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Abstract—A reflection formula is proposed for the two-dimensional Helmholtz equation subject to the
Neumann condition. In contrast to the classical Schwarz symmetry principle, the formula has a nonlocal
(integral) form.

o 1. STATEMENT OF THE PROBLEM

The well-known Schwarz symmetry principle [1] is as follows.

Let I' = R? be a real analytic curve and P' be a point on it. Then, there exist a neighborhood U of P'
partitioned by T into subdomains U, and U, and a unique anticonformal mapping R : U — U that maps
every point of I" onto itself and U, and U, onto one another. Under the mapping, any harmonic function
vanishing on I (Dirichlet condition) is odd; i.e.,

u(xg, ¥o) = —u(R(xo, yo)) (.bD
at any (xg, yp) € U.
Under the Neumann condition (du/on = 0), the corresponding symmetry formula is
u(xo, ¥o) = u(R(xo, yo)) (1.2)
(even continuation).
Obviously, if (xy, yo) € U,. then the corresponding “reflected” point R(x,, y,) belongs to U,.

The Schwarz symmetry principle was also discussed in [2-7]. Much attention was given to the actual
construction of R. This can be done as follows. Consider a domain W in C? and analytically extend the equa-
tion fix, y) = 0 of T to this domain so that W m [R?= U. In the characteristic (under the Laplace operator)
variables z = x + iy and { = x — iy, the equation of the complexified curve I'¢ is written as

If gradfix, y) # 0 on T, then the equation of I'¢ (in a neighborhood of a real point) is solvable for both z

-

and (. Let the corresponding solutions be { = S(z) and z = S (). Then, R is defined by the formula

R(x,y) = R(z) = 5(2). (1.3)
The function S(z) is called the Schwarz function of T (see, e.g., [2]).

Unfortunately, formulas (1.1) and (1.2) do not hold in such a simple form for spaces of higher dimen-
sions or for more general equations [3]. The possibility of generalizing formula (1.1) was demonstrated
in [4]. In [5, 6], such a formula was derived in explicit form for a two-dimensional elliptic equation with
constant coefficients of the highest order terms. Moreover, this formula was shown to be true in the large
when the equation is of the second order.

The goal of this study is to extend formula (1.2) to the case of the Helmholtz equation.

Statement of the problem. Let U be a given domain in R? that is partitioned into subdomains U, and
U, by a real analytic curve I" described by the equation fix, y) = 0, dfi(x, y) # 0. Let u(x, y) be a solution to
the Helmholtz equation

A+ =0
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subject to the condition
ou/dn|. = 0.

It is necessary to express the values of the function u(x, y) at (%0, ¥o) € U, in terms of its values in U,
(i.e., to construct a reflection formula).

Suppose for simplicity that I is an algebraic curve. In this case, S(z) and S (§) are analytic functions on
the entire plane C and have algebraic singularities only. Obviously, the mapping R defined by (1.3) is regular
everywhere except for the intersection of the singularities of S(z) with [R2.

Theorem 1. Under the assumptions stated above,

R(xg, Yo)
1
“(x03 yO) - u(R(x05 yO))+Z J V(x’y’ X0s )’o)ﬁ)(u(x,}’))_”(x’ y)CO(V(X, Y, Xo» yO))’ (14)
r
where the integral is calculated along any curve joining an arbitrary point on I with the point R(x,, y,), R
is given by (1.3), o(-) = %dx - 5% dy, and V(x, y, xy, ¥,) is defined as

V(x’ Y, Xo, yO) = Vl(x’ V> Xos yO) e V2(x’ Y5 X0, yO)
so that V, (i = 1, 2) are solutions to certain special problems.
We prove the theorem in the following three steps:
(1) the original problem is reduced to a special problem;
(i1) the existence of a solution to this problem is proved, and a solution is constructed:;
(ii1) the properties of the solution constructed are analyzed, and the final formula is derived.

