# THE SCHWARZ REFLECTION PRINCIPLE FOR POLYHARMONIC FUNCTIONS IN $\mathbb{R}^{2}$ 

DAWIT ABERRA AND TATIANA SAVINA


#### Abstract

A reflection formula for polyharmonic functions in $\mathbb{R}^{2}$ is suggested. The obtained formula generalizes the celebrated Schwarz reflection principle for harmonic functions to polyharmonic functions. We also offer modification of the obtained formula to the case of nonhomogeneous data on a reflecting curve.


## 1. Introduction

In this paper we give a generalization of the well known Schwarz reflection principle for harmonic functions to polyharmonic functions, where, a function $u(x, y)$ of class $C^{2 p}(U)$ is said to be polyharmonic function of order $p$ if it is a solution of the equation $\Delta^{p} u=0$, where $U$ is a domain in $\mathbb{R}^{2}, p$ is a positive integer and $\Delta^{p}$ denotes the $p-t h$ iterate of the Laplacian. It is well known that if $u$ is polyharmonic function in $U$, then it is real analytic throughout $U$.

The Schwarz reflection principle for harmonic functions can be stated as follows.
Let $\Gamma \subset \mathbb{R}^{2}$ be a non-singular real analytic curve and $P^{\prime} \in \Gamma$. Then, there exists a neighborhood $U$ of $P^{\prime}$ and an anticonformal mapping $R: U \rightarrow U$ which is identity on $\Gamma$, permutes the components $U_{1}, U_{2}$ of $U \backslash \Gamma$ and relative to which any harmonic function $u(x, y)$ defined near $\Gamma$ and vanishing on $\Gamma$ is odd; i.e.,

$$
\begin{equation*}
u\left(x_{0}, y_{0}\right)=-u\left(R\left(x_{0}, y_{0}\right)\right) \tag{1.1}
\end{equation*}
$$

for any point $\left(x_{0}, y_{0}\right)$ sufficiently close to $\Gamma$. Note that if the point $\left(x_{0}, y_{0}\right) \in U_{1}$, then the "reflected" point $R\left(x_{0}, y_{0}\right) \in U_{2}$.

The Schwarz reflection principle has been studied by several researchers (see [1] [17] and references there). In particular, the construction of the mapping $R$ has been considered, e.g., in [1]. To describe the mapping $R$ we consider a complex domain $V$ in the space $\mathbb{C}^{2}$ to which the function $f$ defining the curve $\Gamma$ can be continued analytically such that $V \cap \mathbb{R}^{2}=U$. Using the change of variables $z=x+i y$, $w=x-i y$, the equation of the complexified curve $\Gamma_{\mathbb{C}}$ can be rewritten in the form

$$
\begin{equation*}
f\left(\frac{z+w}{2}, \frac{z-w}{2 i}\right)=0 \tag{1.2}
\end{equation*}
$$

If $\operatorname{grad} f(x, y) \neq 0$ on $\Gamma$, (1.2) can be solved with respect to $z$ or $w$; the corresponding solutions we denote by $w=S(z)$ and $z=\widetilde{S}(w)$. The function $S(z)$ is called the Schwarz function of the curve $\Gamma$ [1]. In these terms, the mapping $R$ mentioned above is given by

$$
\begin{equation*}
R\left(x_{0}, y_{0}\right)=R\left(z_{0}\right)=\overline{S\left(z_{0}\right)} \tag{1.3}
\end{equation*}
$$

[^0]Observe that the mapping $R$ depends only on the curve $\Gamma$ and is defined only near $\Gamma$ but may have conjugate-analytic continuation to a larger domain.

Formula (1.1) has been generalized to cover several other situations. For the case when $\Gamma$ is a line, H. Poritsky [2] proved that a biharmonic function $u(x, y)$, i.e., a solution $u$ of the biharmonic equation $\Delta_{x, y}^{2} u=0$, defined for $y \geq 0$ and satisfying the conditions

$$
u(x, 0)=\frac{\partial u}{\partial y}(x, 0)=0
$$

can be continued across the x -axis using the formula

$$
\begin{equation*}
u\left(x_{0}, y_{0}\right)=-u\left(R\left(x_{0}, y_{0}\right)\right)-2 y_{0} \frac{\partial u}{\partial y}\left(R\left(x_{0}, y_{0}\right)\right)-y_{0}^{2} \Delta_{x, y} u\left(R\left(x_{0}, y_{0}\right)\right) \tag{1.4}
\end{equation*}
$$

where $R\left(x_{0}, y_{0}\right)=\left(x_{0},-y_{0}\right)$ and $\Delta_{x, y}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$. He also applied this formula to problems of planar elasticity. An analogous formula has been obtained by R.J. Duffin [3] for three-dimensional case. Duffin also considered spherical boundaries and applied his result to study viscous flows, among other things. A. Huber [4] has generalized formula (1.4) for polyharmonic functions of the form $u(\bar{x}, y)$, where $\bar{x}$ denotes n-dimensional vector, having vanishing (Dirichlet) data on the hyperplane $y=0$. He showed that such $u$ satisfies the reflection law

$$
\begin{equation*}
u\left(\bar{x}_{0},-y_{0}\right)=\sum_{m=0}^{p-1} \frac{\left(-y_{0}\right)^{p+m}}{(m!)^{2}} \Delta_{x, y}^{m}\left(\frac{u\left(\bar{x}_{0}, y_{0}\right)}{y_{0}^{p-m}}\right) \tag{1.5}
\end{equation*}
$$

where $p$ is the order of polyharmonicity of $u$. For a circular boundary on which a biharmonic function $u(x, y)$ satisfies the conditions

$$
u=\frac{\partial u}{\partial r}=0 \quad \text { for } \quad x^{2}+y^{2}=\rho^{2}
$$

J. Bramble [5] has shown that analogous to (1.4) $u$ can be continued using the formula

$$
\begin{align*}
u\left(x_{0}, y_{0}\right)= & -u\left(R\left(x_{0}, y_{0}\right)\right) \\
& -\frac{r_{0}^{2}-\rho^{2}}{r_{0}^{2}}\left(r_{0} \frac{\partial u}{\partial r} u\left(R\left(x_{0}, y_{0}\right)+\frac{1}{4}\left(r_{0}^{2}-\rho^{2}\right) \Delta_{x, y} u\left(R\left(x_{0}, y_{0}\right)\right)\right)\right. \tag{1.6}
\end{align*}
$$

where $r_{0}=\sqrt{x_{0}^{2}+y_{0}^{2}}$ and $\rho$ is the radius of the circle. Papers by F. John [6] and L. Nystedt [7] are devoted to further studies of reflection of solutions of linear partial differential equations with various linear conditions on a hyperplane.

