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Abstract

Dynamic networks are characterized by transit times on edges. Dynamic flow problems con-

sider transshipment problems in dynamic networks. We introduce a new version of dynamic flow

problems, called bridge problem. The bridge problem has practical importance and raises interest-

ing theoretical issues. We show that the bridge problem is NP-complete. Traditional static flow

techniques for solving dynamic flow problems do not extend to the new problem. We give a linear

programming formulation for the bridge problem which is based on the time-expanded network of

the original dynamic network.
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1. Introduction

In this paper we consider dynamic networks, a network flow model that includes transit times on

edges. A dynamic network is defined by a directed graph G = (V,E) with sources, sinks, non-

negative capacities ue, and integral transit times τe for every edge e ∈ E. In the dynamic flow

problems considered before the capacities had the following interpretation. The flow initiated in

arc e at each period of time cannot exceed ue. Consider the example of figure 1.

Figure 1: Highway arc Figure 2: Bridge arc

Here the transit time is 4, so we have divided the arc into 4 time segments. Since the capacity

is 3, each time segment can contain up to 3 units of flow. In the figure the capacity is fully used

in time segments 1 and 3. This version of the network has obvious association with a pipeline or a

highway flow. Thus, we will refer to it as highway dynamic network or just as highway network.
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The highway dynamic transshipment problem (HDT) is defined by a highway network N , a

time horizon T , and demands (supplies) dx for all sinks (sources) such that the total supply equals

the total demand, i.e.,
∑

s∈sources ds =
∑

t∈sinks dt. The problem is to find a feasible dynamic flow

f with time horizon T and |f |x = dx for every terminal x, if such a flow exists.

The highway version of dynamic network flow problems were introduced by Ford and Fulkerson

[3], who considered dynamic networks with a single source and a single sink. They showed that a

natural variant of the maximum flow problem in single-source single-sink dynamic networks can be

solved by one minimum-cost flow computation. Hoppe and Tardos [4] gave the first polynomial-time

algorithms that solve dynamic network flow problems with multiple sources and/or sinks.

In this paper we consider a different version of dynamic networks. As before there are transit

time τe and capacity ue associated with each arc e. However, the meaning of capacity is different

now: at any moment of time arc e can contain at most ue units of flow. Let us see the difference

on the example of the arc considered above (see figure 2). We can divide the arc into 4 segments

again but the total flow in these 4 segments can be at most 3. In the figure, the capacity is fully

used by having 2 unit in segment 2 and 1 unit in segment 4. A network with this type of arcs will

be called bridge network because each arc e can be considered as a bridge with total capacity ue.

The goal of the bridge dynamic transshipment problem (BDT) is the same as before: find a

feasible dynamic flow in a bridge network if such a flow exists. We will refer to HDT and BDT as

highway problem and bridge problem, respectively.

Dynamic network flow problems arise in many applications (e.g., airline, truck, and railway

scheduling, evacuation problems), see the surveys of Aronson [1] and Powell et al [7]. Minieka [6]

considered the network flow problem for dynamic networks with varying capacities. Köhler and

Skutella [5] considered the version of the problem where transit times are load-dependent.

The bridge problem has not been considered before. It was raised by the Dahlgren Lab of U.S.

Navy in the joint project with Cornell University [2]. The main goal of the project was to give a

practical implementation of an algorithm for solving the highway problem (Hoppe and Tardos [4])

and to test it on data set provided by U.S. Navy. Éva Tardos and the author of this paper were

the main investigators of the project from Cornell University. However, the Navy representatives

showed even more interest in solving the bridge problem. While this speaks about the practical

importance of the problem, it also raises interesting and challenging theoretical issues which we

address in this paper.

The paper is organized in the following way. In section 2 we discuss why the techniques for

solving other dynamic flow problems do not extend to the bridge problem. A linear programming
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formulation for the bridge problem is given in section 3. In section 4 we prove that the bridge

problem is NP-complete in the weak sense.

