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Abstract. A re
ection formula for polyharmonic functions in R2 is suggested.
The obtained formula generalizes the celebrated Schwarz re
ection principle
for harmonic functions to polyharmonic functions. We also o�er modi�cation
of the obtained formula to the case of nonhomogeneous data on a re
ecting
curve.

1. Introduction

In this paper we give a generalization of the well known Schwarz re
ection prin-
ciple for harmonic functions to polyharmonic functions, where, a function u(x; y)
of class C2p(U) is said to be polyharmonic function of order p if it is a solution of
the equation �pu = 0, where U is a domain in R2 ; p is a positive integer and �p

denotes the p�th iterate of the Laplacian. It is well known that if u is polyharmonic
function in U , then it is real analytic throughout U .

The Schwarz re
ection principle for harmonic functions can be stated as follows.
Let � � R2 be a non-singular real analytic curve and P 0 2 �. Then, there exists

a neighborhood U of P 0 and an anticonformal mapping R : U ! U which is identity
on �, permutes the components U1; U2 of U n� and relative to which any harmonic
function u(x; y) de�ned near � and vanishing on � is odd; i.e.,

u(x0; y0) = �u(R(x0; y0))(1.1)

for any point (x0; y0) suÆciently close to �. Note that if the point (x0; y0) 2 U1,
then the \re
ected" point R(x0; y0) 2 U2.

The Schwarz re
ection principle has been studied by several researchers (see [1] {
[17] and references there). In particular, the construction of the mapping R has been
considered, e.g., in [1]. To describe the mapping R we consider a complex domain
V in the space C 2 to which the function f de�ning the curve � can be continued
analytically such that V \ R2 = U . Using the change of variables z = x + iy,
w = x� iy; the equation of the complexi�ed curve �C can be rewritten in the form

f

�
z + w

2
;
z � w

2i

�
= 0:(1.2)

If grad f(x; y) 6= 0 on �, (1.2) can be solved with respect to z or w; the correspond-

ing solutions we denote by w = S(z) and z =
�

S(w). The function S(z) is called
the Schwarz function of the curve � [1]. In these terms, the mapping R mentioned
above is given by

R(x0; y0) = R(z0) = S(z0):(1.3)
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Observe that the mapping R depends only on the curve � and is de�ned only
near � but may have conjugate-analytic continuation to a larger domain.

Formula (1.1) has been generalized to cover several other situations. For the case
when � is a line, H. Poritsky [2] proved that a biharmonic function u(x; y), i.e., a
solution u of the biharmonic equation �2

x;yu = 0, de�ned for y � 0 and satisfying
the conditions

u(x; 0) =
@u

@y
(x; 0) = 0

can be continued across the x-axis using the formula

u(x0; y0) = �u(R(x0; y0))� 2y0
@u

@y
(R(x0; y0))� y20�x;yu(R(x0; y0));(1.4)

where R(x0; y0) = (x0;�y0) and �x;y =
@2

@x2
+ @2

@y2
. He also applied this formula to

problems of planar elasticity. An analogous formula has been obtained by R.J. Duf-
�n [3] for three-dimensional case. DuÆn also considered spherical boundaries and
applied his result to study viscous 
ows, among other things. A. Huber [4] has
generalized formula (1.4) for polyharmonic functions of the form u(x; y), where x
denotes n-dimensional vector, having vanishing (Dirichlet) data on the hyperplane
y = 0. He showed that such u satis�es the re
ection law

u(x0;�y0) =

p�1X
m=0

(�y0)
p+m

(m!)2
�m
x;y

�u(x0; y0)
yp�m0

�
;(1.5)

where p is the order of polyharmonicity of u. For a circular boundary on which a
biharmonic function u(x; y) satis�es the conditions

u =
@u

@r
= 0 for x2 + y2 = �2;

J. Bramble [5] has shown that analogous to (1.4) u can be continued using the
formula

u(x0; y0) =� u(R(x0; y0))

�
r20 � �2

r20

�
r0
@u

@r
u(R(x0; y0) +

1

4
(r20 � �2)�x;yu(R(x0; y0))

�
;

(1.6)

where r0 =
p
x20 + y20 and � is the radius of the circle. Papers by F. John [6]

and L. Nystedt [7] are devoted to further studies of re
ection of solutions of linear
partial di�erential equations with various linear conditions on a hyperplane.

