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Faceting of a growing crystal surface by surface diffusion
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Consider faceting of a crystal surface caused by strongly anisotropic surface tension, driven by surface
diffusion and accompanied by deposition~etching! due to fluxes normal to the surface. Nonlinear evolution
equations describing the faceting of 111 and 211 crystal surfaces are studied analytically, by means of
matched asymptotic expansions for small growth rates, and numerically otherwise. Stationary shapes and
dynamics of faceted pyramidal structures are found as functions of the growth rate. In the 111 case it is shown
that a solitary hill as well as periodic hill-and-valley solutions are unique, while solutions in the form of a
solitary valley form a one-parameter family. It is found that with the increase of the growth rate, the faceting
dynamics exhibits transitions from the power-law coarsening to the formation of pyramidal structures with a
fixed average size and finally to spatiotemporally chaotic surfaces resembling the kinetic roughening.
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I. INTRODUCTION

Formation of pyramidal structures on growing crystal s
faces is an important phenomenon that has been attra
wide attention due in part to its role in the self-organiz
evolution of quantum dots@1#. In epitaxially grown solid
films, these structures can develop either due to the relea
elastic stresses caused by the lattice mismatch betwee
film and the substrate@1–3#, or due to anisotropic surfac
fluxes caused by the Schwo¨bel effect @4,5#. Also, they can
result from thermodynamic instability of a growing cryst
surface that undergoes spinodal decomposition into fac
pyramidal structures with stable orientations@6–9#. In all the
cases, the surface-tension anisotropy plays the crucial
and the main mechanism of the surface relaxation leadin
the formation of surface structures is surface diffusion.

Faceting~spinodal decomposition! of thermodynamically
unstable crystal surfaces caused by strongly anisotropic
face tension and driven by surface diffusion was conside
in Refs. @6,7# where equilibrium slopes of the pyramid
structures as well as the coarsening rates were obtai
When a crystal surface is growing, both the equilibriu
slopes of the pyramidal structures and their coarsening
namics can substantially change depending on the gro
rate, as was shown for the evaporation-condensation gro
mechanism in Refs.@9–11#. In particular, in the presence o
growth, the coarsening rate can become unusually
@9,11,12#. With the increase of the growth rate, one obser
a transition from pyramidal structures with specific symm
tries to spatiotemporally chaotic interfaces@11#.

When modeling the surface-tension-anisotropy-indu
faceting of a crystal surface within the continuum fram
work, the corresponding evolution equations are ill pos
~there is no short-wave cutoff! unless the additional energ
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of edges and corners is included. This in turn leads to
dependence of surface tension on the local curva
@6,8,10#.

In the present paper, we investigate the formation of f
eted pyramidal structures caused by strongly anisotropic
face tension and driven by the surface-diffusion mechan
in the case when the crystal is growing. Two types of crys
growth should be distinguished. In one type, typical
molecular-beam epitaxy, there is a constant vertical flux
material onto the surface so that there is a mean sur
growth velocity. In the frame of reference moving with th
velocity the surface dynamics isnot affected by the growth
and is completely described by the surface-diffusion eq
tions that take into account the surface-tension anisotr
@6,7#. In the second type, typical of chemical-vapor depo
tion, the flux of material on a growing crystal surface is fro
the diffusion boundary layer whose shape follows the sh
of the surface. In this case, the material flux isnormal to the
surface, similar to the evaporation-condensation grow
mechanism considered in Refs.@9,11#.

In the latter case, the corresponding evolution equat
describing the surface dynamics contains an additio
symmetry-breaking convective term that describes the ef
of the normal growth and significantly changes the surfa
dynamics@9,11,12# making it dependent on the growth rat
The interplay between the surface-tension-anisotro
induced faceting and the surface growth by a normal flux
the main subject of the present paper.

II. MATHEMATICAL MODEL

We consider a growing surface of a crystal with cub
symmetry and anisotropic surface tensiong depending on
©2003 The American Physical Society06-1
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the surface orientationn and the local mean curvatureK as
@9#

g5g0@11e4~nx
41ny

41nz
4!1e6~nx

61ny
61nz

6!1•••#

1
1

2
nK 2, ~1!

where e4 and e6 are anisotropy coefficients andn is the
regularization coefficient induced by edge energies. We
sume that the crystal is growing due to a constantnormal
flux F of the material, which is adsorbed on the surface a
is redistributed by surface diffusion. Following Refs.@13,14#
~see also Ref.@15#!, a phenomenological equation describi
evolution of the surface given byz5h(x,y,t) can be written
as

vn5
ht

A11~“h!2
5F2

DsV
2s

kT
¹s

2m, ~2!

wherevn is the normal growth rate,Ds is the surface diffu-
sivity of the adatoms,V is the atomic volume,s is the
surface density of atoms,k is the Boltzmann constant,T is
the absolute temperature,¹s

2 is the surface Laplacian opera
tor, m is the surface chemical potential,

m5
dF
dh

, ~3!

andF is the surface free energy,

F5E g~n,K!dS. ~4!

