param d {T} >= 0;
                                                                                      569
   param r {S} >= 0;
                            # Resource capacity of server j
                                                                                      570
14
                                                                                      571
   # Decision Variables
15
                                                                                      572
   var x {T, S, K} binary; # 1 if task i is assigned to server j in
16
                                                                                      573
       batch k
                                                                                      574
   var s \{K\} >= 0;
                               # Start time of batch k
                                                                                      575
17
   var D {K} >= 0;
                               # Duration of batch k
18
                                                                                      576
   var C {T} >= 0;
                               # Completion time of task i
19
                                                                                      577
                                                                                      578
20
   # Objective Function
   minimize TotalCompletionTime:
                                                                                      580
       sum {i in T} C[i];
23
                                                                                      581
24
                                                                                      582
   # Constraints
25
                                                                                      583
26
                                                                                      584
   # 1. Assignment Constraint
27
                                                                                      585
   subject to Assignment {i in T}:
28
                                                                                      586
        sum {j in S, k in K} x[i,j,k] = 1;
                                                                                      587
29
30
                                                                                      588
   # 2. Resource Capacity Constraints
                                                                                      589
31
   subject to ResourceCapacity {j in S, k in K}:
32
                                                                                      590
        sum {i in T} d[i] * x[i,j,k] \le r[j];
33
                                                                                      591
                                                                                      592
34
   # 3. Batch Duration Constraints
                                                                                      593
35
   subject to BatchDuration {i in T, j in S, k in K}:
36
                                                                                      594
       D[k] >= p[i,j] * x[i,j,k];
37
                                                                                      595
38
                                                                                      596
   # 4. Batch Sequencing Constraints
39
                                                                                      597
   subject to BatchSequencing {k in K: k < N}:</pre>
40
                                                                                      598
       s[k+1] >= s[k] + D[k];
41
                                                                                      599
   # 5. Batch Start Time
                                                                                      601
   subject to BatchStartTime:
                                                                                      602
       s[1] >= 0;
45
                                                                                      603
46
                                                                                      604
   # 6. Completion Time Calculation
47
                                                                                      605
   subject to CompletionTime {i in T}:
48
                                                                                      606
        C[i] = sum \{j in S, k in K\} (s[k] + p[i,j]) * x[i,j,k];
49
                                                                                      607
```

• data1.dat

```
610
  set T := t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17
      t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30 t31 t32 t33
                                                                                 612
      t34 t35 t36 t37 t38 t39 t40 t41 t42 t43 t44 t45 t46 t47 t48 t49
                                                                                 613
      t50 t51 t52 t53 t54 t55 t56 t57 t58 t59 t60;
                                                                                 614
  set S := s1 s2 s3 s4;
                                                                                 615
  param N := 4;
                                                                                 616
  set K := 1 2 3 4;
                                                                                 617
                                                                                 618
 param p : s1 s2 s3 s4 :=
                                                                                 619
 t1 7 7 1 5
                                                                                 620
8 t2 9 8 7 5
                                                                                 621
```

```
t3 8 6 10 4
                                                                                                  622
    t4 9 3 5 3
                                                                                                  623
    t5 2 10 5 9
11
                                                                                                  624
    t6 10 3 5 2
12
                                                                                                  625
    t7 2 6 8 9
13
                                                                                                  626
    t8 2 6 7 6
14
                                                                                                  627
    t9 10 4 9 8
15
                                                                                                  628
    t10 8 9 5 1
16
                                                                                                  629
    t11 9 1 2 7
17
                                                                                                  630
    t12 1 10 8 6
                                                                                                  631
18
    t13 4 6 2 4
                                                                                                  632
19
    t14 10 4 4 3
20
                                                                                                  633
    t15 9 8 2 2
21
                                                                                                  634
    t16 6 9 8 2
22
                                                                                                  635
   t17 5 9 5 2
23
                                                                                                  636
   t18 9 6 9 4
24
                                                                                                  637
   t19 10 9 10 5
25
                                                                                                  638
   t20 8 2 10 7
26
                                                                                                  639
    t21 6 10 4 5
27
                                                                                                  640
    t22 3 4 3 1
28
                                                                                                  641
    t23 10 5 8 2
29
                                                                                                  642
   t24 2 3 3 1
                                                                                                  643
30
   t25 2 9 7 9
31
                                                                                                  644
    t26 5 9 4 4
32
                                                                                                  645
    t27 10 7 10 5
33
                                                                                                  646
    t28 8 8 6 2
34
                                                                                                  647
    t29 6 10 2 8
35
                                                                                                  648
    t30 10 6 4 4
                                                                                                  649
36
    t31 1 5 2 4
37
                                                                                                  650
    t32 6 3 6 7
                                                                                                  651
38
    t33 1 2 3 4
39
                                                                                                  652
40
    t34 1 10 9 10
                                                                                                  653
    t35 2 1 2 4
41
                                                                                                  654
    t36 10 10 2 7
42
                                                                                                  655
    t37 2 6 2 1
43
                                                                                                  656
    t38 10 1 4 3
44
                                                                                                  657
    t39 2 8 4 1
45
                                                                                                  658
    t40 1 9 7 10
46
                                                                                                  659
    t41 2 5 2 4
47
                                                                                                  660
    t42 2 5 6 7
48
                                                                                                  661
    t43 3 1 9 8
49
                                                                                                  662
    t44 1 10 2 7
50
                                                                                                  663
    t45 4 5 6 8
51
                                                                                                  664
52
    t46 10 3 4 1
                                                                                                  665
53
    t47 3 3 6 9
                                                                                                  666
    t48 5 2 10 8
54
                                                                                                  667
    t49 3 1 8 7
55
                                                                                                  668
    t50 10 9 5 6
56
                                                                                                  669
    t51 7 5 3 9
57
                                                                                                  670
    t52 1 8 2 6
                                                                                                  671
58
    t53 1 9 5 3
                                                                                                  672
59
    t54 4 8 6 10
60
                                                                                                  673
    t55 5 6 10 10
                                                                                                  674
61
    t56 3 5 7 7
62
                                                                                                  675
    t57 2 1 10 4
                                                                                                  676
63
    t58 6 3 4 4
64
                                                                                                  677
    t59 8 7 10 7
65
                                                                                                  678
    t60 1 7 10 7
66
                                                                                                  679
67
                                                                                                  680
68
                                                                                                  681
   param d :=
69
                                                                                                  682
   t1 8
70
                                                                                                  683
71
   t2 8
                                                                                                  684
72
   t3 3
                                                                                                  685
73
   t4 4
                                                                                                  686
   t5 6
                                                                                                  687
```

