Algorithms for a Network Design Problem with Crossing

Supermodular Demands

Vardges Melkonian
Department of Mathematics, Ohio University, Athens, Ohio 45701

Eva Tardos
Department of Computer Science, Cornell University, Ithaca, NY 14853

Abstract

We present approximation algorithms for a class of directed network design problems.
The network design problem is to find a minimum cost subgraph such that for each
vertex set S there are at least f(S) arcs leaving the set S. In the last 10 years general
techniques have been developed for designing approximation algorithms for undirected
network design problems. Recently, Kamal Jain gave a 2-approximation algorithm
for the case when the function f is weakly supermodular. There has been very little
progress made on directed network design problems. The main techniques used for the
undirected problems do not have simple extensions to the directed case.

Andrés Frank has shown that in a special case when the function f is intersecting
supermodular the problem can be solved optimally. In this paper, we use this result
to get a 2-approximation algorithm for a more general case when f is crossing super-
modular. We also extend Jain’s techniques to directed problems. We prove that if the
function f is crossing supermodular, then any basic solution of the LP relaxation of our
problem contains at least one variable with value greater or equal to 1/4. This result

implies a 4-approximation algorithm for the class of directed network design problems.

Keywords: Network design problems; Crossing supermodular functions; Approxima-

tion algorithms; Linear programming; Basic solutions.

1 Introduction

We consider the following network design problem for directed networks. Given a directed
graph with nonnegative costs on the arcs find a minimum cost subgraph where the number
of arcs leaving set S is at least f(S) for all subsets S. Formally, given a directed graph
G = (V,E) and a requirement function f : 2" +— Z, the network design problem is the

following integer program:

minimize Z CeTe (1)

eckE

subject to

Z ze > f(S), for each S C V,
e€dg(S)
ze € {0,1}, for each e € F,

where g (S) denotes the set of arcs leaving S. For simplicity of notation we will use z(6¢(.S))
to denote > 5.5 Te-

The following are some special cases of interest. When f(S) =k for all) # S C V the
problem is that of finding a minimum cost k-connected subgraph. The case when f(S) =1
for all) # S C V is known as Strong Connectivity problem. The directed Steiner tree
problem is to find the minimum cost directed tree rooted at r that contains a subset of
vertices D C V. This problem is a network design problem where f(S) = 1if r € S and
SN D #(and f(S) = 0 otherwise. All these special cases are known to be NP-complete.
In fact, the directed Steiner tree problem contains the Set Cover problem as a special case,
and hence no polynomial time algorithm can achieve an approximation better than O(logn)
unless P=NP [13].

In the last 10 years there has been significant progress in designing approximation algo-
rithm for undirected network design problems [1, 7, 15, 6, 10], the analog of this problem
where the graph G is undirected. General techniques have been developed for the undirected
case, e.g., primal-dual algorithms [1, 7, 15, 6]. Recently, Kamal Jain gave a 2-approximation
algorithm for the undirected case when the function f is weakly supermodular. The algorithm
is based on a new technique: Jain proved that in any basic solution to the linear programming

relaxation of the problem there is a variable whose value is at least a half.

There has been very little progress made on directed network design problems. The main
general technique used for approximating undirected network design problems, the primal-
dual method does not have a simple extension to the directed case. Recently Melkonian and
Tardos extended the primal-dual in [12] to the case of Strong Connectivity problem. The
best-known approximation factor for this case is due to Frederickson and Jaja [5]. They
use the idea of taking the union of minimum-cost in-branching and out-branching to obtain
a 2-approximation algorithm. Khuller and Vishkin [11] used a similar idea to obtain a 2-
approximation algorithm for the k-connected problem. Charikar et al. [2] gave the only
nontrivial approximation algorithm for the Steiner tree problem on general directed graphs
(an algorithm for the special case of directed acyclic graphs was given before by Zelikovski
[16]). Their method provides an O(n¢)-approximation algorithm for any fixed e.

In this paper, we consider the case when f is crossing supermodular, i.e., for every A, B C
V such that AN B # () and AU B # V we have that

f(A)+f(B) < f(ANB) + f(AUB). (2)

Note that the k-connected subgraph problem is defined by the function f(S) = k for all
0 # S C V, which is crossing supermodular. Hence the network design problem with
a crossing supermodular requirement function f is still NP-hard. However, the function
defining the directed Steiner tree problem is not crossing supermodular.

The paper contains two main results: a 2-approximation algorithm for the integer pro-
gram, and a structural property of the basic solutions of the LP-relaxation.

The network design problem with a crossing supermodular requirement function f is a
natural extension of the case of intersecting supermodular function considered by Frank [4],
i.e., when the inequality (2) holds whenever A and B are intersecting. Frank [4] has shown
that this special case can be solved optimally. However, when f is crossing supermodular the
problem is NP-hard and no approximation results are known for this general case. In this
paper, we combine Frank’s result and the k-connected subgraph approximation of Khuller
and Vishkin [11] to obtain a 2-approximation algorithm for the crossing supermodular case.