2. Difficulties of solving the bridge problem

Any dynamic network flow algorithm must somehow represent dynamic flow on an edge as that

flow changes with time. The standard technique is to consider discrete steps of time and make

a copy of the original network for every time step from time zero until the time horizon T , after

which there is no flow left in the network. This process results in a time-expanded network. The

time-expanded network contains a copy of the node set of the underlying original network for each

discrete time step of the time horizon. Moreover, for every arc i → j of the original network with

transit time τij and for any time period t ∈ 0, . . . , T − τij , there is a copy of the arc from node i of

layer t to node j of layer t + τij in the time-expanded network. For example, consider the instance

of the highway problem given in figure 3.

Figure 3: Dynamic network Figure 4: Time-expanded network

We create a copy of each node and arc for each time period as described above. The resulting

time-expanded network is shown in figure 4. To solve the problem by maximum flow techniques,

we also need supersources and supersinks. A supersource σi is created for every source si. There is

an arc from σi to every copy of si with capacity equal to the supply di of that source. In addition,

a supersupersource Σ is created. There is an arc from Σ to every supersource σi with capacity

di. Similarly, supersinks δi’s and a supersupersink ∆ are created along with corresponding arcs.

Note that if there is just one source (sink) in the dynamic network then there is no need for having

supersources σi’s (supersinks δi’s); a supersupersource (supersupersink) is enough. That is the case

with the sinks in our example. There are no transit times in the time-expanded network; the time-

based layers of the network already take care of transit times. Finding the maximum flow from the
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supersupersource Σ to supersupersink ∆ will also solve the original highway problem. The original

highway problem is feasible if and only if the maximum flow value is equal to the total demand.

Thus, the highway problem can be solved by applying static maximum flow techniques to the

time-expanded network. All algorithms based on time-expanded networks have running times

depending polynomially on T ; such algorithms are pseudopolynomial. Dynamic network flows can

be used to model continuous-time problems in the real world. A more accurate model relies on finer

granularity, implying more time steps before the dynamic flow is finished. The performance of a

pseudopolynomial algorithm degrades at least linearly with the improvement of model granularity;

this restricts the accuracy that can be achieved by the model.

Hoppe and Tardos [4] gave polynomial-time algorithms for solving the highway problem; they

depend polynomially on log T , not on T . This breakthrough is achieved by eliminating the time-

expanded network. Rather than computing the flow on each edge at every individual time step,

their algorithms produce solutions characterized by long time intervals for each edge during which

its flow remains constant.

However, no efficient algorithm is known for the bridge problem. Unfortunately, the bridge

problem does not have even the inefficient method of solving the problem by time-expanded net-

works. We will show that on the example of the network of figure 3. Suppose it is a bridge problem

now. The time-expanded network for a bridge problem is created exactly the same way as we did

it for a highway problem. Thus, figure 4 gives the time-expanded network of the bridge problem

too.

Note that we cannot exclude any of the parallel arcs because we do not know beforehand

which of them will be included in the solution by a maximum flow algorithm. But in that case

the algorithm might choose to include two consecutive parallel arcs in the solution using the full

capacity for each of them. For example, we might have 1 unit of flow on the copies of arc s1 → v

which start at times 0 and 1. But this will not be a feasible solution to the bridge problem because

at time period 2 we will have ≥ 1 + 1 = 2 units of flow on arc s1 → v; this is more than its allowed

capacity of 1.

3. Solving the bridge problem by linear programming

Though the time-expanded network does not allow to solve the bridge problem by static maximum

flow tecniques, it does give a linear program which can solve the problem.

We define a decision variable for each arc of the time-expanded network. Let

• xijk be the amount of flow initiated at the tail of arc i → j at time k;
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• yik be the amount of flow from supersource σi to copy k of source si (from copy k of sink ti to

supersink δi);

• zi be the amount of flow from supersupersource Σ to supersource σi (from supersink δi to super-

supersink ∆).

