
Circuit integration through lattice hyperterms

Vardges Melkonian

Department of Mathematics, Ohio Universtiy, Athens, Ohio 45701, USA

vardges@math.ohiou.edu

Abstract

Reducing the size of a logic circuit through lattice identities is an important and well-studied

discrete optimization problem. In this paper, we consider a related problem of integrating

several circuits into a single hypercircuit using the recently-developed concept of lattice

hyperterms. We give a combinatorial algorithm for integrating k-out-of-n symmetrical dia-

grams which play important role in reliability theory. Our results show that the integration

can reduce the number of circuit gates by more than twice.

Keywords: logic circuit reduction; lattices; hyperterms; k-out-of-n diagrams; combinatorial

optimization)

AMSC numbers: 90C27, 94C10

1. Introduction

One of the important problems in the theory of logic circuits (and generally structures

described by block diagrams) is the circuit reduction. Redundant elements are eliminated

and the circuit is brought to a reduced form which is equivalent to the original one. Algebraic

structures like Boolean algebras and distributive lattices and their properties are the basis

of solving this kind of reduction problems. The algebraic operations in lattices, ∨ and ∧, are

the mathematical equivalents of OR-gates and AND-gates in logic circuits. The reduction

of the circuits can therefore be realized using lattice identities. This kind of applications of

algebraic structures in logic circuits are well-known ([10, 17]) and continue to be an active

area of research ([2, 3, 9, 14, 15]). But as stated in [10], ”Logic synthesis is key for the

quality of a netlist. The state of the art is rather poor, compared to other areas of chip

design an improvement of logic synthesis by mathematical ideas is badly needed.” And a

goal of this paper is to apply a recently-developed algebraic concept and a combinatorial

scheme for logic synthesis.

1

Recent developments in lattice theory, and particularly the concepts of lattice hyperterms

and lattice hyperidentities ([7, 8, 20]) give a new perspective to the optimization of logic

circuits. A hyperidentity is formally the same identity with functional variables replacing

lattice operations. For example, instead of two commutative identities, (i) x∨ y = y ∨ x, (ii)

x∧y = y∧x, we can take a hyperidentity F (x, y) = F (y, x), which becomes the first identity

when F takes value ∨ and the second one when F takes value ∧. The same principle could

be applied to logic circuits: two separate circuits can be integrated in a single hypercircuit

which will realize the functions of both circuits at appropriate modes. The mathematical

equivalent of the mode choice is the substitution of a functional variable by a particular

lattice operation.

If two or more simple circuits are efficiently combined in an equivalent hypercircuit then

the total number of the elements used in the circuits can be reduced. The optimization

problem is to find an equivalent hypercircuit which minimizes the total number of elements.

In this paper we show how to find a minimal equivalent hypercircuit for symmetrical k-

out-of-n circuits which play important role in reliability theory ([11, 19]). We show that

the substitution of symmetrical k-out-of-n circuits by a single hypercircuit decreases the

number of gates by more than twice. Our procedure includes algorithmic techniques from

combinatorial optimization and integer programming.

A main goal of this paper is to attempt to connect the several research areas mentioned

above: logic circuits, lattice hyperterms, reliability theory, combinatorial optimization. The

idea is to establish a connection between these areas through the recently-developed concept

of lattice hyperterms.

The paper is organized the following way. In Section 2 we review some basic concepts

from algebra. Section 3 states the general problem of integrating circuits through lattice

hyperterms. The solution of the problem for symmetrical k-out-of-n diagrams is given in

Section 4. A short discussion of an important future direction, circuit integration through

Boolean algebra hyperterms is given in Section 5. Other future directions are discussed in

Section 6.

2. Basic Concepts from Lattice Theory

Below is a brief discussion of some concepts from the theory of lattices and hyperidentities

that we need in this paper.

2

Definition 1 An algebraic structure (L,∨,∧), consisting of a set L and two binary oper-

ations ∨ and ∧ on L (called join and meet respectively) is called a lattice if the following

identities hold for all elements a, b, c of L

(i) idempotent laws: a ∨ a = a, a ∧ a = a;

(ii) commutative laws: a ∨ b = b ∨ a, a ∧ b = b ∧ a;

(iii) associative laws: a ∨ (b ∨ c) = (a ∨ b) ∨ c, a ∧ (b ∧ c) = (a ∧ b) ∧ c;

(iv) absorption laws: a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a.

Definition 2 A lattice (L,∨,∧) is called distributive if the distributive laws

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

hold for all elements a, b, c of L.

The binary operations ∨ and ∧ are the mathematical equivalents of OR-gate and AND-

gate in logic circuits. Thus, the lattice identities can be used to reduce a circuit to an

equivalent circuit which uses fewer gates. This type of reductions are well-known. In this

paper we exploit a different kind of reduction based on lattice hyperidentities and lattice

hyperterms. A hyperidentity has the same form as an identity; the only difference is that

the actual operations are replaced by functional variables. Note that any pair of lattice

identities (i)-(iv) have the same form, and could be obtained from each other by interchanging

the places of ∨ and ∧. Thus, any pair of those identities can be generalized to a higher level

identity where the operations are replaced by functional variables. For example, a general

form for associative laws is F (a, F (b, c)) = F (F (a, b), c). The two associative laws of (iii)

can be obtained by substituting F → ∨ and F → ∧ respectively.