In the second part of the paper, we describe the basic solutions of the LP relaxation of our
problem. Extending Jain’s technique [10] to the case of directed graphs, we show that in any
basic feasible solution of the LP relaxation (where we replace the x, € {0,1} constraints by
0 <z, <1 for all arcs e), there is at least one variable with value at least quarter. Using this

result, we can obtain a 4-approximation algorithm for the problem by iteratively rounding

all variables above a quarter to 1.

An interesting special case of crossing supermodular function arises when the requirement
of a subset S is merely a function of its cardinality |S|, i.e., f(S) = ¢(|S]). It is easy to show
that requiring f to be crossing supermodular is equivalent to requiring that g to be a convex
function. This particularly includes the case when f(S) = k for all sets. Another example of
the crossing supermodular function is f(S) = max(|S|, k).

The rest of the paper is organized as follows. In Section 2 we give the 2-approximation
algorithm. The main theorem stating that all basic solutions to the linear programming
relaxation of (1) have a variable that is at least a quarter is given in Section 3. In Section
4 we sketch the 4-approximation algorithm that is based on this theorem. This part of the
paper is analogous to Jain’s paper [10] for the undirected case. Some computational results
about the performance of our algorithms are given in Section 5, and we conclude with some

remarks about open problems in Section 6.

2 The 2-approximation Algorithm

We consider the following network design problem:

minimize Z CeTe (3)
eck
subject to
Z ze > f(S), for each S € p,
e€dg(S)
ze € {0,1}, for each e € F,

where dg(S) denotes the set of the arcs leaving S, and f(S) is a crossing supermodular
function on the set system p C 2V.

Frank [4] has considered the special case of this problem when f is intersecting supermod-
ular. He showed that in this case, the LP relaxation is totally dual integral (TDI), and gave
a direct combinatorial algorithm to solve the problem. The case of crossing supermodular
function is NP-hard (as it contains the k-connected subgraph problem as a special case).
Here we use Frank’s theorem to get a simple 2-approximation algorithm.

Let r be a vertex of G. Divide all the sets in p into two groups as follows:

pr={A€p:r ¢ A} (4)
pe={A€p:reA}l (5)

The idea is that using Frank’s technique we can solve the network design problem sepa-
rately for p; and p,, and then combine the solutions to get a 2-approximation for the original

problem.
Lemma 1 For the set systems p1 and ps, the problem (3) can be solved optimally.

Proof: For any S € p;, define the requirement function as f;(S) = f(S). Then the problem

for the first collection p; is

minimize Z CeTe (6)

ecE

subject to

Z ze > f1(S5), for each S € py,
665g(5)

z. € {0,1}, for each e € F,

Note that f; is intersecting supermodular on the set family p;. For any Si, S, € p;, we
have r ¢ S; U Ss, and so S; U Sy # V. This together with crossing supermodularity of f
implies that the requirement function f;(S) is intersecting supermodular on p;. Hence the
LP relaxation of (6) is TDI, and the integer program can be solved optimally.

We will use a similar idea for p,. This is not an intersecting set system. To be able to
apply Frank’s result we will consider the reverse of the graph G defined as G" = (V, E")
where E" ={i— j:j—>i1€ E}. fe=1i— j € E, then for ¢" = j — i € E" define c,r = c,.

Note that the network design problem with the function fo(S) = f(S) for S € p, is
equivalent to the problem on the reverse graph G” with requirement function f5(V '\ S) =
f2(S) for S € po. Let ph = {ACV :V\AEpe}and f7(S) = f(V\S) for any S € pf, (see

Figure 1 for an example). Then the second subproblem is

minimize Z CeTe (7)

ecET

O
©)
\
. O
equivalent to
Network design Network design
with f(S) for Sin P, with f{S) for Sin %r

Figure 1: Example of reverse graph

subject to

z ze > f35(S), for each S € pb,

e€gr(S)
z. € {0,1}, for each e € E",

Note that f] is intersecting supermodular on the set system p}: Suppose Si, 52 € pf, such
that S; NS, # 0. Then S;US, = S; NS, #V, and we have that 7 € S; NS, # 0, so the

sets S; and S, are crossing, and from the crossing supermodularity of f we get

f2(S1) + f2(S2) = f(S1) + f(S2) < f(S1NS) + f(S1US)
= f(S1NS2) + f(S1US2) = fo(S1 U S2) + fa(S1 N Ss)

That is, fo(S) is intersecting supermodular on p}, and hence the linear programming
relaxation of (7) is TDI, and the integer program can be solved optimally. (]
We have the following simple algorithm for problem (3):

Algorithm 1 Crossing-2approx
1. Solve subproblems (6) and (7) optimally.
2. Return the union of the optimal arc sets of the two subproblems.
Theorem 1 Algorithm 1 returns a solution to (3) which is within a factor of 2 of the optimal.