2. REDUCTION OF THE ORIGINAL PROBLEM TO A PROBLEM
WITH PRESCRIBED LOCATIONS OF SINGULARITIES
As a starting point, we use the well-known Green’s formula, which expresses the value of the solution
to the Helmholtz equation at any fixed point (x,, y,) € U, < R?in terms of the values of the solution on a
contour Y encompassing this point:

u(xor ¥0) = [G(x, ¥, %o, ¥0)@((x, 1)) = (%, Y)O(G (X, Y, X0 ¥0)) 2.1
Y
where o(-) = 58—\-} dx — —a% dy and G(x, y, xo, yo) is any fundamental solution. Note that G(x, v, x,, y,) has a

logarithmic singularity at (xo, ¥p), and its analytic continuation has a logarithmic singularity on the complex
characteristics /, and /, through this point:

L = {yi(x,y) = (x=xp) +i(y—y) = 0},
L = {Wa(x, ) = (x-x0) —i(y - y,) = 0}.
In particular, G(x, y, xo, yo) can be represented as a restriction to [R? of the sum of two functions:

G(.\‘, Y, X0, yO) = Gl(x’ Y Xo, yO) + GZ(X7 Y X0, yO)v (22)
where
e AR
Gi(x,y, X0, ¥0) = 4TEZ 4j( .1')2 (Iny, - C)),
S o 2.3)
L (~k \Vl\l’z)J
G?.('ry ¥, Xo, yO) = 471:2 41( !)2 (IHWZ—CJ')’
j=0 J
1
Co=0, C;= 35 j=02 .. (2.4)

I=1
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Obviously, each of the functions defined by (2.3) has a singularity only on one of the characteristics.

Thus, formula (2.1) expresses the values of an arbitrary solution to the Helmholtz equation at a point
(X0, Yo) € U in terms of the values of this solution on a contour ylying within U,. Our goal will be achieved
when we deform y from U, into U,. This is done in two steps. First, v is transformed into a contour Y' lying
on the complexification I'¢ of I'. Next, the fundamental solution in the integrand of (2.1) is replaced by a

function G (x, Y» X, ¥o) Whose singularities are located in such a way that y' can be deformed from I'¢ into
U, and satisfies the condition a)(é) =w(G)on I'.

Note that the value of integral (2.1) does not change if y is deformed into a homological contour (the
integrand in (2.1) is a closed form). Assuming that (x,, y,) is sufficiently close to I', we can deform the con-
tour v into y' < I'¢ by the method described in [5].

Note that the first term in (2.1) vanishes on I'¢; therefore, formula (2.1) takes the form

u(xo, yo) = —[u(x, Y)O(G(x, ¥, %o, ¥0))- 2.5)

3
In view of (2.2), formula (2.5) is rewritten as

u(xg, ¥o) 5-—‘[“(X, Y)O(G (%, y, X0, Yo)) — ju(x, Y)O(Gy(x, ¥, Xg, Yo))- (2.6)

e : : Y :
To deform y' into U,, one must replace G, and G, by functions G, and G, whose singularities lie on the
“reflected” characteristics [, and />, which cross R?2 at points of U,. Moreover, it is obvious that the rela-

tions (x)(é,') = o(G;) must be satisfied on I'¢ (i = 1, 2). Note that y' is not closed on the Riemann surfaces of
the terms on the right of (2.6). Therefore, ¥ < U, is also an open contour for an arbitrary function: the
boundary of ¥ belongs to I'.

Thus, Green’s formula (2.1) can be rewritten as

u(xo, %) = [[G1(x, 3, %o, Yo)@(u(x, ) = u(x, )D(G1(X, Y, X0, ¥o))]
' 2.7)
+ [[Ga(x, v, %0, )@ (u(x, ) = u(x, )O(Ga(x, ¥, %o, Yo))],

5
where ¥ is a contour encompassing R(x,, y,), and G, and G, are solutions to the problems

Ax,yai(x’ Y X0, y()) + kzéi(x’ Y, xO’ yO) = 0’
o(Gi(x, ¥, X0, ¥0)) = O(Gi(%, ¥, %0, ¥0)) on Te. (2.8)
Here, f}i(x, ¥, Xg, o) has singularities only on the reflected characteristic 1.

Following Garabedian, we call the function G = G, + G- a reflected fundamental solution. (Note that a
reflected fundamental solution is generally not a fundamental solution.)