Definition 3 A lattice hyperidentity is an equality consisting of binary functional vari-

ables F1, ..., Fn and simple (element) variables x1, ..., xk that becomes a valid lattice identity

for any substitution of F1, ..., Fn by actual binary operations ∨ and ∧.

Examples of valid lattice hyperidentities are F (a, a) = a (idempotent law), F (a, b) =

F (b, a) (commutative law), F (a, F (b, c)) = F (F (a, b), c) (associative law), F (a, G(b, c)) =

G(F (a, b), F (a, c)) (distributive law).

Each side of the equality in lattice hyperidentities is a lattice hyperterm. Lattice hyper-

identities can be used to reduce lattice hyperterms to equivalent hyperterms the same way

as lattice identities can reduce lattice terms to equivalent terms. Lattice hyperterms are the

basis of our circuit reduction problem stated in the next section.

3

The field of hyperidentities is an active research area in modern algebra. Some recent

papers discussing different properties, new directions in development of hyperidentities and

applications are discussed in [5, 6, 7, 12, 13, 16]. A discussion about hyperidentities in

distributive lattices is given in [12]. The application of hyperidentities for reducing the

complexity of switching circuits is discussed in [7].

A goal of this paper is to discuss a new application area for hyperidentities. [7] discusses

how to use hyperidentities to reduce a given circuit to an equivalent simpler circuit. While

our problem is the integration of several circuits into one.

3. The Problem Statement

We begin by formally defining hyperterms.

Definition 4 A lattice hyperterm (mixed hyperterm) is an expression consisting of bi-

nary functional variables F1, ..., Fn, binary operations ∨,∧ and simple (element) variables

x1, ..., xk.

Note that we allow to have ∨ and ∧ in a hyperterm. In that sense the name mixed

hyperterm is more appropriate but we will use the shorter name hyperterm in our discussion.

The reason why we allow both functional variables and actual operations in hyperterms will

become clear from the solution of our problem.

A lattice hyperterm becomes several different lattice terms when its functional variables

are substituted by the operational symbols ∨,∧. For example, hyperterm F (x, G(y, z))

produces four different lattice terms:

• x ∨ (y ∨ z) when F → ∨, G → ∨;

• x ∨ (y ∧ z) when F → ∨, G → ∧;

• x ∧ (y ∨ z) when F → ∧, G → ∨;

• x ∧ (y ∧ z) when F → ∧, G → ∧.

Suppose we have a situation when circuits corresponding to all those four lattice terms

are needed. Then we should build 4 circuits with total number of OR-gates and AND-gates

8. On the other hand, the hyperterm has only 2 functional variables. If we could build a

circuit corresponding to the hyperterm, that would significantly reduce the number of gates.

To build such a circuit a gate equivalent to a functional variable should be used. We will call

4

such a gate a hypergate. A hypergate can fulfill the functions of both OR-gate and AND-

gate if appropriate modes are chosen. A primitive approach of building a hypergate is given

in appendix section 7.1. An effective engineering realization of a hypergate using modern

electronics is an interesting open question. But the solution of that problem is beyond the

goals of this paper. The goal of this paper is to discuss the problem of circuit reduction by

using hyperterms. Below we give the formal statement of the problem.

The hyperterm integration problem. Given simple lattice terms T1, T2, ..., Tk we

want to find a lattice hyperterm H such that each of Ti’s can be obtained from H by an

appropriate substitution of functional variables by ∨ and ∧. While many this kind of hyper-

terms might exist we want to find the one which has as few hypergates and simple gates as

possible.

The solution to the general problem for any lattice terms is an open question. It would

make sense to start from special cases that also have practical importance. The next section

gives a procedure for solving the problem for symmetrical diagrams.

4. Integrating Symmetrical Diagrams

k-out-of-n symmetrical diagrams play an important role in reliability theory ([4, 11, 18,

19]). According to [19], ”the k-out-of-n system model is a very popular model which finds

an extensive number of applications in industrial systems many variations of k-out-of-n

systems have been widely studied in the last years. Among these, consecutive k-out-of-n

systems have played a particularly relevant role in reliability analysis and design of integrated

circuits, pipeline systems, communications networks, biological systems, etc.”. Some of the

industrial and military applications are described in [11]. It particularly states that ”among

applications of the k-out-of-n system model, the design of electronic circuits such as very

large scale integrated (VLSI) and the automatic repairs of faults in an on-line system would

be the most conspicuous”. Algebraic and combinatorial methods are common in analyzing k-

out-of-n systems ([18, 19]). Our goal is to integrate electronic circuits consisting of k-out-of-n

systems using hyperidentities and combinatorial techniques.