```
t6 3
                                                                                                                 688
     t7 5
                                                                                                                 689
     t8 8
77
                                                                                                                 690
     t9 4
                                                                                                                 691
     t10 6
79
                                                                                                                 692
     t11 7
80
                                                                                                                 693
     t12 6
81
                                                                                                                 694
     t13 7
82
                                                                                                                 695
     t14 7
83
                                                                                                                 696
     t15 3
84
                                                                                                                 697
     t16 3
85
                                                                                                                 698
     t17 6
86
                                                                                                                 699
     t18 5
87
                                                                                                                 700
     t19 5
88
                                                                                                                 701
     t20 6
89
                                                                                                                 702
     t21 3
90
                                                                                                                 703
     t22 6
91
                                                                                                                 704
     t23 4
92
                                                                                                                 705
     t24 7
93
                                                                                                                 706
     t25 8
94
                                                                                                                 707
     t26 3
95
                                                                                                                 708
     t27 8
96
                                                                                                                 709
     t28 4
                                                                                                                 710
     t29 3
98
                                                                                                                 711
     t30 6
99
                                                                                                                 712
     t31 8
100
                                                                                                                 713
     t32 6
101
                                                                                                                 714
     t33 5
102
                                                                                                                 715
103
     t34 3
                                                                                                                 716
104
     t35 4
                                                                                                                 717
105
     t36 3
                                                                                                                 718
     t37 8
106
                                                                                                                 719
     t38 3
                                                                                                                 720
     t39 8
108
                                                                                                                 721
     t40 7
109
                                                                                                                 722
     t41 7
110
                                                                                                                 723
     t42 3
111
                                                                                                                 724
     t43 4
112
                                                                                                                 725
     t44 3
113
                                                                                                                 726
     t45 7
114
                                                                                                                 727
     t46 8
115
                                                                                                                 728
     t47 4
116
                                                                                                                 729
117
     t48 5
                                                                                                                 730
118
     t49 5
                                                                                                                 731
     t50 8
119
                                                                                                                 732
     t51 4
120
                                                                                                                 733
     t52 3
121
                                                                                                                 734
     t53 6
122
                                                                                                                 735
     t54 6
123
                                                                                                                 736
     t55 8
124
                                                                                                                 737
     t56 3
125
                                                                                                                 738
     t57 3
126
                                                                                                                 739
     t58 5
127
                                                                                                                 740
     t59 6
128
                                                                                                                 741
     t60 3
129
                                                                                                                 742
130
                                                                                                                 743
131
                                                                                                                 744
     param r :=
                                                                                                                 745
132
     s1 24
133
                                                                                                                 746
     s2 22
134
                                                                                                                 747
     s3 30
                                                                                                                 748
135
     s4 28
136
                                                                                                                 749
137
     ;
                                                                                                                 750
751
```

• job1.run 752

```
# Load the model file
   #model model1_scenario3.mod;
                                                                                          756
   # Load the data file
                                                                                          757
   #data data1.dat;
                                                                                          758
                                                                                          759
                                                                                          760
   # Solve the model
                                                                                          761
                                                                                          762
10
                                                                                          763
   # Display the decision variables and parameters
11
                                                                                          764
   display x;
   display s;
                                                                                          766
   display D;
14
                                                                                          767
   display C;
                                                                                          768
769
```

• datagen1.py

```
2
                                                                                     773
3
                                                                                     774
   import random
4
                                                                                     775
   import math
                                                                                     776
                                                                                     777
   # Set random seed for reproducibility
                                                                                     778
   random.seed(0)
                                                                                     779
   num_tasks = 60
10
                                                                                     781
   num_servers = 4
11
                                                                                     782
   #num_batches = 8
12
                                                                                     783
   batch_duration = 10
13
                                                                                     784
14
                                                                                     785
15
                                                                                     786
   tasks = [f"t{i}" for i in range(1, num_tasks + 1)]
16
                                                                                     787
   servers = [f"s{j}" for j in range(1, num_servers + 1)]
17
                                                                                     789
19
                                                                                     790
   # Generate processing times
20
                                                                                     791
21
   processing_times = {}
                                                                                     792
   for t in tasks:
22
                                                                                     793
        processing_times[t] = {}
23
                                                                                     794
        for s in servers:
24
                                                                                     795
            processing_times[t][s] = random.randint(1, 10)
25
                                                                                     796
                                                                                     797
26
27
   # Generate resource demands
                                                                                     798
   resource_demands = {t: random.randint(3, 8) for t in tasks}
   # Generate resource capacities
   resource_capacities = {s: random.randint(20, 30) for s in servers}
31
                                                                                     802
32
                                                                                     803
   # Compute total processing time (minimum across servers for each task)
33
                                                                                     804
   total_processing_time = 0
34
                                                                                     805
   for t in tasks:
35
                                                                                     806
       min_p = min(processing_times[t][s] for s in servers)
                                                                                     807
36
        total_processing_time += min_p
37
                                                                                     808
   # Compute total processing capacity per batch
38
   processing_capacity_per_batch = len(servers) * batch_duration
40
                                                                                     811
41
   # Estimate minimum number of batches based on processing time
                                                                                     812
   min_batches_processing = math.ceil(total_processing_time /
42
                                                                                     813
       processing_capacity_per_batch)
                                                                                     814
43
                                                                                     815
   # Compute total resource demand
44
                                                                                     816
   total_resource_demand = sum(resource_demands[t] for t in tasks)
45
                                                                                     817
                                                                                     818
46
   # Compute total resource capacity per batch
                                                                                     819
```

```
total_resource_capacity_per_batch = sum(resource_capacities[s] for s
       in servers)
                                                                                   822
49
   # Estimate minimum number of batches based on resource capacities
                                                                                   823
   min_batches_resource = math.ceil(total_resource_demand /
                                                                                   824
       total_resource_capacity_per_batch)
                                                                                   825
52
                                                                                   826
   # Compute the overall minimum number of batches required
                                                                                   827
53
   min_batches_required = max(min_batches_processing,
54
                                                                                   828
       min_batches_resource)
                                                                                   829
                                                                                   830
   # Print the minimum number of batches required
                                                                                    831
   #print(f"Minimum number of batches required: {min_batches_required}")
                                                                                   833
   batches = [str(k) for k in range(1, min_batches_required + 1)]
                                                                                   834
59
   # Write data to AMPL data file
60
                                                                                   835
   with open('data_synthetic_dec1.dat', 'w') as f:
61
                                                                                   836
       # Write sets
62
                                                                                   837
       f.write('set T := ' + ' '.join(tasks) + ';\n')
                                                                                   838
63
       f.write('set S := ' + ' '.join(servers) + ';\n')
64
                                                                                   839
       f.write(f'param N := {min_batches_required};\n')
65
                                                                                   840
       f.write('set K := ' + ' '.join(batches) + ';\n\n')
       #f.write(f'param D0 := {batch_duration};\n')
                                                                                   843
       # Write processing times
                                                                                   844
69
       f.write('param p : ' + ' '.join(servers) + ' :=\n')
                                                                                   845
70
       for t in tasks:
71
                                                                                   846
            f.write(t + ', ')
72
                                                                                   847
            for s in servers:
                                                                                   848
73
                f.write(str(processing_times[t][s]) + ', ')
                                                                                   849
74
            f.write('\n')
                                                                                   850
75
       f.write(';\n\n')
                                                                                    851
        # Write resource demands
       f.write('param d :=\n')
                                                                                    854
       for t in tasks:
80
                                                                                    855
            f.write(t + ' ' + str(resource_demands[t]) + '\n')
81
                                                                                   856
       f.write(';\n\n')
82
                                                                                   857
83
                                                                                   858
        # Write resource capacities
                                                                                   859
84
        f.write('param r :=\n')
85
                                                                                   860
        for s in servers:
86
                                                                                   861
            f.write(s + ' ' + str(resource_capacities[s]) + '\n')
        f.write(';\n')
                                                                                   863
864
```

8 Appendix B

• model2.mod

```
# Optimization Model3
                                                                                     869
   # Objective: Minimize weighted completion time, energy consumption,
                                                                                     870
      and load imbalance
                                                                                     871
                                                                                     872
                                                                                     873
   # Sets
                                                                                     874
                # Set of Tasks
   set T;
                                                                                      875
                # Set of Servers
   set S;
                                                                                      876
                # Set of Resources
   set R;
                                                                                      877
                                                                                     878
10
   # Parameters
11
                                                                                     879
   param w {T};
                                         # Priority weight of task i
12
                                                                                     880
   param e {S};
                                         # Energy consumption rate of server
                                                                                     881
                                                                                     882
```

866