Proof: Let z* be an optimal solution to (3); Z and # be optimal solutions to (6) and (7)

respectively. Since z* is a feasible solution for both (6) and (7), we have

2 % Z Cely = Z Cey + Z Cehy > Z Cole + Z CeTe- (8)

ecE ecE ecE ecE ecE

6

Combining the optimal arc sets of (6) and (7) we will get a solution for (3) of cost at

most) ..pCele +) e Cele, Which is within a factor of 2 of the optimal. O

3 The Structural Property of the Basic Solutions

In the previous section we gave a 2-approximation algorithm for the crossing supermodular
case. In this section we give a structural property for the basic solutions of the LP relaxation
of the problem. We use this description in section 4 to get a 4-approximation algorithm.
Consider the LP relaxation of the main problem (1).
minimize Z CeTe 9)
ecE

subject to

z(6a(5)) = f(5), for each S C 'V,

0<z, <1, for each e € E.

The second main result of the paper is the following property of the basic solutions of
(9).

Theorem 2 If f(S) is crossing supermodular then in any basic solution of (9), x. > 1/4 for

at least one arc e.

The rest of this section gives a proof to this theorem. The outline of the proof is analogous

to Jain’s [10] proof. Consider a basic solution z to the linear program.

e First we may assume without loss of generality that x, > 0 for all arcs e. To see this
simply delete all the arcs from the graph that have x, = 0. Also assume z, < 1 for all
arcs e; otherwise the theorem obviously holds.

e If x is a basic solution with m non-zero variables, then there must be m linearly in-
dependent inequalities in the problem that are satisfied by equality. Each inequality
corresponds to a set S, and those satisfied by equality correspond to tight sets, i.e., sets
S such that z(6g(S)) = f(S). We use the well-known structure of tight sets to show
that there are m linearly independent such equalities that correspond to a cross-free
family of m tight sets. (A family of sets is cross-free if for all pairs of sets A and B
in the family one of the four sets A\ B, B\ A, AN B or the complement of AU B is

empty.)

e We will use the fact that a cross-free family of sets can be naturally represented by a
forest.

e We will prove the theorem by contradiction. Assume that the statement is not true,
and all variables have value z, < 1/4. We consider any subgraph of the forest; using
induction on the size of the subgraph we show that the k£ sets in this family have more
than 2k endpoints. Applying this result for the whole forest we get that the m tight
sets of the cross-free family have more than 2m endpoints. This is a contradiction since

m arcs can have only 2m endpoints.

The hard part of the proof is the last step in this outline. While Jain can establish the
same contradiction based on the assumption that all variables have z, < 1/2, we will need
the stronger assumption that z, < 1/4 to reach a contradiction.

We start the proof by discussing the structure of tight sets. Call a set S tight if z(dg(S)) =
f(S). Two sets A and B are called intersecting if AN B, A\ B, B\ A are all nonempty. A
family of sets is laminar if no two sets in it are intersecting, i.e., every pair of sets is either
disjoint or one is contained in the other.

Two sets are called crossing if they are intersecting and A U B is not the whole set V.
A family of sets is cross-free if no two sets in the family are crossing. The key lemma for
network design problems with crossing supermodular requirement function is that crossing
tight sets have tight intersection and union, and the rows corresponding to these four sets
in the constraint matrix are linearly dependent. Let Ag(S) denote the row corresponding to

the set S in the constraint matrix of (1).

Lemma 2 If two crossing sets A and B are tight then their intersection and union are also
tight, and if x. > 0 for all arcs then Ag(A) + Ag(B) = Ag(AU B) + Ag(AN B).

Proof: First observe that the function z(dg(S)) is submodular, and that equation holds if
and only if there are no positive weight arcs crossing from A to B or from B to A, i.e., if
z2(dg(A, B)) = z(dg(B, A)) = 0, where dg(A, B) denotes the arcs that are leaving A and
entering B.

Next consider the chain of inequalities, using the crossing submodularity of z(d¢(.)),
supermodularity of f and the fact that A and B are tight.

fLAUB) + f(ANB) = f(A)+ f(B) = 2(dc(A)) + 2(dc(B))
> 2(0g(AUB)) +z(6c(ANB) > f(AUB) + f(AN B).

8

This implies that both AN B and AU B are tight and z(dg(A, B)) = z(dg(B, A)) = 0. By
our assumption that z, > 0 on all arcs e, this implies that ¢ (A, B) and dg(B, A) are both
empty, and so Ag(A) + Ag(B) = Ag(AUB) + Ag(AN B). O

The main tool for the proof is a cross-free family of |E(G)| linearly independent tight

sets.

Lemma 3 For any basic solution x that has x. > 0 for all arcs e, there exists a cross-free
family @Q of tight subsets of V' satisfying the following:

o Q| =[E(G)].
e The vectors Ag(S), S € Q are independent.
e For every set S € Q, f(S) > 1.

Proof: For any basic solution z that has z. > 0 for all arcs e there must be a set of |E(G)|
tight sets so that the vectors Ag(S) corresponding to the sets S are linearly independent.
Let @ be the family of all tight sets S. We use the technique of [9] to uncross sets in @
and to create the family of tight sets in the lemma. Note that the rank of the set of vectors
Ag(S) is |E(G)|. Suppose there are two crossing tight sets A and B in the family. We can
delete either of A or B from our family and add both the union and the intersection. This

step maintains the properties that

e all the sets in our family are tight,
e the rank of the set of vectors Ag(S) for S € Q is |E(G)|.

