Optimizing Resource Allocation and Time Completion in
Data Centers Using Integer Linear Programming

Daniel Safavisohi! and Dr. Melkonian?

!Graduate Student, Mathematics Department, Ohio University
2Associate Professor, Mathematics Department, Ohio University

December 13, 2024

Abstract

This study presents optimization models for task assignment and resource allocation in
data centers, with a focus on minimizing task completion time, energy consumption, and load
imbalance. Two distinct models are developed: one leveraging batching with dynamic sizes and
durations, and another incorporating multi-resource allocation and energy-aware scheduling.
Experimental evaluations on synthetic datasets demonstrate that the first model effectively
assigns tasks to servers within predefined batches, while the second model optimizes task
prioritization and load balancing across resources. The results highlight the computational
challenges associated with nonlinear constraints and the advantages of linearized models for
scalability and efficiency. Future work includes integrating the strengths of both models and
applying them to real-world datasets from industry leaders to enhance their applicability and
performance in large-scale environments.

1 Introduction

In the era of big data and cloud computing, data centers play a pivotal role in processing and
storing vast amounts of information. Efficient resource allocation and minimizing task completion
time are critical for optimizing performance and reducing operational costs in data centers. Integer
Linear Programming (ILP) offers a mathematical approach to model and solve such optimization
problems. This project focuses on formulating an ILP model to optimize resource allocation and
task scheduling in data centers, aiming to minimize total completion time while adhering to resource
constraints.

2 Overview of Data Centers

Data centers are rapidly expanding across the globe to meet the escalating demand for digital ser-
vices. The United States leads this growth, hosting approximately 2,670 data centers—the highest
number of any country—contributing to a global total of over 8,000 facilities spread across regions
like Europe, Asia-Pacific, and Latin America. Constructing and operating these centers involve
substantial investments; building costs can range from $ 10 million for small to medium-sized facili-
ties to over $1 billion for hyperscale data centers developed by tech giants such as Amazon, Google,
and Facebook. Operational expenses, including energy consumption, maintenance, staffing, and
technological upgrades, can amount to millions of dollars annually. Notable projects like Google’s
$2.5 billion data center in Iowa and Microsoft’s investments exceeding $1 billion in various lo-
cations underscore the significant financial commitment required. The construction timeline for
a data center typically spans 18 to 24 months, influenced by factors such as the facility’s scale,
technological requirements, regulatory approvals, and site-specific challenges.

2.1 Types of Projects Handled by Data Centers

Data centers are the backbone of modern digital infrastructure, supporting a wide array of projects
critical to today’s business operations and services. They provide the essential foundation for cloud
computing platforms like Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Plat-
form, enabling scalable and flexible computing resources. In the realm of big data and analytics,

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

data centers process massive datasets for industries such as finance, healthcare, and retail, driv-
ing informed decision-making and strategic insights. They are instrumental in powering artificial
intelligence (AI) and machine learning (ML) applications, hosting the computational resources
required to train complex models. Additionally, data centers facilitate content delivery networks
(CDNs), ensuring the rapid and efficient global distribution of media content and web applica-
tions. They manage data from the Internet of Things (IoT), overseeing interconnected devices
and sensors used in smart cities, industrial automation, and consumer electronics. In financial
services, data centers support high-frequency trading platforms, online banking, and transaction
processing systems, maintaining the robustness and security of financial transactions. Further-
more, they run critical enterprise applications like Enterprise Resource Planning (ERP), Customer
Relationship Management (CRM), and Supply Chain Management (SCM) systems, underpinning
the operational efficiency of businesses worldwide.

2.2 Main Challenges Facing Data Centers Today

Data centers today face several significant challenges that impact their efficiency, cost-effectiveness,
and sustainability. Energy consumption and environmental impact are major concerns, with data
centers accounting for about 1 percent of global electricity use. This has led to a concerted
effort to reduce carbon footprints through the adoption of renewable energy sources and more
efficient technologies. Heat dissipation and cooling present another critical issue; managing the heat
generated by high-density computing equipment is essential, and traditional cooling methods are
energy-intensive. Innovations like liquid cooling and free-air cooling are being explored to address
this. Cybersecurity threats have become increasingly sophisticated, necessitating robust security
measures to protect sensitive data and ensure compliance with data protection regulations. The
need for scalability and flexibility is a constant challenge due to rapid technological advancements,
requiring data centers to implement modular designs and scalable infrastructure. Regulatory
compliance adds another layer of complexity, as data centers must navigate complex regulations
related to data sovereignty, privacy laws like GDPR, and industry-specific compliance standards.
Lastly, supply chain disruptions caused by global events such as pandemics and geopolitical tensions
can disrupt the supply of critical components, affecting both construction and maintenance.

2.8 Optimization Techniques in Data Centers

To enhance resource utilization and minimize completion times, data centers employ various op-
timization techniques that are essential for efficient operations. Load balancing is a fundamental
strategy that distributes workloads evenly across servers, preventing both overloading and un-
derutilization, which in turn enhances performance and reliability. Dynamic resource allocation
further refines this process by adjusting resources in real-time based on current workload demands,
thereby improving efficiency and responsiveness to fluctuating needs. Another critical technique is
task consolidation, which groups smaller tasks to run concurrently on the same server, freeing up
resources and reducing overall energy consumption. Additionally, data centers leverage predictive
analytics, utilizing historical data and machine learning algorithms to forecast workload patterns.
This allows for proactive adjustments in resource allocation, ensuring that resources are optimally
used and ready to meet future demands.

2.4 Resource Scheduling Algorithms in Data Centers

Data centers utilize various resource scheduling algorithms to optimize task allocation and enhance
overall efficiency. First-Come, First-Served (FCFS) processes tasks strictly in the order they arrive.
While this method is straightforward, it may not be optimal for resource utilization or for handling
time-sensitive tasks. Shortest Job First (SJF) prioritizes tasks with the shortest expected execution
time, effectively reducing the average waiting time for all tasks. However, this can lead to the
starvation of longer tasks if shorter ones continue to arrive. Priority Scheduling assigns tasks
based on predetermined priority levels, ensuring that critical tasks receive immediate attention.
This approach, though, can result in lower-priority tasks being neglected. Lastly, the Round
Robin (RR) algorithm allocates fixed time slices to each task in a cyclic order, promoting fairness
by giving all tasks equal opportunity to utilize resources. This method can increase overhead due
to the frequent context switching between tasks, potentially impacting performance.

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

2.5 Batch Processing vs. Continuous Processing

Understanding the nature of computational tasks is essential for effective resource allocation in
data centers, where tasks are generally categorized into batch processing and continuous processing.
Batch processing involves executing a series of tasks collectively without manual intervention, mak-
ing it suitable for non-interactive, time-insensitive tasks such as data analysis, report generation,
and large-scale computations. This approach offers advantages like resource efficiency—allowing
scheduling during off-peak hours to optimize utilization—and cost reduction by timing operations
to coincide with lower energy rates or peak availability of renewable energy sources. It also sim-
plifies management by reducing the complexity of real-time resource allocation. However, batch
processing is not suitable for tasks requiring immediate results due to latency tolerance and requires
careful scheduling to maximize resource utilization without impacting other operations.

In contrast, continuous processing handles tasks that require immediate processing, such as
real-time data analytics, online transaction processing, and streaming services. Its advantages
include low latency, providing immediate responses essential for user-facing applications; scala-
bility through dynamic resource allocation to handle fluctuating workloads; and high availability
to ensure services remain accessible at all times. The considerations for continuous processing
involve higher resource demands, as it requires constant resource availability, potentially increas-
ing operational costs. It also necessitates complex management with sophisticated scheduling and
monitoring systems to maintain optimal performance.

2.6 Energy Management in Data Centers

Energy consumption constitutes a significant operational cost for data centers and has considerable
environmental implications, making effective energy management strategies crucial for sustainable
operations. A fundamental metric for assessing data center energy efficiency is Power Usage Effec-
tiveness (PUE), defined as the ratio of total facility energy consumption to the energy consumed
by IT equipment alone; a PUE value closer to 1 indicates higher efficiency. To optimize energy
usage, data centers employ several techniques. Dynamic Voltage and Frequency Scaling (DVFS)
adjusts the voltage and frequency of processors based on workload demands, reducing energy con-
sumption during periods of low activity. Server virtualization consolidates multiple virtual servers
onto a single physical server, optimizing hardware utilization and reducing the number of active
physical servers required. Implementing efficient cooling systems further enhances energy effi-
ciency: free cooling utilizes external environmental conditions, such as cool air or water, to lessen
reliance on energy-intensive cooling systems, while hot/cold aisle containment organizes server
racks to separate hot and cold air flows, improving cooling efficiency. Additionally, integrating
renewable energy sources like solar or wind power reduces the carbon footprint and dependence
on non-renewable energy sources. Effective workload management also plays a pivotal role in en-
ergy efficiency. Energy-aware scheduling incorporates energy consumption metrics into scheduling
algorithms to balance performance with energy usage. Workload shifting transfers computational
tasks to data centers in regions with lower energy costs or cooler climates, leveraging geographical
advantages. Lastly, idle resource management powers down or places idle servers into low-power
states to minimize unnecessary energy consumption. Together, these strategies contribute to more
sustainable and cost-effective data center operations.