Continuation of polyharmonic functions in two variables across analytic curves has been considered by J. Sloss [8] and R. Kraft [9]. Using different methods of H. Lewi [10], they obtained a number of boundary conditions that guarantee the existence of a continuation, but they did not carry out any explicit formulas giving such continuation.

The purpose of this paper is to obtain a reflection formula for polyharmonic functions across real analytic curves in $\mathbb{R}^{2}$ and to investigate properties of the mapping induced by the formula (see the next two sections). By a reflection formula we mean a formula expressing the value of a function $u(x, y)$ at an arbitrary point $\left(x_{0}, y_{0}\right) \in U_{1}$ in terms of its values at points in $U_{2}$. Note that though all the formulas mentioned above are point-to-point, this situation seems quite rare for solutions of partial differential equations. In particular, for solutions of the Helmholtz equation $\left(\Delta_{x, y}+k^{2}\right) u(x, y)=0$ vanishing on a curve $\Gamma$, point-to-point reflection in the sense
of the Schwarz reflection principle holds only when $\Gamma$ is a line, while for harmonic functions in $\mathbb{R}^{3}$ it holds only when $\Gamma$ is either a plane or a sphere [11], [12]. The paper by P. Ebenfelt and D. Khavinson [12] is devoted to further study of point-to-point reflection for harmonic functions. There, it was shown that point-to-point reflection in the sense of the Schwarz reflection principle is very rare in $\mathbb{R}^{n}$ when $n>3$ is even, and that it never holds when $n \geq 3$ is odd, unless $\Gamma$ is a sphere or a hyperplane. Reflection properties of solutions of the Helmholtz equation have also been considered in [13], [14] and [15].

## 2. REFLECTION FORMULA FOR BIHARMONIC FUNCTIONS

In this section we consider partial case of reflection formula for polyharmonic functions - reflection formula for biharmonic functions.

Suppose $u(x, y)$, defined in a sufficiently small neighborhood $U$ of a non-singular real analytic curve $\Gamma$ defined by the equation $f(x, y)=0$, is a solution of the problem,

$$
\left\{\begin{array}{l}
\Delta_{x, y}^{2} u(x, y)=0 \text { near } \Gamma  \tag{2.1}\\
u(x, y)_{\left.\right|_{\Gamma}}=0 \quad(\bmod 2)
\end{array}\right.
$$

where, we use the notation $u(x, y)_{\left.\right|_{\Gamma}}=0(\bmod 2)$ if $u$ and its derivatives of order less than 2 vanish on $\Gamma$. Let $U_{1}, U_{2}$ denote components of $U \backslash \Gamma$. Our aim is to express the value of $u(x, y)$ at an arbitrary point $P\left(x_{0}, y_{0}\right) \in U_{1}$ in terms of its values in $U_{2}$.

For simplicity, we assume $\Gamma$ is an algebraic curve. Under this assumption, the Schwarz function and its inverse are analytic in the whole plane $\mathbb{C}$ except for finitely many algebraic singularities.

Theorem 2.1. Under the assumptions formulated above, the following reflection formula holds:

$$
\begin{align*}
& u(P)=-u(Q)-\left(x_{0}-\frac{S\left(x_{0}+i y_{0}\right)+\tilde{S}\left(x_{0}-i y_{0}\right)}{2}\right) \frac{\partial u}{\partial x}(Q)  \tag{2.2}\\
& -\left(y_{0}+\frac{S\left(x_{0}+i y_{0}\right)-\tilde{S}\left(x_{0}-i y_{0}\right)}{2 i}\right) \frac{\partial u}{\partial y}(Q)-\frac{1}{4}\left(x_{0}^{2}+y_{0}^{2}-S\left(x_{0}+i y_{0}\right)\left(x_{0}+i y_{0}\right)\right. \\
& \left.-\widetilde{S}\left(x_{0}-i y_{0}\right)\left(x_{0}-i y_{0}\right)+S\left(x_{0}+i y_{0}\right) \tilde{S}\left(x_{0}-i y_{0}\right)\right) \Delta_{x, y} u(Q)
\end{align*}
$$

where $P=\left(x_{0}, y_{0}\right)$ and $Q=R(P)$.
Proof. To prove this theorem we use the idea suggested by Garabedian [16], to start from Green's formula, expressing the value of a solution of an arbitrary linear p.d.e. at a point $P$ via the values of this solution on a contour $\gamma \subset U_{1}$ surrounding the point $P$. The corresponding formula for biharmonic functions is

$$
\begin{align*}
u(P)= & \int_{\gamma}\left(G \frac{\partial \Delta u}{\partial y}-\Delta u \frac{\partial G}{\partial y}+\Delta G \frac{\partial u}{\partial y}-u \frac{\partial \Delta G}{\partial y}\right) d x  \tag{2.3}\\
& -\left(G \frac{\partial \Delta u}{\partial x}-\Delta u \frac{\partial G}{\partial x}+\Delta G \frac{\partial u}{\partial x}-u \frac{\partial \Delta G}{\partial x}\right) d y
\end{align*}
$$

where $\Delta=\Delta_{x, y}$ and $G=G\left(x, y, x_{0}, y_{0}\right)$ is an arbitrary fundamental solution of the bi-Laplacian. The most suitable one for what follows is

$$
G=-\frac{1}{16 \pi}\left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right) \ln \left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right)
$$

It is obvious that $G$ is analytic function in $\mathbb{R}^{2}$ except at the point $P\left(x_{0}, y_{0}\right)$. Its continuation to the complex space has logarithmic singularities on the complex characterstics passing through this point, i.e., on $K_{P}:=\left\{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=0\right\}$. In characteristic coordinates $G$ can be rewritten as

$$
\begin{align*}
& G\left(z, w, z_{0}, w_{0}\right)=-\frac{1}{16 \pi}\left(G_{1}\left(z, w, z_{0}, w_{0}\right)+G_{2}\left(z, w, z_{0}, w_{0}\right)\right), \quad \text { where }  \tag{2.4}\\
& G_{1}=\left(z-z_{0}\right)\left(w-w_{0}\right) \ln \left(z-z_{0}\right), \quad G_{2}=\left(z-z_{0}\right)\left(w-w_{0}\right) \ln \left(w-w_{0}\right)
\end{align*}
$$