A k-out-of-n symmetrical diagram consists of n identical units and will function if at least

k units of total n work. This feature results in the symmetrical form of the block diagram

5

as well as the corresponding lattice term. For example, the lattice term corresponding to

3-out-of-4 symmetrical diagram is (x∧ y ∧ z)∨ (x∧ y ∧ u)∨ (x∧ z ∧ u)∨ (y ∧ z ∧ u), and the

term corresponding to 2-out-of-4 symmetrical diagram is (x ∧ y) ∨ (x ∧ z) ∨ (x ∧ u) ∨ (y ∧
z) ∨ (y ∧ u) ∨ (z ∧ u).

In some situations it might be necessary to change the reliability of the system by switch-

ing from one symmetrical diagram to another. For example, switching from 3-out-of-4 dia-

gram to 2-out-of-4 diagram will increase the reliability of the system. Thus, it is a relevant

problem to have a system that could easily switch from one symmetrical diagram to another,

and the corresponding optimization problem is to have such a system with minimum possible

number of elements. Designing a hyperdiagram that integrates the simple diagrams of the

system would be a solution to the problem.

In this section we will consider the following optimization problem. Given the k-out-of-

n symmetrical diagrams for a fixed n and all k ∈ 1, ..., n, build a hyperdiagram that will

integrate all n symmetrical diagrams by using as few gates as possible.

Before giving the solution of the problem for general n, we will start from the special

cases of 3 and 4 units to get an initial idea about the integration process.

4.1 The integration in the case of 3 units

In this case we have 3 simple lattice terms:

(i) 1-out-of-3: x1 ∨ x2 ∨ x3

(ii) 2-out-of-3: (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3)

(iii) 3-out-of-3: x1 ∧ x2 ∧ x3

The total number of elements in the three symmetrical terms is 2 + 5 + 2 = 9.

A hyperterm integrating the three terms is F2(F2(F1(x1, x2), F1(x1, x3)), F1(x2, x3)). To

get a better visual idea, we can represent the hyperterm as a binary tree. For example, the

tree corresponding to F2(F2(F1(x1, x2), F1(x1, x3)), F1(x2, x3)) is shown in figure 1. In our

further discussion we will use the tree representation of hyperterms. Below we check that

the hypertree of figure 1 really integrates the three simple terms.

When F2 → ∨ and F1 → ∨, the hyperterm becomes (i);

When F2 → ∨ and F1 → ∧, the hyperterm becomes (ii);

When F2 → ∧ and F1 → ∧, the hyperterm becomes (iii).

For example, when F takes value ∨ and G takes value ∨,

(x1 ∨ x2) ∨ (x1 ∨ x3) ∨ (x2 ∨ x3) = x1 ∨ x2 ∨ x3 by lattice laws.

6

Figure 1: Hypertree with 3
units

Figure 2: Modified hyper-
tree with 3 units

Note that the hypertree has 5 hypergates compared to 9 gates in simple terms (i)-(iii).

If it is possible to use a lattice operation instead of a functional variable, then we obviously

prefer the lattice operation. This is equivalent of using a simple gate instead of a hypergate.

In our case, it can be easily verified that the hyperterm given in figure 2 also integrates

(i)-(iii). Here one of the functional variables is replaced by ∧. The new hyperterm has 4

hypergates and 1 simple gate.

4.2 The integration in the case of 4 units

In this case we have 4 simple lattice terms:

(i) 1-out-of-4: x1 ∨ x2 ∨ x3 ∨ x4

(ii) 2-out-of-4: (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x4) ∨ (x3 ∧ x4)

(iii) 3-out-of-4: (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x4) ∨ (x1 ∧ x3 ∧ x4) ∨ (x2 ∧ x3 ∧ x4)

(iv) 4-out-of-4: x1 ∧ x2 ∧ x3 ∧ x4

The total number of gates in the four symmetrical terms is 3+11+11+3=28.

A hypertree integrating the four terms is given in figure 3. Below we check that the

hypertree really integrates the four simple terms.

When F3 → ∨, F2 → ∨ and F1 → ∨, the hypertree becomes (i);

When F3 → ∨, F2 → ∨ and F1 → ∧, the hypertree becomes (ii);

When F3 → ∨, F2 → ∧ and F1 → ∧, the hypertree becomes (iii);

When F3 → ∧, F2 → ∧ and F1 → ∧, the hypertree becomes (iv).

The resulting hyperterm has 8 hypergates and 6 simple gates compared to 28 simple

gates in (i)-(iv).

7

Figure 3: Hypertree with 4 units

4.3 General principles in the case of n units

Generalizing from the previous subsections we have the following principles for building the

hypertree.

(i) The hypertree consists of the units x1, x2, ..., xn and operation symbols F1, ..., Fn−1,∧.

(ii) If a subtree has ∧ as a root operation then all other operations in the subtree are

also ∧.

(iii) If a subtree has Fk as a root operation then the possible operations in the subtree

are ∧ and Fi where i ≤ k.

(iv) For any k, the corresponding k-out-of-n diagram is obtained from the hypertree by

substituting

Fi → ∧, if i < k;

Fi → ∨, if i ≥ k.

