
LP-based solution methods for the asymmetric TSP

Vardges Melkonian

Department of Mathematics, Ohio Universtiy, Athens, Ohio 45701, USA

vardges@math.ohiou.edu

Abstract

We consider an LP relaxation for ATSP. We introduce concepts of high-value and high-flow

cycles in LP basic solutions and show that the existence of this kind of cycles would lead

to constant-factor approximation algorithms for ATSP. The existence of high-flow cycles is

motivated by computational results and theoretical observations.

(Keywords: TSP; Linear programming; Network flows; Approximation algorithm)

1. Introduction

In Traveling Salesman problem (TSP), it is required to find a minimum cost Hamiltonian

tour, that is, a cycle passing through each node exactly once. A nice collection of papers

tracing the history and research on the problem can be found in Lawler et al.[7]. Most of

the research on TSP algorithms has concentrated on the undirected version of TSP. The

best approximation factor for the case when the arc costs satisfy the triangle inequality in

undirected networks is 1.5 and was obtained by Christofides ([1]). Far less research is done

on the version of TSP in directed graphs to which we will refer as Asymmetric TSP (ATSP).

The best approximation ratio of O(log n) was achieved first by Frieze et al. [2] and later

by Kleinberg and Williamson [6]. The current best approximation algorithm for ATSP is

by Kaplan et al. [5] and achieves approximation ratio 0.842 log n. However the best-known

lower bound on the approximation factor is only 117/116 [9]. This low lower bound and the

discrepancy between the best approximation factors for symmetric and asymmetric cases give

hopes that there should be an algorithm with a constant approximation factor for ATSP. In

this paper we will explore one direction that ultimately could lead to such an algorithm.

The LP rounding technique of Jain [4] provided a new powerful tool for designing ap-

proximation algorithms for network design problems. By proving the existence of high-value

variables in basic solutions of an LP relaxation, Jain gave a 2-approximation algorithm for

1

the generalized Steiner tree problem. Melkonian and Tardos [8] extended Jain’s technique to

obtain an approximation algorithm for a class of directed network design problems. In this

paper, we will explore the possibilities of applying Jain’s technique to ATSP. We suggest an

algorithm which is based on solving the LP relaxation of ATSP. We were not able to prove

an approximation factor for the algorithm but our conjecture is that it is a 2-approximation

algorithm. We will give some arguments and examples supporting the conjecture.

The paper is structured as follows. In section 2, it is shown that any basic solution of an

LP relaxation of ATSP has a variable with value at least 1/2. In section 3, the concepts of

high-value and high-flow cycles are introduced. It is shown that the existence of this kind

of cycles in the basic solutions would lead to constant factor approximation algorithms for

ATSP. The existence of high-flow cycles is motivated by computational results and theoretical

observations.

2. High value variables in basic solutions

We consider the case of ATSP when the arc costs satisfy the triangle inequality. In that

case the problem is equivalent to requiring the tour to visit every node at least (instead of

exactly) once. Then the ATSP can be given by the integer program (IPATSP):

min
∑

e∈E cexe (1)

s.t.
∑

e∈δ+(S) xe ≥ 1, for each S ⊂ V, (2)∑
i:i→j∈E xij =

∑
k:j→k∈E xjk, for each j ∈ V, (3)

xe binary, for each e ∈ E. (4)

Any solution satisfying (2) and (3) is a tour that visits each node at least once. Thus, by

traversing the optimal output tour of (IPATSP) and shortcuting the nodes that have been

previously visited, we will get a TSP tour T of no greater cost (due to triangle inequlity).

Since any TSP tour is a solution to (IPATSP), T is an optimal tour.

The linear programming relaxation (LPATSP) of the integer program (IPATSP) is obtained

by replacing the integer requirements of xe with xe ≥ 0. We note that though (LPATSP)

has an exponential number of constraints, it can be solved in polynomial time by designing

a polynomial-time separation oracle [3] or by reformulation as a polynomial-size LP using

auxiliary variables [10]. Vempala and Yannakakis, aiming to obtain an LP-rounding approx-

imation algorithm for ATSP with triangle inequality, gave an analysis of basic solutions of

2

(LPATSP) in [11]. Their arguments are similar to Jain’s ([4]) arguments. The main result

they get in [11] is the following property of basic solutions of (LPATSP):

Theorem 1 [11] The number of non-zero edges in a basic solution is at most 3|V | − 2.

