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This paper investigates effects of surface stress and wetting layers on the morphological instability
of a growing epitaxially strained dislocation-free solid film. Linear stability analysis of the planar
film shows that the film, unstable due to lattice mismatch, is affected differently by surface stress for
a film under compression than for one under tension and depends on whether the relative stiffness
of the film to the substrate is less than or greater thans1−2nd−1; heren is Poisson’s ratio. The
presence of a wetting layer has the capacity to substantially stabilize the planar film. The critical
thickness of the film below which the film is stable depends on the bulk elastic properties of film and
substrate and increases with increase of the wetting potential. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1779953]

I. INTRODUCTION

The formation of nanoscale-island structures during the
growth of epitaxially strained dislocation-free solid films has
generated theoretical and experimental interest for the last
decade. It is well known that a flat, strained, free surface is
unstable with respect to sinusoidal surface perturbations hav-
ing a wave number greater than a critical value.1–3 More
recently, this instability has been predicted and observed in
thin films deposited on a substrate.4 In this case the differ-
ence in lattice parameter between the film and substrate
generates a stress that drives the instability.
Spenceret al.4 analyzed the morphological instability of a
growing film subject to mismatch stresses using a continuum
model, where surface of the film evolves by surface diffusion
and the strained film was described by isotropic linear elas-
ticity. They found that at low temperatures, where deposition
flux is larger than the surface diffusion flux, the critical film
thickness for instability depends on the deposition rate on the
film. Unlike free surfaces on semi-infinite bodies, the pres-
ence of a substrate can affect the evolution of the instability.
Spenceret al. ,4 Freund and Jonsdottier,5 and Shoykhetet
al.6 found that elastically hard substrates are stabilizing in-
fluences and, in the limit of a infinitely stiff substrate, the
instability is completely suppressed below a critical film
thickness.

The surface of a solid is fundamentally different from
that of fluid,7 because the presence of a crystalline lattice
allows one to distinguish between the straining of a solid
surface and the creation of new surface. Therefore, in addi-
tion to surface energy there is a surface stress, which can
have either sign. The effect of surface stress on the equilib-
rium conditions at the crystal/melt interface of a three-

dimensional (3D) crystal was investigated by Leo and
Sekerka8 using a variational approach along with the con-
tinuum mechanics suggested by Gurtin and Murdoch.9 Later,
Wu,10 Freund,11 Norris,12 and Shenoy and Freund13 com-
puted the chemical potential of a crystal/vapor interface in
the two-dimensional case in the presence of both bulk defor-
mation and surface stress using a dynamical approach, which
agrees with Leo and Sekerka in the equilibrium limit.

In most cases the effects of surface stress on the dynam-
ics of interface evolution is small,14 though this may not be
the case for morphological evolution at the nanoscale. The
extremely large curvatures of surfaces can lead to large
stresses even if the surface stress is small. For example, it is
well known that the lattice parameter of free standing nano-
particles can be different from the bulk. Moreover, Bimberg
et al.15 have shown that the singularities in the stress field
induced by surface stress at facet junctions can be sufficient
to stabilize against coarsening an array of quantum dots that
are deposited on a surface. It is thus reasonable to investigate
the effects of surface stress on the evolution of thin films
deposited on substrates.

A complete model of thin film growth requires that, in
addition to surface stress and misfit stresses, the effects of
different elastic constants between the film and substrate be
accounted for as well as the wetting interaction between the
film and substrate. There have been a number of important
studies that are of relevance to the complete model we de-
velop. The effects of surface stress on the stability of the
surface of a semi-infinite solid in two-dimensional case was
examined by Wuet al.16 They found that the conditions for
stability of the surface are sensitive to the sign of the applied
stress, i.e., the surface is flat(smooth) under tension, but
rough under compression. The importance of this sign was
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also noted by Wu17 for a film-substrate system. He studied
the nonlinear effects of lattice mismatch on morphological
and compositional instabilities of epitaxial layers. A current
overview of surface-stress effects on the thermodynamics
and kinetics of interfaces is given by Fried and Gurtin.18