By this definition we do not exclude any of the parallel copies of any arc. On the other hand,

we can enforce the capacity constraints by requiring the flow on any τij consequtive parallel arcs

to be no more than uij :

α+τij−1∑
k=α

xijk ≤ uij , for any arc i → j and any time period α (1)

The arc capacity constraints are based on our discussion from Section 2 about arc capacities of the

time-expanded network:

xijk ≤ uij , for any arc i → j and for any time period k (2)

yik ≤ di, for any source si (or any sink ti) and for any time period k (3)

zi ≤ di, for any supersource σi (or any supersink δi) (4)

We need conservation of flow constraints for the nodes of the time-expanded network, that is, the

outflow is equal to the inflow for each node except the ones corresponding to sources and sinks:∑
i:i→v

xi,v,k−τiv
=

∑
j:v→j

xv,j,k , for any non-terminal node v and any time period k (5)

The conservation of flow constraints for the sources and sinks are the following:

ysk =
∑

j:s→j

xs,j,k , for any source s and any time period k (6)

ytk =
∑
i:i→t

xi,t,k−τit
, for any sink t and any time period k (7)

For supersources and supersinks we have the following constraints:

zi =
T∑

k=0

yik, for any supersource σi (or for any supersink δi) (8)

Finally, we need constraints which provide that the total demand originates from the supersuper-

source and ends in the supersupersink.∑
s∈sources

zs =
∑

s∈sources

ds (9)∑
t∈sinks

zt =
∑

t∈sinks

dt (10)
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Of course, just one of these two constraints would be enough since we have conservation of flow

constraints for all other nodes of the time-expanded network.

The objective function can be chosen arbitrarily because our goal is to verify whether there is

a feasible solution or not. However, a secondary goal could be making the feasible flow (if it exists

at all) to arrive at the sinks as early as possible. The following objective function aims to achieve

that goal:

min
∑

sinks t

∑
i→t, α∈0,...,T−τit

(α + τit) · xi,t,α (11)

Note that α + τit is the arrival time of flow xi,t,α at sink t. By having coefficient α + τit for the

flow xi,t,α, the minimization of the objective function encourages larger size for those batches which

have earlier arrival time.

The linear program for solving the bridge problem is defined by the objective function and the

constraints given above. The bridge problem is feasible if and only if the linear program has a

feasible solution.

4. Complexity of the bridge problem

The linear program of the previous section gives a pseudo-polynomial algorithm for solving the

bridge problem. So the problem is not NP-complete in the strong sense. But in this section we

show that the bridge problem is NP-complete in the weak sense even for the special case of a single

source and a single sink. It is done by a reduction from the well-known NP-complete PARTITION

problem.

PARTITION

Instance: A set of n items with sizes a1, ..., an ∈ Z+ such that
∑n

i=1 ai = 2L for some L ∈ Z+.

Question: Is there a subset I ⊂ {1, ..., n} with
∑

i∈I ai = L?

Given an instance of PARTITION, we create an instance of the bridge problem as follows.

We have just one source s and one sink t, a sequence of nodes v1, v2, ..., vn+1 where v1 = s and

vn+1 = t. For each i = 1, ..., n there are two parallel arcs ei and e′i with tail vi and head vi+1 (see

figure 5). Let En = {e1, e2, ..., en} and En+1 = {e′1, e′2, ..., e′n}. The capacities of all arcs are 1.

Let amax = maxi∈{1,...,n}ai. The transit times of the arcs are τei = n · amax · ai for ei ∈ En and

τe′
i
= (n · amax + 1) · ai for e′i ∈ En+1. The time horizon is T = (2 · amax · n + 1) · L. The problem

is to send 2 units of flow from s to t in the given time horizon.
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Figure 5: Reduction of PARTITION to the bridge problem

Theorem 1 There exists a dynamic flow which sends 2 units of flow from s to t in time T if and

only if the underlying instance of PARTITION is a ’yes’-instance.

Proof: If: Let I be a subset of {1, ..., n} such that
∑

i∈I ai = L. Then the flow of 2 units can be

sent in two packets, each containing one unit of flow. The packets use two arc-disjoint paths P1

and P2 of length n determined as follows. P1 contains those arcs ei ∈ En such that i ∈ I and those

arcs e′i ∈ En+1 such that i ∈ {1, ..., n} − I. P2 contains the remaining n arcs of the network. Then

the total transit time of path P1 is equal to the sum of the transit times of its arcs:

τ(P1) =
∑

ei∈En:i∈I τei+
∑

e′
i∈En+1:i∈{1,...,n}−I τe′

i
= n·amax·L+(n·amax+1)·L = (2·amax·n+1)·L

Similarly it can be shown that the total transit time of P2 is (2 · amax · n + 1) · L.