We employ a long-wave approximation and expand E
~2! in the powers of the surface slope to obtain the followi
evolution equation for the surface shape in the frame mov
with the surface in thez direction:

ht5
1

2
Fu“hu22N¹2@~2m1ahx

21bhy
2!hxx1~2m1bhx

2

1ahy
2!hyy1chxhyhxy2d¹4h#, ~5!

where N5DsV
2sg0 /(kT), d5n/g0.0, and the coeffi-

cientsm, a, b, c can be expressed in terms of the anisotro
coefficientse4 , e6; see Ref.@9# for details. In the derivation
of Eq. ~5! we have neglected all nonlinear terms in the s
face Laplacian operator as well as in the regularization ter

Note that one should be cautious when using the lo
wave expansion of the original problem~2!. When there is
no deposition,F50, the original Eq.~2! has a Lyapunov
functional,L(“h,¹2h), that satisfies the condition] tL<0,
and therefore Eq.~2! describes the relaxational~potential!
dynamics in which the surface shape is gradually tending
the equilibrium configuration. This important property, ho
ever, can be lost when one approximates Eq.~2! by taking
into account some long-wave terms and neglecting the
02160
s-

d

.

g

y

-
s.
-

to

h-

ers. In order for the long-wave approximation~5! to be
physically meaningful, this equation, forF50, must have
the form

ht5¹2
dL
dh

. ~6!

It is easy to check that forF50, Eq.~5! can be written in the
form ~6! if c54b. In this case,L5N*F dx dy, where

F52
m

2
~“h!21

d

2
~¹2h!21

a

12
~hx

41hy
4!1

b

2
hx

2hy
2 .

~7!

Therefore, we shall further consider Eq.~5! with c54b:

ht5
F

2
u“hu22N¹2@~2m1ahx

21bhy
2!hxx1~2m1bhx

2

1ahy
2!hyy14bhxhyhxy2d¹4h#. ~8!

Equation~8! is invariant with respect to transformation
x↔2x, y↔2y, andx↔y. This reflects the fourfold sym-
metry of the@001# surface. Also, after coordinate rotation b
6p/4 it is transformed into the same equation but with d
ferent coefficients,ã andb̃, that are related to the old coe
ficients byã5(a13b)/2, b̃5(a2b)/2.

We consider the coefficientsa andb to be positive, since
otherwise the corresponding nonlinear terms will become
stabilizing and will not describe the nonlinear saturation
the surface slope~this drawback is the consequence of t
long-wave approximation and in principle can be eliminat
by taking into account higher-order terms in the long-wa
expansions, but we shall not discuss that situation!. Also, the
nonlinear terms should be such that no finite slope of
surface (hx5A, hy5B) can make the nonlinear terms dest
bilizing ~otherwise it will lead to an unlimited growth an
the problem will become ill posed!. This requirement is
equivalent to the condition of the positive definiteness of
quadratic form

QAB~kx ,ky!5~aA21bB2!kx
21~bA21aB2!ky

2

14bABkxky.0, ~9!

which is obtained if one considers linear stability of a plan
surfaceh5Ax1By with respect to perturbationsh̃;exp@st
1ik•r #, wherek5(kx ,ky). Condition ~9! leads to the fol-
lowing simple restriction for the coefficientsa andb:

a>b. ~10!

Note that this condition coincides with the positiveness
the nonlinear coefficients in the equation obtained from E
~5! after coordinate rotation by 45°.

By rescaling r→rAd/m, t→td2/(Nm3), h→hA3d/a,
Eq. ~5! can be conveniently written as
6-2
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ht5
1

2
Du“hu21¹2@¹2h1¹4h2~3hx

21bhy
2!hxx2~3hy

2

1bhx
2!hyy24bhxhyhxy#, ~11!

whereb53b/a, andD5FA3d3/(Nm2a1/2).
Equation~11! describes evolution in the presence of t

normal growth of thermodynamically unstable crystal s
face caused by the surface-tension anisotropy and drive
surface diffusion. The first term on the right-hand side is
typical KPZ-type~Kardar-Parisi-Zhang! nonlinearity caused
by the normal growth@16#. The coefficientD is proportional
to the growth rateF. The second term on the right-hand si
describes the reconstruction of the surface by means of
face diffusion with the linear terms,¹4h and ¹6h, corre-
sponding to the spinodal instability and the regularizing
fect of the additional energy of edges and corne
respectively, while the nonlinear terms are related to the n
linear stabilization of the anisotropic surface tension that
lects stable orientations of pyramidal structures@9#. Equation
~11! is similar to that studied in Ref.@9# for the case of a
thermodynamically unstable surface growing by t
evaporation-condensation mechanism, but contains
higher spatial derivatives associated with the surfa
diffusion mechanism. Also, similar equations~however,
without the KPZ nonlinearity term! were considered in Refs
@6,7# for the faceting of thermodynamically unstable surfac
by both evaporation-condensation and surface-diffus
mechanisms, as well as for the anisotropic mound forma
in molecular-beam epitaxy caused by anisotropic surface
rents@4,5#.