This is true, as the union and intersection are tight by Lemma 2, and by the same lemma
the vector of the deleted element B can be expressed as a linear combination of the other
three as Ag(B) = Ac(AU B) + Ag(AN B) — Ag(A).

In [9] it was shown that a polynomial sequence of such steps will result in a family whose
sets are cross-free. Now we can delete dependent elements to get the family of sets satisfying
the first two properties stated in the lemma.

To see the last property observe that the assumption that xz, > 0 for all arcs e implies

that all the tight sets S that have a nonzero vector Ag(S) must have f(S) > 1. O

A
O D/\/ > ¥

(@) (©)

Figure 2: A laminar family with tree representation

Following the notation of Andréas Frank we will represent a cross-free family as a laminar
family with two kind of sets: round and square sets. Take any element v of V(G). Let S € @
be a round set if v € S and S be a square set if v € S. It is easy to see that by representing all
square sets by their complements we get a laminar family. This laminar family will provide

the the natural forest representation for our cross-free family.

Lemma 4 For any cross-free family Q, the sets {R € Q for round sets}, and the sets {V'\ S

for square sets S € Q} together form a laminar family.

The laminar family as given by Lemma 4 has the following forest representation. Let
R4, ..., R;, be the round sets and Sy, ..., S; be the square sets of a cross-free family (). Consider
the corresponding laminar family L = {R,, ..., Ry, Si, ..., S;}. Define the forest F as follows.
The node set of F' is L, and there is an arc from U € L to W € L if W is the smallest
subset in L containing U. See Figure 2 for an example of a laminar family L obtained from
a cross-free family () and the tree representation of L.

Now let’s give some intuition for our main proof. Lemma 3 says that |Q| = |E(G)], that
is,

There are exactly twice as many arc endpoints of G as subsets of @) (10)
The idea of the proof comes from the following observation. Assuming that the statement of
Theorem 1 is not true, that is for any e € F(G), z. < 1/4, distribute the endpoints such that
each subset of () gets at least 2 endpoints and some subsets get more than 2 endpoints. This
will contradict (10). How to find this kind of distribution? The concept of incidence defined
below gives the necessary connection between endpoints and subsets.

We say that an arc e =i — j of G = (V, E) leaves a subset U € Q ifi € U and j € U.
Consider an arc e =i — j of G = (V, E). We will define which set are the head and the tail

of this arc incident to. If a node of the graph is the head or the tail of many arcs, then each

10

Figure 3: Incidence between endpoints and subsets

head and tail at the same node may be incident to different sets. If U € L is the smallest
round subset of L such that e is leaving U then the tail of e at ¢ is called an endpoint incident
to U ; when no round subset satisfies the above condition then the tail of e at ¢ is called
incident to W € L if W is the smallest square subset containing both 7 and j. Similarly,
if U € L is the smallest square subset of L such that e is leaving U then the head of e at
j is called an endpoint incident to U ; when no square subset satisfies the above condition
then the head of the arc e at j is called incident to W € L if W is the smallest round subset
containing both ¢ and j. For example, in Figure 3 the tail at ¢ is incident to S, head at j is
incident to R, the head at w is incident to P, and the tail at u is not incident to any of given
subsets.

Note that by definition each arc endpoint of G is incident to at most one subset of Q).
Thus, in our distribution each subset can naturally get those endpoints which are incident to
it. If a subset gets more than 2 endpoints, we will reallocate the “surplus” endpoints to some
other subset “lacking” endpoints so that the minimum “quota” of 2 is provided for every
subset.

How to do the reallocation? Here we can use the directed forest F' defined above. That
is, start allocating endpoints to the subsets which correspond to the leaves of the forest. If a
subset has surplus endpoints reallocate them to its parent, call this process “pumping” the
surplus endpoints up the tree. If at the end of the “pumping up” process, every non-root
node gets 2 endpoints and at least one root node gets more than 2 endpoints then we are
getting a contradiction to (10).

Obviously, the mathematical technique to accomplish this process of pumping up is in-
duction. That is, achieve the above allocation first for smaller subtrees and using that achieve
the allocation for larger subtrees. Ideally, we would like to prove that for any rooted subtree

it is possible to allocate the endpoints such that each node gets 2 endpoints and the root gets

11

7
V

?/O\? A

°f VAN

O

- |-]-{]

O
uniform-chain chain-merger chameleon

Figure 4: Tree structures

at least some specified number £ which is strictly greater than 2. Unfortunately, this kind of
simple statement doesn’t allow us to apply the induction successfully. The point is that the
roots of some tree structures can always get more than k£ endpoints; and if we use this loose
estimate for those “surplus-rich” nodes then this might cause some of their ancestors to lack
even the minimum quota of 2. That is why we need to define some tree structures and for
each of them state a different £ as the minimum number of endpoints that the root of that
particular subtree can get.

Next we define the necessary tree structures. See Figure 4 for examples.

A chain is a subtree of nodes, all of which are unary except maybe the tail (the lowest
node in the chain). Note that a node of any arity is itself a chain.