Our goal will be achieved if we can deform the contour $\gamma$ from the domain $U_{1}$ to the domain $U_{2}$. Note that since the integrand in (2.3) is a closed form, the value of the integral does not change while we deform the contour $\gamma$ homotopically. We deform it first to the complexified curve $\Gamma_{\mathbb{C}}$. This deformation is possible if the point $P$ lies so close to the curve $\Gamma$ that there exists a connected domain $\Omega \subset \Gamma_{\mathbb{C}}$ such that
(i) $\Omega$ contains both points of intersections of the characterstic lines passing through the point $P$ and,
(ii) $\Omega$ can be univalently projected onto a plane domain (for details, see [15]). Taking into account conditions (2.1), formula (2.3) can be rewritten in the form

$$
\begin{equation*}
u(P)=\int_{\gamma^{\prime}}\left(G \frac{\partial \Delta u}{\partial y}-\Delta u \frac{\partial G}{\partial y}\right) d x-\left(G \frac{\partial \Delta u}{\partial x}-\Delta u \frac{\partial G}{\partial x}\right) d y \tag{2.5}
\end{equation*}
$$

where contour $\gamma^{\prime} \subset \Omega$ is homotopic to $\gamma$ in $\mathbb{C}^{2} \backslash\left\{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=0\right\}=$ : $\mathbb{C}^{2} \backslash K_{P}$. To deform the contour $\gamma^{\prime}$ from $\Gamma_{\mathbb{C}}$ to the real domain $U_{2}$ we can replace the fundamental solution by the so called reflected fundamental solution $\tilde{G}$ [16], which must be a biharmonic function satisfying on $\Gamma_{\mathbb{C}}$ the condition $G-\widetilde{G}=0$ $(\bmod 2)$ and having singularities only on the characteristic lines intersecting the real space at point $Q=R(P)$ in the domain $U_{2}$ and intersecting $\Gamma_{\mathbb{C}}$ at $K_{P} \cap \Gamma_{\mathbb{C}}$. If we find such a function, we will be able to deform contour to the domain $U_{2}$ and the value of the integral does not change. It is easy to verify that the following function satisfies the conditions mentioned above:

$$
\begin{align*}
& \tilde{G}\left(z, w, z_{0}, w_{0}\right)=-\frac{1}{16 \pi}\left(\tilde{G}_{1}\left(z, w, z_{0}, w_{0}\right)+\widetilde{G}_{2}\left(z, w, z_{0}, w_{0}\right)\right) \text { where } \\
& \widetilde{G}_{1}=\left(z-z_{0}\right)\left(w-w_{0}\right) \ln \left(\widetilde{S}(w)-z_{0}\right)+(z-\widetilde{S}(w))\left(w-w_{0}\right)  \tag{2.6}\\
& \widetilde{G}_{2}=\left(z-z_{0}\right)\left(w-w_{0}\right) \ln \left(S(z)-w_{0}\right)+(w-S(z))\left(z-z_{0}\right)
\end{align*}
$$

With this change, we can deform the contour $\gamma^{\prime}$ from the complexified curve $\Gamma_{\mathbb{C}}$ to the real domain $U_{2}$ [15]. As a result, we obtain

$$
\begin{align*}
u(P)= & \int_{\tilde{\gamma}}\left(\tilde{G} \frac{\partial \Delta u}{\partial y}-\Delta u \frac{\partial \tilde{G}}{\partial y}+\Delta \widetilde{G} \frac{\partial u}{\partial y}-u \frac{\partial \Delta \tilde{G}}{\partial y}\right) d x  \tag{2.7}\\
& -\left(\tilde{G} \frac{\partial \Delta u}{\partial x}-\Delta u \frac{\partial \tilde{G}}{\partial x}+\Delta \tilde{G} \frac{\partial u}{\partial x}-u \frac{\partial \Delta \tilde{G}}{\partial x}\right) d y
\end{align*}
$$

where $\tilde{\gamma} \subset U_{2}$ is a contour that surrounds the point $Q$ and has endpoints on the curve $\Gamma$. Formula (2.7) in characteristic variables has the form,

$$
\begin{align*}
u(P)= & 4 i \int_{\tilde{\gamma}}\left(\tilde{G} \frac{\partial^{3} u}{\partial z^{2} \partial w}+\frac{\partial^{2} \tilde{G}}{\partial z \partial w} \frac{\partial u}{\partial z}-u \frac{\partial^{3} \tilde{G}}{\partial z^{2} \partial w}-\frac{\partial^{2} u}{\partial z \partial w} \frac{\partial \tilde{G}}{\partial z}\right) d z  \tag{2.8}\\
& -\left(\tilde{G} \frac{\partial^{3} u}{\partial z \partial w^{2}}+\frac{\partial^{2} \tilde{G}}{\partial z \partial w} \frac{\partial u}{\partial w}-u \frac{\partial^{3} \tilde{G}}{\partial z \partial w^{2}}-\frac{\partial^{2} u}{\partial z \partial w} \frac{\partial \tilde{G}}{\partial w}\right) d w
\end{align*}
$$

If we substitute (2.6) into (2.8) and move one endpoint of the contour $\tilde{\gamma}$ along the curve $\Gamma$ to the other endpoint, integral terms containing products of the function $u$ and regular part of the function $\widetilde{G}$ and their derivatives vanish. Integral terms containing logarithms can be combined and written as,

$$
\begin{align*}
& \int_{\tilde{\gamma}}\left(\ln \left(S(z)-w_{0}\right)+\ln \left(\tilde{S}(w)-z_{0}\right)\right)\left\{\left(\left(z-z_{0}\right)\left(w-w_{0}\right) \frac{\partial^{3} u}{\partial z^{2} \partial w}+\frac{\partial u}{\partial z}\right.\right.  \tag{2.9}\\
& \left.\left.-\frac{\partial^{2} u}{\partial z \partial w}\left(w-w_{0}\right)\right) d z-\left(\left(z-z_{0}\right)\left(w-w_{0}\right) \frac{\partial^{3} u}{\partial z \partial w^{2}}+\frac{\partial u}{\partial w}-\frac{\partial^{2} u}{\partial z \partial w}\left(z-z_{0}\right)\right) d w\right\}
\end{align*}
$$

where $\tilde{\gamma}$ is the loop surrounding the point $Q$ and having endpoints on the curve $\Gamma$. The first logarithm gets the increment $2 \pi i$ along the loop, while the second $-(-2 \pi i)$. Thus, compressing $\tilde{\gamma}$ to a segment joining $Q$ to $\Gamma$, we find that the integrand in (2.9) reduces to zero.