In the following section, we present three models along with various scenarios. We then select
two models for evaluation using two synthetic datasets. Lastly, we conclude the study and provide
appendices for additional analysis.

3 Models

3.1 First Model

The primary objective is to minimize the total completion time of tasks while efficiently allocating
resources. The ILP model will focus on the following objective function:

Y Ci, VieT

ieT

Decision Variables

Let:

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

x;; be a binary decision variable where:

1, if task ¢ is assigned to server j,
Tij =
7 0, otherwise.

C; is a variable and represents the completion time of task 1.

Parameters
e T is the set of tasks, i € T

e S is the set of servers, j € S

p;j is the processing time required to complete task ¢ on server j. This is a fixed parameter
based on server capabilities and task requirements. For instance, we have an estimate that
task A takes 5 hours on my laptop (Server 1) but only 1 hour on a powerful university PC
(Server 2).

r; is the resource capacity of server j

d; is the resource demand of task 7

3.2 Scenarios and Constraints

Scenario 1: Single Resource Type
In this scenario, we consider a data center where tasks require a single type of resource, such as
CPU or GPU.
Constraints
Assignment Constraint: Each task must be assigned to exactly one server.
Z Tij = 1, YeeT
jes
Resource Capacity Constraint: The total resource demand on each server must not exceed its
capacity.
Zdixijgrj; V_]GS
i€T
Completion Time Calculation: The completion time for each task is determined by its pro-
cessing time on the assigned server.

C; = Zpijl‘ij, YieT
jes
Scenario 2: Multiple Resource Types

Here, tasks require multiple types of resources (such as CPU, memory, and storage).

Additional Parameters
e R is the set of resource types, k € R
e d;; is the demand of resource k by task ¢

e 7;; is the capacity of resource k on server j

New Constraints

Resource Capacity Constraints: For each resource type, the total demand must not exceed
the server’s capacity.

Zdikxij <rj,, VjeSVkeR
ieT

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

Scenario 3: Batch Scheduling with Dynamic Batch Sizes and Durations 159

This model allows batches to have variable sizes and durations, optimizing the schedule based on 160

task requirements. The model has a non-linear constraint (constraint 6). 161
Sets and Indices 162
e T: Set of tasks, indexed by 1. 163
e S: Set of servers, indexed by j. 164
e K: Set of batches (cycles), indexed by k. 165
Parameters 166
e p;;: Processing time required to complete task ¢ on server j. 167
e d;: Resource demand of task 1. 168
e 7;: Resource capacity of server j. 160
Decision Variables 170

zi;k € {0,1}: Binary variable equal to 1 if task 7 is assigned to server j in batch k; 0 otherwise. i

e s > 0: Continuous variable representing the start time of batch k. 172
e Dy > 0: Continuous variable representing the duration of batch k. 173
e (C; > 0: Continuous variable representing the completion time of task . 174
Objective Function 175
Minimize the total completion times of all tasks: 176

min Z C; (1)

ieT

Constraints 177
1. Assignment Constraint FEach task must be assigned to exactly one server in one batch: 178

So> wmipp=1, VieT (2)

jeSkek

2. Resource Capacity Constraints For each server in each batch, the total resource demand 17
must not exceed its capacity: 180

Zdixijk <rj, VjesS VkeK (3)
i€T

3. Batch Duration Constraints The duration of each batch must cover the processing times s

of the tasks assigned to it: 182
Dy > pijxijp, YVieT,VjeS, Vke K (4)
4. Batch Sequencing Constraints Batches are processed sequentially; the start time of the 1
next batch begins after the previous one ends: 184
Sg+1 > Sp + Dy, Vke K (5)
5. Batch Start Time The first batch starts at or after time zero: 185
6. Completion Time Calculation (non-linear) The completion time of each task is the start s
time of its batch plus its processing time: 187
C; = Z Z (Sk +pij)xijk7 VieT (7)
jESkEK

Scenario 4: Batch Scheduling with Fized Batch Sizes and Durations 168

This model uses predetermined batch sizes and durations, providing a structured scheduling frame- s

work. 190
Additional Parameters 101
e Dj: Fixed duration of batch k (given). 192
e m: Maximum number of tasks per batch (fixed batch size). 193
Decision Variables 194

o z,;;; € {0,1}: Binary variable equal to 1 if task 7 is assigned to server j in batch k; 0 otherwise. 195

e s; > 0: Continuous variable representing the start time of batch k. 196
e (C; > 0: Continuous variable representing the completion time of task . 107
Objective Function 198
Minimize the total completion times of all tasks: 199

min Z C; (8)

ieT

Constraints 200
1. Assignment Constraint FEach task must be assigned to exactly one server in one batch: 201

Z Z Tijk = 1, VieT (9)

jeSkek

2. Resource Capacity Constraints For each server in each batch, the total resource demand 20
must not exceed its capacity: 203

> diwip <rj, VjeS VkeK (10)

€T

3. Batch Duration Constraints The processing time of any task assigned to a batch must 2
not exceed the fixed duration of that batch: 205

PijTijk < Dy, YVieT, Vjes Vke K (11)

4. Batch Size Constraints The number of tasks assigned to each batch must not exceed the 20
maximum batch size m: 207

Y3 gk <m, VkeK (12)

i€T jES

5. Batch Sequencing Constraints Batches are processed sequentially; the start time of the 20

next batch begins after the fixed duration of the current batch: 200
Sk+1 > Sg + D, Vke K (13)

6. Batch Start Time The first batch starts at or after time zero: 210
5120 (14)

7. Completion Time Calculation The completion time of each task is the start time of its on
batch plus its processing time: 212

Ci = Z Z (sk + pij) Tijr, YVieT (15)

jESkEK

3.8 Second Model

The original objective function aims to minimize the total completion time of tasks. We can
augment this by adding:

e Energy Consumption Minimization: Reduce the total energy consumption of servers.
e Load Balancing: Distribute tasks evenly across servers to prevent overloading.
e Task Prioritization: Prioritize critical tasks by assigning weights.
The new objective function becomes:

Minimize Z w;C; + a Z E;+p Z L;

icT jes jes

Where:
e w; is the priority weight of task q.
e F; is the energy consumption of server j.
e L; is a load balancing term for server j.

e « and [are scaling coefficients.

New Decision Variables and Parameters
Decision Variables
e y; is a binary variable where:
1, if server j is active,
Yi= {0, otherwise.
Parameters
e ¢; is the energy consumption rate of server j.
e w; is the priority weight of task .

e M is a large constant used in constraints.

Additional Constraints

Server Activation Constraint: A server must be activated if any task is assigned to it.

D wi; < My;, Vjes

ieT
Load Balancing Constraints: Ensure that the number of tasks assigned to each server is within
a certain range.

Lj: R V]ES

o
ij
2
Task Precedence Constraints: Some tasks must be completed before others can start.

Ci+ Si; <Cy, VY(i,k)eP
Where:
e P is the set of task pairs with precedence relations.
e §;; is the setup time between tasks ¢ and k.

Time Window Constraints: Tasks must start and finish within specific time windows.

si<Ci<fi, YieT
Where:

e s; is the earliest start time of task 1.

e f; is the latest finish time of task 3.

213

214

215

216

217

218

219

220

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

242

243

3.4 Third Model

To create a more accurate and efficient resource allocation model for data centers, we can include
additional separate load balancing terms for each critical resource, incorporating utilization ratios.
This enhancement allows us to balance the load of each resource type (such as CPU, GPU, Memory,
Storage) across servers, ensuring that no single resource becomes a bottleneck. The updated model
builds upon the original objective function, which aims to minimize the total completion time of
tasks, energy consumption, and load imbalance.

New Objective Function
The new objective function is:

Minimize Z = Zwi Zpi’jmi’j + Oéz € <Z(pi’j + S@j)l‘@j) + ﬂz Z Lk

i€T jES jeS i€T jESkER

To better show it:

Minimize Z = Z w;C; + a Z Ei+p Z Z Lj

ieT jes jESkER
Where:

e w;: Priority weight of task i.

C;: Completion time of task i.

E;: Energy consumption of server j.

e;j: is the energy consumption rate of server j

e p;;: Processing time required to complete task ¢ on server j.

L; 1: Load imbalance term for server j for each resource k in the set of resources R.

S;;: is the setup time between tasks ¢ and k.

«, B: Scaling coefficients.
e T: Set of tasks.

S: Set of servers.

R: Set of resources.

Definitions
e Resources (R): The set of key resources (GPU, CPU, Memory, Storage).
e Utilization Ratio (U;): The utilization of resource k on server j.
o Average Utilization (Uayvgx): The average utilization of resource k across all servers.

e Load Imbalance (L;): The absolute difference between U; j, and Uavg, k-

Parameters

o d; ;: Demand of resource k by task 7.

e 7;1: Capacity of resource k on server j.

ej: Energy consumption rate of server j.

p;,;: Processing time of task i on server j.

e w;: Priority weight of task 1.

M: A large constant for server activation constraints.

«, B: Scaling coefficients.

244

245

246

247

248

249

250

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

Decision Variables

x;; € {0,1}: Assignment of task i to server j.

y; € {0,1}: Server activation indicator.