A chain with a non-unary tail is called the survival chain of its head (the highest node in
the chain). So if a node is not unary then its survival chain is the node itself.

A chain of nodes having the same shape and requirement 1 is called a uniform-chain.

A chain-merger is a union of a round-shape uniform-chain and a square-shape uniform-
chain such that the head of one of the chains is a child of a node of the other chain.

A subtree is called chameleon if

e the root has one child;
e the survival chain of the root consists of nodes of both shapes;

e the tail of the survival chain has two children.

The rest of this section is the following main lemma which completes the proof of the

theorem.

Lemma 5 Suppose every arc takes value strictly less than 1/4. Then for any rooted subtree
of the forest, we can distribute the endpoints contained in it such that every vertexr gets at

least 2 endpoints and the root gets at least

12

5 if the subtree is a uniform-chain;

6 if the subtree is a chameleon;

7 if the subtree is a chain-merger;
10 if the root has at least 3 children;

8 otherwise.

Proof by induction on the height of the subtree.

First consider a leaf R. If the requirement of R is 1 then it is a uniform-chain and needs
at least 5 endpoints allocated to it (hereafter, this allocated number will be called label). On
the other hand, since all the variables have values less than 1/4 then there are at least 5 arcs
leaving R. Since R has no children this implies that there are at least 5 endpoints incident
to it, so R gets label at least 5. If the requirement of R is greater than 1 then the same
argument shows that it can get label at least 10.

For the subtrees having more than one node let’s consider cases dependent on the number
of children of the root R. Hereafter, without loss of generality we will assume that R is a

round node; the other case is symmetric.

Case 1: If R has at least four children, by induction it gets label at least 4 * 3 = 12 since

each child has excess of at least 3.

Case 2: Suppose R has three children: Si,S,Ss. If at least one of its children has label
> 6 then R will get at least 3 + 3 + 4 = 10. Consider the case when all three children have
labels 5, i.e., by induction the subtrees of all three are uniform-chains. Let’s show that in
this case R has an endpoint incident to it (and therefore gets label > 3 +3 + 3 4+ 1 = 10).

Consider cases dependent on the shapes of the children.

1. If the subtrees of S;, 59, S5 are round-shaped uniform-chains then an arc leaving one
of the S;’s has its head in R. Otherwise, we would have Ag(R) = Ag(S1) + Ac(S2) +
Ag(S3) which contradicts the independence of the vectors Ag(R), Ag(S1), Ag(S2), Ag(S3).
2. Suppose S; and S are round-shaped and S5 is square-shaped. Unlike the previous case,
here some arcs which start from S; and Sy might enter S5 without creating endpoints
for R.
If R has no endpoints incident to it then f(R) < f(S1) + f(S2) =1+ 1 =2 and hence

we must have f(R) = 1. Thus, the sum of the values of the arcs which leave S; and S,

13

Figure 5: Case 2.2

and enter S3, is equal to f(S;) + f(S2) — f(R) = 1. Hence, the requirement of 1 of S3
is completely satisfied by this kind of arcs. In the result, Ag(R) = Ag(S1) + Ag(S2) —
A (S3) which contradicts the independence.

3. Suppose S is round-shaped and Sy, S3 are square-shaped. If there is no endpoint inci-
dent to R then all the arcs leaving S; should also leave R to satisfy the requirement of R
which can be only 1; but this means Ag(R) = Ag(S1) contradicting the independence.

4. If Sy, 55,53 are square-shaped then R should have endpoints to satisfy its positive

requirement.

Case 3: Suppose R has two children, S; and S3. Then R needs label 7 if its subtree is a

chain-merger and label 8 otherwise. Let’s consider cases in that order.

1. The subtree of R is a chain-merger if and only if the subtrees of S; and S5 are uniform-
chains of different shapes. In this case, by the argument used in case 2.3, R has an
endpoint incident to it, so it gets label at least 3+3+1=T7.

2. If none of the subtrees of S; and Ss is a uniform-chain then R gets at least 4+4=8. R
gets at least 8=5+3 also in the case when at least one of its children has label > 7.

3. The remaining hard case is when the subtree of S; is a uniform-chain with label 5 and
the subtree of S is a chameleon with label 6. Let’s show that R has an endpoint incident
to it and so gets label at least 3+4+1=8. Assume that R doesn’t have endpoints.

Consider 2 cases:

(a) Suppose S; is round-shaped. Let T be the highest round-shaped node in the
survival chain of Sy (can be S, itself). If an arc leaving T doesn’t leave R then
its head is incident to R; so all the arcs leaving T leave also R. Since f(S;) =
1, f(R) € Z and there is no endpoint incident to R then either f(R) = f(T) + 1

14

case (b)

case (a) when f(R)=f(T)+1

Figure 6: Two children cases

.l
R E_@
S T

case 4.2(b)

case4.l

Figure 7: One child cases

or f(R) = f(T). In the first case, all the arcs leaving S; should leave also R (see
Figure 6), and Ag(R) = Ag(S1) + Ag(T); in the second case no arc leaves both
S1 and R, and Ag(R) = Ag(T); so the independence is violated in both cases.
(b) Suppose S; is square-shaped. Let T be the highest round-shaped node in the
survival chain of S,. There is an arc leaving both T and S;, otherwise we would
have Ag(R) = Ag(T). In that case, all the arcs leaving S; should leave also T
because f(S;) = 1 and f(R) € Z (see Figure 6). Thus, Ag(T) = Ag(S)) + Ag(R)

contradicting the independence.