```
param p {T, S};
                                          # Processing time of task i on
       server j
   param S_time {T, S};
                                         # Setup time between task i and
                                                                                      885
       server j
                                                                                      886
   param d {T, R};
                                         # Demand of resource k by task i
                                                                                      887
   param r {S, R};
                                          # Capacity of resource k on server j
17
                                                                                      888
   param alpha;
                                          # Scaling coefficient for energy
18
                                                                                      889
       consumption
                                                                                      890
   param beta;
                                          # Scaling coefficient for load
                                                                                      891
19
       imbalance
                                                                                      892
   param M;
                                          # Large constant for server
                                                                                      893
20
       activation constraints
                                                                                      894
21
                                                                                      895
   # Precomputed Parameters
22
                                                                                      896
   param sum_r_k {k in R} := sum {j in S} r[j, k]; # Sum of capacities
                                                                                      897
       for each resource
                                                                                      898
24
                                                                                      899
   # Decision Variables
25
                                                                                      900
   var x {T, S} binary;
                                        # Assignment of task i to server j
26
                                                                                      901
   var y {S} binary;
                                        # Server activation indicator
27
                                                                                      902
   var C \{T\} >= 0;
                                        # Completion time of task i
28
                                                                                      903
   var E \{S\} >= 0;
                                        # Energy consumption of server j
                                                                                      904
   var U \{S, R\} >= 0;
                                        # Utilization of resource k on
                                                                                      905
       server j
                                                                                      906
   var L \{S, R\} >= 0;
                                        # Load imbalance of resource k on
                                                                                      907
       server j
                                                                                      908
32
                                                                                      ana
   # Objective Function
33
                                                                                      910
   minimize Z:
                                                                                      911
34
        sum {i in T} w[i] * C[i]
35
                                                                                      912
        + alpha * sum {j in S} E[j]
                                                                                      913
36
        + beta * sum {j in S, k in R} L[j, k];
                                                                                      914
37
                                                                                      915
38
   # Constraints
                                                                                      916
39
40
                                                                                      917
   # 1. Assignment Constraint
41
                                                                                      918
   subject to Assignment {i in T}:
42
                                                                                      919
       sum {j in S} x[i, j] = 1;
43
                                                                                      920
44
                                                                                      921
   # 2. Server Activation Constraint
45
                                                                                      922
   subject to ServerActivation {j in S}:
46
                                                                                      923
        sum {i in T} x[i, j] \le M * y[j];
47
                                                                                      924
48
                                                                                      925
   # 3. Resource Capacity Constraints
49
                                                                                      926
   subject to ResourceCapacity {j in S, k in R}:
                                                                                      927
        sum {i in T} d[i, k] * x[i, j] <= r[j, k] * y[j];
51
                                                                                      928
52
                                                                                      929
   # 4. Completion Time Calculation
53
                                                                                      930
   subject to CompletionTime {i in T}:
54
                                                                                      931
        C[i] = sum {j in S} p[i, j] * x[i, j];
55
                                                                                      932
56
                                                                                      933
   # 5. Energy Consumption Calculation
57
                                                                                      934
   subject to EnergyConsumption {j in S}:
                                                                                      935
58
        E[j] = e[j] * sum {i in T} (p[i, j] + S_time[i, j]) * x[i, j];
59
                                                                                      936
60
                                                                                      937
   # 6. Utilization Ratio Calculation
61
                                                                                      938
   subject to UtilizationRatio {j in S, k in R}:
62
                                                                                      939
        U[j, k] = sum \{i in T\} d[i, k] * x[i, j] / r[j, k];
63
                                                                                      940
64
                                                                                      941
   # 7. Load Imbalance Constraints
65
                                                                                      942
   subject to LoadImbalanceUpper {j in S, k in R}:
66
                                                                                      943
       L[j, k] >= U[j, k] - (sum {j2 in S} sum {i in T} d[i, k] * x[i, k]
                                                                                      944
67
            j2] / sum_r_k[k]);
                                                                                      945
                                                                                      946
68
   subject to LoadImbalanceLower {j in S, k in R}:
                                                                                      947
69
        L[j, k] >= (sum {j2 in S} sum {i in T} d[i, k] * x[i, j2] /
                                                                                      948
```

• data2.dat

```
952
   # Data File for model 3
                                                                                                 954
   # Generated by datagen2.py
3
                                                                                                 955
4
                                                                                                 956
5
                                                                                                 957
   # Sets
6
                                                                                                 958
   set T := t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17
                                                                                                959
       t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30 t31 t32 t33
                                                                                                 960
       t34 t35 t36 t37 t38 t39 t40 t41 t42 t43 t44 t45 t46 t47 t48 t49
                                                                                                 961
        t50 t51 t52 t53 t54 t55 t56 t57 t58 t59 t60;
                                                                                                 962
   set S := s1 s2 s3 s4;
                                                                                                 963
   set R := GPU CPU Memory Storage;
9
                                                                                                 964
10
                                                                                                 965
   # Parameters
11
                                                                                                 966
   # Priority weight of each task
12
                                                                                                 967
   param w :=
13
                                                                                                 968
        t1 5
14
                                                                                                 969
         t2 2
15
                                                                                                 970
         t3 3
16
                                                                                                 971
        t4 2
17
                                                                                                 972
        t5 2
18
                                                                                                 973
        t6 3
19
                                                                                                 974
        t7 5
20
                                                                                                 975
        t8 2
21
                                                                                                 976
        t9 5
22
                                                                                                 977
        t10 2
23
                                                                                                 978
        t11 1
24
                                                                                                 979
        t12 4
25
                                                                                                 980
        t13 3
26
                                                                                                 981
        t14 3
27
                                                                                                 982
        t15 1
28
                                                                                                 983
        t16 2
                                                                                                 984
        t17 5
30
                                                                                                 985
         t18 1
31
                                                                                                 986
         t19 5
32
                                                                                                 987
         t20 4
33
                                                                                                 988
         t21 5
                                                                                                 989
34
         t22 3
                                                                                                 990
35
         t23 1
36
                                                                                                 991
37
         t24 4
                                                                                                 992
38
         t25 3
                                                                                                 993
         t26 1
                                                                                                 994
         t27 5
40
                                                                                                 995
41
         t28 1
                                                                                                 996
        t29 2
42
                                                                                                 997
        t30 4
43
                                                                                                998
        t31 3
44
                                                                                                 999
        t32 3
                                                                                                1000
45
         t33 5
46
                                                                                                1001
         t34 2
47
                                                                                                1002
         t35 4
48
                                                                                                1003
49
         t36 5
                                                                                                1004
        t37 4
                                                                                                1005
51
         t38 3
                                                                                                1006
        t39 3
                                                                                                1007
        t40 4
53
                                                                                                1008
        t41 2
54
                                                                                                1009
         t42 2
                                                                                                1010
55
         t43 3
56
                                                                                                1011
         t44 2
57
                                                                                                1012
         t45 2
                                                                                                1013
58
59
         t46 3
                                                                                                1014
```