C; > 0: Completion time of task 1.

E; > 0: Energy consumption of server j.

Uj i, > 0: Utilization of resource k£ on server j.

L; 1, > 0: Load imbalance of resource k on server j.

Constraints
1. Assignment Constraint
Each task must be assigned to exactly one server:
Zwi’j =1, VieT
jeSs
2. Server Activation Constraint
A server must be activated if any task is assigned to it:
D mij < My;, Vje€S
ieT
3. Resource Capacity Constraints
For each resource k, the total demand on a server cannot exceed its capacity:
Zdi,kxi,j <rjwyj, Vie€eSVkeR
ieT
4. Completion Time Calculation
The completion time for each task is determined by its processing time on the assigned server:
Ci = Zpi,ijﬁ VieT
JES
5. Energy Consumption Calculation

The total energy consumption of a server over the period processing a set of sequential tasks (setup
time included):

Ej =€y Z(pi’j + Si,j)acim VjesS

€T

6. Utilization Ratio Calculation

Calculate the utilization of each resource on each server:

o i T
Ujk = @ Vje S, VkeR
ik
7. Average Utilization Calculation
Compute the average utilization for each resource across all servers:
Zjes’ Y ier di ki

, VkeR
Zjes T4,k

Uavg,k =

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

8. Load Imbalance Constraints

Calculate the load imbalance for each resource on each server:

Lj,k > |Uj7k — Uavg,k| s Vj eS,VkeR
Alternatively:

Lir>Ujp—Usgr, YVj€ESVEECR

Ljk 2 Usvgr — Ujk, Vjie S, VkeR

4 Assessment of Optimization Models

In this study, we examined Model One, Scenario Three to evaluate the impact of batching on the
optimal completion time for each server. Our objective was to determine whether the model could
effectively assign tasks with varying demands to servers with different resource capacities across
a set of predetermined batches. In this scenario, both the duration and size of each batch are
unknown and are determined by the model itself. The model’s sole issue is a non-linear constraint,
which imposes certain limitations on solver selection.

Additionally, we analyzed Model Three to investigate how a diverse range of resources, energy
efficiency, and load balancing influence the model’s task assignment strategy. This model operates
without the complexities associated with batching, allowing us to assess task assignments in a more
straightforward context.

We applied these optimization models to two distinct datasets to evaluate their effectiveness
in enhancing data center operations. Each model requires a specific dataset, and given the com-
putational resources available for this project, we carefully considered the size of each dataset
accordingly.

First FExperiment

The dataset for Model One, Scenario Three comprises 60 tasks, 4 servers, and 4 batches. Each
server’s capacity is a randomly assigned integer between 20 and 30, while each task’s demand is a
randomly assigned value between 3 and 8. Predicted processing time of task on each server is also
provided. This setup allows the model to determine the optimal assignment of tasks to servers
within the specified batches.

For this specific application, each solver presents its own advantages and disadvantages. Through
a trial-and-error approach, we ultimately selected the solver that offered the lowest computation
time. The solver chosen for this model is FiIMINT, which is based on the LP/NLP algorithm devel-
oped by Quesada and Grossmann and implemented within a branch-and-cut framework. FiIMINT
was developed by a group of scientists, Kumar Abhishek, Sven Leyffer, and Jeff Linderoth. We
utilized NEOS Server to run these experiments.

Here is a brief summary of model 1 scenario 3 statistics.

Table I: Model 1 Scenario 3 Statistics

Parameter Value
Number of Constraints 1,040
Number of Variables 1,029
Number of Continuous Variables 69
Number of Binary Variables 960

The FilMINT solver employed a robust Branch and Cut methodology integrated with Sequen-
tial Quadratic Programming (filterSQP) to efficiently identify the optimal solution for the given
Mixed-Integer Nonlinear Programming (MINLP) problem. Initially, the solver performed presolve
operations to eliminate redundant constraints, thereby simplifying the problem structure. FiIMINT
strategically handled the 60 nonlinear constraints by solving a single NLP relaxation, leveraging
filterSQP to manage nonlinearity while maintaining a linear objective function for enhanced com-
putational efficiency. The solver generated seven lifted knapsack covers as cutting planes to tighten
the feasible region, effectively reducing the solution space without extensive cut generation. Addi-
tionally, active primal heuristics and bound improvement techniques facilitated rapid convergence

10

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332
333

334

335

336

337

338

339

340

by quickly identifying feasible solutions and refining objective bounds. Notably, the Branch and
Bound process concluded at the root node with a tree depth of zero, indicating that the optimal so-
lution was attained without further branching. Overall, FiIMINT demonstrated high efficiency by
solving the problem within 0.44 seconds, underscoring its capability to handle large-scale MINLPs
through a combination of advanced preprocessing, selective cut generation, and effective heuristic
strategies.

The files included in Appendix A are modell.mod, datal.dat, and jobl.run, all written in
AMPL. Additionally, the data generator file, written in Python (datagenl.py), is attached in
Appendix A for further analysis.

The results show that the model works fine and correctly assign tasks in various batches to
each server based on the optimum processing time. The result table is shown in Figure 1. The
complete table is attached in Appendix A. Figure 2 is also provided to show the completion time
for each task. By allowing the model to determine batch sizes and durations dynamically, we
observe that tasks are grouped in batches that minimize idle times and reduce total completion
time. Figure 3 shows the distribution of tasks across batches, highlighting how the model leverages
batching to enhance scheduling efficiency. The model considers the varying processing times of
tasks on different servers, assigning tasks to servers where they can be completed more quickly.
This strategic assignment contributes to the minimization of total completion time, as depicted in
Figure 5, which shows the assigned processing time by server and batch.

Task t1 t10 t11 t12 t13 t14 t15 t16 t17 t18 .. t55 t56 t57 t58 t59 6 t60 t7 t8 19
Server s3 s4 s3 s1 s1 s3 s3 s4 s4 s4 ... s1 sl sl s2 s2 s3 sl s2 s2 s2
Batch 2 17 3 4 4 2 1 1 3 1 .. 2 1 1 3 2 1 1 1 2 1

Figure 1: A sample of tasks assigned to each server in each batch

Completion Time per Task

25

Completion Time
[[N
o w o

w
s

Figure 2: Completion time for each task

Second FExperiment

The dataset for Model 3 includes 60 tasks, 4 servers, and 4 resources: CPU, GPU, Memory, and
Storage. The processing time for tasks is randomly assigned as an integer between 1 and 10, while
setup time ranges from 0 to 3. The resource demand for each task ranges from 12 to 25, and the
available resources for each server fall between 50 and 100. Task priority weights are randomly
assigned as integers between 1 and 5. Additionally, the energy consumption rate for each server is
randomly selected within the range of 5 to 15.

To address this model, we employed Cplex which is a well known model for solving mixed integer
linear programing. We used IBM ILOG CPLEX Optimizer provided by NEOS to implement this
experiment. A summary of model 3 statistics is provided in table 2.

The CPLEX solver version 22.1.1.0 efficiently tackled the Mixed-Integer Programming (MIP)
problem by utilizing its advanced multi-threaded capabilities, employing four threads to enhance
computational performance. The solver implemented a primal simplex algorithm, executing 154
MIP simplex iterations to methodically explore the feasible region and optimize the objective

11

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

25
20

15

Number of Tasks

17.6

15.0

-
38
(4]

MNumber of Tasks
3
o

75

25

0.0

10
| -
0
1 2 3 4

Distribution of Tasks Across Batches

Batch Number

Figure 3: Distribution of tasks across batches

Distribution of Tasks Across Servers

53 s4 51 52

Server

Figure 4: Distribution of tasks across servers

12

Distribution of Processing Times by Server and Baich

Ahy [u

s3

oW N =

AssignedProcessingTime
o (=]

w

Server

Figure 5: Distribution of assigned processing time by server and batch

Table II: Model 3 Statistics

Parameter Value
Number of Equality Constraints 140
Number of Inequality Constraints 52
Number of Linear Variables 96
Number of Binary Variables 244

function, ultimately achieving an optimal integer solution with an objective value of 1728.301497 in
less than two seconds. Notably, the optimization process concluded without initiating any branch-
and-bound nodes, indicating that the linear programming relaxation of the problem was either
inherently integer-feasible or that CPLEX’s sophisticated presolving and cutting-plane techniques
were sufficiently effective in identifying the optimal solution without the need for further branching.
The essential files associated with this model, including model2.mod, data2.dat, and job2.run, are
provided in Appendix B. These files are all written in AMPL, ensuring consistency and ease of
use within the modeling environment. Additionally, we have included the Python-based data
generator script, datagen2.py, in Appendix B to support further analysis and replication of our
results. Figure 6 presents the results for Model 3, highlighting the outcomes of our optimization
efforts and offering insights into the performance and efficiency of task assignments across servers
based on task priorities. The model achieves a balanced utilization of critical resources (CPU,
GPU, Memory, and Storage) across all servers. Figure 7 demonstrates that the load imbalance
for each resource is minimized, preventing any single resource from becoming a bottleneck. By
incorporating energy consumption into the objective function, the model assigns tasks in a way
that reduces the total energy usage. Servers with lower energy consumption rates are preferred
for tasks with higher processing times, leading to an overall reduction in energy expenditure. The
inclusion of task priority weights ensures that critical tasks are prioritized in the scheduling process.
This is reflected in Figure 8, where high-priority tasks are assigned to servers capable of completing
them more efficiently.
Comparing the results from both experiments, several insights emerge:

e Model Complexity versus Scalability: The nonlinear constraints in Model One (constraint 6),
while allowing for dynamic batching, increase computational complexity and limit scalability.
In contrast, the linearized Model Three handles larger datasets more efficiently, making it
more suitable for real-world applications where computational resources may be limited.

e Flexibility in Scheduling: Model One offers greater flexibility in scheduling through dynamic
batching, which can be advantageous in environments with highly variable workloads. How-
ever, this flexibility comes at the cost of increased computational overhead.

e Comprehensive Resource Management: Model Three’s incorporation of multiple resource

13

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

types and energy considerations provides a more holistic approach to resource management.
This model effectively balances the utilization of different resources and aligns with sustain-
ability objectives by minimizing energy consumption.

