ON THE LAW OF REFLECTION FOR HIGHER-ORDER ELLIPTIC EQUATIONS

UDC 517.955

T. V. SAVINA

1. FORMULATION OF THE PROBLEM. THE LAW OF REFLECTION

In 1870 Schwarz [1] introduced a symmetry principle for harmonic functions, which consists in the following.

Let U be a domain in the space \mathbb{R}^2 divided into two parts U_1 and U_2 by a real-analytic curve Γ , and let u(x,y) be a solution of the Laplace equation $\Delta u=0$ that vanishes on Γ . Then there exists an anticonformal mapping $R\colon U\to U$, which permutes the domains U_1 and U_2 , relative to which the function u(x,y) is odd, i.e., for any point $(x_0,y_0)\in U$

(1)
$$u(x_0, y_0) = -u(R(x_0, y_0)).$$

It is obvious that if the point $(x_0, y_0) \in U_1$, then the "reflected" point $R(x_0, y_0) \in U_2$.

The books of Davis [2], Khavinson and Shapiro [3], and Shapiro [4] are devoted to further investigations of the Schwarz symmetry principle.

By a reflection formula we mean a formula expressing the value of a function u(x, y) at an arbitrary point $(x_0, y_0) \in U_1$ in terms of its value at points in U_2 .

It is clear that (1) is the simplest representative of reflection formulas expressing the value at a point $(x_0, y_0) \in U_1$ in terms of a point $R(x_0, y_0) \in U_2$. Unfortunately, the symmetry principle (1) in this form does not carry over to more general situations. Thus, if a function u(x, y) equal to zero on Γ is a solution of the Helmholtz equation $(\Delta + k^2)u = 0$ in the plane, then the symmetry principle holds only when Γ is a line segment, while for the Laplace equation in \mathbb{R}^3 it holds only when Γ is a part of either a plane or a sphere [5]. The possibility in principle of obtaining more general reflection formulas was demonstrated by Garabedian [6], and for the Helmholtz operator in the plane such a formula was obtained explicitly in [7].

The purpose of this note is to construct a reflection formula for higher-order elliptic equations. The problem is formulated as follows. Suppose a function u(x, y) defined in a domain U, divided into two parts U_1 and U_2 by a real analytic curve Γ with equation $\varphi(x, y) = 0$, is a solution of the elliptic equation of order 2m, m > 1,

$$Lu \equiv \left[\sum_{\alpha=0}^{2m} a_{\alpha} \left(\frac{\partial}{\partial x}\right)^{\alpha} \left(\frac{\partial}{\partial y}\right)^{2m-\alpha} + \sum_{n=0}^{2m-1} \sum_{\alpha=0}^{n} a_{n\alpha}(x, y) \left(\frac{\partial}{\partial x}\right)^{\alpha} \left(\frac{\partial}{\partial y}\right)^{n-\alpha}\right] u = 0,$$

having real-analytic coefficients, where the coefficients in the leading part are constants. Suppose also that u(x, y) has a zero of order $m\Gamma$. It is required to express the values of u(x, y) at points $(x_0, y_0) \in U_1$ in terms of its values in U_2 .

¹⁹⁹¹ Mathematics Subject Classification. Primary 35J30; Secondary 35C15.

As the basic tool for constructing a reflection formula we use Green's formula (see, for example, [8])

(3)
$$u(x_0, y_0) = \int_{\gamma} \left\{ \sum_{j=0}^{2m-1} \widehat{B}_j u(x, y) \widehat{C}_j G(x, y, x_0, y_0) dy - \sum_{j=0}^{2m-1} \widehat{H}_j u(x, y) \widehat{P}_j G(x, y, x_0, y_0) dx \right\},$$

where γ is a contour surrounding the point (x_0, y_0) ; \widehat{B}_j , \widehat{C}_j , \widehat{H}_j , and \widehat{P}_j are differential operators of order $\leq 2m-1$, and $G(x, y, x_0, y_0)$ is the fundamental solution of equation (2).

2. SCHWARZ FUNCTIONS AND CONSTRUCTION OF REFLECTED POINTS

In contrast to formula (1), where to each point of the domain U_1 there corresponds exactly one reflected point, for an equation of order 2m there are m^2 such points: $R_{jk}(x_0, y_0)$, j, k = 1, ..., m.