Thus, we obtain

$$
\begin{align*}
& u(P)=-\frac{i}{4 \pi} \int_{\tilde{\gamma}}\left(\frac{\left(w-w_{0}\right)(\tilde{S}(w))^{\prime} u_{z}}{\tilde{S}(w)-z_{0}}+\frac{\left(z-z_{0}\right)(S(z))^{\prime} u_{z}}{S(z)-w_{0}}-\frac{2(S(z))^{\prime} u}{S(z)-w_{0}}\right.  \tag{2.10}\\
& \left.-\frac{\left(z-z_{0}\right)(S(z))^{\prime \prime} u}{S(z)-w_{0}}+\frac{\left(z-z_{0}\right)\left((S(z))^{\prime}\right)^{2} u}{\left(S(z)-w_{0}\right)^{2}}-\frac{\left(z-z_{0}\right)\left(w-w_{0}\right)(S(z))^{\prime} u_{z w}}{S(z)-w_{0}}\right) d z \\
& -\left(\frac{\left(w-w_{0}\right)(\tilde{S}(w))^{\prime} u_{w}}{\tilde{S}(w)-z_{0}}+\frac{\left(z-z_{0}\right)(S(z))^{\prime} u_{w}}{S(z)-w_{0}}-\frac{2(\tilde{S}(w))^{\prime} u}{\widetilde{S}(w)-z_{0}}\right. \\
& \left.-\frac{\left(w-w_{0}\right)(\tilde{S}(w))^{\prime \prime} u}{\widetilde{S}(w)-z_{0}}+\frac{\left(w-w_{0}\right)\left((\tilde{S}(w))^{\prime}\right)^{2} u}{\left(\tilde{S}(w)-z_{0}\right)^{2}}-\frac{\left(z-z_{0}\right)\left(w-w_{0}\right)(\tilde{S}(w))^{\prime} u_{z w}}{\widetilde{S}(w)-z_{0}}\right) d w
\end{align*}
$$

Calculating the residues we finally obtain,

$$
\begin{align*}
u(P)= & -u(Q)-\left(z_{0}-\tilde{S}\left(w_{0}\right)\right) \frac{\partial u}{\partial z}(Q)-\left(w_{0}-S\left(z_{0}\right)\right) \frac{\partial u}{\partial w}(Q)  \tag{2.11}\\
& -\left(z_{0}-\tilde{S}\left(w_{0}\right)\right)\left(w_{0}-S\left(z_{0}\right)\right) \frac{\partial^{2} u}{\partial z \partial w}(Q)
\end{align*}
$$

Formula (2.11) in variables $x, y$ is equivalent to (2.2). Note that this formula gives continuation of a biharmonic function from the domain $U_{1} \subset \mathbb{R}^{2}$ to the domain $U_{2} \subset \mathbb{R}^{2}$ as a multi-valued function whose singularities coincide with one of the functions $S$ or $\widetilde{S}$, where $U_{1}, U_{2}$ are components of $U \backslash \Gamma$.

Remark 2.2. Formula (2.11) can be easily verified by expanding the function $u(z, w)$ in Taylor series at the point $Q$. Moreover, this method allows us to obtain a reflection formula for biharmonic functions having nonhomogeneous conditions on the curve $\Gamma$. To see this, let us expand the function $u(z, w)$ in Taylor series at the point $Q$ :

$$
\begin{align*}
u(z, w)= & +u(Q)+\frac{\partial u}{\partial z}(Q)\left(z-\widetilde{S}\left(w_{0}\right)\right)+\frac{1}{2} \frac{\partial^{2} u}{\partial z^{2}}(Q)\left(z-\widetilde{S}\left(w_{0}\right)\right)^{2}+\cdots \\
& +\frac{\partial u}{\partial w}(Q)\left(w-S\left(z_{0}\right)\right)+\frac{1}{2} \frac{\partial^{2} u}{\partial w^{2}}(Q)\left(w-S\left(z_{0}\right)\right)^{2}+\cdots \\
& +\frac{\partial^{2} u}{\partial z \partial w}(Q)\left(z-\widetilde{S}\left(w_{0}\right)\right)\left(w-S\left(z_{0}\right)\right)  \tag{2.12}\\
& +\frac{1}{2} \frac{\partial^{3} u}{\partial z \partial w^{2}}(Q)\left(z-\widetilde{S}\left(w_{0}\right)\right)\left(w-S\left(z_{0}\right)\right)^{2}+\cdots \\
& +\frac{1}{2} \frac{\partial^{3} u}{\partial z^{2} \partial w}(Q)\left(z-\widetilde{S}\left(w_{0}\right)\right)^{2}\left(w-S\left(z_{0}\right)\right)+\cdots
\end{align*}
$$

Note that in (2.12), we used the condition

$$
\frac{\partial^{4+i+j} u}{\partial z^{2+i} \partial w^{2+j}}=0 \quad \text { for } \quad i, j=0,1,2, \cdots
$$

Substituting the point $A=A\left(z_{0}, S\left(z_{0}\right)\right)$ into (2.12), we obtain

$$
\begin{equation*}
u(A)-u(Q)=\frac{\partial u}{\partial z}(Q)\left(z_{0}-\widetilde{S}\left(w_{0}\right)\right)+\frac{1}{2} \frac{\partial^{2} u}{\partial z^{2}}(Q)\left(z_{0}-\widetilde{S}\left(w_{0}\right)\right)^{2}+\cdots \tag{2.13}
\end{equation*}
$$

Similarly, substituting the point $B=B\left(\tilde{S}\left(w_{0}\right), w_{0}\right)$ into (2.12), we obtain

$$
\begin{equation*}
u(B)-u(Q)=\frac{\partial u}{\partial w}(Q)\left(w_{0}-S\left(z_{0}\right)\right)+\frac{1}{2} \frac{\partial^{2} u}{\partial w^{2}}(Q)\left(w_{0}-S\left(z_{0}\right)\right)^{2}+\cdots \tag{2.14}
\end{equation*}
$$

Differentiating (2.12) with respect to $z$ at the point $B$, we obtain

$$
\begin{equation*}
\frac{\partial u}{\partial z}(B)-\frac{\partial u}{\partial z}(Q)-\frac{\partial^{2} u}{\partial z \partial w}(Q)\left(w_{0}-S\left(z_{0}\right)\right)=\frac{1}{2} \frac{\partial^{3} u}{\partial z \partial w^{2}}(Q)\left(w_{0}-S\left(z_{0}\right)\right)^{2}+\cdots . \tag{2.15}
\end{equation*}
$$