Task Assignment to Servers

51 (15 tasks) I

s2 (14 tasks)D

et PACANININTS
SN0 ABE IS DIND | WO S BEC W ONALNAL BwOUIDEA DuhEm=

s3 (13 tasks) I

ainres

s4 (17 tasks)l

LouaannuuonnnogaoonunuanneoooninonoaonnnaonLLOIOIINIIINNN

Figure 6: Task assignment to servers

5 Conclusion

In this project, we developed several optimization models aimed at enhancing task assignments
within data center operations. Specifically, we proposed a couple of distinct models and applied
two of them to synthetic datasets to evaluate their performance and effectiveness. Through these
applications, we observed that the inherent nonlinearity within the models had a detrimental
impact on both computation time and overall efficiency. The complex nonlinear constraints not
only increased the computational burden, making the models less practical for larger datasets, but
also resulted in out-of-disk or out-of-memory errors when scaling up, thereby further limiting their
applicability in real-world, large-scale environments.

We analyzed various models designed for the first scenario, which involved nonlinear constraints.
Our analysis revealed that the lack of proper documentation often creates confusion, limiting re-
searchers’ ability to fully leverage these models. Among the models tested, FIIMINT demonstrated
the best performance for the first scenario. However, we remain uncertain whether the limitations
we encountered arose from the data generation process or from resource constraints on the NEOS
server—particularly limited disk space for less commonly used solvers like FiIMINT—which pre-
vented us from testing larger datasets. In contrast, the model used in the second experiment,
which was linear, posed fewer challenges when applied to large-scale datasets.

For future projects, we recommend adopting a strategic approach that combines the strengths
of the two models explored. By linearizing these models, we can simplify complex relationships and
reduce computational overhead, thereby improving both speed and efficiency. Linearized models
are typically more tractable and faster to solve, making them suitable for real-time applications and
larger datasets. Integrating the two models would address resource limitations on servers, enhance
energy efficiency, and accommodate task prioritization. Additionally, distributing tasks across
different batches would pave the way for more efficient models and improved overall performance.

Additionally, we propose applying these refined models to real-world datasets sourced from
industry leaders such as Google and Microsoft. Utilizing actual data from these organizations will

14

404

405

406

407

408

409

410

412

413

415

416

417

418

419

420

422

423

424

425

426

427

428

429

430

431

432

Completion Time

Values

Server Resource Metrics: Utilization and Load Imbalance

1.0

0.8

0.6

0.4

02

0.0

Figure 7: Server utilization and load imbalance for each server

Servers

Task Completion Times by Server

CPU (util)

CPU (Load Imb)
GPU (util)

GPU (Load Imb)
Memory (Util)
Memory (Load Imb)
Storage (Util)
Storage (Load Imb)

Tasks

Figure 8: Completion time of assigned tasks on servers

15

Servers
sl

il
&

3PP VPP I PP F P CEREREEER PP 0L PSP LEPP P @0

provide a more accurate assessment of the models’ applicability and performance in practical, large-
scale environments. This real-world testing is essential for validating the models’ effectiveness and
ensuring they can meet the operational demands of modern data centers. Ultimately, this approach
will contribute to the development of more robust and efficient task assignment solutions, leading
to improved data center management and resource utilization.

16

433

434

435

436

437

6 References P

e Barroso, L. A., Hélzle, U. (2009). The Datacenter as a Computer: An Introduction to the 4
Design of Warehouse-Scale Machines. Morgan and Claypool Publishers. 440

e Beloglazov, A., Abawajy, J., Buyya, R. (2012). ”Energy-aware resource allocation heuristics
for efficient management of data centers for Cloud computing.” Future Generation Computer s
Systems, 28(5), 755-768. 443

e Abhishek, K., Leyffer, S., and Linderoth, J. T. 2010. FilMINT: An Outer-Approximation- s
Based Solver for Nonlinear Mixed Integer Programs. INFORMS Journal on Computing 22: s
555-567. DOI1:10.1287/ijoc.1090.0373. 446

e Quesada, I. and I. E. Grossmann. 1992. An LP/NLP based branch-and-bound algorithm for
convex MINLP optimization problems. Computers and Chemical Engineering 16: 937-947. s

e IBM. 2023. IBM ILOG CPLEX Optimization Studio. Version 22.1.1.0. IBM. www.ibm.com/prodaicts/ilog-
cplex-optimization-studio. 450

e Koomey, J. G. (2011). ”Growth in data center electricity use 2005 to 2010.” Analytics Press.

e Kliazovich, D., Bouvry, P., Khan, S. U. (2010). ”GreenCloud: a packet-level simulator of s
energy-aware cloud computing data centers.” The Journal of Supercomputing, 62(3), 1263- 4
1283. 454

e Garg, S. K., Yeo, C. S., Anandasivam, A., Buyya, R. (2011). ”Energy-efficient scheduling of s
HPC applications in cloud computing environments.” Computing, 91(9), 1199-1219. 456

o OpenAl. (2024). Generative Pre-trained Transformer (November 7 Version). Retrieved from s
https://chat.openai.com 458

e Anthropic. (2024). Claude [Large Language Model]. Retrieved from https://www.anthropic.comsbclaude
e Overleaf. (2024). [Online LaTeX Editor]. Retrieved from https://www.overleaf.com 460
e Google Inc. (2019). Google Cluster Data V3. 461

e Fourer, R., Gay, D. M., & Kernighan, B. W. (2002). AMPL: A Modeling Language for s
Mathematical Programming (2nd ed.). Duxbury Press/Brooks/Cole Publishing Company. 463

e AMPL Optimization Inc. (2024). AMPL [Mathematical Programming Software]. Retrieved 4
from https://ampl.com 465

e NEOS Server. (2024). Wisconsin Institute for Discovery at the University of Wisconsin in s
Madison. Retrieved from https://neos-server.org 467

e Vidyarthi, D. P., & Bhattacharya, B. (2008). Scheduling in distributed computing systems: s
Analysis, design and models. Springer. 469

e Marinescu, D. C. (2013). Cloud computing: Theory and practice. Morgan Kaufmann. ar0
e Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Retrieved from https://matplotlibuorg/
e The pandas development team. (2023).Zenodo. https://doi.org/10.5281/zenodo.3509134 a2

e Plotly Technologies Inc. (2023). Plotly: Open-source graphing library for Python. Retrieved a3
from https://plotly.com/python/ ara

e Microsoft. (2021). Azure Data Center Workload Dataset. Microsoft Research. Retrieved s
from https://github.com/Azure/azure-datacenter-workload-dataset 476

e GitHub. (2024). GitHub Copilot. GitHub. Retrieved from https://github.com/features/copilot

o CBRE Group, Inc. (2022). Data Center Solutions Market Update. Retrieved from https:
//www.cbre.com/|

478

479

e Uptime Institute. (2022). Global Data Center Survey. Retrieved from https://uptimeinstitute.

com/..

17

481

https://www.cbre.com/
https://www.cbre.com/
https://www.cbre.com/
https://uptimeinstitute.com/
https://uptimeinstitute.com/
https://uptimeinstitute.com/

Cushman & Wakefield. (2022). Global Data Center Market Comparison. Retrieved from
https://www.cushmanwakefield.com/.

Statista. (2023). Number of data centers worldwide from 2015 to 2022, with forecasts until
2025. Retrieved from https://www.statista.com/.

Turner & Townsend. (2022). Data Center Cost Index. Retrieved from https://www.
turnerandtownsend. com/.

Google. (2023). Google Data Centers. Retrieved from https://www.google.com/about/
datacenters/.

Microsoft. (2023). Inside Microsoft’s Datacenters. Retrieved from https://www.microsoft.
com/en-us/datacenters.

Amazon Web Services (AWS). (2023). AWS Cloud Products. Retrieved from https://aws.
amazon.com/products/\

Microsoft Azure. (2023). Azure Products by Category. Retrieved from https://azure.
microsoft.com/.

Google Cloud. (2023). Google Cloud Services. Retrieved from https://cloud.google.
com/products/.

IDC (International Data Corporation). (2021). Worldwide Big Data and Analytics Software
Forecast. Retrieved from https://www.idc.com/\

Gartner. (2022). Emerging Al and ML Use Cases in Data Centers. Retrieved from https:
//www.gartner.com/.