III. 1 ¿1 MODEL

We first consider a model 111 case corresponding to
two-dimensional crystal with a one-dimensional surface.
this case, Eq.~11! can be rewritten for the surface slope,u
5hx , as

ut5~uxx1u2u3!xxxx1Duux . ~12!

Equation~12! is a higher-order convective Cahn-Hilliar
equation similar to the equation considered in Ref.@17# for
the dynamics of driven phase-separating systems and in
@11# for the faceting of a crystal surface growing b
evaporation-condensation mechanism. However, it cont
the higher spatial derivatives associated with the surface
fusion.

A. Stationary surface shapes: A hill or a valley

First we study stationary surface shapes described by
~12! and consider the analytically tractable case withD5«
!1 corresponding to a small deposition rate. ForD50 Eq.
~12! has stationary solutions

u0~x!56 tanh~x/A2!, ~13!

corresponding to the surface shapesh0(x)5
6A2 ln cosh(x/A2) that describe a hill (2) or a valley
02160
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(1) with a unit slope. Below, we shall call the solutio
u0

1(x)5tanh(x/A2) a kink, and the solutionu0
2(x)5

2tanh(x/A2) an antikink.
For D5«!1, stationary solutions of Eq.~12! can be ap-

proximately found using the method of matched asympto
expansions. Since Eq.~12! is invariant with respect to trans
formation u→2u, x→2x, we seek stationary solutions
odd about the origin, bounded at infinity and, since Eq.~12!
is invariant with respect to transformation«→2«, u→
2u, we take«.0 ~the case«,0 corresponds to the with
drawal of the material from the surface, i.e., to the surfa
etching!.

The stationary version of Eq.~12! can be integrated onc
to give a fifth-order differential equation

~uxx1u2u3!xxx1
«

2
~u22A2!50, ~14!

where the integration constant«A2/25«u2(6`)/2, allow-
ing thatu(x) tends to a constant value at infinity.

A unique solution to this equation requires six conditio
~since the constantA is unknown!. For odd solutions,u(0)
5uxx(0)5uxxxx(0)50. For solutionsu(x) bounded at in-
finity and such thatu(x)→u0(x) for «→0, the remaining
three conditions should be, for example,

u8~0!5u08~0!1z1 , u-~0!5u0-~0!1z2 ,
~15!

A5611z3 ,

wherez1 , z2, andz3 are small arbitrary constants such th
zi→0 for «→0 and the prime corresponds to a derivati
with respect tox.

In order to find these constants we examine the soluti
for largex following the analysis carried out in Ref.@17# for
a driven Cahn-Hilliard equation. Linearize Eq.~14! around
the valueA for large positivex, u(x)5A1U(x), which
gives

@Uxx1~123A2!U#xxx1«AU50. ~16!

The general solution of this homogeneous equation is

U5(
i 51

5

ai exps ix, ~17!

wheres i are the roots of the equation

s51~123A2!s31«A50. ~18!

For U(x) to be small asx→1` (x→2`), the coefficients
ai , corresponding to the eigenvaluess i with positive~nega-
tive! real part, must vanish.

Let us compare the number of such roots with the numb
3, of arbitrary parameterszi @see Eq.~15!#. Takex→1`, so
that A.0 for a kink, andA,0 for an antikink.

~a! If 3A221.0, A.0, the roots of Eq.~18! have the
following asymptotics for«!1:

s151A3A2211•••, s252A3A2211•••, ~19!
6-3
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s35«1/3@A/~3A221!#1/31•••, ~20!

s4,55«1/3@A/~3A221!#1/3~21/26 iA3/2!1•••. ~21!

This situation corresponds to a kink whose principal p
coincides withu05tanh(x/A2) for x5O(1), and hassmall
oscillations forx5O(«21/3). In this case, there are two roo
with positive real part.

~b! If 3A221.0, A,0, asymptotics for the roots are

s151A3A2211•••, s252A3A2211•••, ~22!

s352«1/3@ uAu/~3A221!#1/31•••, ~23!

s4,55«1/3@ uAu/~3A221!#1/3~1/26 iA3/2!1•••. ~24!

This situation corresponds to an antikink whose princi
part coincides withu052tanh(x/A2) for x5O(1). In this
case, there are no oscillations forx5O(«21/3) and there are
three roots with positive real parts.