And differentiating (2.12) with respect to $w$ at the point $A$, we obtain

$$
\begin{equation*}
\frac{\partial u}{\partial w}(A)-\frac{\partial u}{\partial w}(Q)-\frac{\partial^{2} u}{\partial z \partial w}(Q)\left(z_{0}-\widetilde{S}\left(w_{0}\right)\right)=\frac{1}{2} \frac{\partial^{3} u}{\partial z^{2} \partial w}(Q)\left(z_{0}-\widetilde{S}\left(z_{0}\right)\right)^{2}+\cdots \tag{2.16}
\end{equation*}
$$

Finally, using (2.12) at the point $P$ and taking into account (2.13) - (2.16), we obtain that

$$
\begin{align*}
& u(P)=-u(Q)+u(A)+u(B)+\left(z_{0}-\widetilde{S}\left(w_{0}\right)\right)\left(\frac{\partial u}{\partial z}(B)-\frac{\partial u}{\partial z}(Q)\right)  \tag{2.17}\\
& +\left(w_{0}-S\left(z_{0}\right)\right)\left(\frac{\partial u}{\partial w}(A)-\frac{\partial u}{\partial w}(Q)\right)-\left(z_{0}-\widetilde{S}\left(w_{0}\right)\right)\left(w_{0}-S\left(z_{0}\right)\right) \frac{\partial^{2} u}{\partial z \partial w}(Q)
\end{align*}
$$

Note that $A$ and $B$ are points of intersection of the characterstic lines with the complexified curve $\Gamma_{\mathbb{C}}$. Therefore, formula (2.17) generalizes the well known nonhomogeneous formula for harmonic functions [17]:

$$
u(P)+u(Q)=u(A)+u(B)
$$

Thus, formula (2.17) allows us to construct a reflection formula for biharmonic functions satisfying on the curve $\Gamma$ the following nonhomogeneous conditions:

$$
\begin{aligned}
u(x, y)_{\left.\right|_{\Gamma}} & =g(x) \\
\frac{\partial u}{\partial y}(x, y)_{\left.\right|_{\Gamma}} & =g_{1}(x)
\end{aligned}
$$

where $g$ and $g_{1}$ are holomorphic functions in a neighborhood of the curve $\Gamma$.
Remark 2.3. For the special case when $\Gamma$ is a line with equation $f(x, y) \equiv a y+$ $b x+c=0$, formula (2.11) in ( $x, y$ ) coordinates has a simpler form

$$
u(P)=-u(Q)-\beta\left(2 b \frac{\partial u}{\partial x}(Q)+2 a \frac{\partial u}{\partial y}(Q)+f(P) \Delta_{x, y} u(Q)\right)
$$

where $\beta=f(P) /\left(a^{2}+b^{2}\right)$ is a known number. In particular, if $a=1$ and $b=c=0$, this formula coincides with formula (1.4) of H. Poritsky [2].

The corresponding nonhomogeneous formula (2.17) for the case of a line becomes

$$
\begin{align*}
u(P)= & -u(Q)-\beta\left(2 b \frac{\partial u}{\partial x}(Q)+2 a \frac{\partial u}{\partial y}(Q)+f(P) \Delta_{x, y} u(Q)\right) \\
& +u(A)+u(B)+\beta(b+i a)\left(\frac{\partial u}{\partial x}(B)-i \frac{\partial u}{\partial y}(B)\right)  \tag{2.18}\\
& +\beta(b-a i)\left(\frac{\partial u}{\partial x}(A)+i \frac{\partial u}{\partial y}(A)\right)
\end{align*}
$$

Remark 2.4. For the special case when $\Gamma$ is a part of a circle with equation $x^{2}+$ $y^{2}=\rho^{2}$, formula (2.11) reduces to formula (1.6) of J. Bramble [5].

Example 2.5. Let us consider the simplest example of applying nonhomogeneous formula for continuation of biharmonic functions. Let $u(x, y)$ be a biharmonic function defined in the upper half-plane and satisfy on the x -axis the following conditions

$$
\begin{align*}
u(x, y)_{\left.\right|_{y=0}} & =1 \\
\frac{\partial u}{\partial y}(x, y)_{\left.\right|_{y=0}} & =x . \tag{2.19}
\end{align*}
$$

Note that if the point $P$ has coordinates $\left(x_{0}, y_{0}\right)$, then the reflected point $Q=$ $Q\left(x_{0},-y_{0}\right), A=A\left(x_{0}+i y_{0}, x_{0}+i y_{0}\right)$ and $B=B\left(x_{0}-i y_{0}, x_{0}-i y_{0}\right)$. Thus,
nonhomogeneous formula (2.18) for this case can be rewritten in the form

$$
\begin{align*}
& u\left(x_{0}, y_{0}\right)=-u\left(x_{0},-y_{0}\right)-2 y_{0} \frac{\partial u}{\partial y}\left(x_{0},-y_{0}\right)-y_{0}^{2} \Delta u\left(x_{0},-y_{0}\right) \\
& +u\left(x_{0}+i y_{0}, x_{0}+i y_{0}\right)+u\left(x_{0}-i y_{0}, x_{0}-i y_{0}\right) \\
& +\left(\frac{\partial u}{\partial x}\left(x_{0}-i y_{0}, x_{0}-i y_{0}\right)-i \frac{\partial u}{\partial y}\left(x_{0}-i y_{0}, x_{0}-i y_{0}\right)\right) i y_{0}  \tag{2.20}\\
& -\left(\frac{\partial u}{\partial x}\left(x_{0}+i y_{0}, x_{0}+i y_{0}\right)+i \frac{\partial u}{\partial y}\left(x_{0}+i y_{0}, x_{0}+i y_{0}\right)\right) i y_{0}
\end{align*}
$$

Taking into account (2.19) we finally have,

$$
\begin{equation*}
u\left(x_{0}, y_{0}\right)=-u\left(x_{0},-y_{0}\right)-2 y_{0} \frac{\partial u}{\partial y}\left(x_{0},-y_{0}\right)-y_{0}^{2} \Delta u\left(x_{0},-y_{0}\right)+2 x_{0} y_{0}+2 \tag{2.21}
\end{equation*}
$$

Note that formula (2.20) generalizes Poritsky's reflection formula (1.4) to the case of nonhomogeneous conditions on the reflecting line.