To achieve (iv) the hypertree should satisfy the following condition. For any k-combination

of elements {xi1, xi2, ..., xik} ⊆ {x1, x2, ..., xn}, there should be a subtree such that

a) it consists exactly of units xi1, xi2, ..., xik;

b) it has operational symbols from ∧, F1, ..., Fk−1;

c) the operational symbol which is the parent of the root of the subtree is Fk.

Following these principles, the hypertree can be built recursively: once we have subtrees

corresponding for every k+1-combination then those subtrees will be populated with subtrees

8

corresponding to k-combinations. This can be done in many different ways. But our goal

is to use as few operational symbols as possible. First of all we want to have exactly one

subtree for each k-combination. Then the k-combinations should be distributed among the

k+1-combinations such that the number of operational symbols is minimized. Below we

explain how it is done and estimate the number of operational symbols.

To demonstrate our procedure, the recursive steps for n = 4 are shown in figures 4 and 5.

Figure 4 demonstrates how to populate the original 4-combination tree with 3-combination

subtrees; figure 5 shows how to populate 3-combination subtrees with 2-combination sub-

trees. Note that after populating 2-combination subtrees with 1-combinations we get the

final tree as shown in figure 3.

Figure 4: Populating the
tree with 3-combinations

Figure 5: Populating 3-
combination subtrees with
2-combinations

To populate a k+1-combination subtree by exactly m k-combination subtrees we need

m − 1 operational symbols Fk. For example, in figure 5 the 3-combination {x1, x2, x3} is

populated by 2-combinations {x2, x3} and {x1, x3}, and we need 1 operational symbol F2

for that. The only exception is when a k+1-combination subtree is populated by exactly 1

k-combination subtree; in this case we need 1 operational symbol Fk. Also note that if a

k+1-combination subtree is not populated by any k-combination then the subtree is simply

the ∧-product of the k + 1 units. For example, in figure 5 the 3-combination {x2, x3, x4} is

not populated by any 2-combinations, and thus the corresponding subtree is x2 ∧ x3 ∧ x4.

Based on these observations and keeping in mind our goal of minimizing the number of

operational symbols, we have the following directions for populating the k+1-combination

subtrees by k-combination subtrees:

9

1) Maximize the number of k+1-combination subtrees populated by k-combinations;

2) If a k+1-combination subtree is populated by k-combinations then the number of those

k-combinations should be at least 2.

This is a discrete optimization problem. In the next subsection we give a solution method

for it.

4.4 Populating k+1-combination subtrees by k-combinations

The problem how to allocate k-combinations to k+1-combinations has the following equiv-

alent combinatorial problem. Suppose we have a set of students X and a set of projects Y.

There is a compatibility graph between X and Y, specifying which student can do which

projects. We want to assign students to work on the projects by satisfying 3 main principles:

(i) every student should be assigned to exactly one project; (ii) if a project is chosen to be

pursued then at least 2 students should be assigned to that project; (iii) do as many projects

as possible while satisfying conditions (i) and (ii) (assuming that there is a feasible solution

at all).

Our problem is a special case of this general problem. In our case, X is the set of all

k-combinations, Y is the set of all k+1-combinations, a k-combination is compatible with a

k+1-combination if the k-combination is a subset of the k+1-combination.

We give two methods for populating the k+1-combination subtrees by k-combinations.

Method 1: Integer programming solution

The optimization problem can be solved by integer programming. We define two sets of

binary integer variables. For any k-combination i and any k+1-combination j such that i is

a subset of j we define a variable xij; it takes value 1 if the k+1-combination j is populated

by the k-combination i, and takes value 0 otherwise. For any k+1-combination j we define a

variable yj; it takes value 1 if the k+1-combination j is populated by any k-combination, and

takes value 0 otherwise. Let K and L be the sets of all k-combinations and k+1-combinations

10

correspondingly. Then the integer program is:

max
∑

j∈L yj (1)

s.t.
∑

j∈L xij = 1, for each i ∈ K, (2)∑
i∈K xij ≥ 2yj, for each j ∈ L, (3)

xij ≤ yj, for each i ∈ K, j ∈ L (4)

xij, yj binary, for each i ∈ K, j ∈ L. (5)

The objective function (1) maximizes the number of k+1-combination subtrees populated

by k-combinations. Constraint (2) provides that each k-combination populates exactly one

k+1-combination subtree. Constraint (3) makes sure that if a k+1-combination subtree is

populated by k-combinations then the number of those k-combinations should be at least 2.

Constraint (4) provides that a k-combination i populates a k+1-combination j only if yj = 1.

Method 2: Recursive allocation

In this subsection we give a recursive procedure for building the hypertrees. Suppose

for n units we know how to allocate k-combinations to k+1-combinations for any k. Using

that we want to do the same thing for n + 1 units. Namely, we will show how to allocate

k+1-combinations to k+2-combinations for n + 1 units. Let Sn
k denote the set of all k-

combinations for n units. Let Sn
k (n+1) denote the set of all k-combinations for n units with

an extra element n + 1 added to each of them.