Case 4: Suppose R has one child, S. Consider cases dependent on the structure of the
subtrees of R and S.

1. Suppose the subtree of R is a round-shaped uniform-chain, and hence R needs label 5.
Then the subtree of S is also a uniform-chain. The independence of Ag(R) and Ag(S)
(along with integral requirement of R) implies that R should have at least 2 endpoints
incident to it (see Figure 7); thus, R gets label > 3 +2 =5.

2. Suppose the subtree of R is a chameleon, and hence R needs label 6. Consider 3 cases.

(a) The subtree of S is a chameleon. Then the survival chain of S contains a round

15

node 7. The independence of Ag(R) and Ag(T) implies that R should have at
least 2 endpoints incident to it; thus, R gets label > 4 + 2 = 6.

(b) The subtree of S, 7 is a chain-merger. Then 7 has a round node 7" such that every
other round node of 7 is contained in 7. The independence of Ag(R) and Ag(T)
implies that R should have at least 1 endpoint incident to it (see Figure 7); thus,
R gets label > 5+ 1 = 6.

(c) In all other cases, S has label at least 8, so R gets at least 6.

3. Suppose the subtree of R is a chain-merger, and hence R needs label 7. Consider 2

cases.

(a) The subtree of S is a chain-merger itself. Then R and S are round-shaped, and
the independence of Ag(R) and Ag(S) implies that R should have at least 2
endpoints incident to it. Thus, R gets label > 542 =7.

(b) The subtree of S is a square-shaped uniform-chain. Since R contains only square-
shaped subsets, it should have at least 5 endpoints to satisfy its requirement; thus,
R gets > 345 =28.

4. Suppose the subtree of R is none of the & structures considered above, and hence R
needs label 8. Then the subtree of S can’t be a uniform-chain or chameleon, and has

label at least 7. Consider 2 cases.

(a) The survival chain of S contains a round-shaped subset 7. Then the independence
of Ag(R) and Ag(T) implies that R should have at least 2 endpoints incident to
it. Thus, R gets label > 742 =9.

(b) All the nodes in the survival chain of S are square-shaped. Then its tail T has at
least 3 children and label > 10. Based on the same independence argument, any
node in the survival-chain, including S, also gets label > 10. Thus, R gets at least
8. O

4 The 4-approximation Algorithm via Iterative Round-
ing
The idea of the algorithm is to iteratively round the solutions of the linear programs derived

from the main IP formulation as described below.

16

Based on Theorem 2, if we include the arcs with value at least a quarter in the solution
of the main integer program (1) then the factor that we lose in the cost is at most 4. These
arcs might not form a feasible solution for (1) yet. We reduce the LP to reflect the fact that
the set of arcs is already included in the solution, and apply the method recursively.

Formally, let «* be an optimal basic solution of (9) and Ej/s; be the set of the arcs
which take value at least 1/4 in z*. Let F,.s = F — F; /4+- Consider the residual graph
Gres = (V, E,e5) and the corresponding residual LP:

minimize Z Cee (11)
e€Eres
subject to
z(0a,.,(S)) > f(S) = |E1jst Néa(S)], for each S CV
0<z, <1, for each e € F,,.

This residual program has the same structure as (9); the difference is that the graph
G and the requirements f(S) are reduced respectively to Gyes and f(S) — [Eyi/ay N 0c(S)]
considering that the arcs from E; /4, are already included in the integral solution. Theorem
2 can be applied to (11) if the reduced requirement function is crossing supermodular which
is shown next.

A function f : 2V — Z is called submodular if — f is supermodular, i.e., ifforall A, B C V,
f(A)+ f(B) > f(AN B) + f(AU B). The functions |¢(.)| and more generally z(d¢(.)) for
any nonnegative vector x are the most classical examples of a submodular functions. The
requirement function in the residual problem is the difference of a crossing supermodular

function f and this submodular function, so it is also crossing supermodular.

Theorem 3 Let G = (V, E) be a subgraph of the directed graph G = (V,E). If f : 2V — Z
is a crossing supermodular function then f(S) — |0a(S)| is also a crossing supermodular

function.

The high-level description of the algorithm which is based on these ideas is given in
Algorithm 2.

Algorithm 2 LP Rounding Algorithm

1. Find an optimal basic solution to LP (9).

17

2. Include all the arcs with values 1/4 or more in the solution of (1).
3. Delete all the arcs included in the solution from the graph.