```
t47 4
          t48 2
61
                                                                                                          1016
          t49 2
62
                                                                                                          1017
          t50 5
63
                                                                                                          1018
          t51 2
64
                                                                                                          1019
          t52 2
65
                                                                                                          1020
          t53 3
                                                                                                          1021
66
          t54 5
67
                                                                                                          1022
          t55 2
                                                                                                          1023
68
          t56
               3
                                                                                                          1024
69
          t57 3
70
                                                                                                          1025
          t58 4
71
                                                                                                          1026
          t59 1
72
                                                                                                          1027
          t60 2
73
                                                                                                          1028
74
                                                                                                          1029
75
                                                                                                          1030
     # Energy consumption rate of each server
                                                                                                          1031
76
     param e :=
77
                                                                                                          1032
          s1 12
78
                                                                                                          1033
          s2 10
79
                                                                                                          1034
          s3 8
80
                                                                                                          1035
          s4 10
                                                                                                          1036
81
82
                                                                                                          1037
 83
                                                                                                          1038
     # Processing time of each task on each server
 84
                                                                                                          1039
     param p :=
 85
                                                                                                          1040
          t1 s1 2
 86
                                                                                                          1041
          t1 s2 10
                                                                                                          1042
 87
          t1 s3 7
                                                                                                          1043
 88
          t1 s4 5
                                                                                                          1044
89
          t2 s1 5
                                                                                                          1045
90
          t2 s2 9
91
                                                                                                          1046
          t2 s3 7
92
                                                                                                          1047
          t2 s4 4
93
                                                                                                          1048
          t3 s1 10
94
                                                                                                          1049
          t3 s2 5
95
                                                                                                          1050
          t3 s3 5
96
                                                                                                          1051
          t3 s4 5
97
                                                                                                          1052
          t4 s1 3
                                                                                                          1053
98
          t4 s2 5
                                                                                                          1054
99
          t4 s3 8
100
                                                                                                          1055
          t4 s4 10
101
                                                                                                          1056
          t5 s1 7
                                                                                                          1057
102
103
          t5 s2 8
                                                                                                          1058
          t5 s3 9
104
                                                                                                          1059
          t5 s4 7
105
                                                                                                          1060
          t6 s1 6
106
                                                                                                          1061
          t6 s2 8
107
                                                                                                          1062
          t6 s3
                  2
                                                                                                          1063
108
          t6
              s4 6
                                                                                                          1064
109
          t7
              s1
                  7
                                                                                                          1065
110
          t7
              s2
                  5
111
                                                                                                          1066
          t7
              s3 2
                                                                                                          1067
112
          t7
              s4 6
113
                                                                                                          1068
          t8 s1 6
114
                                                                                                          1069
          t8 s2 1
115
                                                                                                          1070
          t8 s3 5
116
                                                                                                          1071
          t8 s4 7
117
                                                                                                          1072
          t9 s1 2
118
                                                                                                          1073
          t9 s2 3
119
                                                                                                          1074
          t9 s3 4
120
                                                                                                          1075
          t9 s4 5
                                                                                                          1076
121
          t10 s1 3
                                                                                                          1077
122
          t10 s2 2
                                                                                                          1078
123
          t10 s3 5
124
          t10 s4 1
125
                                                                                                          1080
```

126	t11	s1	8	1081
127	t11	s2	2	1082
128	t11	s3	3	1083
129	t11	s4	3	1084
130	t12	s1	6	1085
131	t12	s2	7	1086
132	t12	s3	9	1087
133	t12	s4	5	1088
134	t13	s1	10	1089
135	t13	s2	1	1090
136	t13	s3	3	1091
137	t13	s4	4	1092
138	t14	s1	5	1093
139	t14			1094
140	t14			1095
141	t14			1096
142	t15	s1	8	1097
143	t15			1098
144	t15			1099
145	t15			1100
146	t16	s1	9	1101
147	t16	s2	6	1102
148	t16	s3	4	1103
149	t16			1104
150	t17	s1	3	1105
151	t17	s2	10	1106
152	t17			1107
153	t17	s4	10	1108
154	t18	s1	5	1109
155	t18	s2	8	1110
156	t18			1111
157	t18			1112
158	t19			1113
159	t19			1114
160	t19			1115
161	t19			1116
162	t20			1117
163	t20			1118
164	t20			1119
165	t20	s4	3	1120
166	t21			1121
167	t21			1122
168	t21			1123
169	t21			1124
170	t22			1125
171	t22			1126
172	t22			1127
173	t22			1128
174	t23			1129
175	t23			1130
176	t23			1131
177	t23			1132
178	t24			1133
179	t24			1134
180	t24			1135
181	t24			1136
182	t25			1137
183	t25			1138
184	t25			1139
185	t25			1140
186	t26			1141
187	t26			1142
188	t26			1143
189	t26			1144
190	t27			1145
191	t27			1146
.		-		ı

192	t27	s3	3	1147
193	t27			1148
194	t28			1149
195	t28			1150
196	t28 t28			1151
197 198	t28			1152 1153
199	t29			1154
200	t29			1155
201	t29			1156
202	t30			1157
203	t30			1158
204	t30			1159
205	t30			1160
206	t31 t31			1161
207 208	t31			1162 1163
209	t31			1164
210	t32			1165
211	t32			1166
212	t32			1167
213	t32			1168
214	t33			1169
215	t33			1170
216	t33 t33			1171
217 218	t34			1172 1173
219	t34			1174
220	t34			1175
221	t34	s4	4	1176
222	t35			1177
223	t35			1178
224	t35			1179
225	t35 t36			1180 1181
226 227	t36			1182
228	t36			1183
229	t36	s4	5	1184
230	t37			1185
231	t37			1186
232	t37			1187
233	t37 t38			1188 1189
234 235	t38			1190
236	t38			1191
237	t38			1192
238	t39			1193
239	t39			1194
240	t39			1195
241	t39			1196
242	t40 t40			1197 1198
243 244	t40			1198
245	t40			1200
246	t41	s1	3	1201
247	t41			1202
248	t41			1203
249	t41			1204
250	t42			1205
251 252	t42 t42			1206 1207
253	t42			1207
254	t43			1209
255	t43	s2	8	1210
256	t43			1211
257	t43	s4	3	1212

258	t44	s1	4	1213
259	t44			1214
260	t44			1215
261	t44			1216
262	t45			1217
263	t45 t45			1218
264 265	t45			1219 1220
266	t46			1221
267	t46			1222
268	t46	s3	3	1223
269	t46	s4	1	1224
270	t47			1225
271	t47 t47			1226
272 273	t47			1227 1228
274	t48			1229
275	t48			1230
276	t48	s3	7	1231
277	t48			1232
278	t49			1233
279	t49			1234
280	t49 t49			1235 1236
281 282	t50			1230
283	t50			1238
284	t50	s3	5	1239
285	t50			1240
286	t51			1241
287	t51 t51			1242
288 289	t51			1243 1244
290	t52			1245
291	t52			1246
292	t52	s3	5	1247
293	t52			1248
294	t53			1249
295 296	t53 t53			1250 1251
297	t53			1251
298	t54	s1	1	1253
299	t54	s2	2	1254
300	t54			1255
301	t54			1256
302	t55 t55			1257 1258
304	t55			1250
305	t55			1260
306	t56	s1	2	1261
307	t56			1262
308	t56			1263
309	t56			1264
310 311	t57 t57			1265 1266
312	t57			1267
313	t57			1268
314	t58			1269
315	t58			1270
316	t58			1271
317	t58 t59			1272
318 319	t59			1273 1274
320	t59			1275
321	t59	s4	10	1276
322	t60			1277
323	t60	s2	8	1278