~c! If 3A221,0, A.0, then

s1,256 iA123A22«A/@2~123A2!2#1•••, ~25!

s352«1/3@A/~123A2!#1/31•••, ~26!

s4,55«1/3@A/~123A2!#1/3~1/26 iA3/2!1•••, ~27!

and there are two roots with positive real parts.
~d! 3A221,0, A,0,

s1,256 iA123A21«uAu/@2~123A2!2#1•••, ~28!

s35«1/3@ uAu/~123A2!#1/31•••, ~29!

s4,55«1/3@ uAu/~123A2!#1/3~21/26 iA3/2!1•••,
~30!

and there are three roots with positive real parts.
Solutions corresponding to the cases~c! and ~d! oscillate

nearx50 and are of no interest here since they do not
scribe appropriate surface shapes in the form of a hill o
valley. Comparing cases~a! and ~b!, one can see that th
positive and negative kinks are intrinsically different. T
dimension of the stable manifold near the stationary po
uAu is equal to 3, while the dimension of the unstable ma
fold near this point is 2. On the other hand, in the neighb
hood of the stationary point2uAu, the dimensions of the
stable and unstable manifolds are 2 and 3, respectively. S
for a negative kink the number of roots with positive re
parts is equal to the number of arbitrary parameters,
negative kink is unique~if exists!, while for a positive kink
one can expect a one-parameter family of solutions. In or
to find these solutions we apply the method of match
asymptotic expansions with the short-scale variablex and the
long-scale variablej5«1/3x @see Eq.~17! with Eqs.~21! and
~23!#.
02160
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1. Inner solution

Look for the inner solution of the equation

~uxx1u2u3!xxx1
«

2
~u22A2!50 ~31!

in the form

uinner5u0~x!1«1/3u1~x!1«2/3u2~x!1«u3~x!1•••,
~32!

where the first term coincides with Eq.~13!. Note that in
order to obtain asymptotics for the whole Eq.~31! one has to
take into account terms at least up to the order« in expan-
sion ~32!.

The unknown constantA should be expanded as well:

A56~11«1/3D11«2/3D21«D31••• !. ~33!

Substituting Eqs.~32! and~33! into Eq.~31! and equating
the terms of equal powers of«, one obtains

~Lu1!xxx50, ~34!

~Lu2!xxx5~3u0
2u1!xxx , ~35!

~Lu3!xxx5~6u0u1u21u1
3!xxx2

1

2
~u0

221!, ~36!

whereL5d2/dx21(123u0
2).

Integrating Eqs.~34!–~36! three times and taking into ac
count that the solutions must be odd functions ofx, one
obtains

Lui5gi~x!, ~37!

where

g1~x!5C1x, g2~x!5~3u0
2u1!1C2x, ~38!

g3~x!56u0u1u21u1
31 f ~x!1C3x, ~39!

C1 , C2, andC3 are arbitrary constants,

f ~x!52
A2

2
dilog„exp~xA2!11…2

A2

4
x22

A2

24
p2,

~40!

and

dilog~x!5E
1

x

~12t !21ln t dt.

Solutions of Eqs.~37! are then

ui5F2E F1giW
21dx2F1E F2giW

21dx, ~41!

whereF1 andF2 form the system of fundamental solution
for the differential operatorL, andW5F1F282F18F2 is the
Wronskian of this system,
6-4
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F15@2 cosh~x/A2!#22, ~42!

F252A2 tanh~x/A2!@cosh~xA2!14#

16x@cosh~x/A2!#22. ~43!

The constantsC1 , C2, andC3 will be found from the match-
ing.

2. Outer solution

Let us start constructing the outer solution for Eq.~31! by
introducing the long-scale variablej5«1/3x. Equation~31!
can then be rewritten as

~«2/3Ujj1U2U3!jjj1
1

2
~U22A2!50. ~44!

Look for solutionsU(j) in the form

U~j,«!5U0~j!1«1/3U1~j!1«2/3U2~j!1«U3~j!1•••.
~45!

Note that the outer solution includes two parts: the left ou
solution, UL (j,0), and the right outer solution,UR (j
.0), which are related to each other byUL(2j)5
2UR(j). For definiteness, we shall further consider onlyj
.0. Substitute Eqs.~45! and ~33! into Eq. ~44! and equate
the terms of equal powers of« to get the following equations
for the functionsUi :

~U02U0
3!jjj1

1

2
~U0

221!50, ~46!

LUi5D i1 f i , i 51,2, . . . , ~47!

where L5(d3/dj3)(123U0
2)1U0 , f 150, and f i , i

52, . . . , areknown functions ofUk , k, i . The solutions of
Eqs.~46! and ~47! for i 50, 1 are

U0561, ~48!

U15a1 exp~sgn@U0#221/3j!1exp~2sgn@U0#224/3j!

3@a2 sin~224/3A3j!1a3 cos~224/3A3j!#

1sgn@U0#D1 . ~49!

For a positive kink,U0511, and one must seta150 in
order to eliminate the exponentially growing term. Coef
cientsa2 and a3 should be determined from the matchin
For a negative kink,U0521; one setsa25a350, anda1
should be defined from the matching.

3. Matching

Let us consider the matching procedure for the nega
kink first, since in this case we are expecting to find all of t
coefficients uniquely. The right outer solution~for j.0) is

UR5211«1/3@a1 exp~2221/3j!2D1#1•••. ~50!
02160
r

e
e

For the matching, replacej by x«1/3 and expand Eq.~50! for
fixed x with respect to small«,

UR5211«1/3~a12D1!2«2/3x221/3a11«x2225/3a1

1«x221/3~212a1
2/71a1/142D22228/3!1o~«!.