## 3. REFLECTION FORMULA FOR POLYHARMONIC FUNCTIONS

In this section we generalize the reflection formula obtained in the previous section to polyharmonic functions.

Let $u(x, y)$, defined in a sufficiently small neighborhood $U$ of a non-singular real analytic curve $\Gamma$ defined by the equation $f(x, y)=0$, be a solution of the problem,

$$
\left\{\begin{array}{l}
\Delta_{x, y}^{p} u(x, y)=0 \text { near } \Gamma  \tag{3.1}\\
u(x, y)_{\left.\right|_{\Gamma}}=0 \quad(\bmod p)
\end{array}\right.
$$

Theorem 3.1. Under the assumptions formulated above, there exists a point-topoint reflection formula which, in $z, w$ coordinates, has the form,

$$
\begin{align*}
u(P) & =-u(Q)-\sum_{m=1}^{p-1}\left(\frac{1}{(m!)^{2}}\left(z_{0}-\widetilde{S}\left(w_{0}\right)\right)^{m}\left(w_{0}-S\left(z_{0}\right)\right)^{m} \Delta_{z, w}^{m} u(Q)\right. \\
& +\frac{1}{m!}\left(w_{0}-S\left(z_{0}\right)\right)^{m} \sum_{n=0}^{m-1} \frac{1}{n!}\left(z_{0}-\widetilde{S}\left(w_{0}\right)\right)^{n} D_{w}^{m-n} \circ \Delta_{z, w}^{n} u(Q)  \tag{3.2}\\
& \left.+\frac{1}{m!}\left(z_{0}-\widetilde{S}\left(w_{0}\right)\right)^{m} \sum_{n=0}^{m-1} \frac{1}{n!}\left(w_{0}-S\left(z_{0}\right)\right)^{n} D_{z}^{m-n} \circ \Delta_{z, w}^{n} u(Q)\right)
\end{align*}
$$

where, $\Delta_{z, w}=\frac{\partial^{2}}{\partial z \partial w}, D_{z}^{\alpha}=\frac{\partial^{\alpha}}{\partial z^{\alpha}}$ and $D_{w}^{\alpha}=\frac{\partial^{\alpha}}{\partial w^{\alpha}}$.
Proof. We will prove the theorem using the same idea as in the previous section. A fundamental solution for this case has the form,

$$
G=-\frac{1}{4^{p} \pi} \frac{\left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right)^{p-1}}{(p-1)!^{2}} \ln \left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right)
$$

or, in characteristic coordinates,

$$
\begin{align*}
& G\left(z, w, z_{0}, w_{0}\right)=-\frac{1}{4^{p} \pi}\left(G_{1}\left(z, w, z_{0}, w_{0}\right)+G_{2}\left(z, w, z_{0}, w_{0}\right)\right), \quad \text { where, }  \tag{3.3}\\
& G_{1}=\frac{\left(z-z_{0}\right)^{p-1}\left(w-w_{0}\right)^{p-1}}{(p-1)!^{2}} \ln \left(z-z_{0}\right), G_{2}=\frac{\left(z-z_{0}\right)^{p-1}\left(w-w_{0}\right)^{p-1}}{(p-1)!^{2}} \ln \left(w-w_{0}\right)
\end{align*}
$$

Green's formula for polyharmonic functions becomes,

$$
\begin{equation*}
u(P)=\sum_{k=0}^{p-1} \int_{\gamma} \omega\left(\Delta_{x, y}^{k} u\right) \cdot \Delta_{x, y}^{p-k-1} G-\Delta_{x, y}^{k} u \cdot \omega\left(\Delta_{x, y}^{p-k-1} G\right), \tag{3.4}
\end{equation*}
$$

where $p$ is the order of polyharmonicity of $u$ and $\omega=\frac{\partial}{\partial y} d x-\frac{\partial}{\partial x} d y$. We will be able to deform the contour $\gamma$ to the domain $U_{2}$ if we can construct the corresponding reflected fundamental solution $\tilde{G}$. It must satisfy the following problem

$$
\left\{\begin{array}{l}
\Delta_{z, w}^{p} \tilde{G}=0  \tag{3.5}\\
\widetilde{G}-G=0 \quad(\bmod p) \quad \text { on } \Gamma_{\mathbb{C}}, \\
\widetilde{G} \text { has singularities only on the characteristics } \tilde{l}_{j}=\left\{\tilde{\psi}_{j}=0\right\}, j=1,2,
\end{array}\right.
$$

where,

$$
\tilde{\psi}_{1}(w)=\widetilde{S}(w)-z_{0}, \quad \tilde{\psi}_{2}(z)=S(z)-w_{0}
$$

Lemma 3.2. The reflected fundamental solution $\tilde{G}$ has the form

$$
\begin{equation*}
\left.\widetilde{G}=-\frac{1}{4^{p} \pi} \frac{\left(z-z_{0}\right)^{p-1}\left(w-w_{0}\right)^{p-1}}{(p-1)!^{2}} \ln \left(\tilde{S}(w)-z_{0}\right)\left(S(z)-w_{0}\right)\right)+v\left(z, w, z_{0}, w_{0}\right) \tag{3.6}
\end{equation*}
$$

where $v\left(z, w, z_{0}, w_{0}\right)$ is a $p$-harmonic function that is analytically continuable along any path free of singularities of the Schwarz function and its inverse.

Proof. We will seek $\tilde{G}$ in the form

$$
\widetilde{G}\left(z, w, z_{0}, w_{0}\right)=-\frac{1}{4^{p} \pi}\left(\tilde{G}_{1}\left(z, w, z_{0}, w_{0}\right)+\tilde{G}_{2}\left(z, w, z_{0}, w_{0}\right)\right)
$$

where $\tilde{G}_{j}, j=1,2$ are p-harmonic functions with singularities only on the characteristic complex lines $\tilde{l}_{j}$ and satisfy the condition $\tilde{G}_{j}-G_{j}=0(\bmod p)$ on the complexification $\Gamma_{\mathbb{C}}$. To prove the lemma it is sufficient to show that, for example, the function $\tilde{G}_{2}$ has the form

$$
\begin{equation*}
\tilde{G}_{2}=\frac{\left(z-z_{0}\right)^{p-1}\left(w-w_{0}\right)^{p-1}}{(p-1)!^{2}} \ln \left(S(z)-w_{0}\right)+\sum_{k=1}^{p-1} \frac{(w-S(z))^{k}}{k!} \Phi_{k}\left(z, z_{0}, w_{0}\right) \tag{3.7}
\end{equation*}
$$

where $\Phi_{k}$ 's are functions that are analytically continuable along any path free of singularities of the Schwarz function. It is obvious that such function (3.7) is pharmonic, since differentiating it $p$ times with respect to $w$ gives zero. Let us find the functions $\Phi_{k}$ from the condition

$$
\begin{equation*}
{\frac{\partial^{k} \tilde{G}_{2}}{\partial w^{k}}}_{\left.\right|_{w=S(z)}}=\frac{\partial^{k} G_{2}}{\partial w^{k}}, \quad k=1, \ldots, p-1 \tag{3.8}
\end{equation*}
$$