```
t60 s3 2
                                                                                                           1279
           t60 s4 6
325
                                                                                                           1280
326
                                                                                                           1281
327
                                                                                                           1282
     # Setup time between tasks on servers
328
                                                                                                           1283
     param S_time :=
                                                                                                           1284
329
          t1 s1 0
                                                                                                           1285
330
           t1 s2 2
                                                                                                           1286
331
           t1 s3 0
                                                                                                           1287
332
           t1 s4 0
333
                                                                                                           1288
          t2 s1 1
                                                                                                           1289
334
          t2 s2 3
335
                                                                                                           1290
          t2 s3 1
336
                                                                                                           1291
          t2 s4 3
337
                                                                                                           1292
          t3 s1 0
338
                                                                                                           1293
          t3 s2 0
                                                                                                           1294
339
          t3 s3 2
                                                                                                           1295
340
          t3 s4 2
341
                                                                                                           1296
           t4 s1 0
342
                                                                                                           1297
           t4 s2 0
343
                                                                                                           1298
           t4 s3 0
344
                                                                                                           1299
          t4 s4 2
345
                                                                                                           1300
           t5 s1 2
346
                                                                                                           1301
           t5 s2 1
347
                                                                                                           1302
          t5 s3 3
348
                                                                                                           1303
           t5 s4 3
349
                                                                                                           1304
          t6 s1 0
                                                                                                           1305
350
           t6
              s2
                  1
                                                                                                           1306
351
           t6
              s3
                   2
                                                                                                           1307
352
           t6
              s4 0
                                                                                                           1308
353
           t7
              s1 1
                                                                                                           1309
354
              s2
355
          t7
                  0
                                                                                                           1310
          t7
              s3 0
                                                                                                           1311
          t7
              s4 1
357
                                                                                                           1312
          t8 s1 0
358
                                                                                                           1313
          t8 s2 1
359
                                                                                                           1314
          t8 s3 1
                                                                                                           1315
360
          t8 s4 2
                                                                                                           1316
361
          t9 s1 1
362
                                                                                                           1317
           t9 s2 1
363
                                                                                                           1318
           t9 s3 2
                                                                                                           1319
364
           t9 s4 3
                                                                                                           1320
365
          t10 s1 2
                                                                                                           1321
366
367
           t10 s2 3
                                                                                                           1322
           t10 s3 0
368
                                                                                                           1323
           t10 s4 2
369
                                                                                                           1324
           t11 s1 2
370
                                                                                                           1325
          t11 s2 2
371
                                                                                                           1326
           t11 s3 0
372
                                                                                                           1327
           t11 s4 3
                                                                                                           1328
373
           t12 s1 1
                                                                                                           1329
374
           t12 s2 3
                                                                                                           1330
375
           t12 s3 3
                                                                                                           1331
376
           t12 s4 1
377
                                                                                                           1332
           t13 s1 3
378
                                                                                                           1333
           t13 s2 0
379
                                                                                                           1334
          t13 s3 2
380
                                                                                                           1335
          t13 s4 2
381
                                                                                                           1336
          t14 s1 3
                                                                                                           1337
382
           t14 s2 0
                                                                                                           1338
383
           t14 s3 0
384
                                                                                                           1339
           t14 s4 0
                                                                                                           1340
385
          t15 s1 2
                                                                                                           1341
386
          t15 s2 3
                                                                                                           1342
387
           t15 s3 2
388
                                                                                                           1343
           t15 s4 0
389
                                                                                                          1344
```

390	t16 s1	1	1345
391	t16 s2	3	1346
392	t16 s3		1347
393	t16 s4		1348
394	t17 s1		1349
	t17 s2		1350
395	t17 s2		
396	t17 s3		1351
397			1352
398	t18 s1 t18 s2		1353
399			1354
400	t18 s3		1355
401	t18 s4		1356
402	t19 s1		1357
403	t19 s2		1358
404	t19 s3		1359
405	t19 s4		1360
406	t20 s1		1361
407	t20 s2		1362
408	t20 s3		1363
409	t20 s4		1364
410	t21 s1		1365
411	t21 s2		1366
412	t21 s3	2	1367
413	t21 s4	0	1368
414	t22 s1	2	1369
415	t22 s2	0	1370
416	t22 s3	0	1371
417	t22 s4	3	1372
418	t23 s1	2	1373
419	t23 s2	0	1374
420	t23 s3	2	1375
421	t23 s4	3	1376
422	t24 s1	1	1377
423	t24 s2	1	1378
424	t24 s3	0	1379
425	t24 s4	2	1380
426	t25 s1	3	1381
427	t25 s2	2	1382
428	t25 s3	1	1383
429	t25 s4	1	1384
430	t26 s1	0	1385
431	t26 s2	3	1386
432	t26 s3		1387
433	t26 s4		1388
434	t27 s1		1389
435	t27 s2		1390
436	t27 s3		1391
437	t27 s4		1392
438	t28 s1		1393
439	t28 s2		1394
440	t28 s3		1395
441	t28 s4		1396
442	t29 s1		1397
443	t29 s2		1398
444	t29 s3		1399
445	t29 s4		1400
446	t30 s1		1400
447	t30 s1		1401
448	t30 s3		1402
448	t30 s3		L403 L404
450	t31 s1		L404 L405
451	t31 s2		L405 L406
451	t31 s2		L406 L407
	t31 s3		
453	t31 s4		L408 L409
454	t32 s1		L409 L410
455	UUZ SZ		+10

456	t32 s3 2	1411
457	t32 s4 0	1412
458	t33 s1 2	1413
459	t33 s2 0	1414
460	t33 s3 2	1415
461	t33 s4 2	1416
462	t34 s1 1	1417
463	t34 s2 1	1418
464	t34 s3 1	1419
465	t34 s4 0	1420
466	t35 s1 2	1421
467	t35 s2 2	1422
468	t35 s3 2	1423
469	t35 s4 2	1424
470	t36 s1 3	1425
471	t36 s2 3	1426
472	t36 s3 1	1427
473	t36 s4 2	1428
474	t37 s1 0	1429
475	t37 s2 3	1430
476	t37 s3 0	1431
477	t37 s4 2	1432
478	t38 s1 1	1433
479	t38 s2 1 t38 s3 3	1434
480	t38 s4 0	1435
481	t39 s1 3	1436
482 483	t39 s1 3	1437 1438
484	t39 s3 1	1430
485	t39 s4 1	1440
486	t40 s1 2	1441
487	t40 s2 3	1442
488	t40 s3 3	1443
489	t40 s4 1	1444
490	t41 s1 3	1445
491	t41 s2 0	1446
492	t41 s3 1	1447
493	t41 s4 0	1448
494	t42 s1 1	1449
495	t42 s2 3	1450
496	t42 s3 2	1451
497	t42 s4 2	1452
498	t43 s1 0	1453
499	t43 s2 0	1454
500	t43 s3 3	1455
501	t43 s4 0	1456
502	t44 s1 2	1457
503	t44 s2 3	1458
504	t44 s3 2	1459
505	t44 s4 3	1460
506	t45 s1 1 t45 s2 0	1461
507	t45 s2 0	1462
508 509	t45 s3 3	1463 1464
510	t46 s1 1	1465
511	t46 s2 0	1405
512	t46 s3 0	1400
513	t46 s4 2	1468
514	t47 s1 1	1469
515	t47 s2 3	1470
516	t47 s3 3	1471
517	t47 s4 0	1472
518	t48 s1 0	1473
519	t48 s2 0	1474
520	t48 s3 2	1475
521	t48 s4 0	1476
		·