Akamai Technologies. (2023). Content Delivery Network (CDN) Services. Retrieved from
https://www.akamai.com/.

Cisco. (2023). Internet of Things (IoT). Retrieved from https://www.cisco.com/!

Bank for International Settlements (BIS). (2021). Technology in Financial Services. Re-
trieved from https://www.bis.org/.

International Energy Agency (IEA). (2021). Data Centres and Data Transmission Networks.
Retrieved from https://www.iea.org/reports/data-centres-and-data-transmission-
networks.

Koomey, J. (2011). Growth in Data Center Electricity Use 2005 to 2010. Analytics Press.
Retrieved from http://www.analyticspress.com/datacenters.html.

ASHRAE Technical Committee 9.9. (2021). Thermal Guidelines for Data Processing Envi-
ronments. Retrieved from https://www.ashrae.org/|

ENISA (European Union Agency for Cybersecurity). (2022). Cyber Threat Landscape
Report. Retrieved from https://www.enisa.europa.eu/.

European Commission. (2020). General Data Protection Regulation (GDPR). Retrieved
from https://gdpr.eu/.

Supply Chain Management Review. (2021). Data Center Supply Chain Challenges. Re-
trieved from https://www.scmr.com/\

Cardosa, M., Singh, A., Mirhoseini, A., & Bruno, J. (2009). Exploiting Dynamic Resource
Allocation for Efficient Parallel Data Processing in the Cloud. IEEE Cloud.

Beloglazov, A., Buyya, R., Lee, Y. C., & Zomaya, A. (2011). A Taxonomy and Survey
of Energy-Efficient Data Centers and Cloud Computing Systems. Advances in Computers,
Elsevier.

Gmach, D.; Rolia, J., Cherkasova, L., & Kemper, A. (2009). Resource Pool Management:
Reactive versus Proactive or Let’s be Friends. IEEE Computer Society.

Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts (10th ed.).
Wiley.

18

482

483

485

486

487

488

489

490

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

https://www.cushmanwakefield.com/
https://www.statista.com/
https://www.turnerandtownsend.com/
https://www.turnerandtownsend.com/
https://www.turnerandtownsend.com/
https://www.google.com/about/datacenters/
https://www.google.com/about/datacenters/
https://www.google.com/about/datacenters/
https://www.microsoft.com/en-us/datacenters
https://www.microsoft.com/en-us/datacenters
https://www.microsoft.com/en-us/datacenters
https://aws.amazon.com/products/
https://aws.amazon.com/products/
https://aws.amazon.com/products/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://cloud.google.com/products/
https://cloud.google.com/products/
https://cloud.google.com/products/
https://www.idc.com/
https://www.gartner.com/
https://www.gartner.com/
https://www.gartner.com/
https://www.akamai.com/
https://www.cisco.com/
https://www.bis.org/
https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://www.iea.org/reports/data-centres-and-data-transmission-networks
http://www.analyticspress.com/datacenters.html
https://www.ashrae.org/
https://www.enisa.europa.eu/
https://gdpr.eu/
https://www.scmr.com/

Xu, J., & Fortes, J. A. B. (2010). Multi-Objective Virtual Machine Placement in Virtualized
Data Center Environments. IEEE/ACM International Conference on Green Computing and
Communications.

Mishra, M., & Sahoo, A. (2011). On Theory of VM Placement: Anomalies in Existing
Methodologies and Their Mitigation Using a Novel Vector Based Approach. IEEE Cloud.

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified Data Processing on Large Clus-
ters. Communications of the ACM, 51(1), 107-113.

Kumar, V., Grama, A., Gupta, A., & Karypis, G. (2003). Introduction to Parallel Comput-
ing. Addison-Wesley.

The Green Grid. (2020). Green Grid Data Center Power Efficiency Metrics: PUE and DCiE.
Retrieved from https://www.thegreengrid.org/|

Fan, X., Weber, W.-D., & Barroso, L. A. (2007). Power Provisioning for a Warehouse-sized
Computer. ACM SIGARCH Computer Architecture News, 35(2), 13-23.

Beloglazov, A., & Buyya, R. (2012). Optimal Online Deterministic Algorithms and Adaptive
Heuristics for Energy and Performance Efficient Dynamic Consolidation of Virtual Machines
in Cloud Data Centers. Concurrency and Computation: Practice and Experience, 24(13),
1397-1420.

ASHRAE Datacom Series. (2015). Liquid Cooling Guidelines for Datacom Equipment Cen-
ters. American Society of Heating, Refrigerating and Air-Conditioning Engineers.

Shehabi, A., Smith, S. J., Masanet, E., & Koomey, J. (2018). Data center growth in the
United States: decoupling the demand for services from electricity use. Energy & Environ-
mental Science, 11(3), 623-635.

Google Sustainability. (2023). Our Data Centers: Efficiency and Sustainability. Retrieved
from https://sustainability.google/projects/data-centers/.

19

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

552

https://www.thegreengrid.org/
https://sustainability.google/projects/data-centers/

7 Appendix A

e model 1 scenario 3 result

Table IIT: Model 1 Scenario 3 Results

Task Demand

Server Resource Batch

tl

t10
t11
t12
t13
t14
t15
t16
t17
t18
t19
t2

t20
t21
t22
t23
t24
t25
t26
t27
t28
t29
t3

t30
t31
t32
t33
t34
t35
t36
t37
t38
t39
t4

t40
t41
t42
t43
t44
t45
t46
t47
t48
t49
t5

t50
t51
t52
t53
th4
t55

00 OO W 0O IO 0 JWHER WTIHrm00W Wk WU 0O WWHEWWWOOTHrRODHDWDHOUTUTTO WWI0 0

s3 30 2
s4 28 1
s3 30 3
sl 24 4
sl 24 4
s3 30 2
s3 30 1
s4 28 1
s4 28 3
s4 28 1
s4 28 2
s4 28 2
s2 22 3
s3 30 1
s3 30 3
s4 28 1
s3 30 4
sl 24 4
s3 30 1
s4 28 2
s4 28 1
s3 30 1
s4 28 1
s3 30 1
s3 30 4
s2 22 3
sl 24 2
sl 24 1
s3 30 1
s3 30 1
sl 24 3
s2 22 1
s3 30 3
s2 22 1
s3 30 3
s3 30 4
sl 24 1
s2 22 2
sl 24 1
sl 24 2
s3 30 2
sl 24 1
s2 22 3
s2 22 1
sl 24 3
s3 30 4
s3 30 1
sl 24 2
s3 30 2
sl 24 3
sl 24 2

Continued on next page

20

553

554

Table III: Model 1 Scenario 3 Results

Task Demand Server Resource Batch

t56 3 sl 24 1
t57 3 sl 24 1
t58 5 s2 22 3
t59 6 s2 22 2
t6 3 83 30 1
t60 3 sl 24 1
t7 5 82 22 1
t8 8 82 22 2
t9 4 s2 22 1

21

M)

© ® N o v oA W

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

e modell.mod

Scenario 3
Batch Scheduling with Dynamic Batch Sizes and Durations

Sets and Indices

set T; # Set of tasks

set S; # Set of servers

param N integer > 0; # Number of batches
set K; # Set of batches

Parameters

param p {T, S8} >= 0; # Processing time required to complete task i
on server j

param d {T} >= 0; # Resource demand of task i

param r {S} >= 0; # Resource capacity of server j

Decision Variables

var x {T, S, K} binary; # 1 if task i is assigned to server j in
batch k

var s {K} >= 0; # Start time of batch k

var D {K} >= 0; # Duration of batch k

var C {T} >= 0; # Completion time of task i

Objective Function
minimize TotalCompletionTime:
sum {i in T} CI[il;

Constraints

1. Assignment Constraint
subject to Assignment {i in T}:
sum {j in S, k in K} x[i,j,k] = 1;

2. Resource Capacity Constraints
subject to ResourceCapacity {j in S, k in K}:
sum {i in T} d[i] * x[i,j,k] <= r[jl;

3. Batch Duration Constraints
subject to BatchDuration {i in T, j in S, k in K}:
D[kx] >= pl[i,j] * x[i,j,k];

4. Batch Sequencing Constraints
subject to BatchSequencing {k in K: k < N}:
s[k+1] >= s[k] + D[k];

5. Batch Start Time
subject to BatchStartTime:
s[1] >= 0;

6. Completion Time Calculation
subject to CompletionTime {i in T}:
C[i] = sum {j in S, k in K} (s[k] + pli,jl) * x[i,j,k];

e datal.dat

set T := t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 ti11 t12 t13 t14 t15 t16 t17
t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30 t31 t32 t33
t34 t35 t36 t37 t38 t39 t40 t41 t42 t43 t44 t45 t46 t47 t48 t49
t50 tb1 t52 tb53 tb4 tb5 tb6 t57 t58 t59 t60;

set S := sl s2 s3 s4;

param N := 4;

set K := 1 2 3 4;

param p : sl s2 s3 s4 :=

t1 77 15

t2 9 8 75

22

555

556
557

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

606

865

609

610
611

612
613
614
615
616
617
618
619
620

621

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

60

61

62

63

64

65

66

67

68

69

70

71

T2

73

T4

t3 8
t4 9
t5 2
t6 10
t7 2
t8 2
t9 1
t10
ti1
t12
t13
t14
t15
t16
t17
t18
t19
t20
t21
t22
t23
t24
t25
t26
t27
t28
t29
t30
t31
t32
t33
t34
t35
t36
t37
t38
t39
t40
t41
t42
t43
t44
t45
t46
t47
t48
t49
t50
t51
t52
t53
t54
t55
t56
t57
t58
t59
t60