This property implies the existence of a high-value variable in any basic solution:

Theorem 2 In any basic solution of (LPATSP) there is at least one variable with value at

least 1/2.

Proof: Assume the opposite: all the variables have values strictly less than 1/2. Cut

constraints (2) imply that for any node i ∈ V ,
∑

j 6=i xij ≥ 1. Thus, for any node, there

should be at least 3 non-zero arcs leaving it. This makes the total number of non-zero arcs

at least 3|V | which contradicts Theorem 1. �

Unfortunately the existence of high-value variables in basic solutions of ATSP does not

lead to iterative rounding algorithms with constant approximation factors as it does in the

case of other network design problems considered in [4] and [8]. In the case of those problems,

by including the high-value arc in the solution, it is possible to get a residual instance of LP

which has the same structure as the original one; and thus there is a high-value variable in

the solution of the residual instance which allows to iterate. It is not known how to achieve

that in the case of ATSP. Particularly, it is not clear how to do the reduction so that the

balance constraints which are essential for showing the existence of a high-value variable still

hold in the residual instance. Based on this discussion we think that to get an LP rounding

algorithm with a good approximation factor it is not enough to have just one high value

variable. In the next section we discuss what could be a possible alternative to that.

3. High-value and high-flow cycles

The main difference of ATSP from connectivity problems is that the nodes not only should

be connected to each other but also the connection should be realized by the means of edge-

disjoint directed cycles. Thus, the directed cycles are supposed to play an important role for

designing algorithms for ATSP, and particularly when designing LP rounding algorithms.

3

High-value cycles

Suppose in any basic solution of (LPATSP) we had a directed cycle C with at least 1/k-

value on each of the C-arcs for some integer k. Then it would be possible to create a

residual instance by the following reduction: (i) include all C-arcs in the solution; (ii) keep

all balance constraints (3); (iii) keep the cut constraint corresponding to S ⊂ V if either

{all C-nodes} ⊆ S or {all C-nodes} ∩ S = ∅.
The advantage of this kind of reduction is that it keeps the balance constraints satisfied;

and in that case it is more likely that arguments similar to [11] could prove the existence of

a high-value variable in the reduced instance. But the existence of a 1/k-cycle for a fixed

integer k is an open question. In our computational results we had several instances with

no 1/2-cycles; for example, see figure 1 (however there were 1/3-cycles in all instances).

5

8

10

9

2

1

4

67

3

2/3

1/3

Figure 1: High-flow cycle

2

1

4

67

3

1/3

1/3
1/3

1/3
1/3

1/3

Figure 2: Disjoint paths

So our observation is that a high-value cycle is more likely to lead to an iterative round-

ing algorithm (with a constant approximation factor) than a high-value variable, but the

existence of such a cycle is questionable. Then what could be a substitute for the cycle? The

triangle inequality allows us to utilize so-called high-flow cycles which are relaxed versions

of high-value cycles and are introduced next.

High-flow cycles

To introduce the concept of high-flow cycles consider the example of figure 1 again. All the

arcs but 7 → 3 on the cycle C = 3 → 2 → 1 → 4 → 5 → 6 → 8 → 10 → 9 → 7 → 3 have

values 2/3. But note that using the 1/3-arcs we can send a flow of 2/3 from node 7 to node

3 by disjoint paths P1 = 7 → 6 → 4 → 3 and P2 = 7 → 1 → 2 → 3 (see figure 2). By

analyzing the cost of cycle C we get that it is at most 1.5 times more expensive than the

4

optimal solution.

Cost(C) = c73 +
∑

(i,j)∈C:(i,j) 6=(7,3)

cij =
3

2

1

3
c73 +

1

3
c73 +

∑
(i,j)∈C:(i,j) 6=(7,3)

2

3
cij

 ≤

3

2

1

3
cost(P1) +

1

3
cost(P2) +

∑
(i,j)∈C:(i,j) 6=(7,3)

2

3
cij

 ≤ 3

2
Cost(LPATSP) ≤ 3

2
Cost(IPATSP)

Note that the first inequality is obtained by applying the triangle inequality. Thus, though

cycle C does not have high values on all its arcs, it is a high-flow cycle, and this allows to

show that C has a cost not far from the optimum.