Most films that are deposited on substrates wet the sub-
strates to varying degrees. In one of the most well studied
systems, Si-Ge, the film completely wets the substrate. By
the Asaro-Tiller-Grinfeld instability islands form separated
by regions of a thin wetted film. Thus, the growth of very
thin films may be expected to be affected by the energetics of
the wetting layer at the film-substrate interface. This layer
would also be expected to play a particularly important role
during the early stages of film growth.19,20 Several experi-
ments have found that Ge initially grows layer by layer on
the Sis100d231 surface, up to a thickness of three atomic
layers, after which islands appear. Tersoff21 showed using
model calculations that layer-by-layer growth is stabilized
for up to three layers because it minimizes the strain energy
associated with the surface dimerization. He also found that
the chemical potential of a layer of atoms is a function of the
wetting layer thickness. This is also the case with recent first
principles calculations by Becket al.22 They found that the
chemical potential of an atom on the surface is an increasing
function of the wetting layer thickness. The models known
from literature,19,23–28which account for the energetics of the
film-substrate interface, involve surface energy as a function
of the film thickness. This function vanishes if the film is
much thicker than the width of the transition layer. The aim
of the present work is to study quantitatively the effects on
morphological instability of strained film of surface stress
along with the presence of wetting layers.

In Sec. II, using the results of Leo and Sekerka,8 we
derive the linearized equilibrium conditions in the sense of
linear elasticity. Then, in Sec. III, we formulate the evolution
problem. Section IV is devoted to linear stability analysis,
while the stability results are discussed in Sec. V.

II. LINEARIZED EQUILIBRIUM CONDITIONS

In this section we give an equilibrium energy balance
within a framework of small deformations. Consider a
smooth two-dimensional surfaceS in three-dimensional
space oriented by a choice of a smooth unit normal fieldn.
Following Gurtin and Jabbour,29 we use the notation

L = − =Sn, s2.1d

where=S is the surface gradient, tensorL is symmetric, and
the mean curvature is defined by

k = tr L = − divSn. s2.2d

The effect of surface stress on crystal/melt equilibrium
was considered by Leo and Sekerka.8 For isotropic surface
tension and constant pressure(say, zero) in the vapor the
equilibrium energy balance within a framework of finite de-
formations at the reference interfaceS is

vv − kg + fdivSsF̂T · T̂d − FT · sdivST̂dg ·n = 0. s2.3d

Herevv is the bulk-phase grand potential density, measured
per unit volume of the reference state, andkg is a capillary

pressure, whereg=gsÊd is the surface free-energy density

per unit area of the reference state, whileÊ is the surface
strain tensor. The remaining terms in Eq.(2.3) model the
surface stress. HereF is the bulk deformation gradient ten-

sor, F̂ is the surface deformation gradient, andT̂ is the first
Piola-Kirchoff surface-stress tensor as defined by Gurtin and
Murdoch.9 Gibbs7 first noted for solids that in addition tog,
which represents the excess free energy per unit area owing
to the existence of a surface, there is the surface stress asso-
ciated with the reversible work per unit area needed to elas-
tically stretch a preexisting surface. Unlikeg, which is a
positive scalar, the surface stress is a tensor with elements
whose signs are nota priori determined.30,31 For a general
surface, this second-rank tensor can be diagonalized by ref-
erence to a set of principal axes. The diagonal elements are
equal for a surface possessing a threefold or higher rotation-
axis symmetry.30 This means that the surface stress for these
high symmetry surfaces is isotropic and can be taken as

T̂ = fP, s2.4d

where a scalarf is equal to the magnitude of the change of
the surface free energy per unit change in elastic strain of the
surface andP is the projection operator ontoS