```
t49 s1 1
                                                                                                         1477
          t49 s2 2
523
                                                                                                         1478
          t49 s3 1
524
                                                                                                         1479
          t49 s4 2
525
                                                                                                         1480
          t50 s1 2
526
                                                                                                         1481
          t50 s2 2
                                                                                                         1482
527
          t50 s3 3
528
                                                                                                         1483
          t50 s4 3
                                                                                                         1484
529
          t51 s1 2
                                                                                                         1485
530
          t51 s2 2
531
                                                                                                         1486
          t51 s3 2
                                                                                                         1487
532
          t51 s4 2
533
                                                                                                         1488
          t52 s1 1
534
                                                                                                         1489
          t52 s2 0
535
                                                                                                         1490
          t52 s3 2
536
                                                                                                         1491
          t52 s4 0
                                                                                                        1492
537
          t53 s1 2
                                                                                                         1493
538
          t53 s2 3
539
                                                                                                         1494
          t53 s3 3
540
                                                                                                         1495
          t53 s4 1
541
                                                                                                         1496
          t54 s1 3
542
                                                                                                         1497
          t54 s2 1
                                                                                                         1498
543
          t54 s3 3
544
                                                                                                         1499
          t54 s4 0
545
                                                                                                         1500
          t55 s1 0
546
                                                                                                         1501
          t55 s2 3
547
                                                                                                         1502
          t55 s3 0
                                                                                                         1503
548
          t55 s4 3
                                                                                                         1504
549
          t56 s1 1
                                                                                                         1505
550
          t56 s2 2
                                                                                                         1506
551
          t56 s3 0
                                                                                                         1507
552
          t56 s4 1
553
                                                                                                         1508
          t57 s1 2
                                                                                                         1509
          t57 s2 1
                                                                                                         1510
          t57 s3 3
556
                                                                                                         1511
          t57 s4 0
557
                                                                                                         1512
          t58 s1 1
558
                                                                                                         1513
          t58 s2 3
                                                                                                         1514
559
          t58 s3 0
560
                                                                                                         1515
          t58 s4 1
561
                                                                                                         1516
          t59 s1 1
                                                                                                         1517
562
          t59 s2 0
                                                                                                         1518
563
          t59 s3 2
564
                                                                                                         1519
565
          t59 s4 3
                                                                                                         1520
          t60 s1 3
566
                                                                                                         1521
          t60 s2 0
567
                                                                                                         1522
          t60 s3 1
568
                                                                                                         1523
          t60 s4 3
                                                                                                        1524
569
570
                                                                                                         1525
571
                                                                                                         1526
     # Demand of each resource by each task
                                                                                                         1527
572
     param d :=
573
                                                                                                         1528
          t1 GPU 1
                                                                                                         1529
574
          t1 CPU 3
                                                                                                         1530
575
              Memory 4
                                                                                                         1531
576
          t1 Storage 5
577
                                                                                                         1532
          t2 GPU 4
578
                                                                                                         1533
          t2 CPU 1
579
                                                                                                         1534
          t2 Memory 1
580
                                                                                                         1535
          t2 Storage 4
                                                                                                         1536
581
          t3 GPU 7
582
                                                                                                         1537
          t3 CPU 8
                                                                                                         1538
583
          t3 Memory 1
                                                                                                         1539
584
          t3 Storage 6
                                                                                                         1540
585
          t4 GPU 9
586
                                                                                                         1541
          t4 CPU 2
587
                                                                                                        1542
```

588	t4 Memory 1	1543
589	t4 Storage 3	1544
590	t5 GPU 8	1545
591	t5 CPU 4	1546
592	t5 Memory 1	1547
593	t5 Storage 3 t6 GPU 8	1548
594 595	t6 CPU 5	1549 1550
596	t6 Memory 4	1551
597	t6 Storage 1	1552
598	t7 GPU 9	1553
599	t7 CPU 4	1554
600	t7 Memory 5	1555
601	t7 Storage 3	1556
602	t8 GPU 8	1557
603	t8 CPU 1	1558
604	t8 Memory 9	1559
605	t8 Storage 8 t9 GPU 2	1560
606 607	t9 GPU 4	1561 1562
608	t9 Memory 8	1563
609	t9 Storage 8	1564
610	t10 GPU 9	1565
611	t10 CPU 1	1566
612	t10 Memory 9	1567
613	t10 Storage 3	1568
614	t11 GPU 7	1569
615	t11 CPU 5	1570
616	t11 Memory 2	1571
617	t11 Storage 9 t12 GPU 9	1572 1573
618 619	t12 CPU 1	1573
620	t12 Memory 7	1575
621	t12 Storage 2	1576
622	t13 GPU 5	1577
623	t13 CPU 7	1578
624	t13 Memory 8	1579
625	t13 Storage 5	1580
626	t14 GPU 4	1581
627	t14 CPU 1 t14 Memory 8	1582
628 629	t14 Storage 1	1583 1584
630	t15 GPU 1	1585
631	t15 CPU 3	1586
632	t15 Memory 1	1587
633	t15 Storage 8	1588
634	t16 GPU 1	1589
635	t16 CPU 5	1590
636	t16 Memory 1	1591
637	t16 Storage 1 t17 GPU 1	1592
638	t17 GPU 1 t17 CPU 8	1593
639 640	t17 GPU 8 t17 Memory 3	1594 1595
641	t17 Storage 4	1596
642	t18 GPU 2	1597
643	t18 CPU 1	1598
644	t18 Memory 10	1599
645	t18 Storage 7	1600
646	t19 GPU 7	1601
647	t19 CPU 6	1602
648	t19 Memory 4	1603
649	t19 Storage 9 t20 GPU 2	1604
650	t20 GPU 2 t20 CPU 9	1605
651 652	t20 Gro 9 t20 Memory 8	1606 1607
653	t20 Storage 3	1608
		1560

654	t21	GPU 5	1609
655	t21	CPU 2	1610
656		Memory 1	1611
657		Storage 1	1612
658		GPU 7	1613
659		CPU 7	1614
660 661		Memory 6 Storage 3	1615 1616
662		GPU 4	1617
663		CPU 3	1618
664		Memory 9	1619
665		Storage 1	1620
666	t24	GPU 8	1621
667	t24	CPU 4	1622
668		Memory 4	1623
669		Storage 1	1624
670		GPU 2	1625
671		CPU 9	1626
672		Memory 9 Storage 9	1627
673 674		GPU 2	1628 1629
675		CPU 8	1630
676		Memory 2	1631
677		Storage 7	1632
678	t27	GPU 5	1633
679	t27	CPU 4	1634
680	t27	Memory 9	1635
681		Storage 6	1636
682		GPU 2	1637
683		CPU 3	1638
684		Memory 1	1639
685 686		Storage 8 GPU 6	1640 1641
687		CPU 1	1642
688		Memory 1	1643
689		Storage 3	1644
690		GPU 9	1645
691	t30	CPU 1	1646
692		Memory 8	1647
693		Storage 4	1648
694		GPU 2	1649
695		CPU 7 Memory 10	1650
696 697		Storage 6	1651 1652
698		GPU 1	1653
699		CPU 7	1654
700	t32	Memory 4	1655
701		Storage 2	1656
702		GPU 1	1657
703		CPU 10	1658
704		Memory 1	1659
705		Storage 3 GPU 9	1660
706		CPU 10	1661
707 708		Memory 8	1662 1663
708		Storage 1	1664
710		GPU 4	1665
711		CPU 9	1666
712	t35	Memory 6	1667
713		Storage 6	1668
714		GPU 4	1669
715		CPU 6	1670
716		Memory 6	1671
717		Storage 2	1672
718		GPU 8	1673
719	t3/	CPU 8	1674

720	t37	Memory 4	1675
721	t37	Storage 5	1676
722	t38	GPU 1	1677
723	t38	CPU 10	1678
724	t38	Memory 7	1679
725	t38	Storage 1	1680
726	t39	GPU 2	1681
727	t39	CPU 9	1682
728	t39	Memory 8	1683
729	t39	Storage 2	1684
730	t40	GPU 9	1685
731	t40	CPU 3	1686
732	t40	Memory 1	1687
733	t40	Storage 8	1688
734	t41	GPU 9	1689
735	t41	CPU 1	1690
736		Memory 3	1691
737		Storage 9	1692
738		GPU 3	1693
739		CPU 5	1694
740		Memory 1	1695
741	l	Storage 1	1696
742		GPU 7	1697
743		CPU 4	1698
744		Memory 3	1699
745	l	Storage 9	1700
746		GPU 9 CPU 1	1701
747		Memory 9	1702
748		Storage 3	1703 1704
749 750	l	GPU 9	1704
751		CPU 1	1705
752		Memory 8	1707
753		Storage 7	1708
754	l	GPU 2	1709
755		CPU 3	1710
756	l	Memory 4	1711
757		Storage 1	1712
758		GPU 3	1713
759	t47	CPU 1	1714
760	t47	Memory 8	1715
761	t47	Storage 8	1716
762	t48	GPU 9	1717
763	t48	CPU 9	1718
764	t48	Memory 5	1719
765	!	Storage 7	1720
766	!	GPU 3	1721
767		CPU 9	1722
768		Memory 9	1723
769		Storage 2	1724
770	!	GPU 1	1725
771		CPU 1	1726
772		Memory 7	1727
773		Storage 5	1728
774		GPU 7	1729
775	l	CPU 3	1730
776	l	Memory 9	1731
777		Storage 2 GPU 1	1732
778	!	CPU 9	1733
779	!	Memory 5	1734
780 781		Storage 2	1735 1736
781 782		GPU 5	1736
	!	CPU 5	1737
783 784	l	Memory 5	1738
785	l	Storage 2	1740
	1 000		10