Now we give the formal definition of high-flow cycles. As above, given a fractional solution

to (LPATSP), we will consider the fractional values as flows between the nodes.

Definition 1 A directed cycle C is called α-flow cycle for some 0 ≤ α ≤ 1 if (i) for any arc

i → j on C, there is flow of value at least α from i to j through directed paths; (ii) no two

arcs from C use the same portion of flow for realizing their α-flows.

Note that the fractional flow of any arc can be split to realize the α-flows of different

arcs lying on cycle C. The analysis for the example of figure 1 can be generalized to any

high-flow Hamiltonian cycle.

Lemma 1 The cost of an α-flow Hamiltonian cycle C is at most 1/α times the optimum.

Proof: Let Pij be the set of the directed paths realizing the α-flow for arc i → j ∈ C. For

P ∈ Pij, let αP be the flow on P which is contributing to the total α-flow from i to j. Then

Cost(C) =
∑

(i,j)∈C

cij =
1

α

∑
(i,j)∈C

α · cij =
1

α

∑
(i,j)∈C

∑
P∈Pij

αP · cij ≤ 1

α

∑
(i,j)∈C

∑
P∈Pij

αP · Cost(P)

≤ 1

α
Cost(LPATSP) ≤ 1

α
Cost(IPATSP)

The first inequality follows from the triangle inequality. The second inequality follows from

the fact that we might be using a part of the fractional solution values for realizing the

α-flows without any overlap. �

5

Experimental results

Lemma 1 implies that the existence of an α-flow Hamiltonian cycle in the fractional solution

would give a 1/α-approximation algorithm for ATSP. Does this kind of cycle always exist

for some constant α? In our computational experiments we always could get a 1/2-flow

Hamiltonian cycle. The experiments were conducted on randomly created instances and on

some instances from the public library TSPLIB. We already discussed in details the solution

of one of the randomly created instances (figure 1). In that example we were able to find

a 2/3-flow Hamiltonian cycle. However, for many other networks including the bigger ones

from TSPLIB the best we could find was a 1/2-flow Hamiltonian cycle.

Figure 3: Fractional solution to TSPLIB instance

The fractional solution of one of these instances (data file ftv35.atsp from TSPLIB) is

given in figure 3. In this solution, there are two high-value cycles which cover the whole

node set. To get a high-flow Hamiltonian cycle, we need to concatenate these two cycles.

Here is one way to do that: (i) Start from node 4 of the left cycle; (ii) travel all the

nodes of the left cycle till node 2; (iii) switch to node 3 of the right cycle; (iv) travel all

the nodes of the right cycle till node 36; (v) switch back to node 4 of the left cycle to

complete the tour. Steps (iii) and (v) can be realized using directed paths to make the

flow values between the cycles 1/2. 1/2-flows are realized the following way at the switching

points. From 2 to 3: send 1/3 directly through the arc 2 → 3; send 1/6 through the path

2 → 4 → 1 → 14 → 12 → 15 → 16 → 17 → 27 → ... → 36 → 3. From 36 to 4: send 1/3

through the path 36 → 3 → 4; send 1/6 through the path 36 → 33 → 31 → 27 → 2 → 4.

6

Note that we keep at least 1/2 on the arcs of the left and right cycles; so the result is a

1/2-flow Hamiltonian cycle.

Below we summarize the results of our experiments. The experiments were run on 12

TSPLIB instances. In addition, we randomly created 50 instances (30 nodes). A 1/2-flow

Hamiltonian cycle was found for all those instances. We divide instances into several groups

when reporting the results. The groups are (A) an arc-missing high-flow cycle (as in figure

1); (B) two high-value cycles (as in figure 3); (C) LP-relaxation returns an integer solution;

(D) LP-relaxation returns an α-value closed trail where α ≥ 1/2. In this last case each node

might be visited more than once but a α-flow Hamiltonian cycle can be obtained by taking

shortcuts when necessary. Particularly, the output of many instances was a half-integral

solution. These instances belong to group (D) because every arc with value 1 can be split

into parallel arcs with value 1/2 each. The results are summarized in table 1.