P = 1 −n ^ n. s2.5d

To obtain the small-strain(linear) approximation of Eq.
(2.3), set

F = 1 +E + U, F̂ = P + Ê + Û, s2.6d

whereEsÊd andUsÛd are symmetric strain tensor and anti-
symmetric rotation tensor for the bulk(the surface), respec-
tively. To obtain an equilibrium energy balance within a
framework of small deformations, substitute Eqs.(2.6) and
(2.4) into Eq. (2.3), and then take into account the following
relations from Gurtin and Murdoch:9

divSP = kn, divSsÊd ·n = Ê ·L , s2.7d

which result in

vv − kg + ffÊ ·L − ksn ·Endg = 0. s2.8d

For the simplified case, in whichS is a planar curve(in
two-dimensional space), Eq. (2.8) agrees with that obtained
by Fried and Gurtin.18 The grand canonical free energy ap-
pearing in Eq.(2.8) is related to other free-energy functions
and the chemical potential.32 In the limit of a pure material
containing vacancies and no dependence of the lattice pa-
rameter on vacancy concentration the grand canonical energy
density in Eq.(2.8) can be replaced by difference ofE that is
a strain energy density andM that is a ratio of density of
atoms in the crystal in the reference state over chemical po-
tential of an atom on the surface.33
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M = E − kg + ffÊ ·L − ksn ·Endg. s2.9d

This expression is valid for a surface on a semi-infinite solid.
The effects of the molecular scale interactions on the chemi-
cal potential that are associated with the formation of a wet-
ting layer are given below.

III. MODEL

A. Governing equations

Continuum elasticity theory4 will be used to describe the
stress state of the epitaxially strained film. The film/vapor
surface is allowed to move due to the surface gradient of the
chemical potential, which includes the influences of the
strain energy, the surface energy, the surface stress, and the
energy associated with the wetting layer. The stresses in both
the film and in the substrate are governed by isotropic linear
elasticity with an additional term in the film corresponding to
misfit strain, generated by the difference in lattice spacings
of the film and the substrate,4

T = 2mFE +
n

1 − 2n
str Ed1 −

1 + n

1 − 2n
E0G , s3.1d

wherem is the elastic shear modulus andn is Poisson’s ratio.
The misfit strain isE0=«1, where«=saf −asd /as, af and as

are the lattice spacings of the film and the substrate, respec-
tively. The equilibrium conditions are assumed to be satis-
fied,

div T = 0. s3.2d

To ensure the coherency at the interface between the film and
the substrate, continuity of both displacementu and the
stress are required,

uF = uS, TFn = TSn. s3.3d

The force on the film surface balances zero pressure,

Tn − f divSP = 0, s3.4d

or, taking into account Eq.(2.7),

Tn − fkn = 0. s3.5d

The strains in the substrate far away from the film are re-
quired to decay to zero.

Following Mullins,34 the evolution equation for the sur-
face in the absence of vapor deposition is given by

Vn = DDSM, s3.6d

whereVn is the normal velocity of the surface,D is a con-
stant related to the rate of surface diffusion,DS is the surface
Laplacian, and M is a chemical potential.

1. Remark All equations are written in invariant
(coordinate-free) form. If the substrate is planar, and the film
surface(in a neighborhood of a point) can be uniquely pro-
jected onto this plane, then one can introduce the Cartesian
coordinate systemsx,y,zd with z=0 corresponding to
substrate-film plane, and the free film surface can be written
asz=hsx,y,td.

B. Chemical potential

It is clear experimentally that intermolecular forces can
lead to the formation of a thin wetting layer on the surface of
a substrate. For example, in the Si-Ge system there exists a
thin layer of Ge when deposited on Sis100d substrate. The
existence of a thin layer is consistent with calculations of the
energy of the wetting layer using empirical potentials21 and
first-principles density-functional approaches.22 These calcu-
lations show that the energy of an atom on the surface of the
wetting layer is a function of the wetting layer thickness. In
the case of Ge on Si this dependence decays monotonically
as a function of distance and asymptotically approaches a
constant at about three to five atomic layers. In other cases,
such as metals deposited on semiconductors, this force is of
longer range and, as shown by Suo and Zhang,26 are strong
enough to compete with elasticity. They also established the
specific dependence of the transition thickness on stress in
the presence of different long-range forces. There have been
various approaches proposed on how to incorporate these
long-range forces into a continuum model. Chui and Gao35