Note that Sn+1
k+1 = Sn

k+1∪Sn
k (n+1). Sn

k (n+1) includes all those k+1-combinations of Sn+1
k+1

that contain n+1; on the other hand, Sn
k+1 includes all those k+1-combinations of Sn+1

k+1 that

do not contain n+1. Thus, Sn
k+1 and Sn

k (n+1) do not overlap and form a partition for Sn+1
k+1 .

Similarly, Sn
k+2 and Sn

k+1(n + 1) form a partition for Sn+1
k+2 . We allocate k+1-combinations

to k+2-combinations based on those partitions. Thus, two cases are considered. Take any

x ∈ Sn+1
k+1 .

Case 1: Suppose x ∈ Sn
k+1. By recursion, for n units x was allocated to some k+2-

combination y ∈ Sn
k+2 ⊂ Sn+1

k+2 . Do the same allocation for n + 1 units.

Case 2: Suppose x ∈ Sn
k (n + 1). Then x = p ∪ {n + 1} for some p ∈ Sn

k . By recursion,

for n units p was allocated to some q ∈ Sn
k+1. Then for n + 1 units allocate x = p ∪ {n + 1}

to y = q ∪ {n + 1} ∈ Sn
k+1(n + 1).

Summarizing, we have the following recursive procedure for allocating the combinations

of Sn+1
k+1 to the combinations of Sn+1

k+2 .

11

1) Partition each of them using combinations for n units: Sn+1
k+1 = Sn

k+1 ∪ Sn
k (n + 1),

Sn+1
k+2 = Sn

k+2 ∪ Sn
k+1(n + 1).

2) Allocate k+1-combinations of Sn
k+1 to k+2-combinations of Sn

k+2 as in case 1.

3) Allocate k+1-combinations of Sn
k (n+1) to k+2-combinations of Sn

k+1(n+1) as in case

2.

This kind of allocation achieves the following conditions stated in the previous subsection.

• Every k+1-combination is allocated to a k+2-combination.

• If a k+2-combination subtree is populated by k+1-combinations then the number of

those k+1-combinations is at least 2 (by recursion).

Maximizing the number of k+2-combination subtrees populated by k+1-combinations is

also achieved with one exception. The maximization is not achieved in the special case when

C(n, k)/C(n, k+1) < 2 while C(n, k+1)/C(n, k+2) > 2. When C(n, k+1)/C(n, k+2) > 2

some k+2-combinations in Sn
k+2 get more than two k+1-combinations allocated to them;

while when C(n, k)/C(n, k+1) < 2 some k+2-combinations in Sn
k+1(n+1) do not get anything

allocated to them. Thus, to maximize the number of k+2-combinations that get populated

we might need reallocation. Note that there is no such a problem and the maximization is

achieved when either both C(n, k)/C(n, k + 1) ≤ 2 and C(n, k + 1)/C(n, k + 2) ≤ 2 or both

C(n, k)/C(n, k + 1) ≥ 2 and C(n, k + 1)/C(n, k + 2) ≥ 2.

It is an open problem how to do the reallocation in the special case discussed above.

Without the reallocation, the recursive allocation procedure will give slightly worse results

(in terms of number of gates) than the integer programming procedure. But for practical

purposes we can combine the two procedures to get an algorithm that has the recursive

allocation as its basis and calls the integer programming subroutine only for the special

cases discussed above.

We implemented the procedures and ran computations for up to n = 15. The integer

program was written and solved on AMPL which is a modeling language for Mathematical

Programming. The complete integer program in AMPL is given in appendix section 7.2.

The hypertree for n = 5 is given in appendix section 7.3.

4.5 Number of gates

In this section we count the number of gates in the hypertree built in the previous section

and show that this number is a significant improvement on the number of gates in simple

symmetrical diagrams.

12

The number of gates depends on the average number of k-combinations that each k+1-

combination subtree is populated with. Thus we will distinguish cases based on the value of

C(n, k)/C(n, k + 1).

Case 1: C(n, k)/C(n, k+1) > 2. In this case each k+1-combination subtree is populated

with 2 or more k-combinations. Then if a k+1-combination subtree is populated by m

k-combinations we need m − 1 operational symbols Fk. This makes the total number of

Fk-hypergates needed C(n, k)− C(n, k + 1). No simple gates are needed at this stage.

Case 2: C(n, k)/C(n, k + 1) ≤ 2. In this case following our principle we need to max-

imize the number of those k+1-combination subtrees which are populated by at least two

k-combinations. Thus, each k+1-combination subtree is populated by 2 or 0 k-combinations.

In the rare case when C(n, k) is odd, one k+1-combination subtree will be populated by ei-

ther exactly 1 or exactly 3 k-combination(s). Then the number of Fk-hypergates needed

is dC(n, k)/2e. In those k+1-combination subtrees where no k-combination is populated

we just have the ∧-product of the k + 1 units. Thus the number of simple gates needed is

k∗(C(n, k+1)−dC(n, k)/2e). Note that instead of dC(n, k)/2e we could take just C(n, k)/2

since it makes only insignificant difference for big n and k.