Table 1: Summary of experimental results
groups TSPLIB instances random instances

A ftv44, ftv47, ry48p 6 instances
B ftv35, ftv38 15 instances
C br17, ftv33, ft53 14 instances
D ftv55, ftv64, ftv70, p43 15 instances

Finally, we note that a flow-based LP formulation of ATSP was implemented for our exper-

iments (see [10] for a detailed discussion and references). This formulation has polynomial

number of constraints and variables. The constraints here directly express the fact that there

should be a directed path between any pair of nodes. We choose an arbitrary node s and

call it root. In order the network to be strongly connected, there should be directed paths

from any node to s and from s to any node. The IP formulation which accomplishes this is

given by (5)-(11).

min
∑

e∈E cexe (5)

s.t.
∑

e∈δ+(u) f
(s,t)
e −

∑
e∈δ−(u) f

(s,t)
e = λu for each u ∈ V, t ∈ V (t 6= s) (6)∑

e∈δ+(u) f
(t,s)
e −

∑
e∈δ−(u) f

(t,s)
e = −λu for each u ∈ V, t ∈ V (t 6= s) (7)

xe ≥ f
(s,t)
e for each e ∈ E, t ∈ V (t 6= s) (8)

xe ≥ f
(t,s)
e for each e ∈ E, t ∈ V (t 6= s) (9)∑

i:i→j∈E xij =
∑

k:j→k∈E xjk, for each j ∈ V (10)

f
(s,t)
e , f

(t,s)
e , xe binary for each e ∈ E, t ∈ V (t 6= s). (11)

7

The 0-1 variables xe represent whether or not arc e is included in the solution; 0-1 variables

f
(s,t)
e (f

(t,s)
e) represent whether arc e is on the directed path s t (s t) in the solution.

λu is 1 if u = s; -1 if u = t; 0 otherwise. The conservation-of-flow constraints (6) and (7)

guarantee that there are directed paths between any two nodes in terms of f variables.

The existence of high-flow Hamiltonian cycles

Below we show that for groups (A) and (B) discussed in the experimental results we can get

a high-flow Hamiltonian cycle without finding the particular flow that realizes it.

Lemma 2 Let x be a feasible solution to (LPATSP). Suppose C is a Hamiltonian cycle such

that we could find x-flows of value at least α through disjoint paths for any C-arc except

s → t. Then C is an α-flow Hamiltonian cycle.

Proof: Let P = C− s → t be the directed path on which the disjoint x-flows are at least α.

Let y be the residual flow after subtracting α from the flows of all P -arcs. We need to show

that the y-flow from s to t is at least α. Based on the min cut - max flow theorem it is enough

to show that the minimum (s, t)-cut has capacity at least α. Let (S, S̄) be any (s, t)-cut (see

figure 4). Let δ+(S) and δ−(S) be the sets of arcs correspondingly leaving and entering S.

s
t

S S
_

Figure 4: (s, t)-cut in Lemma 2 Figure 5: (s, t)-cut in Lemma 3

We can get a new valid constraint for (LPATSP) by taking the sum of balance constraints (3)

over all j ∈ S. All those xij such that i, j ∈ S will be both in left and right hand sides of the

new constraint, and so can be cancelled. Thus, any feasible solution satisfies the following

equality: ∑
e∈δ+(S)

xe =
∑

e∈δ−(S)

xe (12)

8

Note that by subtracting α from x-flow of each δ+(S) ∩ P -arc, we subtract α more from∑
e∈δ+(S) xe than from

∑
e∈δ−(S) xe. Similarly, by subtracting α from x-flow of each δ−(S)∩P -

arc, we subtract α more from
∑

e∈δ−(S) xe than from
∑

e∈δ+(S) xe. Summarizing,∑
e∈δ+(S)

ye −
∑

e∈δ−(S)

ye =
∑

e∈δ+(S)

xe −
∑

e∈δ−(S)

xe − α · |δ+(S) ∩ P |+ α · |δ−(S) ∩ P | = α

The last equality is based on (12) and that |δ−(S)∩P | = |δ+(S)∩P |+1. Thus, the capacity

of (S, S̄) in terms of y-flow is
∑

e∈δ+(S) ye = α +
∑

e∈δ−(S) ye ≥ α �

Note that the case of figure 1 is the special case of Lemma 2 when the x-value on each

C-arc except s → t is at least α. We needed a more general statement in the lemma for

exploring the next case.