~51!

In the inner solution, one needs the asymptotics of fu
tions ui , i 51, 2, 3 for x→1`. For u1 one hasu1;
2C1x/2. Comparing this with the second term in Eq.~51!
@see also Eq.~32!# one obtains the first two matching cond
tions

C150, a12D150. ~52!

Thus, it follows from the matching thatu1(x)[0. Matching
conditions corresponding to the terms of the order«2/3 and«
are the following:

2221/3a152C2/2, 225/3a152A2/8, ~53!

221/3~212a1
2/71a1/142D22228/3!52C3/2, ~54!

since for x→1`, u2;2C2x/2, u3;2A2x2/82C3x/2.
From Eqs. ~52! and ~53! one gets a152225/6, C25
2221/6, andD152225/6. Therefore,

A5211«1/3225/61o~«1/3!. ~55!

Note that the constantC3 cannot be determined at this ste
sinceD2 is still unknown. In order to determine these co
stants one has to add«4/3u4(x) to the inner solution~32! and
compare the terms of the order«4/3. From this, one gets
C35(9614325/6269321/324321/6)/56'0.21, D25(34
321/314321/6269322/324A2)/112'20.61, and

A5211«1/3225/62«2/3~34321/314321/6269322/3

24A2!/1121o~«2/3!'2110.561«1/310.606«2/3.

~56!

4. Effect of the growth rate

We have obtained approximate stationary solutions of
~12! describing a stationary hill or valley on a 111 surface
growing due to a normal flux and relaxation by surface d
fusion. The main result of the analysis presented abov
that a solitary hill~antikink! is unique and its slope depend
on the deposition rate,D. For small D5«!1 the depen-
dence is given by the asymptotic formula~56!. At the same
time, a solitary valley is not unique and there is a on
parameter family of valley~kink! stationary solutions with
different slopes. This situation is analogous to that descri
in Ref. @17# for a convective Cahn-Hilliard equation of th
lower order for phase separation in driven systems, wh
also governs the faceting of a thermodynamically unsta
crystal surface growing by the evaporation-condensa
mechanism@11#. Also, in a periodic structure of hills and
valleys the slopes of both hills and valleys~antikinks and
kinks! are defined uniquely~see the following section!. The
6-5
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dependence of the hill slope on the deposition rateD and the
nonuniqueness of a kink solution corresponding to a va
are illustrated by Figs. 1 and 2, respectively. The figu
show the finite-difference numerical solutions of Eq.~12!
that we performed in a large domain, with the boundary c
ditions ux5uxxx5uxxxxx50 on both ends of the interva
Note that even in the case when the dimensionless depos
rateD is small it significantly affects the shape of the surfa
structures since the slope correction is proportional toD1/3.
When the deposition rate grows above some critical va
the surface slope decreases below the spinodal one an
surface becomes unstable. One can estimate the critical v
of the parameterD using the asymptotic formulas~55! and
~56!. Substitute the perturbed slopeu5A1ã exp(st1ikx) in
Eq. ~12! to obtain the characteristic equation

s52k61k4~123A2!1 i«Ak, ~57!

from which one concludes that the instability occurs

FIG. 1. Negative kinks~a! and the corresponding hills~b!.
Curves 1, 2, and 3 correspond to«50.05, «50.1, and«50.2,
respectively.
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uAu,1/A3. From Eq.~55! one gets the estimate for the st
bility threshold value of« as«'0.43, while from Eq.~56!
the estimated threshold is 0.12. Numerical simulations giv
value between them,«'0.2, corresponding touAu51/A3.

B. Stationary surface shapes: Periodic array of hills
and valleys

Using asymptotic solutions obtained above, we now c
struct a unique periodic stationary solution of Eq.~12! that
will correspond to a periodic hill-and-valley structure on
growing crystal surface. For a period 2L, this solution is
schematically shown in Fig. 3. Since it is symmetric wi
respect to the center (x5L, u50), the solutionu(x) needs
to be specified on the interval (0,L) only.

FIG. 2. ~a! Family of positive kinks for fixed«50.3. ~b! Family
of positive kinks for fixedA50.8: the solid curve corresponds t
«50.3, the dashed curve corresponds to«50.1, the dashed-dotted
curve corresponds to«50.03. The lower figure is the enlargeme
of the middle one.
6-6
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FACETING OF A GROWING CRYSTAL SURFACE BY . . . PHYSICAL REVIEW E67, 021606 ~2003!
As follows from Eqs.~48! and~49!, the outer solution has
the form

U511«1/3$D11a1 exp@~«/2!1/3x#1exp~2224/3«1/3x!

3@a2 sin~A3 224/3«1/3x!1a3 cos~A3 224/3«1/3x!#%

1•••. ~58!