took the surface energy to be a function of height of the film
and simulated the evolution of a thin film including surface
diffusion and deposition. Spencer and Tersoff24 were inter-
ested in the larger scale shapes of islands on surfaces and
thus simplified the spatial dependence of the energy of the
wetting layer to one in which a thin wetting layer is perma-
nently attached to the substrate. Alternatively, Zangwill36 and
later Kukta and Freund25 assumed that there is a narrow tran-
sition region through which the mismatched strain, but not
the energy, changes continuously near the substrate. Ortizet
al.19 suggested a model that accounts for the energetics of the
film-substrate interface whose potential looks like

Cshd = hhe−h/d, s3.7d

whereh is a constant whose sign depends on the sign of the
difference of interfacial energies of a film and substrate andd
measures the width of the transition layer.

Inspired by the first-principles calculations of Becket
al.22 in which the chemical potential of an atom on the sur-
face of the wetting layer is determined, we augment the
chemical potential given in Eq.(2.9) as follows:

M = E − kg + fÊ ·L − fksn ·End + C. s3.8d

Here C=Cshd is a wetting chemical potential, though not
necessary of the form of Eq.(3.7). Since we are going to
restrict ourselves bylinear stability analysis, it is not neces-
sary to commit to a specificCshd. A particular choice of the
function Cshd will affect only the value of a constant, i.e.,
]C /]h evaluated at a certain point; thus, all admissible(rap-
idly decreasing) functions C alter the stability condition
through a single constant, and by varying this constant a
family of wetting potential may be considered.

IV. LINEAR STABILITY ANALYSIS

The governing equations have a basic-state solution cor-
responding to a planar filmz=h0 with uniform epitaxial
strain in the film:
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ū1
F = ū2

F = 0 ū3
F = e0z, s4.1d

wheree0=«s1+nd / s1−nd, and the state of a completely re-
laxed substrate isūj

S=0 for j =1,2,3.
Since the model is symmetric with respect tox andy, it

is sufficient in linear stability theory to consider a 1D surface
of a 2D film. We assume thatn has the same value for both
the film and the substrate, but allow the shear moduli to
differ, and perturb the basic-state solution as follows:

h = h0 + h̃expsiax + std, s4.2d

uj
S = − iũ j

Sszdexpsiax + std, j = 1,3,

u1
F = − iũ1

Fszdexpsiax + std, s4.3d

u3
F = e0z+ ũ3

Fszdexpsiax + std, s4.4d

wheres is the growth rate anda is the wave number.
The linear system of equations for the disturbances to

the displacement field is given by

B]z
2ũ1

F − Aa2ũ1
F − a]zũ3

F = 0, s4.5d

A]z
2ũ3

F − Ba2ũ3
F − a]zũ1

F = 0, s4.6d

B]z
2ũ1

S− Aa2ũ1
S− a]zũ3

S= 0, s4.7d

A]z
2ũ3

S− Ba2ũ3
S− a]zũ1

S= 0, s4.8d

whereA=2s1−nd, B=1−2n.
The boundary conditions for the film interface at the

substrate are as follows:

ũi
F = ũi

S= 0 onz= 0, s4.9d

r]zũ1
F − ]zũ1

S− asrũ3
F − ũ3

Sd = 0 onz= 0, s4.10d

nasrũ1
F − ũ1

Sd + s1 − ndsr]zũ3
F − ]zũ3

Sd = 0 onz= 0, s4.11d

at the film surface,

− 2ae0h̃ + ]zũ1
F − aũ3

F = 0 onz= h0, s4.12d

2mFnsaũ1
F + ]zũ3

Fd + 2mFB]zũ3
F − Bfa2h̃ = 0 onz= h0,

s4.13d

and in the substrate,

ũi
S→ 0, ]zũi

S→ 0 asz→ − `, s4.14d

wheremF is a film shear modulus.
The normal-mode equation for the film surface can be

