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ON THE REFLECTION LAW FOR THE HELMHOLTZ EQUATION
UDC 537.874+517.955

T. V. SAVINA, B. YU. STERNIN, AND V. E. SHATALOV

1. SYMMETRY AND REFLECTION PRINCIPLES

In this note we consider the “reflection principle” for the Helmholtz equation in
the two-dimensional case.

The formulation of the problem is as follows. Let U be a domain in the space R?
separated into two parts U; and U, by a real-analytic curve I"' with the equation
¢(x,y) = 0, and suppose u(x, y) is a solution of the homogeneous Helmholtz
equation Au + k?u = 0 vanishing on T.

It is required to express the values of u at points (xp, yg) € U; in terms of its
values in U; (to find a “reflection formula™).

We remark that an analogous problem for the Laplace equation Au = 0 was posed
and solved back at the end of the nineteenth and the beginning of the twentieth cen-
turies. In 1870 Schwarz [1] introduced a symmetry principle for harmonic functions
that, under our assumptions, consists in the following (see Figure 1). There exists an
anticonformal mapping R: U — U permuting the domains U; and U, relative to
which any harmonic function vanishing on I' is odd. (More precisely, the mapping
R possibly acts in a somewhat smaller domain.)

The reader can find a discussion of the Schwarz symmetry principle, for example,
in [2]-[4] and elsewhere. To describe the mapping R we consider a domain W in
the space C? to which the equation ¢(x, y) = 0 of the curve I' can be continued
analytically such that W N R? = U. After the change of variables z = x + iy,
{ = x — iy the equation of the complexified curve I'c can be rewritten in the form

z+¢ z-(
g ( B ) T

(we remark that the equation of the “real space” R? in the coordinates (z, () is
z={). If grad(x, y)p(x, y) # 0 on T, then the equation of I'¢ is solvable both for
z and for {; the corresponding solutions we denote by { = S(z) and z = §(C ). The
function S(z) is called the Schwarz function of the curve I" (see, for example, [2]). In
these terms the mapping R mentioned above is given by R(xg, yo) = R(zg) = S(2p) .

E. Study [5] gave an elegant geometric interpretation of the mapping R. Namely,
it is easy to verify that S(Zy) = S(zo), so that the points (zg, Zo), (z0S(20)),
(Zo, S(Z0)) , and (R(z0), R(zp)) form a so-called “Study rectangle” with sides paral-
lel to the “coordinate axes” Oz and O, two diagonal vertices of which correspond
to the points (xp, yo) and R(xp, yo), while the other two lie on I'c. A schematic
representation of the situation is shown in Figure 2. We note also that the sides
a, b, c, and d of the Study rectangle are characteristics of the Laplace operator.
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This situation demonstrates, in particular, the necessity of passing to complex space
in considering the symmetry principle.

It would be very tempting to try to extend the principle just described to more
general equations, and also to equations in spaces of higher dimension. Unfortu-
nately, in the form given above the symmetry principle does not carry over to more
general situations. Thus, in particular, for the Helmholtz equation in the plane the
symmetry principle is valid only for the case where I' is a line segment, while for
the Laplace equation in R3 it is valid only when I' is part of either a plane or
a sphere(!) (see [7]). In the more general formulation presented at the beginning
of the paper(?) this problem was studied by Lewy [8] for operators of the form
A+a(x,y)d/0x + b(x, y)8/8y + c(x, y) in the plane and by Garabedian [9] for
higher dimensions. In [8] Lewy proves only the possibility of obtaining a reflection
formula and does not derive it, while in Garabedian’s paper (in which there is the
possibility in principle of obtaining an explicit formula) because of the second-degree
character of the computations such a formula turns out to be extremely complicated.

Our purpose in this note is to obtain an explicit reflection formula for the Helm-
holtz equation in a form sufficiently simple and convenient for applications, and to
clarify the connection of this formula with a certain special Cauchy-Goursat problem
(precise formulations are given below).

2. THE MAIN RESULT

For simplicity of formulations we assume that U = R? and T is an algebraic
curve (this means that ¢(x, y) is polynomial in x and y with real coefficients).
Under these assumptions S(z) and S({) are analytic functions in the entire plane
C possessing singularities only of algebraic type.