It is convenient to rewrite Eq.~58! as

U511«1/3$D11a1 exp@ l #exp@~«/2!1/3~x2L !#

1a* exp@~21/21 iA3/2!l #

3exp@224/3«1/3~211 iA3!~x2L !#

1a exp@~21/22 iA3/2!l #

3exp@224/3«1/3~212 iA3!~x2L !#%1•••, ~59!

wherea* 5(a32 ia2)/2, a5(a31 ia2)/2, l 5(«/2)1/3L. The
coefficientsa1 , a2 , a3, andD1 will be determined from the
matching conditions.

The first matching equation can be obtained by expand
Eqs. ~58! and ~59! for «1/3x!1 and«1/3(x2L)!1, respec-
tively, and equating the terms of the order«1/3. This gives

a1@exp~ l !21#1a2 exp~2 l /2!sin~ lA3/2!

1a3@exp~2 l /2!cos~ lA3/2!21#50. ~60!

The asymptotics for the inner solution for a positive kink f
x@1 is

u;12
1

2
Cp«2/3x2

A2

8
«x2, ~61!

whereCp is a constant to be determined. Matching the ou
solution with the asymptotics for the inner solution~61!
gives the following equations:

FIG. 3. The scheme of a periodic solution of Eq.~14! in the
form of kink-antikink pairs.
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D152a12a3 , ~62!

Cp52221/3~2a12a31a2A3!, ~63!

2a12a2A32a35221/6. ~64!

The asymptotics for the inner solution for a negative ki
located at the pointL ~see Fig. 3! for L2x@1 is

u;12
1

2
Cn«2/3~x2L !1

A2

8
«~x2L !2, ~65!

whereCn is as yet an unknown constant. Matching the ou
solution with the negative kink yields

Cn52221/3@2a1 exp~ l !1~2a31a2A3!

3exp~ l /2!cos~ lA3/2!2~a3A31a2!

3exp~2 l /2!sin~ lA3/2!#, ~66!

a1 exp~ l !2a2 exp~2 l /2!sin~ lA3/21p/3!

2a3 exp~2 l /2!cos~ lA3/21p/3!5225/6. ~67!

Solving the system of linear algebraic equations~60!,
~64!, and~67!, one finds the coefficientsa1 , a2, anda3, and
after that, using the expressions~62!, ~63!, and~66!, one can
find D1 , Cp , andCn .

An example of the solution found above, forL5200 and
«50.001, is shown in Fig. 4~a!, with the corresponding sur
face shape,h(x), shown in Fig. 4~b!. Figure 4~c! shows the
zoom of the valley region in Fig. 4~b!. One can see that th
slope of a hill is smaller than that of a valley. This is th
consequence of the surface growth described by the con
tive term Duux in Eq. ~12! ~the termDhx

2/2 in the corre-
sponding equation for the surface shapeh). Due to the depo-
sition normal to the surface, the concave parts of the surf
tend to become sharper and to produce caustics while
convex parts get smoothed. The interplay between this k
matic effect and the surface-tension anisotropy, which te
to select a specific slope, leads to the asymmetry betw
hills and valleys and to the existence, within some interva
the deposition rateD, of stationary surface shapes.

Figure 5 shows the combined asymptotic solutions t
use the four-term inner solutions~32! and ~41!, matched to
the two-term outer solution~58!, with the coefficients ob-
tained from Eqs.~60!, ~62!–~64!, ~66!, and ~67! ~dotted
lines!, together with the numerical solutions of Eq.~12! ob-
tained by means of a pseudospectral method with perio
boundary conditions~solid lines!, for two different values of
the parameterD. Figure 5~a! shows the whole period an
Figs. 5~b,c! give the detailed view. One can see a very go
agreement between the asymptotic and numerical solutio

Note, however, that forD sufficiently small, the described
kink-antikink ~hill-and-valley! periodic solution is stable
only in the case when there is one kink-antikink pair in t
region. In the case when there is more than one kink-antik
pair in the region, the solution is unstable with respect
coarsening that proceeds until there is one kink-antikink p
6-7
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FIG. 4. ~a! One period of the periodic kink-antikink solution o
Eq. ~14! for L5200 and«50.001. ~b! The corresponding shape o
the crystal surface~two periods!; the dashed line shows the Wul
slope.~c! The zoom of the valley region in~b!.
02160
left. At the same time, with the increase of the deposit
rate, a single kink-antikink pair in a large region becom
unstable much like a single kink or antikink in an infini
region discussed above, and exhibits transitions to a dyna
behavior. This is described in the following section.

C. Surface dynamics, coarsening, and roughening

In order to investigate the dynamics of a growin
thermodynamically unstable crystal surface that underg
faceting by the surface-diffusion mechanism, we have p
formed a numerical simulation of Eq.~12! by means of
a pseudospectral code, in a large domain (L580p) with

FIG. 5. ~a! Surface slopeu(x) for two different values of the
parameterD: numerical solutions of Eq.~12! by means of a pseu
dospectral method with periodic boundary conditions~solid lines!
together with the asymptotic solutions~32!, ~41!, and ~58! ~dotted
lines!; one can see the two solutions almost coincide. Detailed v
at the numerical and asymptotic solutions shown in~a! for D
50.001~b! andD50.01 ~c!.