B OO ONWOOAOPERLRRERNRFR,WAOAOWERELPEPL,ONMNNMNEPENNENMNPRPNNRPRPRPORRPROOORF, ONNE WOOOR OO ©OF D - O 00O

param
tl 8
t2
t3
t4
t5

D W 0

~N~NW = 0o oo,

23

622

623

624

625

626

627

628

629

630

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

682

683

684

685

686

687

75

76

T

78

79

80

81

82

83

84

86

87

88

89

920

91

92

93

94

95

96

97

98

99

100

101

t6

t7

t8

t9

t10
til1
t12
t13
t14
t15
t16
t17
t18
t19
t20
t21
t22
t23
t24
t25
t26
t27
t28
t29
t30
t31
t32
t33
t34
t35
t36
t37
t38
t39
t40
t41
t42
t43
t44
t45
t46
t47
t48
t49
t50
t51
t52
t53
t54
t55
t56
t57
t58
t59
t60

S 00 0w

WO U WWwOoOoO O W 000 O 00N WP WNNN00WOo WP WOoooo WP 00 WwOo NP OoOwOo Ooo WwWw-N~NONO

param
sl 24
s2 22
s3 30
s4 28

e jobl.run

T

24

688
689
690
691
692
693
694
695
696
697
698
699

700

702
703
704
705
706
707
708
709

710

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

749

e

752
753

Bow N

© ® N o

13
14

15

-

Bow N

© ® N o

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Load the model file
#model modell_scenario3.mod;

Load the data file
#data datal.dat;

Solve the model
solve;

Display the decision variables and parameters
display x;
display s;
display D;
display C;

datagenl.py

import random
import math

Set random seed for reproducibility
random.seed (0)

num_tasks = 60
num_servers = 4
#num_batches = 8
batch_duration = 10

tasks = [£"t{i}" for i in range(l, num_tasks + 1)]
servers = [f"s{j}" for j in range(l, num_servers + 1)]

Generate processing times

processing_times = {}
for t in tasks:
processing_times[t] = {}
for s in servers:
processing_times[t][s] = random.randint (1, 10)

Generate resource demands
resource_demands = {t: random.randint (3, 8) for t in tasks}

Generate resource capacities
resource_capacities = {s: random.randint (20, 30) for s in servers}

Compute total processing time (minimum across servers for each task)

total_processing_time = 0
for t in tasks:
min_p = min(processing_times[t][s] for s in servers)

total_processing_time += min_p
Compute total processing capacity per batch
processing_capacity_per_batch = len(servers) * batch_duration

Estimate minimum number of batches based on processing time
min_batches_processing = math.ceil(total_processing_time /

processing_capacity_per_batch)

Compute total resource demand
total_resource_demand = sum(resource_demands[t] for t in tasks)

Compute total resource capacity per batch

25

754
755
756
757
758
759
760
761
762
763
764
765
766

767

78

770

772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

819

48

49
50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

T2

73

T4

75

76

T

78

79

80

81

82

83

84

86

87

88

total_resource_capacity_per_batch = sum(resource_capacities[s] for s
in servers)

Estimate minimum number of batches based on resource capacities
min_batches_resource = math.ceil(total_resource_demand /
total_resource_capacity_per_batch)

Compute the overall minimum number of batches required
min_batches_required = max(min_batches_processing,
min_batches_resource)

Print the minimum number of batches required
#print (f"Minimum number of batches required: {min_batches_required}")

batches = [str(k) for k in range(l, min_batches_required + 1)]
Write data to AMPL data file
with open(’data_synthetic_decl.dat’, ’w’) as f:

Write sets

f.write(’set T := ’> + > ’.join(tasks) + ’;\n’)
f.write(’set S := > + ’ ’.join(servers) + ’;\n’)
f.write(f’param N := {min_batches_required};\n’)
f.write(’set K := ’> + ’ ’.join(batches) + ’;\n\n’)
#f . write(f’param DO := {batch_duration};\n’)

Write processing times
f.write(’param p : ’ + ’ ’.join(servers) + ’ :=\n’)
for t in tasks:
f.write(t + 7)
for s in servers:
f.write(str(processing_times[t][s]) + ’)
f.write(’\n’)
f.write(’;\n\n’)

Write resource demands
f.write(’param d :=\n’)
for t in tasks:
f.write(t + > ’ + str(resource_demands[t]) + ’\n’)
f.write(’;\n\n’)

Write resource capacities

f.write(’param r :=\n’)
for s in servers:
f.write(s + ’> ’ + str(resource_capacities[s]) + ’\n’)

f.write(’;\n?)

8 Appendix B

© ® N o v A

10

11

12

13

e model2.mod

Optimization Model3
Objective: Minimize weighted completion time, energy consumption,
and load imbalance

Sets

set T; # Set of Tasks

set S; # Set of Servers

set R; # Set of Resources

Parameters

param w {T}; # Priority weight of task i
param e {S}; # Energy consumption rate of server
J

26

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

865

866

867
868

869

870

872

873

874

875

876

877

878

879

880

881

882

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

param p {T, S}; # Processing time of task i on
server j

param S_time {T, S}; # Setup time between task i and
server j

param d {T, R}; # Demand of resource k by task i

param r {S, R}; # Capacity of resource k on server

param alpha; # Scaling coefficient for emnergy
consumption

param beta; # Scaling coefficient for load
imbalance

param M; # Large constant for server

activation constraints
Precomputed Parameters
param sum_r_k {k in R} := sum {j in S} r[j, k]; # Sum of capacities

for each resource

Decision Variables

var x {T, S} binary; # Assignment of task i to server j
var y {S} binary; # Server activation indicator
var C {T} >= 0; # Completion time of task i
var E {8} >= 0; # Energy consumption of server j
#

var U {S, R} >= 0;
server j

var L {S, R} >= 0; # Load imbalance of resource k on
server j

Utilization of resource k on

Objective Function
minimize Z:
sum {i in T} wlil = C[il
+ alpha * sum {j in S} E[j]
+ beta * sum {j in S, k in R} LI[j, kI];

Constraints

1. Assignment Constraint
subject to Assignment {i in T}:
sum {j in 8} x[i, jl = 1;

2. Server Activation Constraint
subject to ServerActivation {j in S}:
sum {i in T} x[i, j]l <= M * y[jl;

3. Resource Capacity Constraints
subject to ResourceCapacity {j in S, k in R}:
sum {i in T} d[i, k] * x[i, j] <= r[j, k] * y[jl;

4. Completion Time Calculation
subject to CompletionTime {i in T}:
Cl[il = sum {j in S} pli, jI * x[i, jI1;

5. Energy Consumption Calculation
subject to EnergyConsumption {j in S}:
E[j] = e[j] * sum {i in T} (pli, jl + S_timeli, jI) * x[i, jl;

6. Utilization Ratio Calculation
subject to UtilizationRatio {j in S, k in R}:
U[j, k¥] = sum {i in T} d[i, k] * x[i, j) / r[j, kJ];

7. Load Imbalance Constraints
subject to LoadImbalanceUpper {j in S, k in R}:
L[{j, k] >= U[j, k]l - (sum {j2 in S} sum {i in T} d4[i, k] * x[i,
j21 / sum_r_k[k]);

subject to LoadImbalancelLower {j in S, k in R}:
L[j, k] >= (sum {j2 in S} sum {i in T} d[i, k] * x[i, j2] /

27

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

o«

~

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

sum_r_k[k]) - U[j, kI;

e data2.dat

set T
t18
t34
t50

set S

set R

param w
tl
t2
t3
t4
t5
t6
t7
t8
t9
t10
ti1
t12
t13
t14
t15
t16
t17
t18
t19
t20
t21
t22
t23
t24
t25
t26
t27
t28
t29
t30
t31
t32
t33
t34
t35
t36
t37
t38
t39
t40
t41
t42
t43
t44
t45
t46

= tl1l t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17

t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30 t31 t32 t33
t35 t36 t37 t38 t39 t40 t41 t42 t43 t44 t45 t46 t47 t48 t49
t51 t52 t53 t54 t55 tb56 tb57 t58 t59 t60;

:= sl s2 s3 s4;
:= GPU CPU Memory Storage;

GONOOTWNNWNDO

WNNNWNNSEWWLPOOPENOOWWPRERNDNERE, O, WP, WO OO, ONEFE WWPRERDN

28

858

951

952
953

954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

990

992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

1014

60

61

62

63

64

65

66

67

68

69

70

71

T2

73

T4

75

76

7

78

79

80

81

82

83

84

86

87

88

89

920

91

92

93

94

t47
t48
t49
t50
t51
t52
t53
t54
t55
t56
t57
t58
t59
t60

param e
s1
s2
s3
s4

param p
t1
t1
t1
t1
t2
t2
t2
t2
t3
t3
t3
t3
t4
t4
t4
t4
t5
t5
t5
t5
t6
t6
t6
t6
t7
t7
t7
t7
t8
t8
t8
t8
t9
t9
t9
t9
t10
t10
t10
t10