3. REFLECTED FUNDAMENTAL SOLUTION

In this section, we solve problem (2.8), to which the construction of a reflection formula was reduced in
the preceding section. For convenience, we change to the characteristic variables z = x + iy and { = x — iy,
in which problem (2.8) is written as

7, K
0z9C 4
©*(Gi) = *(G;) on T, (3.1)

el Shed >
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G: has singularities only on the reflected characteristic [; = {¥,; =0}

Here,
~ (9G; , 9G;
*(G)) = ——dds ] .
® ( ./) l( az Z ac C) (3.2)
Vi) = S(0)-20, W¥a(2) = S(2) - &o,
where S(z) is the Schwarz function.
Solutions to (3.1) are sought in the form (see [8])
éi(z, C’ ZO’ CO) = _%‘czbj(z’ C’ ZO’ CO)fj(\T!i)’ (3~3)
j=0
where
D)7, s,
fi8) = (3.4)

5 :
ﬁ(lnE_,—Cj), i 61

and C, are the constants given by (2.4).

Let us illustrate the calculation of the coefficients in (3.3) using G as an example. Substituting (3.3)
into (3.1) and setting the coefficients of f; equal to zero ((3.3) can be viewed as an expansion with respect
to smoothness), we obtain the following recursion relations for the coefficients b;:

B wia g
gh.. b
S e e (3.5)
ob, b, kY (z—z0) "
B S e T AR s P SO

9 Fzlr.sg 4+ 1)
Thus, the formal series is constructed. Let us now analyze its convergence.

Lemma 1. Series (3.3) is convergent in the neighborhood of T.
Proof. Consider an auxiliary family of problems depending on a parameter n:

*v(z, &, m) +/_<f
gl 4

(Z’ Cs Tl) &=, O,
(S(Z)B?_C _ a%)v(z, S(2,1) = S(2) +D(z, M), (3.6)

v(S(&o-m), & m) = 0,

where

S o s (k) (2= 20)" "' [S(2) = Go + )"
D(z,m) = - [4j(j +1) + S (@, (2~ 20)"] R R :

19
The Taylor expansion of the solution to problem (3.6) (if it exists) is given by

, - [S(z)=Co+u) "'
vz l.n) = %b,—(z, ) TEI] , (37

here, the coefficients b; are equal to those in series (3.3), because b; satisfy relations (3.5).
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Now, let us prove that problem (3.6) has a holomorphic solution in the neighborhood of I". The solution
is sought in the form
% Z
v&Gm) = [ uBmIE+SE)-2SBdB-[S@) -L+nl- [ @(0,m)do.
5(Go-m) ~ S(Gy-m)
For the density p, we obtain the Volterra integral equation
Ko
mem+g [RGB MIE+S)-25B)IdB = Bz, ), (3:8)
5(%o-m)

where

5(Go-m)

Equatlons of form (3.8) ina complex domain were analyzed in [9, 10]. The results obtained in [9 10] 1mp1y
that a unique solution to (3.8) exists in a neighborhood of I'. Moreover, the function v(z, {, ) is analytic in
this nexghborhood hence, it can be represented as a Taylor series about n = —[S(z) + {,], which coincides

with expansion (3.7). The convergence of (3.7) implies the convergence of (3.3) at the points z where
IS(z)| < r— 8. Here, r is the radius of convergence of (3.7) and & > 0.

4. PROPERTIES OF THE REFLECTED FUNDAMENTAL SOLUTION

In this section, we analyze the branching of the reflected fundamental solution around its singularities.
Note that the classical fundamental solution of the Helmholtz operator does not pass to another sheet of the
Riemann surface after its argument describes a closed contour around two branch lines. Here, we show that

this property does not hold for the reflected fundamental solution even if the contour lies in [R2.
*

Let us calculate the change in G that results after its argument describes a circle of a small radius p

around the point (3’(20 ), S(zp)). To do this, we set z = S'(CO) + pexp(i@) and { = S(zy) + pexp(—i@) in the
formula

zb,[s@ a0 -2 -1t 3 wtelel Sl (ns@-Ly=C) @
j 0
and represent the functions S(z) and S (€) as Taylor series about the point (S (&o), S(zp)):
S(2) = Lo+a,pexp(i9) +o(p), S(§) = zo+a,pexp(~ig) +o(p).
The increment of (4.1) on the real plane { = Z is

2m( 4n)2( J(S(Cj)g )’ ;(S(z>j - co>f)
j=0

J=

ik . : (4.2)
= _8_{alpexp (—ig)(a,zo—a,5(Zp) — S(20) + Zp)

—a,pexp(i9)(@,Zo—a;5(z0) = S(Zo) + 20) + O(p) }.