FIG. 6. Surface slopeu(x) and the corresponding surface sha
h(x) at two moments of time: right after the formation of hill-and
valley structure (t1), and at the late stage of coarsening (t2). Nu-
merical solution of Eq.~12! with D50.02.
6-8
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FACETING OF A GROWING CRYSTAL SURFACE BY . . . PHYSICAL REVIEW E67, 021606 ~2003!
periodic boundary conditions, starting from small-amplitu
random initial data. The dynamics strongly depends on
dimensionless deposition rateD. For smallD we have ob-
served the formation of a hill-and-valley structure that und
goes further coarsening. Figure 6 shows an example of
slopeu(x) and the surface shapeh(x) for D50.02 at two
different moments of time: at the beginning of the coarsen
(t1), when the hill-and-valley structure has been just form
with the preferred wavelength and the slope close to tha
the equilibrium crystal shape without deposition,D50
~Wulff slope, u561), and at the late stage of coarseni
(t2). The spatial period of the initial hill-and-valley structu
is determined by the balance between the corner regula
tion energies and the surface-tension anisotropy causing
spinodal decomposition of the planar surface. Note that o
formed, the slope of hills and valleys does not change
the hill-and-valley structure coarsens in time leading to

FIG. 7. ~a! Coarsening kinetics for zero deposition rate,D50;
~b! coarsening kinetics for various values of the deposition rate:s,
D50.01; h, D50.02; n, D50.05; L, D50.1.
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formation of larger hills and valleys with the same slope. F
D50 ~no deposition, pure surface-diffusion-driven facetin!
the coarsening is logarithmically slow as shown in Fig. 7~a!
that presents the dependence of the mean spatial scale o
structure,̂ L&, on time, wherê L& is averaged over ten rea
izations with different random initial data. However, forD
.0, no matter how small, the coarsening kinetics chang
Examples of the coarsening kinetics for differentD.0 are
given in Fig. 7~b!. One can see that after the formation of
hill-and-valley structure with the preferred wave numberk
5A2/3, given by the linear growth rate of the perturbatio
of the initial unstable state,u50, the coarsening starts whic
consists of three stages: slow power-law coarsening,
power-law coarsening, and extremely slow or no coarsen
One can see that with the increase ofD the fast stage start
earlier, and the slow down starts earlier as well. For v
small D the fast stage is probably scale invariant with^L&
;t0.54. The power law at the initial slow stage should b
considered as an intermediate asymptotic behavior and is
associated with scale invariance. With the increase ofD ~see
graphs forD50.05 andD50.1), after the fast stage, th
coarsening stops completely and one observes the forma
of a stationary structure.

With further increase of the parameterD, we observe the
formation of stationary or oscillating structures that do n
undergo any coarsening. Some typical examples of th
structures are shown in Figs. 8 and 9. Figure 8 shows
typical stationary structures. They can consist of arrays
equal or slightly modulated hills and valleys or of seve
hill-and-valley arrays divided by deeper valleys. The
deeper valleys correspond to the pairs of ‘‘up’’ and ‘‘down
structures inu(x) ~denoted by the lettersu andd in Fig. 8,
respectively!, the remnants of kink-antikink pairs. Simila
structures were observed in the dynamics of a growing c
tal surface controlled by the evaporation-condensat
mechanism and described by a convective Cahn-Hilli
model studied in Ref.@11#. Selection of a particular structur
depends on initial conditions and on the value ofD. Figure 9
shows a typical oscillatory pattern. Here, the upper figure

FIG. 8. Examples of stationary numerical periodic solutions
Eq. ~12!, and the corresponding surface shapes for two differ
values of the parameterD.
6-9
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SAVINA et al. PHYSICAL REVIEW E 67, 021606 ~2003!
a space-time diagram representing the oscillatory dynam
of the order parameteru. The lower figures showu(x) and
h(x) corresponding to a particular moment of time. One c
see that, similar to the structure shown in Fig. 8, there
arrays of hills and valleys divided by deeper valleys. Ho
ever, here some of the hill tops exhibit spatially localiz
oscillations.

A further increase of the dimensionless deposition rateD
leads to the transition to a chaotic spatiotemporal dynam
of the surface structures. Figure 10~a! shows spatiotempora
diagrams corresponding to the dynamics of the order par
eter u for three different deposition rates. One can see t
with the increase ofD the chaotic component of the hi
oscillations becomes more pronounced, the character
spatial scale decreases, and the events of splitting and m
ing of kinks and antikinks~valleys and hills! become more
frequent. Figure 10~b! shows the surface shapesh(x) corre-
sponding to particular moments of time for different depo
tion ratesD. One can see that for smallerD hills and valleys
with a particular slope dominate, while with the increase
D the slope of hills and valleys become more and more r
dom. In all cases there is a tendency to form a rough surf
For largeD, the surface structure consists of mounds, r
domly distributed in space and merging and splitting in
chaotic manner, much similar to the dynamics described
the Kuramoto-Sivashinsky equation@18#. Indeed, by the
transformationu→u/D, Eq. ~12! is transformed to the equa
tion

ut2uux2uxxxx2uxxxxxx2
1

D
~u3!xxxx50, ~68!