N = W WNOWNNOONND

12
10
8

10

sl 2
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4

~N e
o

O WON N, OOOONOONOONOWON©O0 N0 0T wOo oo e N O oo

= oN W

29

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

ti11
t1l1
ti1
ti1
t12
t12
t12
t12
t13
t13
t13
t13
t14
t14
t14
t14
t15
t15
t15
t15
t16
t16
t16
t16
t17
t17
t17
t17
t18
t18
t18
t18
t19
t19
t19
t19
t20
t20
t20
t20
t21
t21
t21
t21
t22
t22
t22
t22
t23
t23
t23
t23
t24
t24
t24
t24
t25
t25
t25
t25
t26
t26
t26
t26
t27
t27

s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1l
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2

W NP OOONOPONOOODEFEL, O WER P 0O NOWWN

e e e ¢ IS SN
o o o O O

oo

o

DO NN © 00T N0 OO PENWOWRrFENPENNDNWNERE PN W
o

30

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

t27
t27
t28
t28
t28
t28
t29
t29
t29
t29
t30
t30
t30
t30
t31
t31
t31
t31
t32
t32
t32
t32
t33
t33
t33
t33
t34
t34
t34
t34
t35
t35
t35
t35
t36
t36
t36
t36
t37
t37
t37
t37
t38
t38
t38
t38
t39
t39
t39
t39
t40
t40
t40
t40
t41
t41
t41
t41
t42
t42
t42
t42
t43
t43
t43
t43

s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3

s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1l
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4

W OWWOWWNNOOOPENOWANTOODONONOOOR, PP WO NNOONOOWNNDEREWN®N000O0TO©WWOoOoWwNOWEFE OO NP0 NOD PR, NWO R W

31

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

t44
t44
t44
t44
t45
t45
t45
t45
t46
t46
t46
t46
t47
t47
t47
t47
t48
t48
t48
t48
t49
t49
t49
t49
t50
t50
t50
t50
t51
t51
t51
t51
t52
t52
t52
t52
t53
t53
t53
t53
t54
t54
t54
t54
t55
t55
t55
t55
t56
t56
t56
t56
t57
t57
t57
t57
t58
t58
t58
t58
t59
t59
t59
t59
t60
t60

s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1l
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2

o

o

W= = 01O OWOoOEFE NOOOONP»POONOIDOOO KL, ELNRERERRPREREOOOOORE,OONO©OOWPLPWNONONOODSTOKR PR WO PP EFE RPN O D
o o o

32

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

t60 s3 2 1279
t60 s4 6 1280
5 1281
1282
1283
param S_time := 1284
tl s1 O 1285
tl s2
tl s3
tl s4
t2 sli
t2 s2
t2 s3
t2 s4
t3 si
t3 s2
t3 s3
t3 s4
t4 s1
t4 s2
t4 s3
t4 s4
t5 sl1
tb s2
t5 s3
t5 s4
t6 sli
t6 s2
t6 s3
t6 s4
t7 s1
t7 s2
t7 s3
t7 s4
t8 sl1
t8 s2
t8 s3
t8 s4
t9 si
t9 s2
t9 s3
t9 s4
t10 si
t10 s2
t10 s3
t10 s4
t11l si
t1l s2
t11l s3
tll s4
t12 si
t12 s2
t12 s3
t12 s4
t13 si
t13 s2
t13 s3
t13 s4
t14 si
t14 s2
t14 s3
t14 s4
t15 si
t15 s2
t15 s3
t1l5 s4

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

WNFE, PN, P ORFRPLOOFRLRONFFOWWRLNNOOONNOOWRE WKL, OON

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

ON WNOOOWNNOWRFR WWEF WONNMNOWN

1344

33

450

451

452

453

454

455

t16
t16
t16
t16
t17
t17
t17
t17
t18
t18
t18
t18
t19
t19
t19
t19
t20
t20
t20
t20
t21
t21
t21
t21
t22
t22
t22
t22
t23
t23
t23
t23
t24
t24
t24
t24
t25
t25
t25
t25
t26
t26
t26
t26
t27
t27
t27
t27
t28
t28
t28
t28
t29
t29
t29
t29
t30
t30
t30
t30
t31
t31
t31
t31
t32
t32

s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1l
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2

W WO O WRNNWNWNEFEFWNMNNMNONWRPFPLPOWNWOREFPNWNMNOFREFELWNONOWOONONEFEFWNORLWREFRFEPNREFWNDMRFEFONDNDWOORWRE

34

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

458

459

460

461

462

463

464

466

467

468

469

471

472

473

476

477

478

480

481

482

484

485

486

487

489

490

491

493

494

495

496

498

499

500

502

503

504

505

507

508

509

512

513

514

516

517

518

520

521

t32
t32
t33
t33
t33
t33
t34
t34
t34
t34
t35
t35
t35
t35
t36
t36
t36
t36
t37
t37
t37
t37
t38
t38
t38
t38
t39
t39
t39
t39
t40
t40
t40
t40
t41
t41
t41
t41
t42
t42
t42
t42
t43
t43
t43
t43
t44
t44
t44
t44
t45
t45
t45
t45
t46
t46
t46
t46
t47
t47
t47
t47
t48
t48
t48
t48

s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3

s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1l
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4

ONOOOWWRNOOF WWORFRF WNWNOWOONNWEFPROFRLROWRF WWNRRLRFP,WOWRRPFEPNOWONREFWWNNMNNMNNMNORL,E,ENNONON

35

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

t49
t49
t49
t49
t50
t50
t50
t50
t51
t51
t51
t51
t52
t52
t52
t52
t53
t53
t53
t53
t54
t54
t54
t54
t55
t55
t55
t55
t56
t56
t56
t56
t57
t57
t57
t57
t58
t58
t58
t58
t59
t59
t59
t59
t60
t60
t60
t60

param d
t1
t1
t1
t1
t2
t2
t2
t2
t3
t3
t3
t3
t4
t4

s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4
s1
s2
s3
s4

WHFPF O WWNORFRFPOWFRFROWFRLRNRPFPONRFEFWOWOOWRF WF WWNONORFRFNNDNNWWNNDNEDNDE

GPU 1

CPU 3
Memory 4
Storage 5
GPU 4

CPU 1
Memory 1
Storage 4
GPU 7

CPU 8
Memory 1
Storage 6
GPU 9

CPU 2

36

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

t4
t4
t5
t5
t5
t5
t6
t6
t6
t6
t7
t7
t7
t7
t8
t8
t8
t8
t9
t9
t9
t9
t10
t10
t10
t10
ti1
t11
ti1
ti1
t12
t12
t12
t12
t13
t13
t13
t13
t14
t14
t14
t14
t15
t15
t15
t15
t16
t16
t16
t16
t17
t17
t17
t17
t18
t18
t18
t18
t19
t19
t19
t19
t20
t20
t20
t20

Memory 1
Storage 3
GPU 8
CPU 4
Memory 1
Storage 3
GPU 8
CPU 5
Memory 4
Storage 1
GPU 9
CPU 4
Memory 5
Storage 3
GPU 8
CPU 1
Memory 9
Storage 8
GPU 2
CPU 4
Memory 8
Storage 8
GPU 9

CPU 1
Memory 9
Storage 3
GPU 7

CPU 5
Memory 2
Storage 9
GPU 9

CPU 1
Memory 7
Storage 2
GPU 5

CPU 7
Memory 8
Storage 5
GPU 4

CPU 1
Memory 8
Storage 1
GPU 1

CPU 3
Memory 1
Storage 8
GPU 1

CPU 5
Memory 1
Storage 1
GPU 1

CPU 8
Memory 3
Storage 4
GPU 2

CPU 1
Memory 10
Storage 7
GPU 7

CPU 6
Memory 4
Storage 9
GPU 2

CPU 9
Memory 8
Storage 3

37

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

705

706

707

708

709

710

711

712

714

715

716

71T

718

719

t21
t21
t21
t21
t22
t22
t22
t22
t23
t23
t23
t23
t24
t24
t24
t24
t25
t25
t25
t25
t26
t26
t26
t26
t27
t27
t27
t27
t28
t28
t28
t28
t29
t29
t29
t29
t30
t30
t30
t30
t31
t31
t31
t31
t32
t32
t32
t32
t33
t33
t33
t33
t34
t34
t34
t34
t35
t35
t35
t35
t36
t36
t36
t36
t37
t37