```
t54 GPU 5
                                                                                                   1741
          t54 CPU 9
                                                                                                   1742
          t54 Memory 1
788
                                                                                                   1743
          t54 Storage 1
789
                                                                                                   1744
          t55 GPU 2
790
                                                                                                   1745
          t55 CPU 1
                                                                                                   1746
791
          t55 Memory 8
                                                                                                   1747
792
          t55 Storage 7
                                                                                                   1748
793
          t56 GPU 5
                                                                                                   1749
794
          t56 CPU 9
                                                                                                   1750
795
          t56 Memory 7
                                                                                                   1751
796
          t56 Storage 5
                                                                                                   1752
797
          t57 GPU 5
                                                                                                   1753
798
          t57 CPU 8
799
                                                                                                   1754
          t57 Memory 4
800
                                                                                                   1755
          t57 Storage 6
801
                                                                                                   1756
          t58 GPU 7
                                                                                                   1757
802
          t58 CPU 5
                                                                                                   1758
803
          t58 Memory 1
                                                                                                   1759
804
          t58 Storage 2
805
                                                                                                   1760
          t59 GPU 8
                                                                                                   1761
806
          t59 CPU 7
                                                                                                   1762
807
          t59 Memory 2
                                                                                                   1763
          t59 Storage 7
809
                                                                                                   1764
          t60 GPU 4
810
                                                                                                   1765
          t60 CPU 3
811
                                                                                                   1766
          t60 Memory 7
812
                                                                                                   1767
          t60 Storage 6
                                                                                                   1768
813
                                                                                                   1769
814
                                                                                                   1770
815
     # Capacity of each resource on each server
                                                                                                   1771
816
817
     param r :=
                                                                                                   1772
         s1 GPU 78
818
                                                                                                   1773
          s1 CPU 100
                                                                                                   1774
         s1 Memory 88
820
                                                                                                   1775
          s1 Storage 79
821
                                                                                                   1776
         s2 GPU 84
822
                                                                                                   1777
         s2 CPU 80
823
                                                                                                   1778
         s2 Memory 74
                                                                                                   1779
824
         s2 Storage 55
                                                                                                   1780
825
          s3 GPU 70
                                                                                                   1781
826
          s3 CPU 82
                                                                                                   1782
827
          s3 Memory 76
828
          s3 Storage 75
          s4 GPU 100
830
                                                                                                   1785
          s4 CPU 66
831
                                                                                                   1786
          s4 Memory 98
832
                                                                                                   1787
          s4 Storage 82
833
                                                                                                   1788
834
                                                                                                   1789
                                                                                                   1790
835
     # Scaling coefficients and large constant
                                                                                                   1791
836
     param alpha := 0.5;
837
                                                                                                   1792
     param beta := 0.3;
838
                                                                                                   1793
                    := 1000;
839
     param M
                                                                                                   1794
840
                                                                                                   1795
                                                                                                   1796
1797
  • job2.run
                                                                                                   1798
                                                                                                   1799
    # Load the model file
                                                                                                   1800
```

```
# Solve the model
   solve;
10
                                                                                            1809
   # Display the decision variables and parameters
11
                                                                                            1810
   display x;
12
                                                                                            1811
   display C;
13
                                                                                            1812
   display E;
14
                                                                                            1813
   display U;
15
                                                                                            1814
   display L;
                                                                                            1815
```

• datagen2.py

```
1817
                                                                                         1818
   import random
                                                                                         1819
   def generate_ampl_data(num_tasks=60, num_servers=4,
                                                                                         1821
       output_file='dataset_model3_nov30.dat'):
                                                                                         1822
        # Define sets
                                                                                         1823
        tasks = [f't{i}' for i in range(1, num_tasks + 1)]
5
                                                                                         1824
        servers = [f's{j}' for j in range(1, num_servers + 1)]
6
                                                                                         1825
        resources = ['GPU', 'CPU', 'Memory', 'Storage']
7
                                                                                         1826
8
                                                                                         1827
        # Initialize data structures
9
                                                                                         1828
        w = \{\}
                                                                                         1829
10
        e = \{\}
11
                                                                                         1830
        p = \{\}
12
                                                                                         1831
        S_time = {}
                                                                                         1832
        d = \{\}
14
                                                                                         1833
        r = \{\}
15
                                                                                         1834
16
                                                                                         1835
        # Priority weights
17
                                                                                         1836
        for task in tasks:
18
                                                                                         1837
             w[task] = random.randint(1, 5)
                                                                                         1838
19
20
                                                                                         1839
        # Energy consumption rates
21
                                                                                         1840
        for server in servers:
22
                                                                                         1841
             e[server] = random.randint(5, 15)
                                                                                         1842
24
                                                                                         1843
        # Resource capacities
25
                                                                                         1844
        r = {server: {} for server in servers}
26
                                                                                         1845
        for server in servers:
27
                                                                                         1846
             for resource in resources:
                                                                                         1847
28
                 r[server][resource] = random.randint(50, 100)
                                                                                         1848
29
                                                                                         1849
30
        # Resource demands
                                                                                         1850
31
        d = {task: {} for task in tasks}
32
                                                                                         1851
        for task in tasks:
                                                                                         1852
             for resource in resources:
                                                                                         1853
                  # Generate demands that are significantly less than
                                                                                         1854
                      capacities
                                                                                         1855
                 # This helps ensure that tasks can fit on servers
36
                                                                                         1856
                 max_demand = min(r[server][resource] for server in
37
                                                                                         1857
                      servers) // 4
                                                                                         1858
                 d[task][resource] = random.randint(1, max_demand)
                                                                                         1859
38
                                                                                         1860
39
        # Processing times and setup times
                                                                                         1861
40
41
        p = \{\}
                                                                                         1862
        S_{time} = \{\}
                                                                                         1863
43
        for task in tasks:
                                                                                         1864
44
             p[task] = {}
                                                                                         1865
             S_{time[task]} = {}
45
                                                                                         1866
             for server in servers:
46
                                                                                         1867
                 p[task][server] = random.randint(1, 10)
                                                                                         1868
47
                 S_time[task][server] = random.randint(0, 3)
                                                                                         1869
48
                                                                                         1870
49
        # Feasibility Checks
                                                                                         1871
50
        # 1. Total Demand
                                  Total Capacity for each resource
                                                                                         1872
```