Continuation of polyharmonic functions in two variables across analytic curves
has been considered by J. Sloss [8] and R. Kraft [9]. Using di�erent methods of
H. Lewi [10], they obtained a number of boundary conditions that guarantee the
existence of a continuation, but they did not carry out any explicit formulas giving
such continuation.

The purpose of this paper is to obtain a re
ection formula for polyharmonic
functions across real analytic curves in R2 and to investigate properties of the
mapping induced by the formula (see the next two sections). By a re
ection formula
we mean a formula expressing the value of a function u(x; y) at an arbitrary point
(x0; y0) 2 U1 in terms of its values at points in U2. Note that though all the formulas
mentioned above are point-to-point, this situation seems quite rare for solutions of
partial di�erential equations. In particular, for solutions of the Helmholtz equation
(�x;y+k

2)u(x; y) = 0 vanishing on a curve �, point-to-point re
ection in the sense
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of the Schwarz re
ection principle holds only when � is a line, while for harmonic
functions in R3 it holds only when � is either a plane or a sphere [11], [12]. The
paper by P. Ebenfelt and D. Khavinson [12] is devoted to further study of point-
to-point re
ection for harmonic functions. There, it was shown that point-to-point
re
ection in the sense of the Schwarz re
ection principle is very rare in Rn when
n > 3 is even, and that it never holds when n � 3 is odd, unless � is a sphere or a
hyperplane. Re
ection properties of solutions of the Helmholtz equation have also
been considered in [13], [14] and [15].

2. Reflection formula for biharmonic functions

In this section we consider partial case of re
ection formula for polyharmonic
functions | re
ection formula for biharmonic functions.

Suppose u(x; y); de�ned in a suÆciently small neighborhood U of a non-singular
real analytic curve � de�ned by the equation f(x; y) = 0, is a solution of the
problem, (

�2
x;yu(x; y) = 0 near �

u(x; y)j� = 0 (mod 2);
(2.1)

where, we use the notation u(x; y)j� = 0 (mod 2) if u and its derivatives of order
less than 2 vanish on �. Let U1; U2 denote components of U n �. Our aim is to
express the value of u(x; y) at an arbitrary point P (x0; y0) 2 U1 in terms of its
values in U2.

For simplicity, we assume � is an algebraic curve. Under this assumption, the
Schwarz function and its inverse are analytic in the whole plane C except for �nitely
many algebraic singularities.

Theorem 2.1. Under the assumptions formulated above, the following re
ection

formula holds:

u(P ) = �u(Q)�
�
x0 �

S(x0 + iy0) +
�
S(x0 � iy0)

2

�@u
@x

(Q)

�
�
y0 +

S(x0 + iy0)�
�
S(x0 � iy0)

2i

�@u
@y

(Q)�
1

4

�
x20 + y20 � S(x0 + iy0)(x0 + iy0)

�
�

S(x0 � iy0)(x0 � iy0) + S(x0 + iy0)
�

S(x0 � iy0)
�
�x;yu(Q);

(2.2)

where P = (x0; y0) and Q = R(P ):

Proof. To prove this theorem we use the idea suggested by Garabedian [16], to
start from Green's formula, expressing the value of a solution of an arbitrary linear
p.d.e. at a point P via the values of this solution on a contour 
 � U1 surrounding
the point P . The corresponding formula for biharmonic functions is

u(P ) =

Z



�
G
@�u

@y
��u

@G

@y
+�G

@u

@y
� u

@�G

@y

�
dx

�

�
G
@�u

@x
��u

@G

@x
+�G

@u

@x
� u

@�G

@x

�
dy;

(2.3)
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where � = �x;y and G = G(x; y; x0; y0) is an arbitrary fundamental solution of the
bi-Laplacian. The most suitable one for what follows is

G = �
1

16�
((x � x0)

2 + (y � y0)
2) ln((x� x0)

2 + (y � y0)
2):

It is obvious that G is analytic function in R2 except at the point P (x0; y0). Its
continuation to the complex space has logarithmic singularities on the complex
characterstics passing through this point, i.e., on KP := f(x�x0)

2+(y�y0)
2 = 0g:

In characteristic coordinates G can be rewritten as

G(z; w; z0; w0) = �
1

16�
(G1(z; w; z0; w0) +G2(z; w; z0; w0)); where

G1 = (z � z0)(w � w0) ln(z � z0); G2 = (z � z0)(w � w0) ln(w � w0):
(2.4)

Our goal will be achieved if we can deform the contour 
 from the domain U1 to
the domain U2. Note that since the integrand in (2.3) is a closed form, the value
of the integral does not change while we deform the contour 
 homotopically. We
deform it �rst to the complexi�ed curve �C . This deformation is possible if the
point P lies so close to the curve � that there exists a connected domain 
 � �C
such that
(i) 
 contains both points of intersections of the characterstic lines passing through
the point P and,
(ii) 
 can be univalently projected onto a plane domain (for details, see [15]).
Taking into account conditions (2.1), formula (2.3) can be rewritten in the form

u(P ) =

Z

0

�
G
@�u

@y
��u

@G

@y

�
dx�

�
G
@�u

@x
��u

@G

@x

�
dy;(2.5)

where contour 
0 � 
 is homotopic to 
 in C 2 n f(x� x0)
2 + (y � y0)

2 = 0g =:
C 2 nKP . To deform the contour 
0 from �C to the real domain U2 we can replace

the fundamental solution by the so called re
ected fundamental solution
�
G [16],

which must be a biharmonic function satisfying on �C the condition G �
�
G = 0

(mod 2) and having singularities only on the characteristic lines intersecting the
real space at point Q = R(P ) in the domain U2 and intersecting �C at KP \�C . If
we �nd such a function, we will be able to deform contour to the domain U2 and
the value of the integral does not change. It is easy to verify that the following
function satis�es the conditions mentioned above:

�
G(z; w; z0; w0) = �

1

16�
(
�
G1(z; w; z0; w0) +

�
G2(z; w; z0; w0)) where,

�
G1 = (z � z0)(w � w0) ln(

�
S(w) � z0) + (z �

�
S(w))(w � w0);

�

G2 = (z � z0)(w � w0) ln(S(z)� w0) + (w � S(z))(z � z0):

(2.6)
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With this change, we can deform the contour 
0 from the complexi�ed curve �C to
the real domain U2 [15]. As a result, we obtain

u(P ) =

Z
�




0
@�
G
@�u

@y
��u

@
�
G

@y
+�

�
G
@u

@y
� u

@�
�
G

@y

1
A dx

�

0
@�
G
@�u

@x
��u

@
�
G

@x
+�

�
G
@u

@x
� u

@�
�
G

@x

1
A dy;

(2.7)

where
�

 � U2 is a contour that surrounds the point Q and has endpoints on the

curve �. Formula (2.7) in characteristic variables has the form,

u(P ) =4i

Z
�




0
@�
G

@3u

@z2@w
+

@2
�
G

@z@w

@u

@z
� u

@3
�
G

@z2@w
�

@2u

@z@w

@
�
G

@z

1
A dz

�

0
@�
G

@3u

@z@w2
+

@2
�
G

@z@w

@u

@w
� u

@3
�
G

@z@w2
�

@2u

@z@w

@
�
G

@w

1
A dw:

(2.8)

If we substitute (2.6) into (2.8) and move one endpoint of the contour
�

 along the

curve � to the other endpoint, integral terms containing products of the function

u and regular part of the function
�

G and their derivatives vanish. Integral terms
containing logarithms can be combined and written as,

Z
�




(ln(S(z)� w0) + ln(
�
S(w) � z0))

n�
(z � z0)(w � w0)

@3u

@z2@w
+
@u

@z

�
@2u

@z@w
(w � w0)

�
dz �

�
(z � z0)(w � w0)

@3u

@z@w2
+
@u

@w
�

@2u

@z@w
(z � z0)

�
dw
o
;

(2.9)

where
�

 is the loop surrounding the point Q and having endpoints on the curve

�. The �rst logarithm gets the increment 2�i along the loop, while the second

�(�2�i). Thus, compressing
�

 to a segment joining Q to �, we �nd that the

integrand in (2.9) reduces to zero.
Thus, we obtain

u(P ) = �
i

4�

Z
�




�(w � w0)(
�

S(w))0uz
�

S(w) � z0

+
(z � z0)(S(z))