This expression allows one to find out when the reflected fundamental solution does not pass to another
sheet of the Riemann surface. This occurs when k = 0, which corresponds to the Laplace equation and when

a;=a; =0 forj=2 and S(z) = a,z, which means that I is a straight line segment. In other cases, the reflected
fundamental solution passes to another sheet of the Riemann surface after its argument describes a closed

curve around a singularity of &
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5. REFLECTION FORMULA AND REMARKS

Thus, the reflection formula (2.7) is written in terms of z and Cas

u(xo, o) = 4[Go*(u) - uw*(G), (5.1)
.?
where G = CEI + CEZ is the reflected fundamental solution, w*(-) is defined by (3.2), and ¥ is the contour
shown in the figure. Talking into account the structure of the reflected fundamental solution, we can bring
this formula to its final form (1.4). Indeed, let us represent é, as (see (3.3), (3.4))

1 2 -
Gi = —E(V,-ln\u,-— Vi), (5.2)

where
Vo Zb‘(“’), v Zb’(‘"’ € iato

Obviously, the integrals COntaining V;: vanish when (5 2) is substituted into (5.1) and the length of the arc
PM tends to zero (see figure). The integrals containing logarithms can be transformed as in [5]. As a result,
we obtain the final formula :

R(x()a Yo)

u(xo, y0) = u(R(30, YD)+ 35 [ (Vi= V)o* () —u*(V, ~ V). (5.3)

Remark 1. Since the integrand in (5.3) is a closed form and all of its terms vanish on I, it follows that
Q can be any point lying on T".

Remark 2. It follows from (2.8) and (5.2) that the functions V; can be interpreted as solutions to the
problems

9’V k2

azBC 4

o*(V,)) = o*(Vy) onTg,

—V;=0, i=12,
(5.4)

V: = —1 on the characteristic [;,

where V(z, G, zg, §) is the Riemann function for the Helmholtz operator. It can be shown (see, e. g., [9, 10])
that solutions to (5.4) exist in the entire space C* and are set-valued analytic functions whose singularities
with respect to (z, {) and (zo, §p) are identical to the singularities of S and S. Thus, the right-hand side
of (5.3), defined originally in the small, is actually defined in the large. By the uniqueness theorem for ana-
lytic functions, this entails the validity of (5.3) in the large.

Remark 3. For the Laplace equation (k = 0), the integrand in (5.3) vanishes, and we have the classical
result

u(xg, ¥o) = u(R(xg, yo))-

Remark 4. It easy to see that, if I is a straight line segment, then V| = V, and the integral on the right-
hand side of (5.3) vanishes.

6. REFLECTION FORMULA FOR A NONHOMOGENEOUS CONDITION
ONT

In the preceding sections, we obtained a reflection formula for the solution to the Helmholtz equation
with normal derivative vanishing on I (homogeneous Neumann condition). In this section, formula (5.3) is
extended to the case of a nonhomogeneous Neumann condition. A formula corresponding to the Dirichlet
condition was given in [7, Chapter 6].
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R2

P R(XO! yO)

S0

Figure.

Let u(x, y) be a solution to the Helmholtz equation
(A, +ku(x,y) = 0
subject to the condition

du(x,y)
on

where uy(x, y) is a given function that is holomorphic at least in the neighborhood of I". Again, we represent
the value of u(x, y) at a point (xy, yp) € U, as

= uO(xs )’)]ra i (6-1)

r

u(x o) = [Goo*(u) - uw*(G), (6.2)
Y
where y' < I'c. However, since u(x, y) satisfies the nonhomogeneous condition (6.1), we cannot merely sub-

stitute G for G in (6.2) (the first term in (6.2) does not vanish on I'¢). It is necessary to add an additional
term depending on uy:

u(xg, y0) = [[Go*(u) = uw*(G)] + Fluo, 6.3)
Sk
where
Flug) = [(G=G)uo(z, S(2) VS (2)dz (6.4)
:

is a given function at any point (xy, yo)- The first term in (6.3) can be transformed by the technique described
in Section 5. Thus, the final reflection formula for the Helmholtz equation with a nonhomogeneous Neu-
mann condition is given by

R(xg ¥o)
uCxo, y0) = u(R(xo YD) 35 | [V(x %, X 30)@(u(x, 7))
r
~ (5, )V (%, ¥, x5 30)) ] + Flito(x Y0)1-
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To calculate the additional term F[u,] for the Laplace equation, we choose a fundamental solution G and

construct the corresponding reflected fundamental solution G .
A suitable fundamental solution to the Laplace operator is given by

Gz & 20 &) = —3=In(z~20) ~ = In (G - Lo).