Only if: Suppose we have a a dynamic flow which sends 2 units of flow from s to t in time

T . Since the capacity of any arc is 1 then no arc can have more than one unit of flow at any

given time. Moreover, we claim that no arc can have more than one unit of flow within the time

horizon T . Assume the opposite: there is an arc that has more than one unit of flow. Let that

arc be ek ∈ En (similar arguments can ba applied to the arcs from En+1). The earliest time the

first unit of flow on ek can reach the head of ek is
∑k

i=1 τei = n · amax ·
∑k

i=1 ai. But this is the

earliest time any extra flow can enter ei at its tail. From that point on, the extra flow needs at

least
∑n

i=k τei = n · amax ·
∑n

i=k ai time to reach the sink t. Thus, the total time required is

n·amax ·
∑k

i=1 ai+n·amax ·
∑n

i=k ai = n·amax ·
∑n

i=1 ai+n·amax ·ak = 2·amax ·n·L+n·amax ·ak ≥

2 · amax · n · L + 2 · L · ak > T

The contradiction proves that no arc can have more than one unit of flow within the time

horizon T . Based on this argument, the 2 units of flow are sent through two arc-disjoint paths P1

and P2, each with one unit of flow. Then we claim that the underlying instance of PARTITION

is a ’yes’-instance by choosing I = {i ∈ {1, ..., n} : ei ∈ Enis on pathP1}. We need to show that∑
i∈I ai = L. Assume the opposite:

∑
i∈I ai = L + δ for some non-zero δ. Then the total transit

time of the flow on path P1 is

τ(P1) =
∑

ei∈En:i∈I τei +
∑

e′
i∈En+1:i∈{1,...,n}−I τe′

i
= n · amax · (L + δ) + (n · amax + 1) · (L− δ) =

(2 · amax · n + 1) · L− δ = T − δ
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τ(P2) =
∑

ei∈En:i∈{1,...,n}−I τei +
∑

e′
i∈En+1:i∈I τe′

i
= n · amax · (L− δ) + (n · amax + 1) · (L + δ) =

(2 · amax · n + 1) · L + δ = T + δ

That is, on one of the two paths the flow will not reach the sink t within the time horizon T .

This contradiction proves that
∑

i∈I ai = L. �

5. Concluding remarks

5.1 Reduction heuristic to highway problem

Recall that the main difference between the two problems is the different interpretation of the arc

capacities. So when reducing a bridge problem to a highway problem, some modification should be

done with capacities. We suggest the following modification. If e is an arc in the bridge network

with capacity ue and transit time τe then the corresponding arc in the highway network has transit

time τ̂e = τe and capacity ûe = ue/τe. No other changes are made in the problem. A flow in

the reduced highway problem will satisfy the capacity constraints of the original bridge problem

because the flow on any arc e at any moment of time is at most τ̂e · ûe = τe · ue
τe

= ue. If the reduced

highway problem (which can be solved by the algorithm of Hoppe and Tardos [4]) is feasible then

the original bridge problem is also feasible. However, the infeasibility of the highway problem does

not yet imply that the bridge problem is infeasible.

5.2 Networks with mixed capacities

In practical settings it is most likely to have mixed networks where some arcs are highway arcs and

the others are bridge arcs. Hybrids of the algorithms for highway and bridge problems could bring

solution methods for the mixed problems. For example, in the reduction algorithm of subsection

5.1 we could change only the capacities of the bridge arcs while not changing anything about the

highway arcs.

Yet another interesting variation of the problem is when we have two kind of capacity constraints

on the same arc. We might have transit time τe and capacity ue in the highway sense, for the amount

of flow entering arc e at any given time. But at the same time there might be a capacity u′e in the

bridge sense: the total flow on arc e at any given time is no more than u′e ≤ τe · ue. Note that the

reduction algorithm of subsection 5.1 would work also for this variation of dynamic networks.
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