rewritten as

sh̃ = − Da2sẼ + g0a
2h̃ + fe0a

2h̃ + wh̃d, s4.15d

where

Ẽ = − 2mFe0aũ1, w = U ] C

] h
U

h=h0

, s4.16d

and g0 is the surface energy of unstressed film. In arriving
Eq. (4.15) the surface elastic constants are neglected and thus

gsÊd<g0+ fÊ.
The solution of the system of linear ODEs(4.5)–(4.8)

satisfying Eqs.(4.9) and (4.14) is given by

ũ1
F = a1 coshsazd + b1 sinhsazd + d2z coshsazd

+ d1z sinhsazd,

ũ3
F = a3 coshsazd + b3 sinhsazd − d1z coshsazd

− d2z sinhsazd,

ũ1
S= a1 expsazd + d3z expsazd,

ũ3
S= a3 expsazd − d3z expsazd,

where

d1 = asia1 + b3d/C, d2 = asib1 + a3d/C, s4.17d

d3 = asia1 + a3d/C, C = 3 − 4n. s4.18d

The coefficientsa1, a3, b1, andb3 are found from the
system(4.10)–(4.13) using “Maple 7.”

The dispersion relation can be rewritten as follows:

s = Dsa3E0ũ1
* − a4g0 − a4fe0 − wa2d, s4.19d

where

E0 = s8«2mFG2d/A, G = 1 +n, s4.20d

ũ1
* = ũ1sh0d/s2«Gh̃d = Z +

afB

4«mFG
F,

Z = hmA2 + s1 + 2Bm − Cm2dah0 + sC + 2mB2 + Cm2d

3 sinhsah0dcoshsah0d + 2mA2fsinhsah0dg2j/d,

d = A2 + a2h0
2s1 + 2mB − m2Cd + 2mA2 sinhsah0d

3 coshsah0d + sC + 2mB2 + m2Cdfsinhsah0dg2,

F = −
1

2Bd
hs− 1 +mdfBCs− 1 +md + 2a2h0

2s− 1 −Cmdg

− BsC + 2B2m + Cm2dcoshs2ah0d

− 2A2Bm sinhs2ah0dj, s4.21d

andm=mF /mS is the relative stiffness of the film to the sub-
strate.

The dispersion relation(4.19) now can be rewritten as

s/D = a3E0Z + a4S E0fB

4emFG
F − g0 − fe0D − a2w. s4.22d

A negative(positive) f refers to a compressive(tensile) sur-
face stress.30 Note that both of the functionsZ and F are
bounded, and the functionZ is positive for all values ofm
andah0.
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V. STABILITY RESULTS

A. Surface stress and misfit only

This section is devoted to the study of the surface-stress
influence only on morphological instability of the strained
film and thus we takew=0. The dispersion relation(4.22)
now looks like

s/D = a3E0Z + a4F− g0 −
2G«f

A
s1 − BFdG . s5.1d

The typical plot of neutral stability curve corresponding to
that case is shown in Fig. 1.

If m=1, thenZ;F;1, and the dispersion relation has
its simplest form

s/D = a3sE0 − uE1uad, s5.2d

where E0 is positive [see Eq. (4.20)]. The quantity E1

=−sg0+2ne0fd,0, becauseg0 is positive andf is generally
the same order of magnitude asg0.

30 Though f might have
either sign, it is multiplied by a small parameter proportional
to the misfit«, and thereforef does not affect on the sign of
E1.