0uz
S(z)� w0

�
2(S(z))0u

S(z)� w0

�
(z � z0)(S(z))

00u

S(z)� w0
+

(z � z0)((S(z))
0)2u

(S(z)� w0)2
�

(z � z0)(w � w0)(S(z))
0uzw

S(z)� w0

�
dz

�
� (w � w0)(

�
S(w))0uw

�
S(w)� z0

+
(z � z0)(S(z))

0uw
S(z)� w0

�
2(
�
S(w))0u

�
S(w)� z0

�
(w � w0)(

�

S(w))00u
�

S(w) � z0

+
(w � w0)((

�

S(w))0)2u

(
�

S(w) � z0)2
�

(z � z0)(w � w0)(
�

S(w))0uzw
�

S(w) � z0

�
dw:

(2.10)
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Calculating the residues we �nally obtain,

u(P ) =� u(Q)� (z0 �
�
S(w0))

@u

@z
(Q)� (w0 � S(z0))

@u

@w
(Q)

� (z0 �
�

S(w0))(w0 � S(z0))
@2u

@z@w
(Q):

(2.11)

Formula (2.11) in variables x; y is equivalent to (2.2). Note that this formula gives
continuation of a biharmonic function from the domain U1 � R2 to the domain
U2 � R2 as a multi-valued function whose singularities coincide with one of the

functions S or
�
S; where U1; U2 are components of U n �.

Remark 2.2. Formula (2.11) can be easily veri�ed by expanding the function
u(z; w) in Taylor series at the point Q. Moreover, this method allows us to obtain a
re
ection formula for biharmonic functions having nonhomogeneous conditions on
the curve �. To see this, let us expand the function u(z; w) in Taylor series at the
point Q:

u(z; w) = + u(Q) +
@u

@z
(Q)(z �

�
S(w0)) +

1

2

@2u

@z2
(Q)(z �

�
S(w0))

2 + � � �

+
@u

@w
(Q)(w � S(z0)) +

1

2

@2u

@w2
(Q)(w � S(z0))

2 + � � �

+
@2u

@z@w
(Q)(z �

�
S(w0))(w � S(z0))

+
1

2

@3u

@z@w2
(Q)(z �

�
S(w0))(w � S(z0))

2 + � � �

+
1

2

@3u

@z2@w
(Q)(z �

�
S(w0))

2(w � S(z0)) + � � � :

(2.12)

Note that in (2.12), we used the condition

@4+i+ju

@z2+i@w2+j
= 0 for i; j = 0; 1; 2; � � � :

Substituting the point A = A(z0; S(z0)) into (2.12), we obtain

u(A)� u(Q) =
@u

@z
(Q)(z0 �

�
S(w0)) +

1

2

@2u

@z2
(Q)(z0 �

�
S(w0))

2 + � � � :(2.13)

Similarly, substituting the point B = B(
�
S(w0); w0) into (2.12), we obtain

u(B)� u(Q) =
@u

@w
(Q)(w0 � S(z0)) +

1

2

@2u

@w2
(Q)(w0 � S(z0))

2 + � � � :(2.14)

Di�erentiating (2.12) with respect to z at the point B, we obtain

@u

@z
(B) �

@u

@z
(Q)�

@2u

@z@w
(Q)(w0 � S(z0)) =

1

2

@3u

@z@w2
(Q)(w0 � S(z0))

2 + � � � :

(2.15)

And di�erentiating (2.12) with respect to w at the point A, we obtain

@u

@w
(A) �

@u

@w
(Q)�

@2u

@z@w
(Q)(z0 �

�

S(w0)) =
1

2

@3u

@z2@w
(Q)(z0 �

�

S(z0))
2 + � � � :

(2.16)
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Finally, using (2.12) at the point P and taking into account (2.13) - (2.16), we
obtain that

u(P ) = �u(Q) + u(A) + u(B) +
�
z0 �

�
S(w0)

��@u
@z

(B) �
@u

@z
(Q)
�

+
�
w0 � S(z0)

�� @u
@w

(A)�
@u

@w
(Q)
�
�
�
z0 �

�

S(w0)
��
w0 � S(z0)

� @2u
@z@w

(Q):

(2.17)

Note that A and B are points of intersection of the characterstic lines with the
complexi�ed curve �C . Therefore, formula (2.17) generalizes the well known non-
homogeneous formula for harmonic functions [17]:

u(P ) + u(Q) = u(A) + u(B):

Thus, formula (2.17) allows us to construct a re
ection formula for biharmonic
functions satisfying on the curve � the following nonhomogeneous conditions:

u(x; y)j� =g(x);

@u

@y
(x; y)j� =g1(x);

where g and g1 are holomorphic functions in a neighborhood of the curve �.