We denote by Go(xo, Yo, X, y) the Riemann function for the Helmholtz operator.
It is known (see, for example, [10]) that

(l) GO(XODyO’-xsy):JO(k\/(x—x0)2+(y_y0)2)a

where J, is the Bessel function of order zero. This, in particular, shows that Gy 1s
an entire function of all its arguments. We define functions G;(xo, yo, X, y) and

(")In this connection it is interesting to note that in [6], Chapter 111, Apel’tsin nevertheless attempts
to prove the validity of the symmetry principle for the Helmholtz equation in the case of an arbitrary
boundary. Of course, this “proof” is wrong.

(2)We call this more general formulation the reflection problem, retaining the term “symmetry” for the
narrower case discussed above. Thus, a symmetry is an operator induced (pointwise) by a mapping of
domains, while a reflection is, generally speaking, an operator of a more general nature.
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Ga(x0, Yo, X, y) as solutions of the following two Cauchy-Goursat problems in C2:
(Ax,y +k%)G; =0, i=]
G = 1 on the characteristic (see Figure 2y

G, = 1 on the characteristic (see Figure 2).

We remark that the solutions G;(xg, vo, X, ¥) and Ga(xo, Yo, X, y) of problems
(2) existin C* as multi-valued analytic functions whose singularities (both in (X0, Yo)
and in (x, y)) coincide with the singularities of S and S (we take account of the
change of variables z = x + iy, { = x — 1y). It is obvious that the mapping R
introduced above by the formula

(3) R(x0, ¥o) = R(z0) = S(zp)

is regular off the intersection of the singularities of the function S with the real space
R? . We introduce the function

(4) G(Xo, yo, x,y) = Gi(x0, Yo, X, ¥) — Ga(x0, Yo, X, ¥).
Let u(x, y) be an arbitrary solution of the Helmholtz equation
(5) (A+dRyu(x;y)= 0,

vanishing on the curve I'. The following theorem holds and is the main theorem of
this note.

Theorem 1. Under the assumptions formulated above,

(6)
u(xo, ¥o) = —u(R(xo, y0))

1 R(xo , yo) oG ou
+2—f]1“ { (M(X,y)a(xo,J’o, X, P 00O, x,y)a(x,y)) dy

oG ou
T (u(xay)a;(x07 yO:x:y)_G(x03y0>xsy)$(xa y)) d.X},

where R is defined by (3), G is defined by (4), and the integral is taken along any
curve joining I' with the point R(xo, yo) (see Figure 1

Remark 1. It is not hard to verify that the form under the integral on the right side of
(6) is closed. This fact is a consequence of (2) for the terms G; of the function G and
of (5) for the function u. Moreover, G| = G, Ir—G2|r = 0 (because G; is a solution
of problem (2)) and u|r = 0 (by the assumptions formulated above). Therefore, the
integral on the right side of (6) does not depend on the path of integration.

The functions G| and G, (at least in a neighborhood of the curve I') can be
computed explicitly as series. We illustrate this with the example of computing G .
We have (in the coordinates (z, {))

= X
(7) Gl(ZO’ C09Z5 C):Zaj(205 C03Z> C)(_(C)]_'O_)’
j=0 :
where ap = 1, while the functions a; satisfy the following recurrent system of
relations:
i NG Ll e e e

TR T 9z8¢ z=85(0) ~ 4.7

for 1=0.1. 2
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The series (7) converges for (zo, o) and (z, {) sufficiently close to I'c. Out-
side a neighborhood of I'c in which (7) converges the functions G, and G, can
be obtained as solutions of Volterra integral equations by a method close to that
expounded in [10].

3. COROLLARIES

The classical symmetry formulas for the Laplace operator (for k = 0) and for the
Helmholtz operator in the case where I' is a straight line are special cases of (6).
Direct computation shows that in both these cases G = 0, and therefore

u(xo, ¥o) = —u(R(xo, y0))-

However, for the case where I' is a circle (and k # 0) it is easy to show that the
integral term in (6) does not vanish (the theorem of Khavinson and Shapiro [3]
mentioned above is an indirect corroboration of this).

Remark 2. Our results generalize to solutions of equations of the form
ou au
A e — =10
u+a(x,y)6x + b(x, y)ay +c(x, y)u

with entire coefficients a, b, and c.
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