Differentiating function $\tilde{G}_{2} k$-times with respect to $w$ gives

$$
\begin{align*}
\frac{\partial^{k} \tilde{G}_{2}}{\partial w^{k}} & =\frac{\left(z-z_{0}\right)^{p-1}\left(w-w_{0}\right)^{p-k-1}}{(p-1)!(p-k-1)!} \ln \left(S(z)-w_{0}\right)+\Phi_{k}\left(z, z_{0}, w_{0}\right) \\
& +\sum_{m=k+1}^{p-1} \frac{(w-S(z))^{m-k}}{(m-k)!} \Phi_{m}\left(z, z_{0}, w_{0}\right) \tag{3.9}
\end{align*}
$$

and restricting this to $\Gamma_{\mathbb{C}}$ yields

$$
\begin{equation*}
\frac{\partial^{k} \tilde{G}_{2}}{\partial w^{k}}=\frac{\left(z-z_{0}\right)^{p-1}\left(w-w_{0}\right)^{p-k-1}}{(p-1)!(p-k-1)!} \ln \left(w-w_{0}\right)+\Phi_{k}\left(z, z_{0}, w_{0}\right) \tag{3.10}
\end{equation*}
$$

Differentiating $G_{2}$ (using Leibnitz rule), we obtain

$$
\begin{equation*}
\frac{\partial^{k} G_{2}}{\partial w^{k}}=\frac{\left(z-z_{0}\right)^{p-1}\left(w-w_{0}\right)^{p-k-1}}{(p-1)!(p-k-1)!} \ln \left(w-w_{0}\right)+\frac{\left(z-z_{0}\right)^{p-1}\left(w-w_{0}\right)^{p-k-1}}{(p-1)!} C_{k} \tag{3.11}
\end{equation*}
$$

where $C_{k}$ is a known constant depending only on $k$ and $p$. Comparing (3.10) and (3.11) we see that

$$
\Phi_{k}=C_{k} \frac{\left(z-z_{0}\right)^{p-1}\left(S(z)-w_{0}\right)^{p-k-1}}{(p-1)!}
$$

This proves the lemma.
Since we have constructed the reflected fundamental solution (3.6), which has singularities only on the characteristic lines $\tilde{l}_{j}$ intersecting the real plane at $Q=$ $R(P)$ in the domain $U_{2}$, we can deform the contour $\gamma$ from the domain $U_{1}$ to a contour $\tilde{\gamma}$ in $U_{2}$ surrounding the reflected point $Q$ and having endpoints on the curve $\Gamma$. Therefore, using $z, w$ variables, Green's formula (3.4) can be rewritten as

$$
\begin{equation*}
u(P)=4^{p-1} \sum_{k=0}^{p-1} \int_{\tilde{\gamma}} \omega^{*}\left(\Delta_{z, w}^{k} u\right) \cdot \Delta_{z, w}^{p-k-1} \tilde{G}-\Delta_{z, w}^{k} u \cdot \omega^{*}\left(\Delta_{z, w}^{p-k-1} \tilde{G}\right) \tag{3.12}
\end{equation*}
$$

where $\omega^{*}=i\left(\frac{\partial}{\partial z} d z-\frac{\partial}{\partial w} d w\right)$.
Another important result from Lemma 3.2 is the fact that the reflected fundamental solution (3.6) does not ramify in the neighborhood of the reflected point $Q\left(\tilde{S}\left(w_{0}\right), S\left(z_{0}\right)\right)$. This is "not a trivial fact" since, for example, the reflected fundamental solution for the Helmholtz operator does not have this property [15]. According to this, if we substitute (3.6) into (3.12) and move one endpoint of the contour $\tilde{\gamma}$ along the curve $\Gamma$ to the other endpoint, terms containing products of the functions $u, v$ and their derivatives vanish. Sum of integrals containing logarithms is equal to zero. The rest of terms have pole at the point $Q$ and therefore, calculating the residues, we obtain a point-to-point reflection formula. However, direct transformation of (3.12) leads to cumbersome calculations, so knowing that point-to-point reflection formula exists, we can now use the Taylor series to obtain it. Moreover, we will also obtain it for nonhomogeneous conditions on the curve $\Gamma$. Indeed, let us expand the p-harmonic function $u(z, w)$ in Taylor series at the point
$Q$ :

$$
\begin{align*}
u(z, w) & =\sum_{m=0}^{p-1} \frac{1}{m!}\left(w-S\left(z_{0}\right)\right)^{m} \sum_{n=m+1}^{\infty} \frac{1}{n!}\left(z-\widetilde{S}\left(w_{0}\right)\right)^{n}\left(D_{z}^{n}\left(D_{w}^{m} u\right)(Q)\right. \\
& +\sum_{m=0}^{p-1} \frac{1}{m!}\left(z-\widetilde{S}\left(w_{0}\right)\right)^{m} \sum_{n=m+1}^{\infty} \frac{1}{n!}\left(w-S\left(z_{0}\right)\right)^{n}\left(D_{w}^{n}\left(D_{z}^{m} u\right)(Q)\right.  \tag{3.13}\\
& +\sum_{m=0}^{p-1} \frac{1}{(m!)^{2}}\left(z-\widetilde{S}\left(w_{0}\right)\right)^{m}\left(w-S\left(z_{0}\right)\right)^{m}\left(D_{z}^{m} D_{w}^{m} u\right)(Q) .
\end{align*}
$$