Remark 2.3. For the special case when � is a line with equation f(x; y) � ay +
bx+ c = 0; formula (2.11) in (x; y) coordinates has a simpler form

u(P ) = �u(Q)� �
�
2b
@u

@x
(Q) + 2a

@u

@y
(Q) + f(P )�x;yu(Q)

�
;

where � = f(P )=(a2+b2) is a known number. In particular, if a = 1 and b = c = 0;
this formula coincides with formula (1.4) of H. Poritsky [2].

The corresponding nonhomogeneous formula (2.17) for the case of a line becomes

u(P ) =� u(Q)� �
�
2b
@u

@x
(Q) + 2a

@u

@y
(Q) + f(P )�x;yu(Q)

�
+ u(A) + u(B) + �(b+ ia)(

@u

@x
(B) � i

@u

@y
(B))(2.18)

+ �(b� ai)(
@u

@x
(A) + i

@u

@y
(A)):

Remark 2.4. For the special case when � is a part of a circle with equation x2 +
y2 = �2; formula (2.11) reduces to formula (1.6) of J. Bramble [5].

Example 2.5. Let us consider the simplest example of applying nonhomogeneous
formula for continuation of biharmonic functions. Let u(x; y) be a biharmonic
function de�ned in the upper half-plane and satisfy on the x-axis the following
conditions

u(x; y)jy=0 =1;

@u

@y
(x; y)jy=0 =x:

(2.19)

Note that if the point P has coordinates (x0; y0), then the re
ected point Q =
Q(x0;�y0), A = A(x0 + iy0; x0 + iy0) and B = B(x0 � iy0; x0 � iy0). Thus,



8 DAWIT ABERRA AND TATIANA SAVINA

nonhomogeneous formula (2.18) for this case can be rewritten in the form

u(x0; y0) = �u(x0;�y0)� 2y0
@u

@y
(x0;�y0)� y20�u(x0;�y0)

+ u(x0 + iy0; x0 + iy0) + u(x0 � iy0; x0 � iy0)

+
�@u
@x

(x0 � iy0; x0 � iy0)� i
@u

@y
(x0 � iy0; x0 � iy0)

�
iy0

�
�@u
@x

(x0 + iy0; x0 + iy0) + i
@u

@y
(x0 + iy0; x0 + iy0)

�
iy0:

(2.20)

Taking into account (2.19) we �nally have,

u(x0; y0) = �u(x0;�y0)� 2y0
@u

@y
(x0;�y0)� y20�u(x0;�y0) + 2x0y0 + 2:(2.21)

Note that formula (2.20) generalizes Poritsky's re
ection formula (1.4) to the
case of nonhomogeneous conditions on the re
ecting line.

3. Reflection formula for polyharmonic functions

In this section we generalize the re
ection formula obtained in the previous
section to polyharmonic functions.

Let u(x; y), de�ned in a suÆciently small neighborhood U of a non-singular real
analytic curve � de�ned by the equation f(x; y) = 0, be a solution of the problem,

(
�p
x;yu(x; y) = 0 near �

u(x; y)j� = 0 (mod p):
(3.1)

Theorem 3.1. Under the assumptions formulated above, there exists a point-to-

point re
ection formula which, in z; w coordinates, has the form,

u(P ) = �u(Q)�

p�1X
m=1

� 1

(m!)2
(z0 �

�

S(w0))
m(w0 � S(z0))

m�m
z;wu(Q)

+
1

m!
(w0 � S(z0))

m

m�1X
n=0

1

n!
(z0 �

�

S(w0))
nDm�n

w Æ�n
z;wu(Q)

+
1

m!
(z0 �

�

S(w0))
m

m�1X
n=0

1

n!
(w0 � S(z0))

nDm�n
z Æ�n

z;wu(Q)
�
;

(3.2)

where, �z;w = @2

@z@w
, D�

z = @�

@z�
and D�

w = @�

@w�
.