```
total_demand = {resource: 0 for resource in resources}
         total_capacity = {resource: 0 for resource in resources}
                                                                                              1874
         for resource in resources:
                                                                                              1875
              total_demand[resource] = sum(d[task][resource] for task in
                                                                                              1876
                   tasks)
                                                                                              1877
              total_capacity[resource] = sum(r[server][resource] for server
                                                                                              1878
                  in servers)
                                                                                              1879
              if total_demand[resource] > total_capacity[resource]:
                                                                                              1880
57
                   print(f"Adjusting_demands_for_resource_{lto_
                                                                                              1881
58
                        ensure _ feasibility.")
                                                                                              1882
                   # Scale down demands proportionally
                                                                                              1883
59
                   scaling_factor = total_capacity[resource] /
                                                                                              1884
                       total_demand[resource]
                                                                                              1885
                   for task in tasks:
                                                                                              1886
                        d[task][resource] = max(1, int(d[task][resource] *
                                                                                              1887
62
                            scaling_factor))
                                                                                              1888
                   # Recalculate total demand
63
                                                                                              1889
                   total_demand[resource] = sum(d[task][resource] for task
64
                                                                                              1890
                       in tasks)
                                                                                              1891
                                                                                              1892
65
         # 2. Ensure each task can be assigned to at least one server
                                                                                              1893
66
         for task in tasks:
67
                                                                                              1894
              assignable = False
                                                                                              1895
              for server in servers:
69
                                                                                              1896
                   can_assign = all(d[task][resource] <= r[server][resource]</pre>
                                                                                              1897
                       for resource in resources)
                                                                                              1898
                   if can_assign:
71
                                                                                              1899
                        assignable = True
72
                                                                                              1900
                        break
                                                                                              1901
73
              if not assignable:
                                                                                              1902
74
                   print(f"Adjusting_demands_for_task_{task}_to_ensure_it_
                                                                                              1903
                       can ube uassigned.")
                                                                                              1904
                   # Adjust demands to fit the smallest capacity server
76
                                                                                              1905
                   for resource in resources:
                        min_capacity = min(r[server][resource] for server in
                                                                                              1907
                                                                                              1908
                            servers)
                        d[task][resource] = min(d[task][resource],
79
                                                                                              1909
                            min_capacity)
                                                                                              1910
80
                                                                                              1911
         # Write data to file
                                                                                              1912
81
         with open(output_file, 'w') as f:
                                                                                              1913
82
              f.write("#
                                                                                              1914
83
                              -----\n")
                                                                                              1915
              f.write("\#_{\sqcup}Data_{\sqcup}File_{\sqcup}for_{\sqcup}Task_{\sqcup}Assignment_{\sqcup}to_{\sqcup}Servers_{\sqcup}Model \setminus n")
              f.write("\#_{\sqcup}Generated_{\sqcup}by_{\sqcup}generate\_data.py\n")
                                                                                              1917
              f.write("#_
                                                                                              1918
                                                                                              1919
87
                                                                                              1920
              # Sets
88
                                                                                              1921
              f.write("#||Sets\n")
89
                                                                                              1922
              f.write(f"set_{\sqcup}T_{\sqcup}:=_{\sqcup}{'_{\sqcup}'.join(tasks)};\n")
90
                                                                                              1923
              f.write(f"set_{\sqcup}S_{\sqcup}:=_{\sqcup}{'_{\sqcup}'.join(servers)};\n")
91
                                                                                              1924
              f.write(f"set_{\square}R_{\square}:=_{\square}\{'_{\square}'.join(resources)\}; \n\n")
                                                                                              1925
92
93
              # Parameters
94
95
                                                                                              1928
              # Priority weights
                                                                                              1929
96
              f.write("#_Parameters\n")
97
                                                                                              1930
              f.write("\#_{\sqcup}Priority_{\sqcup}weight_{\sqcup}of_{\sqcup}each_{\sqcup}task \setminus n")
98
                                                                                              1931
              f.write("param_{||}w_{||}:=\n")
99
                                                                                              1932
              for task in tasks:
                                                                                              1933
100
                   f.write(f"_{UUUU}{task}_{U}{w[task]}\n")
101
                                                                                              1934
              f.write(";\n\n")
                                                                                              1935
102
                                                                                              1936
103
              # Energy consumption rates
              f.write("#uEnergyuconsumptionurateuofueachuserver\n")
                                                                                              1938
```

```
f.write("param_ue_u:=\n")
                for server in servers:
                                                                                                              1940
                      f.write(f"uuuu{server}u{e[server]}\n")
                                                                                                              1941
108
                f.write(";\n\n")
                                                                                                              1942
109
                                                                                                              1943
110
                # Processing times
111
                                                                                                              1944
                f.write("\#_{\sqcup} Processing_{\sqcup} time_{\sqcup} of_{\sqcup} each_{\sqcup} task_{\sqcup} on_{\sqcup} each_{\sqcup} server \backslash n")
112
                                                                                                              1945
                f.write("param_p_:=\n")
                                                                                                              1946
113
                for task in tasks:
114
                                                                                                              1947
                      for server in servers:
115
                                                                                                              1948
                            f.write(f"_{\cup\cup\cup\cup}\{task\}_{\cup}\{server\}_{\cup}\{p[task][server]\}\n")
116
                                                                                                              1949
                f.write(";\n\n")
117
                                                                                                              1950
118
                                                                                                              1951
                # Setup times
                                                                                                              1952
119
                f.write("\#_{\sqcup}Setup_{\sqcup}time_{\sqcup}between_{\sqcup}tasks_{\sqcup}on_{\sqcup}servers \\ \verb|\| n")
120
                                                                                                              1953
                f.write("param_{\sqcup}S_{time_{\sqcup}}:=\n")
121
                                                                                                              1954
                for task in tasks:
122
                                                                                                              1955
                      for server in servers:
123
                                                                                                              1956
                            f.write(f",,,,,,,,{task},,{server},,,
                                                                                                              1957
124
                                 {S_time[task][server]}\n")
                                                                                                              1958
                f.write(";\n\n")
                                                                                                              1959
125
                                                                                                              1960
                # Resource demands
                                                                                                              1961
                f.write("#_Demand_of_each_resource_by_each_task\n")
                                                                                                              1962
                f.write("param_d_:=\n")
129
                                                                                                              1963
                for task in tasks:
130
                                                                                                              1964
                      for resource in resources:
131
                                                                                                              1965
                            f.write(f"uuuu{task}u{resource}u
132
                                                                                                              1966
                                 {d[task][resource]}\n")
                                                                                                              1967
                f.write(";\n\n")
                                                                                                              1968
133
                                                                                                              1969
134
                # Resource capacities
                f.write("#\_Capacity\_of\_each\_resource\_on\_each\_server\n")
                                                                                                              1971
                f.write("param_{\sqcup}r_{\sqcup}:=\n")
                for server in servers:
                                                                                                              1973
139
                      for resource in resources:
                                                                                                              1974
                            f.write(f"_{\sqcup \sqcup \sqcup \sqcup \sqcup} \{server\}_{\sqcup} \{resource\}_{\sqcup}
140
                                                                                                              1975
                                 {r[server][resource]}\n")
                                                                                                              1976
                f.write(";\n\n")
141
                                                                                                              1977
                                                                                                              1978
142
                # Scaling coefficients and large constant
                                                                                                              1979
143
                f.write("#uScalingucoefficientsuandulargeuconstant\n")
144
                                                                                                              1980
                f.write("paramualphau:=u0.5;\n")
                                                                                                              1981
                f.write("paramubeta_{\sqcup\sqcup}:=_{\sqcup}0.3;\n")
                f.write("param_{\square}M_{\square\square\square\square\square}:=_{\square}1000;\n\n")
                                                                                                              1983
147
148
                                                                                                              1984
                f.write("#_
                                                                                                              1985
149
                                                                                                              1986
                \texttt{f.write("\#_{\sqcup}End_{\sqcup}of_{\sqcup}Data_{\sqcup}File \n")}
150
                                                                                                              1987
                f.write("#
151
                                                                                                              1988
                                                                                                              1989
152
                                                                                                              1990
           print(f"Data_file_'{output_file}'_generated_successfully_with_
                                                                                                              1991
153
                {num\_tasks}_{\sqcup}tasks_{\sqcup}and_{\sqcup}{num\_servers}_{\sqcup}servers."
                                                                                                              1993
     if __name__ == "__main__":
                                                                                                              1994
155
           generate_ampl_data()
                                                                                                              1995
```