We introduce the length scalel =g0/E0, balancing sur-
face energy per area and strain energy per volume, and the
time scale,t=g0

3/DE0
4. In dimensionless form Eq.(5.2) then

looks like

s* = a*3 − S1 + 2ne0
f

g0
Da*4, s5.3d

where a* =al and s* =st. The cutoff wave number corre-
sponding to the nonzero solution ofs* =0 satisfies

ac
* = g0/sg0 + 2ne0fd. s5.4d

From Eq. (5.4) it follows that stabilization depends on the
sign of a producte0f in agreement with Wuet al.16 (the
importance of that sign was also mentioned by Wu17); they
considered the case wherem=1, andf is always positive and
equal g0/ s1−nd. More precisely, from Eq.(5.2) it follows
thatac<4«2s1+nd / s1−ndg0 if f =g0/ s1−nd. Up to the factor
1+n, caused by additional term in Eq.(3.1) corresponding to
the misfit strain, this coincides with Wuet al.16

For a compressed film,«.0, the tensile surface stress
slightly stabilizes the planar film, while compressive surface

stress slightly destabilizes it. If the film is under tension,
«,0, the influence of the surface stress is opposite. Thus, for
surface stress on the order of the surface energy, the surface
stress will induce a small(about 5%) change in the critical
wave number.

From Eq. (5.1) it follows that if the ratio of the shear
modulii of substrate and film is not unity,mÞ1, the influ-
ence of the surface stress is qualitatively the same as long as
1−BF.0, which holds if

m , s1 − 2nd−1. s5.5d

However, if m. s1−2nd−1, the difference 1−BF is negative
for small magnitudes ofah0 [i.e., for a=Os1d]. This means
that if the film is much stiffer than the substrate,ac increases
for «f .0 and decreases when«f ,0. The magnitude of that
increase or decrease remains small as it was in the situation
wherem=1.

Substantial stabilization occurs when the substrate is
stiffer than the film,m,1; hereac tends to zero asm→0.
This stabilization, due to elastic stiffness of the substrate,
diminishes as the film thickness increases.4 For the limiting
case of a perfectly rigid substrateac is equal to zero if
hc, ls1−nd, and then the planar film is stable.

B. Wetting layer and misfit only

Now let f be equal to zero and letwÞ0 in Eq. (5.2).
Consider first the simplest case,m=1. The dispersion rela-
tion looks like

s* = a*3 − a*4 − w*a*2, s5.6d

wherew* =wg0/E0
2. The neutral curve forw* =0.25 is shown

in Fig. 2; hereac
* =0.5.

By varying the relative stiffnessm one changes the loca-
tion of the local maximum as is shown in Fig. 3(b).

The presence of a wetting layer can completely stabilize
the planar film if w* ùZ2/4. The critical value of wetting
constantw* , wc

* , above which the film is stable, depends on
both relative stiffnessm and the film thickness. This is shown
in Figs. 3 and 4. In Fig. 3(a) the thicknessh0

* =h0/ l is fixed,
andwc

* decreases as the substrate becomes stiffer. In Fig. 3(b)
the corresponding critical wave number is shown; for a rigid
substrate,m→0, ac

* approaches zero, and is nearly constant
for m.5. If the substrate is stiffer than the film, as it is for

FIG. 1. Typical neutral stability curve, Eq.(5.1): the growth rate of pertur-
bationss as a function of disturbance wave numbera.

FIG. 2. Neutral stability curves form=1, w* =0.25.
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Ge on Si, then decreasing of the film thickness stabilizes the
film [see the dashed curve in Fig. 4(a)]. If the film is stiffer,
as it is for GaAs on Si, then the effect of thickness is differ-
ent[see the solid curve in Fig. 4(a)]. The corresponding criti-
cal wave number is shown in Fig. 4(b) does not change much
if the film is relatively thick. If the film is thin for Ge on Si,
it is a slightly increasing function, while for GaAs on Si it
has small oscillations. A sufficient condition for complete
stabilization is given byw* . 1/4maxh1,m2j.