Proof. We will prove the theorem using the same idea as in the previous section.
A fundamental solution for this case has the form,

G = �
1

4p�

((x� x0)
2 + (y � y0)

2)p�1

(p� 1)!2
ln((x � x0)

2 + (y � y0)
2)

or, in characteristic coordinates,

G(z; w; z0; w0) = �
1

4p�
(G1(z; w; z0; w0) +G2(z; w; z0; w0)); where;

G1 =
(z � z0)

p�1(w � w0)
p�1

(p� 1)!2
ln(z � z0); G2 =

(z � z0)
p�1(w � w0)

p�1

(p� 1)!2
ln(w � w0):

(3.3)
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Green's formula for polyharmonic functions becomes,

u(P ) =

p�1X
k=0

Z



!(�k
x;yu) ��

p�k�1
x;y G��k

x;yu � !(�
p�k�1
x;y G);(3.4)

where p is the order of polyharmonicity of u and ! = @
@y
dx� @

@x
dy. We will be able

to deform the contour 
 to the domain U2 if we can construct the corresponding

re
ected fundamental solution
�

G. It must satisfy the following problem

8>><
>>:

�p
z;w

�
G = 0;

�
G�G = 0 (mod p) on �C ;
�
G has singularities only on the characteristics

�

l j = f
�

 j = 0g ; j = 1; 2 ;

(3.5)

where,
�

 1(w) =
�
S(w) � z0;

�

 2(z) = S(z)� w0:

Lemma 3.2. The re
ected fundamental solution
�
G has the form

�

G = �
1

4p�

(z � z0)
p�1(w � w0)

p�1

(p� 1)!2
ln(

�

S(w) � z0)(S(z)� w0)) + v(z; w; z0; w0);

(3.6)

where v(z; w; z0; w0) is a p-harmonic function that is analytically continuable along

any path free of singularities of the Schwarz function and its inverse.

Proof. We will seek
�
G in the form

�
G(z; w; z0; w0) = �

1

4p�
(
�
G1(z; w; z0; w0) +

�
G2(z; w; z0; w0));

where
�

Gj , j = 1; 2 are p-harmonic functions with singularities only on the char-

acteristic complex lines
�

l j and satisfy the condition
�

Gj � Gj = 0 (mod p) on the
complexi�cation �C . To prove the lemma it is suÆcient to show that, for example,

the function
�

G2 has the form

�
G2 =

(z � z0)
p�1(w � w0)

p�1

(p� 1)!2
ln(S(z)� w0) +

p�1X
k=1

(w � S(z))k

k!
�k(z; z0; w0);

(3.7)

where �k's are functions that are analytically continuable along any path free of
singularities of the Schwarz function. It is obvious that such function (3.7) is p-
harmonic, since di�erentiating it p times with respect to w gives zero. Let us �nd
the functions �k from the condition

@k
�

G2
@wk jw=S(z)

=
@kG2
@wk

; k = 1; :::; p� 1 :(3.8)
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Di�erentiating function
�
G2 k�times with respect to w gives

@k
�
G2

@wk
=

(z � z0)
p�1(w � w0)

p�k�1

(p� 1)!(p� k � 1)!
ln(S(z)� w0) + �k(z; z0; w0)

+

p�1X
m=k+1

(w � S(z))m�k

(m� k)!
�m(z; z0; w0);

(3.9)

and restricting this to �C yields

@k
�

G2
@wk

=
(z � z0)

p�1(w � w0)
p�k�1

(p� 1)!(p� k � 1)!
ln(w � w0) + �k(z; z0; w0):(3.10)

Di�erentiating G2 (using Leibnitz rule), we obtain

@kG2
@wk

=
(z � z0)

p�1(w � w0)
p�k�1

(p� 1)!(p� k � 1)!
ln(w � w0) +

(z � z0)
p�1(w � w0)

p�k�1

(p� 1)!
Ck;

(3.11)

where Ck is a known constant depending only on k and p. Comparing (3.10) and
(3.11) we see that

�k = Ck
(z � z0)

p�1(S(z)� w0)
p�k�1

(p� 1)!
:

This proves the lemma.