Formula (3.13) implies:

$$
\begin{align*}
D_{w}^{m} u(A)- & \sum_{n=0}^{m} \frac{1}{n!}\left(z_{0}-\tilde{S}\left(w_{0}\right)\right)^{n}\left(D_{z}^{n} D_{w}^{m} u\right)(Q)=  \tag{3.14}\\
& \sum_{n=m+1}^{\infty} \frac{1}{n!}\left(z_{0}-\widetilde{S}\left(w_{0}\right)\right)^{n}\left(D_{z}^{n} D_{w}^{m} u\right)(Q), \quad m=0, \ldots, p-1
\end{align*}
$$

and

$$
\begin{align*}
D_{z}^{m} u(B)- & \sum_{n=0}^{m} \frac{1}{n!}\left(w_{0}-S\left(z_{0}\right)\right)^{n}\left(D_{w}^{n} D_{z}^{m} u\right)(Q)=  \tag{3.15}\\
& \sum_{n=m+1}^{\infty} \frac{1}{n!}\left(w_{0}-S\left(z_{0}\right)\right)^{n}\left(D_{w}^{n} D_{z}^{m} u\right)(Q), \quad m=0, \ldots, p-1
\end{align*}
$$

where $A=A\left(z_{0}, S\left(z_{0}\right)\right)$ and $B=B\left(\tilde{S}\left(w_{0}\right), w_{0}\right)$.
Finally, replacing the infinite parts of the sum in (3.13) at the point $P$ by the finite sums given by (3.14) and (3.15) we obtain,

$$
\begin{align*}
u(P) & =-u(Q)+u(A)+u(B) \\
& -\sum_{m=1}^{p-1}\left(\frac{1}{(m!)^{2}}\left(z_{0}-\widetilde{S}\left(w_{0}\right)\right)^{m}\left(w_{0}-S\left(z_{0}\right)\right)^{m} \Delta_{z, w}^{m} u(Q)\right. \\
& +\frac{1}{m!}\left(w_{0}-S\left(z_{0}\right)\right)^{m} \sum_{n=0}^{m-1} \frac{1}{n!}\left(z_{0}-\widetilde{S}\left(w_{0}\right)\right)^{n} D_{w}^{m-n} \circ \Delta_{z, w}^{n} u(Q)  \tag{3.16}\\
& \left.+\frac{1}{m!}\left(z_{0}-\widetilde{S}\left(w_{0}\right)\right)^{m} \sum_{n=0}^{m-1} \frac{1}{n!}\left(w_{0}-S\left(z_{0}\right)\right)^{n} D_{z}^{m-n} \circ \Delta_{z, w}^{n} u(Q)\right) \\
& +\sum_{m=1}^{p-1}\left(\frac{1}{m!}\left(w_{0}-S\left(z_{0}\right)\right)^{m} D_{w}^{m} u(A)+\frac{1}{m!}\left(z_{0}-\widetilde{S}\left(w_{0}\right)\right)^{m} D_{z}^{m} u(B)\right),
\end{align*}
$$

where $\Delta_{z, w}=\frac{\partial^{2}}{\partial z \partial w}, D_{z}^{\alpha}=\frac{\partial^{\alpha}}{\partial z^{\alpha}}$ and $D_{w}^{\alpha}=\frac{\partial^{\alpha}}{\partial w^{\alpha}}$.
Thus, we have obtained a reflection formula for polyharmonic functions with nonhomogeneous conditions on a curve $\Gamma$. Note that points $A$ and $B$ lie on the complexification $\Gamma_{\mathbb{C}}$, and therefore, if the function $u$ satisfy (3.1) we have (3.2).

Remark 3.3. Formula (3.2) for the case of a line with equation $y=0$ reduces to Huber's formula (1.5) with $n=1$.

Acknowledgements. We would like to thank Professor Dmitry Khavinson for suggesting this problem to us as well as for helpful discussions during this work.

## References

[1] Ph. Davis, The Schwarz function and its applications, Carus Mathematical Monographs, MAA, 1979.
[2] H. Poritsky, Application of analytic functions to two-dimensional biharmonic analysis, Trans. Amer. Math. Soc., 59 (1946), N 2, 248-279.
[3] R.J. Duffin, Continuation of biharmonic functions by reflection, Duke Math. J., 22 (1955), N 2, 313-324.
[4] A. Huber, On the reflection principle for polyharmonic functions, Comm. Pure Appl. Math., 9 (1956), 471-478.
[5] J. Bramble, Continuation of biharmonic functions across circular arcs, J. Math. Mech., 7 (1958), N 6, 905-924.
[6] F. John, Continuation and reflection of solutions of partial differential equations, Bull. Amer. Math. Soc., 63 (1957), 327-344.
[7] L. Nystedt, On polyharmonic continuation by reflection formulas, Arkiv för Matematik, 1982, 201-247.
[8] J. Sloss, Reflection of biharmonic functions across analytic boundary conditions with examples, Pacific J. Math., 13 (1963), N 4, 1401-1415.
[9] R. Kraft, Reflection of polyharmonic functions in two independent variables, J. Math. Anal. Appl., 19 (1967), 505-518.
[10] H. Lewi, On the reflection laws of second order differential equations in two independent variables, Bull. Amer. Math. Soc., 65 (1959), 37-58.
[11] D. Khavinson and H.S. Shapiro, Remarks on the reflection principles for harmonic functions, Journal d'Analyse Mathématique, 54 (1991), 60-76.
[12] P. Ebenfelt and D. Khavinson, On point to point reflection of harmonic functions across real analytic hypersurfaces in $\mathbb{R}^{n}$, Journal d'Analyse Mathématique, 68 (1996), 145-182.
[13] P. Ebenfelt, Holomorphic extension of solutions of elliptic partial differential equations and a complex Huygens principle, J. London Math. Soc., 55 (1997), 87-104.
[14] D. Aberra, On a generalized reflection law for functions satisfying the Helmholtz equation, Preprint, Univ. of Arkansas, N 157(1997).
[15] T.V. Savina, B.Yu. Sternin and V.E. Shatalov, On a reflection formula for the Helmholtz equation, Radiotechnika i Electronica, 1993, 229-240.
[16] P.R. Garabedian, Partial differential equations with more than two independent variables in the complex domain, J. Math. Mech., 9 (1960), 241-271.
[17] B.Yu. Sternin and V.E. Shatalov, Differential equations on complex manifolds, Kluwer Academic Publishers, 1994.

Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas 72701

E-mail address: daberra@comp.uark.edu
Department of Mathematics \& Econometrics, State University - Higher School of Economics, Myasnitskaya St. 20, Moscow 101000, Russia

E-mail address: savita@orc.ru


[^0]:    Key words and phrases. Reflection principle, polyharmonic functions.