C. Surface stress, wetting layer, and misfit

Let now consider the full model, taking into account the
surface stress, the wetting layer, and the misfit stress. For
m=1 the characteristic equation has its simplest form and
looks like

s* = a*3 − S1 + 2ne0
f

g0
Da*4 − w*a*2. s5.7d

The values of the wetting constant that lead to complete
stabilization and the corresponding critical wave number are
found from Eq.(5.7)

wc
* = f4s1 + 2ne0f/g0dg−1, ac

* = f2s1 + 2ne0f/g0dg−1,

s5.8d

wheree0=«s1+nd / s1−nd. From Eq.(5.8) follows that when
f«.0, there is a stabilization due to the surface stress, while
if f«,0 there is a destabilization. Figure 5 illustrates the fact
that this dependence on the sign of the productf« holds for
m,m<s1−2nd−1. However, when the film is much stiffer
than the substrate,m.m, as it is usually, for example, for
GaAs on Si, the influence of surface stress is different; to get
a stabilization the signs off ande must be opposite. The two
right curves in Fig. 5 have negative slope. Stable regions in
Fig. 5 are to the left of the curves.

Complete stabilization is insured when

w* .
maxh1,m2j

4s1 + s1 − BFde0f/g0d
; s5.9d

in particular, it means thatw* . f4s1+e02nf /g0g−1 for m
P f0,1g, and w* .m2f4s1+e0s3−mdnf /g0g−1 for mP f1,3g.
Sincew=]C /]h at h=h0 it means that to control stability for
a large family of wetting potentials, it is enough to be able to
control only the constantw.

Dependence of the critical film thickness on the stiffness
ratio and the misfit is illustrated in Fig. 6. Figure 6(a) shows
that the increase of the wetting constant increases thehc

FIG. 3. Wetting layer vs relative stiffness forh0
* =0.1,n=1/3,g0=1927, and

«=0.0418(a) and (b) the corresponding critical wave number.

FIG. 4. Wetting layer vsh0
* for m=0.8 (dashed curve) and for m=5 (solid

curve) (a) and (b) the corresponding critical wave number.

FIG. 5. Critical value of the surface stress magnitude vs stiffness ratiom for
«=0.0418,h0

* =0.1, g0=1927, andw=0.15, 0.5, 1, 1.5, and 2.5 from left to
right. Stability corresponds to the left of a given curve.

FIG. 6. hc vs m, f =g0=1927, (a) for fixed «=«0=0.0418 and variedw
=0.02, 0.1, 0.15, and 0.2(as shown) and (b) for fixed w=0.15 and varied
«=−4«0, −«0, «0.
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below which the film is stable. Figure 6(b) shows depen-
dence ofhc on the sign off«, where the constantf is fixed
and positive. The upper curve corresponds to positive value
of « and therefore, the positive value of the productf«. The
other curves in Fig. 6(b) correspond to negative values of«.
As was the case without wetting the layer(see Sec. V A), an
increase off« (including either sign) has a stabilizing effect,
and in the presence of a strong enough wetting potential this
stabilization is complete.

VI. CONCLUSIONS

The effects of surface stress and wetting layers on mor-
phological instability of epitaxially strained solid film have
been investigated. Linear stability analysis shows that these
effects are dependent on the relative stiffnessm=mF /mS of
the film to the substrate. As two relevant examples one can
think about Ge on Sism=0.83d and GaAs on Sism=4.76d.

In the absence of wetting layers for small stiffness ratio,
m, s1−2nd−1 (for Ge on Si), when the film is compressed,
tensile surface stress slightly stabilizes the planar film, and
when the film is under tension the compressive surface stress
stabilizes. Form. s1−2nd−1 (for GaAs on Si) the situation is
opposite, i.e., to stabilize a compressed film, the surface
stress must be also compressive.

Wetting layers stabilize the planar film in all cases. For
complete stabilization in the absence of the surface stress one
must havew* ùZ2/4, where functionZ depends on both the
relative stiffness and the film thickness;wc

* monotonically
increases withm.

In the presence of both the surface stress and wetting
layers there is a critical value of the film thickness below
which the film is stable. This value increases withw, and its
dependence on surface stress is shown in Fig. 6.
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