GPU 5

CPU 2
Memory 1
Storage 1
GPU 7

CPU 7
Memory 6
Storage 3
GPU 4

CPU 3
Memory 9
Storage 1
GPU 8

CPU 4
Memory 4
Storage 1
GPU 2

CPU 9
Memory 9
Storage 9
GPU 2

CPU 8
Memory 2
Storage 7
GPU 5

CPU 4
Memory 9
Storage 6
GPU 2

CPU 3
Memory 1
Storage 8
GPU 6

CPU 1
Memory 1
Storage 3
GPU 9

CPU 1
Memory 8
Storage 4
GPU 2

CPU 7
Memory 10
Storage 6
GPU 1

CPU 7
Memory 4
Storage 2
GPU 1

CPU 10
Memory 1
Storage 3
GPU 9

CPU 10
Memory 8
Storage 1
GPU 4

CPU 9
Memory 6
Storage 6
GPU 4

CPU 6
Memory 6
Storage 2
GPU 8

CPU 8

38

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

762

763

764

765

766

767

768

769

771

772

773

774

775

776

T

778

780

781

782

783

784

785

t37
t37
t38
t38
t38
t38
t39
t39
t39
t39
t40
t40
t40
t40
t41
t41
t41
t41
t42
t42
t42
t42
t43
t43
t43
t43
t44
t44
t44
t44
t45
t45
t45
t45
t46
t46
t46
t46
t47
t47
t47
t47
t48
t48
t48
t48
t49
t49
t49
t49
t50
t50
t50
t50
t51
t51
t51
t51
t52
t52
t52
t52
t53
t53
t53
t53

Memory 4
Storage 5
GPU 1

CPU 10
Memory 7
Storage 1
GPU 2

CPU 9
Memory 8
Storage 2
GPU 9

CPU 3
Memory 1
Storage 8
GPU 9

CPU 1
Memory 3
Storage 9
GPU 3

CPU 5
Memory 1
Storage 1
GPU 7

CPU 4
Memory 3
Storage 9
GPU 9

CPU 1
Memory 9
Storage 3
GPU 9

CPU 1
Memory 8
Storage 7
GPU 2

CPU 3
Memory 4
Storage 1
GPU 3

CPU 1
Memory 8
Storage 8
GPU 9

CPU 9
Memory 5
Storage 7
GPU 3

CPU 9
Memory 9
Storage 2
GPU 1

CPU 1
Memory 7
Storage 5
GPU 7

CPU 3
Memory 9
Storage 2
GPU 1

CPU 9
Memory 5
Storage 2
GPU 5

CPU 5
Memory 5
Storage 2

39

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

787

788

789

790

791

792

793

794

796

797

798

799

801

802

803

806

807

808

810

811

812

814
815

816

819

820

821

823

824

825

826

828

829

830

832

833

834

835

837

838

839

841

t54 GPU 5

t54 CPU 9

t54 Memory 1

t54 Storage 1
t55 GPU 2

t55 CPU 1

t55 Memory 8

t55 Storage 7
t56 GPU b5

t56 CPU 9

t56 Memory 7

t56 Storage 5
t57 GPU 5

t57 CPU 8

t57 Memory 4

tb7 Storage 6
t58 GPU 7

t58 CPU 5

t58 Memory 1

t58 Storage 2
t59 GPU 8

t59 CPU 7

t59 Memory 2

t59 Storage 7
t60 GPU 4

t60 CPU 3

t60 Memory 7

t60 Storage 6

param r :=
sl GPU 78
s1 CPU 100
sl Memory 88
sl Storage 79
s2 GPU 84
s2 CPU 80
s2 Memory 74
s2 Storage b5
s3 GPU 70
s3 CPU 82
s3 Memory 76
s3 Storage 75
s4 GPU 100
s4 CPU 66
s4 Memory 98
s4 Storage 82

param alpha := 0.5;
param beta = 0.3;
param M := 1000;
(4

job2.run

40

1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

1795

1788

1798

1799
1800

1801
1802
1803
1804
1805

1806

10

11

12

13

14

16

© N o wu

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

solve;

display
display
display
display
display

Hama X

e datagen2.py

H o wno o =

for

import random

def generate_ampl_data(num_tasks=60, num_servers=4,
output_file=’dataset_model3_nov30.dat’):

{3
{3
{3

_time = {}

{3
{3

task in tasks:
wltask] = random.randint (1, 5)

41

tasks = [f’t{i}’ for i in range(l, num_tasks + 1)]
servers = [f’s{j}’ for j in range(l, num_servers + 1)]
resources = [’GPU’, ’CPU’, ’Memory’, ’Storage’]

for server in servers:
e[server] = random.randint (5, 15)
r = {server: {} for server in servers}
for server in servers:
for resource in resources:
r[server] [resource] = random.randint (50, 100)
d = {task: {} for task in tasks}
for task in tasks:
for resource in resources:
max_demand = min(r[server][resource] for server in
servers) // 4
d[task] [resource] = random.randint (1, max_demand)
p = {}
S_time = {}
for task in tasks:
pltask]l = {}
S_time[task] = {}
for server in servers:
pltask][server] = random.randint (1, 10)
S_time[task] [server] = random.randint (0, 3)

1807
1808
1809
1810
1811
1812
1813

1814

1818

1817

1818
1819

1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871

1872

52

54

55

56

60

61

62

63

64

66

67

68

69

70

71

T2

73

T4

75

76

T

78

79

80

81

82

83

84

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

104

105

total_demand = {resource: 0O for resource in resources}

total_capacity = {resource: 0 for resource in resources}
for resource in resources:
total_demand[resource] = sum(d[task][resource] for task in
tasks)
total_capacity[resource] = sum(r([server][resource] for server

in servers)
if total_demand[resource] > total_capacityl[resource]:

print (f"Adjusting,,demands for resource {resource} toy
ensurefeasibility.")

Scale down demands proportionally

scaling_factor = total_capacity[resource] /
total_demand [resource]

for task in tasks:
d[task] [resource] = max(l, int(d[task][resource] *

scaling_factor))

Recalculate total demand

total_demand[resource] = sum(d[task] [resource] for task
in tasks)

2. Ensure each task can be assigned to at least one server
for task in tasks:
assignable = False
for server in servers:
can_assign = all(d[task][resource] <= r[server][resource]
for resource in resources)
if can_assign:
assignable = True
break
if not assignable:
print (f"Adjusting,demands for task, {task}_ to ensure it
can beassigned.")
Adjust demands to fit the smallest capacity server
for resource in resources:

min_capacity = min(r[server][resource] for server in
servers)
d[task] [resource] = min(d[task][resourcel],

min_capacity)

Write data to file
with open(output_file, ’w’) as f:
f.write("#,

f.write("#_Data File for Task Assignment to,Servers Model\n")
.write("#,_,Generated by, generate_data.py\n")
.write ("#,

Hh

Sets

.write("#_,Sets\n")

.write(f"set Ty:=u{’y’.join(tasks)};\n")
.write(f"set Sy:=u{’y’.join(servers)};\n")
.write(f"set Ry:=,{’y’.join(resources)};\n\n")

Fho kb bh Hh 3

+H+

Parameters

Priority weights
f.write("#_ ,Parameters\n")
f.write("#_ Priority_ weight_of each,task\n")
f.write("param w,:=\n")
for task in tasks:

f.write(f" uu{task} {wltask]}\n")
f.write(";\n\n")

Energy consumption rates
f.write("#,Energy consumption_ rateof each server\n")

42

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

133

134

135

136

137

138

139

141

142

143

145

146

147

150

151

152

153

155

156

if

f.write("param_ e, :=\n")
for server in servers:

f.write(f" uuu{server} {elserver]}\n")
f.write(";\n\n")

Processing times
f.write("#_,Processing, time 0f each task oneach server\n")
f.write("param p,:=\n")
for task in tasks:
for server in servers:
f.write(f" Luuu{task} {server} {pltask][server]}\n")
f.write(";\n\n")

Setup times
f.write("#,Setupytime between tasks on,servers\n")
f.write("param,S_time,:=\n")
for task in tasks:
for server in servers:
f.write(f" ,uu{task} {server},
{S_time[task] [server]}\n")

f.write(";\n\n")

Resource demands
f.write("#_,Demand, of jeach resource by each task\n")
f.write("param_ d,:=\n")
for task in tasks:
for resource in resources:
f.write(f" Luu{task} {resourcel}
{d[task] [resource]l}\n")
f.write(";\n\n")

Resource capacities
f.write("#,Capacityof each resource on each server\n")
f.write("param,r,:=\n")
for server in servers:
for resource in resources:
f.write(f" Luu{server} {resourcel},
{r[server] [resource]l}\n")
f.write(";\n\n")

Scaling coefficients and large constant
.write("#,Scaling coefficients and large constant\n")
.write("paramgalpha;:=,0.5;\n")

.write("param_ beta,,:=,0.3;\n")
.write("param M, uuu:=u1000;\n\n")

Fhobh kbbb 3

f.write("#,
f.write("#_,End_ of Data_ File\n")

f.write ("#,

print (f"Datayfile, ’{output_filel}’ ,generated, successfully with
{num_tasks}_ tasks_ and_ {num_servers} servers.")

__name == " main "

generate_ampl_data ()

43

1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993

1994

1838

	Introduction
	Overview of Data Centers
	Types of Projects Handled by Data Centers
	Main Challenges Facing Data Centers Today
	Optimization Techniques in Data Centers
	Resource Scheduling Algorithms in Data Centers
	Batch Processing vs. Continuous Processing
	Energy Management in Data Centers

	Models
	First Model
	Scenarios and Constraints
	Second Model
	Third Model

	Assessment of Optimization Models
	Conclusion
	References
	Appendix A
	Appendix B