4. Solve the residual problem recursively until no positive requirements are left.

The algorithm requires solving the linear program (9). Note that (9) has a constraint
for each subset S. Using the ellipsoid method Grétschel, Lovasz and Schrijver [8] proved
that such a linear program can be solved in polynomial time if there is a polynomial time
separation subroutine, i.e., a method that for a given vector x can find a subset S such
that xz(dg(S)) < f(S) if such a set exists. Note that a violated set exists if and only if
the minimum ming(z(dg(S)) — f(S)) is negative. The function z(dg(S)) — f(S) is crossing
submodular. Grotschel, Lovasz and Schrijver [8] designed a polynomial time algorithm to
minimize submodular functions. Note that a crossing submodular function is (fully) sub-
modular if restricted to the sets {S : r € S,v ¢ S} for any node r # v. We can obtain
the minimum of a crossing submodular function by selecting a node r and computing the

minimum separately over the sets {S : 7 € S,v ¢ S} and {S : r ¢ S,v € S} for all nodes
vFET.

Theorem 4 The LP Rounding Algorithm 2 returns a solution for (1) which is within a
factor of 4 of the optimal.

Proof: We prove by induction that given a basic solution z* to (9) the method finds a
feasible solution to the integer program (1) of cost at most 4cz*. Consider an iteration of the
method. We add the arcs E,44 to the integer solution. The cost of these arcs is at most 4
times the corresponding part of the fractional solution z*, i.e., ¢(Ey4;) < 4 Ze€E1/4+ cexs. A
feasible solution to the residual problem can be obtained by projecting the current solution
x* to the residual arcs. Using purification we obtain a basic solution to the residual linear
program of cost at most the cost of z* restricted to the arcs E,.;. We recursively apply the
method to find an integer solution to the residual problem of cost at most 4 times this cost,
i.e., at most 4% o c.x;. This proves the theorem. [

The algorithm stated above is assuming that we solve a linear program every iteration.
However, as seen by the proof, it suffices to solve the linear program (9) once, and use

purification to obtain a basic solution to the residual problems in subsequent iterations.

18

Theorem 2 states that there is always a variable with value at least 1/4 in any basic
solution of the LP relaxation. But our conjecture is that in any basic solution there should
be a variable with value at least 1/2. And rounding this high-value variables would lead to
a 2-approximation based on the same reasons given in this section for a 4-approximation.
Our computational results (see Section 5) support this conjecture, at least for the Strong
Connectivity Problem. We didn’t have any problem instance where all variables in the LP

relaxation had values strictly less than 1/2.

5 Computational experiments

We have tested our algorithms for the special case of Strong Connectivity problem when
f(S)=1for all) #S C V. Note that for this special case, the 2-approximation algorithm
of Section 2 is equivalent to the algorithm of Frederickson and Jaja [5]. The algorithms were
tested on randomly generated instances.

We have used C as our implementation environment. The linear programs were solved
with CPLEX 6.6.1. We used modified versions of lpex2.c and mipex2.c files of CPLEX to
call the LP and MIP solvers within our main C' code. All experiments were performed on a

conventional Sun UltraSparc workstation.

Implementing the LP rounding algorithm

Our results obtained in Section 3 showed that there is always a variable with value at least
1/4 in any basic solution of the LP relaxation. But our conjecture is that in any basic
solution there should be a variable with value at least 1/2. And rounding this high-value
variables would lead to a 2-approximation; the reasons are the same as in section 4. Our
computational results support this conjecture, at least for the Strong Connectivity Problem.
We didn’t have any problem instance where all variables had values strictly less than 1/2.
Thus, we could include only those arcs in the solution which have values 1/2 or more.
Intuitively, this “1/2-rounding” version of the algorithm should return better solutions com-
pared to the original “1/4-rounding” algorithm because we include only higher-quality arcs
(arcs with high fractional values) in the solution. To make the solution quality even better
we applied “sequential rounding” in our implementation: in each iteration only the arcs with

the highest fractional values were included in the solution. For some instances we tested this

19

“round-the-highest” version of the algorithm against the original “1/4-rounding” version, and

“round-the-highest” delivered better results.

Results of experiments

Table 1 gives the average percentagewise cost deviations from optimum for our algorithms.

Table 1: Average percentagewise deviations from optimum

2-approx. LP-rounding
10 nodes 22.8 43
15 nodes 27.6 .5
20 nodes 25.6 .52

The LP relaxation returned integer solutions for most instances. To make the statement
about the performance of the LP Rounding algorithm more valid, we checked its performance
only for those instances which did have fractional solutions. Table 2 gives the average de-
viations from optimum only for instances with fractional solutions when applying the LP
Rounding algorithm; in the last column of this table we give number N; of those instances
for which the LP relaxation returns a fractional solution (and N is the total number of

instances).

Table 2: Average deviations from optimum for instances with fractional solutions

average deviations Ny out of N
10 nodes 1.4 32 out of 100
15 nodes .95 52 out of 100
20 nodes .86 12 out of 20

We tested the 2-approximation Algorithm 1 also for large instances with several hundreds
of nodes. Since we were not able to solve integer (or linear) programs for these large instances,
the cost of the algorithm output was compared not with the optimal solution but with its
lower bound. The lower bound in our case was the cost of the dual solution when the primal-

dual algorithm is applied to the problem (see [12] for details on the primal-dual algorithm).