Let p be the smallest number for which we still have Case 1. Then the total number of

hypergates in Case 1 is:

n−1∑
k=p

(C(n, k)− C(n, k + 1))

= (C(n, p)− C(n, p + 1)) + (C(n, p + 1)− C(n, p + 2)) + (C(n, n− 1)− C(n, n))

= C(n, p)− 1

Thus, the total number of hypergates in the hypertree is C(n, p)− 1 +
∑p−1

k=1 C(n, k)/2 and

the total number of simple gates is
∑p−1

k=1[k ∗ (C(n, k + 1)− C(n, k)/2)].

To get an idea how much improvement we have compared to the simple symmetrical

diagrams we also need to count the number of simple gates in those kind of diagrams. A

k-out-of-n symmetrical diagram has C(n, k)− 1 OR-gates and C(n, k) ∗ (k− 1) AND-gates.

Thus, the total number of gates in all symmetrical diagrams is:

n∑
k=1

[(C(n, k)− 1 + C(n, k) ∗ (k − 1)] =
n∑

k=1

[k ∗ C(n, k)− 1] = n ∗ 2n−1 − n

Table 1 compares the number of gates in hypertrees and simple trees for up to n = 20.

The improvement factor is more than 2. Our computations show that the factor converges to

13

2.1 when n is increased to 40. The trees for larger n do not have much practical importance,

so the comparisons are presented only for n ≤ 20.

Table 1: Number of gates in hypertrees vs. simple trees
hypertrees simple trees improvement

n simple gates hypergates simple gates factor
3 2 3 9 1.8
4 6 8 28 2
5 18 16 75 2.21
6 49 32 186 2.3
7 138 53 441 2.31
8 318 116 1016 2.34
9 737 240 2295 2.35
10 1679 492 5110 2.35
11 4007 916 11253 2.29
12 8866 1908 24564 2.28
13 19455 3916 53235 2.28
14 42440 7967 114674 2.27
15 94699 15422 245745 2.23
16 203618 31524 524272 2.23
17 436365 63944 1114095 2.23
18 932408 129064 2359278 2.22
19 2014060 253828 4980717 2.2
20 4266423 513456 10485740 2.19

Lower bounds on the number of gates

It is important to have lower bounds on the number of gates to see how much improvement

is possible in minimizing the size of the hypertree. Here are some considerations in that

regard.

Based on the principle (iii) of building the hypertree (Section 4.3) if a subtree has Fk as

a root operation then the possible operations in the subtree are ∧ and Fi where i ≤ k. This

principle gives a certain form to the hypertree which in a sense is equivalent to the canonical

sum-of-products form of simple Boolean functions. Below we will call it a hypertree of

canonical form or simply a canonical hypertree. The logic behind building the hypertree in

Section 4.3 is to minimize the number of gates for this kind of canonical hypertrees (it was

summarized in the discrete optimization problem stated at the end of Section 4.3). Thus,

our conjecture is that the number of functional gates is optimal (or close to optimal) for the

canonical hypertrees.

A trivial lower bound for the canonical hypertrees could be obtained by taking the number

of gates in the canonical simple circuit of n/2-out-of-n diagram. For given n, the number of

14

gates in k-out-of-n diagram for any k is a lower bound for the number of gates in a canonical

hypertree. And that lower bound is maximized when we take k = n/2 in which case the

lower bound is n/2 ∗ C(n, n/2) − 1. But this is not a tight lower bound as can be seen

from Table 2. As stated above our conjecture is that the number of gates obtained by our

construction should be much closer to the minimum possible number of gates.

Table 2: Lower bound vs. number of gates
n lower bound gates in hypertree
8 279 434
9 566 977
10 1259 2171
11 2540 4923
12 5543 10774
13 11153 23371
14 24023 50407
15 48262 110121
16 102959 235142
17 206634 500309
18 437579 1061472
19 877590 2267888
20 1847559 4779879

It is possible to further reduce the number of functional gates if we build a hypertree

which is not in a canonical form. For example, the hypertree in Figure 1,

F2(F2(F1(x1, x2), F1(x1, x3)), F1(x2, x3))

with 5 hypergates can be changed to an equivalent hypertree by applying the distributive

law:

F2(F1(x1, F2(x2, x3)), F1(x2, x3))

This new hypertree has 4 hypergates. Thus, non-canonical hypertrees can further reduce

the number of functional gates. It is an open question how to design a systematic reduction

algorithm to obtain a non-canonical hypertree of minimal size for any n and k.

It should be noted that finding lower bounds on the circuit size is not an easy problem

([1, 9]). It is particularly stated in [1]: ”There has been a great deal of pessimism about

the likelihood of anyone making significant new progress in circuit complexity. Much of this

pessimism can be traced to the fact that there has been very little progress on separating

circuit complexity classes in the two decades that have passed since the work of Razborov

and Smolensky. An additional factor is that Razborov and Rudich identified some significant

obstacles that must be overcome before circuit lower bounds can be proved, in their work

on Natural Proofs .” Of course, the lower bounds mentioned above are about the general

15

case of Boolean circuits while we consider a special type of circuits. But on the other hand,

our problem (i) integrates several circuits versus simplifying just one circuit, (ii) uses both

hypergates and simple gates. This makes the minimization problem even more complex.