Since we have constructed the re
ected fundamental solution (3.6), which has

singularities only on the characteristic lines
�

l j intersecting the real plane at Q =
R(P ) in the domain U2, we can deform the contour 
 from the domain U1 to a

contour
�

 in U2 surrounding the re
ected point Q and having endpoints on the

curve �. Therefore, using z; w variables, Green's formula (3.4) can be rewritten as

u(P ) = 4p�1
p�1X
k=0

Z
�




!�(�k
z;wu) ��

p�k�1
z;w

�
G��k

z;wu � !
�(�p�k�1

z;w

�
G);(3.12)

where !� = i( @
@z
dz � @

@w
dw).

Another important result from Lemma 3.2 is the fact that the re
ected funda-
mental solution (3.6) does not ramify in the neighborhood of the re
ected point

Q(
�
S(w0); S(z0)). This is \not a trivial fact" since, for example, the re
ected fun-

damental solution for the Helmholtz operator does not have this property [15].
According to this, if we substitute (3.6) into (3.12) and move one endpoint of the

contour
�

 along the curve � to the other endpoint, terms containing products of

the functions u, v and their derivatives vanish. Sum of integrals containing loga-
rithms is equal to zero. The rest of terms have pole at the point Q and therefore,
calculating the residues, we obtain a point-to-point re
ection formula. However,
direct transformation of (3.12) leads to cumbersome calculations, so knowing that
point-to-point re
ection formula exists, we can now use the Taylor series to obtain
it. Moreover, we will also obtain it for nonhomogeneous conditions on the curve �.
Indeed, let us expand the p-harmonic function u(z; w) in Taylor series at the point
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Q:

u(z; w) =

p�1X
m=0

1

m!
(w � S(z0))

m

1X
n=m+1

1

n!
(z �

�
S(w0))

n(Dn
z (D

m
w u)(Q)

+

p�1X
m=0

1

m!
(z �

�

S(w0))
m

1X
n=m+1

1

n!
(w � S(z0))

n(Dn
w(D

m
z u)(Q)

+

p�1X
m=0

1

(m!)2
(z �

�

S(w0))
m(w � S(z0))

m(Dm
z D

m
w u)(Q):

(3.13)

Formula (3.13) implies:

Dm
w u(A)�

mX
n=0

1

n!
(z0 �

�
S(w0))

n(Dn
zD

m
w u)(Q) =

1X
n=m+1

1

n!
(z0 �

�
S(w0))

n(Dn
zD

m
w u)(Q); m = 0; :::; p� 1

(3.14)

and

Dm
z u(B)�

mX
n=0

1

n!
(w0 � S(z0))

n(Dn
wD

m
z u)(Q) =

1X
n=m+1

1

n!
(w0 � S(z0))

n(Dn
wD

m
z u)(Q); m = 0; :::; p� 1

(3.15)

where A = A(z0; S(z0)) and B = B(
�
S(w0); w0).

Finally, replacing the in�nite parts of the sum in (3.13) at the point P by the
�nite sums given by (3.14) and (3.15) we obtain,

u(P ) = �u(Q) + u(A) + u(B)

�

p�1X
m=1

� 1

(m!)2
(z0 �

�
S(w0))

m(w0 � S(z0))
m�m

z;wu(Q)

+
1

m!
(w0 � S(z0))

m

m�1X
n=0

1

n!
(z0 �

�
S(w0))

nDm�n
w Æ�n

z;wu(Q)

+
1

m!
(z0 �

�
S(w0))

m

m�1X
n=0

1

n!
(w0 � S(z0))

nDm�n
z Æ�n

z;wu(Q)
�

+

p�1X
m=1

� 1

m!
(w0 � S(z0))

mDm
w u(A) +

1

m!
(z0 �

�
S(w0))

mDm
z u(B)

�
;

(3.16)

where �z;w = @2

@z@w
, D�

z = @�

@z�
and D�

w = @�

@w�
.

Thus, we have obtained a re
ection formula for polyharmonic functions with
nonhomogeneous conditions on a curve �. Note that points A and B lie on the
complexi�cation �C ; and therefore, if the function u satisfy (3.1) we have (3.2).

Remark 3.3. Formula (3.2) for the case of a line with equation y = 0 reduces to
Huber's formula (1.5) with n = 1.
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