Lemma 3 Suppose C is a Hamiltonian cycle such that every arc except s → t and u → v

has x-value at least α ≥ 0.5; if we subtract α from all those high-value arcs, s → t would

still have flow value ≥ 1− α. Then

1) After subtracting 0.5 from the high-value arcs, s → t still has flow value ≥ 0.5;

2) C is a 0.5-flow Hamiltonian cycle.

Proof: Note that if we show (1) then (2) simply follows from Lemma 2. (1) is proved using

min cut - max flow arguments as in Lemma 2. Subtract 0.5 from the high-value C-arcs.

Take any (s, t)-cut (see figure 5). If no high-value C-arc crosses the cut then its capacity

should be ≥ 1 (based on the cut consraint (2)). If a high-value C-arc crosses the cut then

we have a residual capacity ≥ α − 0.5 from that arc; in addition s → t still has flow value

≥ 1 − α. Then the total capacity of the cut is ≥ (1 − α) + (α − 0.5) = 0.5. Based on the

min cut - max flow theorem, the maximum flow from s to t is ≥ 0.5. �

Lemma 4 Suppose C1 and C2 are two node-disjoint cycles that cover the whole node set.

All the arcs on C1 and C2 have x-values at least α ≥ 0.5. There is an arc from s ∈ C1 to

t ∈ C2 with x-value at least 1 − α. Then it is possible to concatinate C1 and C2 to get a

0.5-flow Hamiltonian cycle.

Proof: Suppose s → u ∈ C1, v → t ∈ C2. Then C = s → t
C2 v → u

C1 s is a 0.5-flow

Hamiltonian cycle based on Lemma 3. �

Based on Lemmas 2, 4 and our experimental results we have the following conjecture.

Conjecture 1 In any basic solution of (LPATSP) there is a 1/2-flow Hamiltonian cycle.

9

If this conjecture turns out to be true then based on Lemma 1 the following procedure

would lead to a 2-approximation algorithm: (i) Solve (LPATSP); (ii) Find a 1/2-flow Hamil-

tonian cycle C; (iii) Output C as a solution to (IPATSP).

Summarizing, here are some interesting open questions about (LPATSP). (1) Is there a

high-value (high-flow) cycle in any basic solution and does it lead to a rounding algorithm?

(2) Is there a high-flow Hamiltonian cycle in any basic solution, and if yes how can it be

found efficiently? These questions could also be raised for related network design problems

where it is important to find cycles.

References

[1] N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman prob-

lem. Report 388, Graduate School of Industrial Administration, Carnegie Mellon Uni-

versity, Pittsburgh, PA, 1976.

[2] A. Frieze, G. Galbiati, and F. Maffioli. On the worst-case performance of some al-

gorithms for the asymmetric traveling salesman problem. Networks 12, pages 23–39,

1982.

[3] M. Grotschel, L. Lovasz, and A. Schrijver. Geometric algorithms and combinatorial

optimization. Springer-Verlag, 1988.

[4] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.

Combinatorica 21, pages 39–60, 2001.

[5] H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko. Approximation algorithms

for Asymmetric TSP by decomposing directed regular multigraphs. In Proceedings of the

44th Annual Symposium on the Foundation of Computer Science, pages 56–67, 2003.

[6] J. Kleinberg and D. Williamson. A new O(log n)-approximation algorithm

for ATSP. In Lecture Notes on Approximation Algorithms, Fall 1998.

http://www.almaden.ibm.com/cs/people/dpw/Courses/cornell.ps, pages 125–127. IBM

Research Report RC 21409, February 1999.

[7] E. Lawler, J. Lenstra, A. Rinnooy Kan, and D. Shmoys. The Traveling Salesman

Problem. John Wiley, 1985.

10

[8] V. Melkonian, E. Tardos, Algorithms for a network design problem with crossing super-

modular demands. Networks 43(4), pages 256–265, 2004.

[9] C. Papadimitriou and S. Vempala. On the approximability of the traveling salesman

problem. Proceedings of the 32nd ACM Symposium on the theory of computing (STOC

’00), Portland, 2000.

[10] W. Pulleyblank. Polyhedral combinatorics. In Optimization, Volume 1 of Handbooks

in Operations Research, pages 371-446, Elsevier, 1989.

[11] S. Vempala and M. Yannakakis. A convex relaxation for the Asymmetric TSP. Pro-

ceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms, Baltimore, 1999.

11