5. Integration through Boolean Algebra Hyperterms

Most logic circuits have not only AND-gates and OR-gates but also NOT-gates. This corre-

sponds to unary negation operation which makes the lattice a Boolean algebra. Integration

can also be done for circuits corresponding to Boolean algebra terms. Boolean algebra hyper-

terms still have only binary functional variables which can take values ∨ and ∧. There is no

need for unary functional variables because Boolean algebras have only one unary operation.

Here is one example showing how the integration can be done in this case and how effective

it can be. Suppose we want to integrate two circuits corresponding to simple Boolean terms

x∨(ȳ∧z)∨y and (x∧y)∨ȳ∨z. The integrating hyperterm ∨(G(x, y), H(ȳ, z)) is represented by

the hypertree given in figure 6. When G → ∨, H → ∧, the hyperterm becomes x∨(ȳ∧z)∨y;

when G → ∧, H → ∨, the hyperterm becomes (x∧y)∨ȳ∨z. The hyperterm has 2 hypergates

and 2 simple gates compared to 8 simple gates in the two simple terms (including the NOT-

gates). Note that we didn’t need a hypergate for the root operation of the hypertree. If we

Figure 6: Boolean hypertree Figure 7: Modified Boolean
hypertree

replace that operation with a functional variable F as it is done in figure 7 then the new

hypertree could integrate even more simple circuits. Namely,

• when F → ∨, G → ∨, H → ∧ the hyperterms becomes (x∨y)∨ (ȳ∧z) = x∨ (ȳ∧z)∨y;

• when F → ∨, G → ∧, H → ∨ the hyperterm becomes (x∧ y)∨ (ȳ∨ z) = (x∧ y)∨ ȳ∨ z;

• when F → ∨, G → ∧, H → ∧ the hyperterm becomes (x ∧ y) ∨ (ȳ ∧ z);

• when F → ∧, G → ∨, H → ∨ the hyperterm becomes (x∨ y)∧ (ȳ ∨ z) = (x∧ ȳ)∨ (x∧
z) ∨ (y ∧ z);

• when F → ∧, G → ∧, H → ∨ the hyperterm becomes (x ∧ y) ∧ (ȳ ∨ z) = x ∧ y ∧ z;

16

• when F → ∧, G → ∨, H → ∧ the hyperterm becomes (x ∨ y) ∧ (ȳ ∧ z) = x ∧ ȳ ∧ z.

Thus, the hyperterm with 3 hypergates and 1 simple gate can integrate 6 simple terms

with total number of gates 21.

Finally we note that most of the future directions for lattice hyperterms listed in the

next section can be stated for Boolean hyperterms too.

6. Future Directions

Below we list several directions of future work.

• The solution to the general problem stated in section 3 is an open question. Complexity

results also would be interesting. While the general problem is likely to be hard to solve,

interesting special cases with effective hyperterm solutions could be a good starting

point.

• Finding non-trivial tight lower bounds on the number of gates in a hypertree for k-

out-of-n symmetrical diagrams is an open question.

• It is an open problem how to do the reallocation of k-combinations in the special case

when C(n, k)/C(n, k + 1) < 2 while C(n, k + 1)/C(n, k + 2) > 2 (in the Recursive

Allocation Method).

• An effective construction of a hypergate using tools of modern electronics engineering

is an open question.

• We integrated k-out-of-n symmetrical diagrams for all k ∈ 1, ..., n. While this was

an interesting theoretical problem, in most practical applications we might not need

the diagrams for all k. For example, for n = 4 we might need the diagrams only for

k = 2, 3. It would be interesting to show how to extend our results to those cases.

• The students/projects problem stated at the beginning of subsection 4.4 is an opti-

mization problem that to the best of our knowledge has not been considered before. It

would be interesting to obtain solution methods and complexity results for it.

• In some situations we might want to integrate the lattice terms in more than one

hyperterm if the number of gates is minimized that way. Thus, the general problem

stated in section 3 could be modified to allow several hyperterms.

17

7. Appendix

7.1 A primitive approach of building a hypergate

A hypergate can fulfill the functions of both OR-gate and AND-gate if appropriate modes

are chosen. In figure 8 we give an example of possible realization of a hypergate. The cross-

shaped switch device in the middle of the circuit can be in two different modes. When it is

in the position as in the left circuit x and y are in series connection. When the switch is in

the position as in the right circuit x and y are in parallel connection.

Figure 8: Hypergate

Of course, this is a primitive approach of building a hypergate. An effective engineering

realization of a hypergate using modern electronics is an interesting open question.