20

The average percentagewise deviation from the lower bound for large instances was on average
37%.

To be consistent when comparing the results for small and large networks, we have also
computed the average deviations of Algorithm 1 outputs from the lower bound for small

networks. The results are summarized in Table 3.

Table 3: Deviations from optimum and lower bound for Algorithm 1

deviation from OPT deviation from LB
10 nodes 22.8 25
15 nodes 27.6 29.6
20 nodes 25.6 26.9

As one can see from Table 3, the deviations from the lower bound are on average 7.5%
bigger than the deviations from the optimum. Assuming that this ratio holds also for large
networks, we could conclude that the deviations from the optimum for large instances are on

average 34.5% (considering that the deviations from the lower bound are on average 37%).

Analysis of results

The LP rounding algorithm has a better performance in terms of solution quality. For most
instances it delivers outputs within 1% of the optimum (see Table 1). For most instances,
the LP relaxation delivered an integral solution. But even for those instances which had
fractional solutions, the output of the LP Rounding algorithm was on average within 1.5%
of the optimum (see Table 2).

However, the disadvantage of the LP rounding algorithm is the big size of the linear
program which doesn’t allow to apply the algorithm for large instances. The 2-approximation
Algorithm 1 doesn’t require much memory and is pretty fast (on average 6 minutes for
networks with 1000 nodes). But its output is on average 25% far from the optimum for small

problems, and might be about 34.5% far from the optimum for large problems.

21

6 Concluding remarks

Our results obtained in Section 3 showed that there is always a variable with value at least
1/4 in any basic solution of the LP relaxation. But our conjecture is that in any basic solution
there should be a variable with value at least 1/2, and our computational results support
this conjecture. It is an open problem to prove the conjecture theoretically.

It is interesting whether our techniques extend to other directed network design problems.
In section 1 we noted that an example of the crossing supermodular function is f(S) =
max(|S|, k). Note that sets S that contain almost all nodes have a very large value in this
function. A more interesting function for the context of network design would be the function
f(S) = min(|S|, k, |V \ S|). However, the minimum of convex functions is not convex, and
this function is not crossing supermodular. Another interesting open problem is whether our

techniques extend to the directed Steiner tree problem.

References

[1] A. Agrawal, P. Klein, and R. Ravi, When trees collide: an approximation algorithm for
generalized Steiner tree problems on networks, Proceedings of the 23rd ACM Symposium
on Theory of Computing, 1991, pp. 134-144.

[2] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li, Approxima-
tion algorithms for directed Steiner problems, Proceedings of the 9th Annual Symposium
of Discrete Algorithms, 1998, pp. 192-200.

[3] J. Edmonds, Edge-disjoint branchings, In R. Rustin (editor), Combinatorial Algorithms,
Academic Press, New York, 1973, pp. 91-96.

[4] A. Frank, Kernel systems of directed graphs, Acta Sci. Math, Szeged, Hungary, 41
(1979), 63-76.

[56] G. Frederickson and J. Jaja, Approximation algorithms for several graph augmentation
problems, STAM Journal of Computing 10 (1981), 270-283.

[6] M. X. Goemans, A. Goldberg, S.Plotkin, D. Shmoys, E. Tardos, and D. P. Williamson,
Approximations algorithms for network design problems, Proceedings of the 5th Annual

Symposium on Discrete Algorithms, 1994, pp. 223-232.

22

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. X. Goemans and D. P. Williamson, A general approximation technique for con-
strained forest problem, SIAM Journal on Computing, 24 (1995), 296-317.

M. Grotschel, L. Lovasz, and A. Schrijver, Geometric algorithms and combinatorial

optimization, Springer-Verlag, 1988.

C. A. Hurkens, L. Lovasz, A. Schrijver, and E. Tardos, How to tidy up your set-system?
Proceedings of Colloquia Mathematica Societatis Janos Bolyai 52, Combinatorics, 1987,
pp- 309-314.

K. Jain, A factor 2 approximation algorithm for the generalized Steiner network problem,
Proceedings of the 39th Annual Symposium on the Foundation of Computer Science,
1998, pp. 448-457.

S. Khuller and U. Vishkin, Biconnectivity approximations and graph carvings, Journal
of the Association of Computing Machinery, 41 (1994), 214-235.

V. Melkonian and E. Tardos, Primal-dual-based algorithms for a directed
network design problem, INFORMS Journal on Computing, to appear,
http://www.math.ohiou.edu/~vardges/papers/strconn.ps

R. Raz and S. Safra, A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP, Proceedings of the 29th Annual
ACM Symposium on the Theory of Computing, 1997, pp. 475-484.

D. Williamson, Lecture notes on approximation algorithms, IBM Research Report RC
21409, February 1999.

D. P. Williamson, M. X. Goemans, M. Mihail, and V. V. Vazirani, A primal-dual
approximation algorithm for generalized Steiner network problems, Combinatorica, 15
(1995), 435-454.

A. Zelikovski, A series of approximation algorithms for the acyclic directed Steiner tree
problem, Algorithmica, 18 (1997), 99-110.

23