To describe the reflections R_{jk} we consider a domain W in the space \mathbb{C}^2 into which the equation of the curve Γ extends analytically, $W \cap \mathbb{R}^2 = U$. In W we consider a complex curve $\Gamma_{\mathbb{C}}$ whose equation $\varphi(x,y)=0$ is an analytic continuation of the equation of the original curve Γ . Under the assumption that the characteristics of equation (2) in the domain W are simple, in this domain from each point $(x_0,y_0)\in U_1$ there issue 2m distinct characteristics of equation (2) which combine into m complex-conjugate pairs. Each of these characteristics intersects the analytic continuation of Γ . From the points of intersection there also issue 2m characteristics, some of which intersect the real plane at points of U_2 . These points are called reflected points. More precisely, we introduce m pairs of characteristic variables

$$z_j = x + \lambda_j y$$
, $z_{\bar{j}} = x + \bar{\lambda}_j y$, $j, \bar{j} = 1, \ldots, m$,

where λ_j and $\bar{\lambda}_j$ are complex-conjugate numbers, which are the roots of the characteristic equation $\sum_{\alpha=0}^m a_\alpha p^{2m-\alpha} = 0$. We remark that the variables z_j and z_j for $x, y \in \mathbb{R}$ are complex conjugates. Of course, for $x, y \in \mathbb{C}$ this property is not satisfied; in order to indicate that characteristic variables belong to a single pair the bar is placed not over the letter but over the index.

The equation of the complexified curve $\Gamma_{\mathbb{C}}$ can be rewritten in characteristic variables $\varphi(x\,,\,y)=\overline{\Phi}(z_k\,,\,z_{\bar{\jmath}})=0$. If $d\varphi(x\,,\,y)\neq 0$ on Γ , then this equation can be solved for both variables; the corresponding solutions we denote by $z_k=S_{z_kz_{\bar{\jmath}}}(z_{\bar{\jmath}})$ and $z_{\bar{\jmath}}=S_{z_{\bar{\jmath}}z_k}(z_k)$. The functions $S_{z_kz_{\bar{\jmath}}}(z_{\bar{\jmath}})$ and $S_{z_{\bar{\jmath}}z_k}(z_k)$ are called Schwarz functions. The coordinates of the reflected points are determined from the relations

$$(4) R_{jk}: x + \lambda_k y = \overline{S_{z_k z_j}(x_0 + \lambda_j y_0)}, j, k = 1, \ldots, m.$$

3. The main result

For simplicity of formulations we assume that $U = \mathbb{R}^2$ and Γ is an algebraic curve (this means that $\varphi(x, y)$ is a polynomial in x and y with real coefficients). Under these assumptions the Schwarz functions are analytic functions in the entire plane \mathbb{C} and possess singularities only of algebraic type.

Suppose u(x, y) is an arbitrary solution of (2) which has a zero of order m on Γ . The following theorem, which is our main result, then holds.

FIGURE 1

Theorem. For points (x_0, y_0) located sufficiently close to the curve Γ the following reflection formula holds:

$$u(x_{0}, y_{0}) = -\sum_{k,j=1}^{m} c_{jk}(x_{0}, y_{0})u(R_{jk}(x_{0}, y_{0}))$$

$$+ \sum_{j,k=1}^{m} 2\pi i \int_{\Gamma}^{R_{jk}(x_{0}, y_{0})} \left\{ \sum_{l=0}^{2m-1} \widehat{B}_{l}u(x, y)\widehat{C}_{l} \left[\frac{\partial}{\partial \xi} (\widetilde{g}_{jk}(x, y, x_{0}, \xi, y_{0})) - \widetilde{g}_{jk}(x, y, x_{0}, \xi, y_{0}) \right] \right|_{\xi=0} dy$$

$$- \sum_{l=0}^{2m-1} \widehat{H}_{l}u(x, y)\widehat{P}_{l} \left[\frac{\partial}{\partial \xi} (\widetilde{g}_{jk}(x, y, x_{0}, \xi, y_{0})) - \widetilde{g}_{jk}(x, y, x_{0}, \xi, y_{0}) \right] |_{\xi=0} dx \right\},$$

where the $c_{jk}(x_0, y_0)$ are coefficients depending on Γ and $\sum_{k,j=1}^m c_{jk}(x_0, y_0) = 1$, the R_{jk} are the mappings introduced in (4), the functions \tilde{g}_{jk} and \tilde{g}_{jk} are defined below (see problem (5)), \hat{B}_l , \hat{C}_l , \hat{H}_l , and \hat{P}_l are differential operators (see (3)), and the integrals are evaluated over any curves joining an arbitrary fixed point on the curve Γ with the points R_{jk} (x_0, y_0) (see Figure 1).

