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ON THE LAW OF REFLECTION

FOR HIGHER-ORDER ELLIPTIC EQUATIONS
UDC 517.955

T. V. SAVINA

1. FORMULATION OF THE PROBLEM. THE LAW OF REFLECTION

In 1870 Schwarz [1] introduced a symmetry principle for harmonic functions,
which consists in the following.

Let U be a domain in the space R? divided into two parts U, and U; by a
real-analytic curve I', and let u(x, y) be a solution of the Laplace equation Au =0
that vanishes on I'. Then there exists an anticonformal mapping R: U — U, which
permutes the domains U; and U, , relative to which the function w(x, y) 1s odd,
i.e., for any point (xg, ygo) € U
(1) u(‘xﬂ ] J'}O) — —u(R(XQ ] yO))‘

It is obvious that if the point (xg, yo) € U, , then the “reflected” point R(xg, o) €
U,.

The books of Davis [2], Khavinson and Shapiro [3], and Shapiro [4] are devoted
to further investigations of the Schwarz symmetry principle.

By a reflection formula we mean a formula expressing the value of a function
u(x, y) at an arbitrary point (xg, Yo) € U; in terms of its value at points in U,.

It is clear that (1) is the simplest representative of reflection formulas expressing
the value at a point (xg, ¥o) € U; in terms of a point R(xg, o) € U, . Unfortunately,
the symmetry principle (1) in this form does not carry over to more general situations.
Thus, if a function u#(x, y) equal to zero on I is a solution of the Helmholiz
equation (A + k2)u = 0 in the plane, then the symmetry principle holds only when
I" is a line segment, while for the Laplace equation in R3 it holds only when I is
a part of either a plane or a sphere [5]. The possibility in principle of obtaining
more general reflection formulas was demonstrated by Garabedian [6], and for the
Helmholtz operator in the plane such a formula was obtained explicitly in [7].

The purpose of this note is to construct a reflection formula for higher-order el-

liptic equations. The problem is formulated as follows. Suppose a function u(x, y)
I" with equation ¢(x, y) = 0, is a solution of the elliptic equation of order 2m,
m > ]

2m ‘ @ - 2m—ao 2Zm—1 n o n—a

o o o o
L = x oy T a ) p; it u= 0 ’
=[S0 (Z) (&) S (&) ()]

a=0 n=0 a=0
stants. Suppose also that u(x, y) has a zero of order mI". It is required to express
the values of w(x, y) at points (xp, Yo) € U; in terms of its values.in U,.

defined in a domain U, divided into two parts U; and U, by a real analytic curve

(2)

having real-analytic coefficients, where the coefficients in the leading part are con-
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As the basic tool for constructing a reflection formula we use Green’s formula (see,
for example, [8])

2m—1

u(xo0, yo) :/ > Bju(x, y)C;G(x, y, xo, yo)dy
4 =0
(3) J’?_m—l
- > Hju(x\)PG(x, y, xo, vo)dx } ,
j=0

where y is a contour surrounding the point (x0, Yo); EJ- . 6’,- . ﬁj, and ﬁj are
differential operators of order < 2m — 1, and G(x,y, xo, o) is the fundamental
solution of equation (2).

2. SCHWARZ FUNCTIONS AND CONSTRUCTION OF REFLECTE!-JV POINTS

In contrast to formula (1), where to each point of the domain U, there corresponds
exactly one reflected point, for an equation of order 2m there are m2 such points:
RalXe, M), 1.k, ....m.

To describe the reflections R jk we consider a domain W in the space C2? into
which the equation of the curve I" extends analytically, WNR2 =U. In W we con-
sider a complex curve I'c whose equation @(x, y) = 0 is an analytic continuation
of the equation of the original curve I'. Under the assumption that the character-
istics of equation (2) in the domain W are simple, in this domain from each point
(X0, ¥0) € U; there issue 2m distinct characteristics of equation (2) which combine
into m complex-conjugate pairs. Each of these characteristics intersects the analytic
continuation of I'. From the points of intersection there also issue 2 characteris-
tics, some of which intersect the real plane at points of U, . These points are called
reflected points. More precisely, we introduce m pairs of characteristic variables

Z}=x+}"jy: Z_;-—-X«}-ij, jajzla-"sms

where A; and A; are complex-conjugate numbers, which are the roots of the char-
acteristic equation .7  a,p>" * = 0. We remark that the variables zj -and z;
for x, y € R are complex conjugates. Of course, for x, y € C this property is not
satisfied; in order to indicate that characteristic variables belong to a single pair the
bar is placed not over the letter but over the index.