7.2 The integer program for solving the subtree populating prob-
lem

param n integer > 0;

param k integer > 0, < n;

set S := 0 .. n - 1;

18

set SS := 0 .. 2**n - 1;

set POW {i in SS} := {j in S: (i div 2**j) mod 2 = 1};

set k_comb_ind := {i in SS: card(POW[i])==k};

set K_COMB {i in k_comb_ind } := {j in S: (i div 2**j) mod 2 = 1};

set k1_comb_ind := {i in SS: card(POW[i])==k+1};

set K1_COMB {i in k1_comb_ind } := {j in S: (i div 2**j) mod 2 = 1};

param compat {i in k_comb_ind, j in k1_comb_ind}:=

if (K_COMB[i] within K1_COMB[j]) then 1 else 0;

var assign {i in k_comb_ind, j in k1_comb_ind: compat[i,j]=1} binary;

var pursued {j in k1_comb_ind} binary;

maximize assigned_k1_combin: sum{j in k1_comb_ind} pursued[j];

s.t. each_k_combin_assigned{i in k_comb_ind}:

sum{j in k1_comb_ind: compat[i,j]=1} assign[i,j] = 1;

s.t. assigned_atleast_two_if_pursued{j in k1_comb_ind}:

2 * pursued[j] <= sum{i in k_comb_ind: compat[i,j]=1} assign[i,j];

s.t. cant_assigned_if_not_pursued{i in k_comb_ind, j in k1_comb_ind: compat[i,j]=1}:

assign[i,j] <= pursued[j];

19

7.3 The hypertree for 5 units

Figure 9: Hypertree with 5 units

References

[1] E. Allender, Circuit Complexity, Kolmogorov Complexity, and Prospects for Lower

Bounds, In Proceedings of 10th International Workshop on Descriptional Complexity

of Formal Systems, Charlottetown, Canada 2008.

[2] U. Brenner, M. Struzyna, J. Vygen, BonnPlace: Placement of leading-edge chips by

advanced combinatorial algorithms, IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 27 (2008), pp. 1607–1620.

20

[3] D. Buchfuhrer and C. Umans, The complexity of Boolean formula minimization, Au-

tomata, Languages and Programming, Lecture Notes in Computer Science, Volume

5125, 2008, pp. 24–35.

[4] Y. Chen and Q. Yang, Reliability of two-stage weighted k-out-of-n systems with compo-

nents in common, IEEE transactions on reliability, 54(3) (2005), pp. 431–440.

[5] K. Denecke, J. Koppitz, S. Shtrakov, J. Meakin, Multi-hypersubstitutions and colored

solid varieties, International Journal of Algebra and Computation, 16(4) (2006), pp.

797–815.

[6] K. Denecke, K. Saengsura, Separation of clones of cooperations by cohyperidentities,

Discrete Mathematics, 309(4) (2009), pp. 772–783.

[7] K. Denecke and S. Wismath, Hyperidentities and clones, Algebra, Logic and Applica-

tions, Volume 14, Gordon and Breach Science Publishers, 2000.

[8] G. Gratzer, General lattice theory, Birkhuser, 2003.

[9] V. Kabanets and J. Cai, Circuit minimization problem, In Proceedings of 32nd Sym-

posium on Theory of Computing, Portland, Oregon 2000, pp. 73–79

[10] B. Korte and J. Vygen, Combinatorial problems in chip design, In: Building Bridges

Between Mathematics and Computer Science (M. Grötschel, G.O.H. Katona, eds.),

Springer, Berlin 2008, pp. 333–368.

[11] W. Kuo and M. Zuo, Optimal reliability modelling, Wiley and Sons, New Jersey, 2003.

[12] Y. Movsisyan, Binary Representations of Algebras with At Most Two Binary Opera-

tions: A Cayley Theorem for Distributive Lattices, International Journal of Algebra and

Computation, 19(1) 2009, pp. 97–106.

[13] Y. Movsisyan, A. Romananowska, J. Smith, Superproducts, Hyperidentities, And Al-

gebraic Structures Of Logic Programming, Journal of Combinatorial Mathematics and

Combinatorial Computing, Volume 58 (2006), pp. 101-112.

[14] A. Prasad, V. Shende, I. Markov, J. Hayes, K. Patel, Data structures and algorithms for

simplifying reversible circuits, ACM Journal on Emerging Technologies in Computing

Systems 2(4), (2006), pp. 277–293.

21

[15] O. Prokopyev and M. Pardalos, Minimum ε-equivalent Circuit Size Problem, Journal

of Combinatorial Optimization, 8(4) (2004), pp. 495–502.

[16] W. Puninagool and S. Leeratanavalee, Complexity of terms, superpositions, and gener-

alized hypersubstitutions, Computers and Mathematics with Applications, 59(2) (2010),

pp. 1038–1045.

[17] T. Sasao, Switching theory for logic synthesis, Springer, 1999.

[18] E. Sjenz-de-Cabezon and H. Wynn, Betti numbers and minimal free resolutions for

multi-state system reliability bounds, Journal of Symbolic Computation, Volume 44

(2009), pp. 1311-1325.

[19] E. Sjenz-de-Cabezon and H. Wynn, Computational algebraic algorithms for the reli-

ability of generalized k-out-of-n and related systems, Mathematics and Computers in

Simulation, 2010, article in press.

[20] W. Taylor, Hyperidentities and hypervarieties, Aequationes Mathematicae, 23(1)

(1981), 30–49.

22