4. The functions
$$\tilde{g}_{ik}(x, y, x_0, \xi, y_0)$$

We proceed to a description of the functions \tilde{g}_{jk} . We do this with the help of auxiliary functions $g_j(x, y, x_0, y_0)$. We have the following lemma.

Lemma. The fundamental solution of equation (2) (at least in a neighborhood of the point (x_0, y_0)) can be represented in the form

$$G(x, y, x_0, y_0) = K_0 \sum_{j=1}^{m} \{g_j(x, y, x_0, y_0) \ln(x - x_0 + \lambda_j(y - y_0)) + g_j(x, y, x_0, y_0) \ln(x - x_0 + \bar{\lambda}_j(y - y_0))\} + \cdots,$$

where the dots denote the regular part of the fundamental solution, K_0 is a known constant, and g_j and g_j are regular solutions of the adjoint equation $L^*g_k = 0$,

 $k=1,\ldots,2m$, having zeros of order 2m-2 on the characteristics defined by the equation $x-x_0+\lambda_j(y-y_0)=0$ or $x-x_0+\bar{\lambda}_j(y-y_0)=0$ respectively.

The functions $\tilde{g}_{j\bar{k}}$ for any $j=1,\ldots,m$ are now determined as solutions of the family of problems with parameter ξ

$$L^* \tilde{g}_{j\bar{k}}(x, y, x_0, \xi, y_0) = 0, \qquad k = 1, ..., m;$$

 $\tilde{g}_{j\bar{k}} = 0 \pmod{2m-1}$

on the characteristic given by the equation

(5)
$$S_{z_{j}z_{k}}(x + \bar{\lambda}_{k}y) - (x_{0} + \lambda_{j}y_{0}) = \xi;$$

$$\sum_{k=1}^{m} \tilde{g}_{jk} + \int_{x-x_{0}+\lambda_{j}(y-y_{0})}^{\xi} K_{0}g_{j}(x, y, x_{0}, \eta, y_{0}) d\eta = 0 \pmod{m}$$

on the curve Γ_C defined by

$$x + \lambda_j y - S_{z_j z_k}(x + \bar{\lambda}_k y) = 0.$$

Solutions of problem (5) exist in \mathbb{C}^4 at least when the point (x_0, y_0) is located sufficiently close to Γ .

I am deeply grateful to V. E. Shatalov for systematic consultations while carrying out the work, and to B. Yu. Sternin for constant encouragement and support.

BIBLIOGRAPHY

- 1. H. A. Schwarz, Monatsber. Königl. Preuss. Akad. Wiss. Berlin 1870, 767-795.
- 2. Philip J. Davis, *The Schwarz function and its applications*, Carus Math. Monographs, vol. 17, Math. Assoc. Amer., Buffalo, NY, 1979.
- 3. D. Khavinson and H. S. Shapiro, The Schwarz potential in \mathbb{R}^n and Cauchy's problem for the Laplace equation, Royal Inst. Technology, Stockholm, 1989.
- 4. Harold S. Shapiro, The Schwarz function and its generalizations to higher dimensions, Univ. of Arkansas-Fayetteville Lecture Notes in Math. Sci., vol. 9, Wiley, New York, 1987.
- 5. D. Khavinson and H. S. Shapiro, J. Analyse Math. 54 (1990), 60-76.
- 6. P. Garabedian, J. Math. Mech. 9 (1960), 241-271.
- T. V. Savina, B. Yu. Sternin, and V. E. Shatalov, Dokl. Akad. Nauk SSSR 322 (1992), 48-51; English transl. in Soviet Math. Dokl. 45 (1992).
- 8. J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris, 1968.

MOSCOW STATE UNIVERSITY

Received 19/FEB/93

Translated by J. R. SCHULENBERGER