The equation of the complexified curve I'c can be rewritten in characteristic vari-
ables ¢(x, y) = ®(z,, z;7) = 0. If dp(x,y) # 0 on I', then this equation can be
solved for both variables; the corresponding solutions we denote by z;, = Sz,z;(25)
and zj = S;,.,(zx). The functions Sz,z;(z7) and Sz;z,(zx) are called Schwarz func-
tions. The coordinates of the reflected points are determined from the relations

(4) Rjk:x+)’ky:SZij(x0+Ajy0)9 j’k:la~--’m'

3. THE MAIN RESULT

For simplicity of formulations we assume that U = R2 and I is an algebraic
curve (this means that ¢(x, y) is a polynomial in x and y with real coefficients).
Under these assumptions the Schwarz functions are analytic functions in the entire
plane C and possess singularities only of algebraic type.

Suppose u(x, y) is an arbitrary solution of (2) which has a zero of order m on
I'. The following theorem, which is our main result, then holds.
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FIGURE 1

Theorem. For points (xo, yo) located sufficiently close to the curve T the following
reflection formula holds -

m
u(xo, ¥0) = — Y ¢ji(Xo, yo)u(Rx(Xo, ¥o))
k,j=1
e : k(X0 ¥0) sl ol beg & Bl
¥ Z 2mf { Z Biu(x, y)C [6—€(gjk(X, Y%, ¢ Yol
7 k=1 r 1=0
_—gjk(x’.}"’xo’é)y()))] dy
&=0
2m—1 = B )
g Z H[U(.x, y)P1 [é_é(gjk(-x’ Y, Xo, éa .VO)
=0

-'g_]k(x:ys X(),é,y()))] |f=0dx} s

where the cji(xo, yo) are coefficients depending on T and Zk j=1Cjk(X0, ¥0) = 1,
the Rj, are the mappmgs introduced in (4) the functions g and &;r are defined

below (see problem (5)), B, : C, : H, , and PI are differential operators (see (3)), and
the integrals are evaluated over any curves joining an arbitrary fixed point on the curve
I" with the points R, (xo, yo) (see Figure 1).

4. THE FUNCTIONS & (x, ¥, X0, &, o)

We proceed to a description of the functions &;x - We do this with the help of
auxiliary functions g;(x, y, X0, yo) . We have the followmg lemma.

Lemma. The fundamental solution of equation (2) (at least in a neighborhood of the
point (xo, yo)) can be represented in the form

m
G(x,y, X0, ¥0) =Ko _{g;(x,y, X0, yo)In(x — X0 + A;(¥ — »o))
J=1
+8;(x, ¥, X0, yo) In(x — xo + 4;(y —yo))} +-+- ,
where the dots denote the regular part of the fundamental solution, K, is a known
constant, and g; and g; are regular solutions of the adjoint equation L*g, = 0,
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k =1,...,2m, having zeros of order 2m — 2 on the characteristics defined by the
equation x —xo+ A;(y —y0) =0 or x — Xo+A;(y—yo)=0 respectively.

The functions &jx forany j=1, ..., m are now determined as solutions of the
family of problems with parameter r

L*gjk('x’y’xO’é,yo):O’ k=1""’m;
gix =0 (mod2m—1)

on the characteristic given by the equation
(5) SZ}‘Zk(’x g i zky) — {Xo + Aiyo) =¢&;

e ¢

Zg’jk”"/ Kogj(x,y, x0, n,¥0)dn=0 (modm)

k=1 Xx—xo+A;(y—yo) :
on the curve I'c defined by

X +/1jy e Szjzk(x +;1ky) = 0.

Solutions of problem (5) exist in C* at least when the point (xg, yg) is located
sufficiently close to T.

I am deeply grateful to V. E. Shatalov for systematic consultations while carrying
out the work, and to B. Yu. Sternin for constant encouragement and support.
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