It is easy to see that the corresponding reflected fundamental solution is
= 1 % 1
G(z, €, 20, Go) = T2 In0S(E) - z0] + 25 = Col.

Substituting G and G into (6.4) and using the properties of the logarithm, we obtain
(20, S(2p))
Flud = =i | uo(z S(2))JS@)dz. (6.5)
(5o, Go)
Here, the integral is evaluated along a curve [ that satisfies the following conditions:
D) IlcTg;
(i1) { joins the points at which the characteristics /; and /, cross I'¢ and does not go around them.

Formula (6.5) can be verified by direct calculation. Indeed, it is well known that the solution to the
Laplace equation

0°u/9z9¢ =
can be represented as

u(z, §) = g(z) + f(Q).

Hence, we have

u(20, o) — u(S(5o)) = 8(z0) — 2(S(Lo)) + F(Lo) — F(5(z0)).

The Neumann condition on I'¢ is written in terms of (z, {) as

(§&-5@%F) = -iv5@uotz S,

which yields
= — tL:0J§'+S'af

9z a¢’
Integrating this expression along I'¢
(2 S(29)) a (20, S(29)) (29 S(z0))
e U oq
J' 3.9z = i J. ug~/S'dz + f S
(5% o) (3. Lo (3(Zo), c(,)
we obtain
(200 S(z0))
8(20)=8(SCo)) = =i [ uo/Sdz+ f(S(z0)) - £(&o),
(&), 8o
which finally yields
(20, S(20))
u(zo, o) = u(S(&o), S(z0)) — ¢ f uy(z, S(z))~/S'(z)dz. (6.6)
(5(%o), Co)

Let us present the simplest example of an application of (6.6). Suppose that a harmonic function u(x, y)
is defined on the upper half-plane and satisfies the condition

du/dy|,_o = ¢ = const.
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It is necessary to extend this function harmonically to the lower half-plane. In this case, we have S(z) = z,
S(©) =&, and u; = c; and formula (6.6) takes the form

u(xo, )’0)_ = u(xp, —yo) + 2¢yj.

ACKNOWLEDGMENTS
[ am grateful to V.E. Shatalov and B.Yu. Sternin for posing the problem.

REFERENCES

. Schwarz, H.A., Uber die Integration der partiellen Differentialgleichung 9%u/dx? + 92u/dy? = 0 unter vorgeschrie-

benen Grentz- und Unstetigkeitsbedingungen, Monatsber. Konigl. Akad. Wiss. Zs., Berlin, 1870, pp. 767-795.

Davis, PJ., The Schwarz Function and Its Applications, Buffalo (New York): Mathematical Association of Amer-
ica, 1974.

. Khavinson, D. and Shapiro, H.S., Remarks on the Reflection Principle for Harmonic Functions, J. Anal. Math.,

1990, vol. 54, pp. 60-76.

- Garabedian, P, Partial Differential Equations with More than Two Independent Variables in the Complex Domain,

J. Math. Mech., 1960, vol. 9, no. 2, pp. 241-271.

Savina, T.V.,, Sternin, B.Yu., and Shatalov, VE., Reflection Formula for the Helmholtz Equation, Radiotekh. Ele-
ktron., 1993, vol. 38, no. 2, pp. 37-48. :

Savina, T.V,, Reflection Formula for High-Order Elliptic Equations, Mat. Zametki, 1995, vol. 57, no. 5,
pp- 732-746. '

Sternin, B. and Shatalov, V., Differential Equations on Complex Manifolds, Dordrecht: Kluwer, 1994.

. Ludwig, D., Exact and Asymptotic Solutions of the Cauchy Problem, Commun. Pure Appl. Math., 1960, vol. 13,

pp. 473-508.

. Vekua, LN., Novye metody resheniya ellipticheskikh uravnenii (New Methods for Solving Elliptic Equations),

Moscow: Gostekhteorizdat, 1948.

. Vekua, ILN., Obobshchennye analiticheskie funktsii (Generalized Analytic Functions), Moscow: Nauka, 1988.

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 39 No. 4 1999