which, for D→`, is reduced to a Kuramoto-Sivashinsk
type equation whose linear operator has higher derivati
Like a Kuramoto-Sivashinsky equation, Eq.~68! with D
→` has a Galilean invariance and exhibits chaotic s
tiotemporal dynamics. The characteristic feature of this
namics is that there is a preferred spatial scale present in

FIG. 9. Space-time diagram of the oscillating numerical solut
of Eq. ~12! u(x,t) for D50.7 ~upper figure!, with u(x) and the
correspondingh(x) at a particular moment of time~lower figures!.
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system, close to the most rapidly growing wave numb
given by the linear theory,k5A2/3. The time-average spatia
power spectra of chaotic solutions of Eq.~68! corresponding
to different values ofD are shown in Fig. 11~a!. These spec-
tra are similar to those of chaotic solutions of the Kuramo
Sivashinsky~KS! equation. One can see that the characte
tic lateral scale of the surface mounds increases with
decrease of the deposition rateD. Note a characteristic shif
of the spectrum in the short-wave region: it corresponds
the appearance of kink-antikink pairs divided by a bound
layer ~top of a hill or bottom of a valley!. A characteristic
wave number at which this shift occurs,k'1.7, corresponds
to a typical width of the ‘‘interface’’ between kinks and an
tikinks, l52p/k'3.7. The number of kink-antikink pairs
increases with the decrease ofD. Note also that there is a
significant input of long-wave modes corresponding to a p
teau of the spatial power spectrum. One can see that
power of the long-wave modes increases with the increas

n

FIG. 10. ~a! Space-time diagrams of nonstationary solutions
Eq. ~12! u(x,t) for various values ofD; ~b! surface shapesh(x)
corresponding to the nonstationary solutions of Eq.~12! u(x,t)
shown in~a!, at a particular moment of time.
6-10
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FACETING OF A GROWING CRYSTAL SURFACE BY . . . PHYSICAL REVIEW E67, 021606 ~2003!
D. The long-wave modes are known to play a crucial role
the roughening dynamics described by the KS equation@18#.
The space-averaged time power spectra of chaotic solut
of Eq. ~68!, corresponding to different values ofD, are
shown in Fig. 11~b!. One can see that with the increase of t
deposition rateD, the power of the high-frequency oscilla
tions increases.

Transition from the coarsening dynamics, typical
phase-separating systems, to a chaotic spatiotempora
namics with the increase of the deposition rate is also
served in the convective Cahn-Hilliard models wi
evaporation-condensation mechanism@11#. Such behavior
resembles the phenomenon of kinetic roughening@19,20#.
Indeed, the KS equation describing the shape of a grow
thermodynamically unstable surface for large growth ra
(D→`) exhibits roughening of the KPZ universality cla
@18,21#. An interesting question which remains open is wh
are the roughening exponents of a surface described by

FIG. 11. ~a! Time-averaged spatial power spectraP(k) (k is the
wave number! of chaotic solutions of Eq.~12! for various values of
D. ~b! Space-averaged time power spectraP(v) (v is the fre-
quency! of chaotic solutions of Eq.~12! for various values ofD.
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~68! for infinite and finite values ofD in a chaotic regime.
We leave this for future investigations.

IV. 2¿1 MODEL

Now we consider faceting of a growing crystal surfa
caused by anisotropic surface tension and driven by
surface-diffusion mechanism, in a more realistic 211 case
corresponding to a two-dimensional surface of a thr
dimensional crystal. The surface evolution, in the case
@001# surface, is described by Eq.~11!. As we did for the
model 111 case, we first consider stationary solutions
Eq. ~11! corresponding to pyramidal structures.

A. Single pyramid

Here we shall study a stationary solution of Eq.~11! in the
form of a square pyramid. We will be interested in the ca
of a small deposition rate,D5«!1.

Consider a symmetric square pyramid oriented in suc
way that projections of its edges on the basis plane coinc
with x and y axes. Then, the pyramidal shapeh(x,y,t) has
the following asymptotics@9#:

h;6Ay1 f ~x!1«vt as y→6`, ~69!

h;6Ax1 f ~y!1«vt as x→6`, ~70!

where«v is the speed of the surface growth in thez direc-
tion, A,0 is the slope of the pyramidal edges, andf (x) is a
function to be determined. From the symmetry~compare, for
example, Eqs.~69! and~70! when both variablesx andy tend
to infinity! it follows that

f 8~6`!56A, ~71!

where the prime means a derivative.
Substitute Eq.~69! in Eq. ~11! to obtain the following

equation forf (x):

@ f xxx1 f x~12bA2!2 f x
3#xxx1

«

2
f x

21«S A2

2
2v D50.

~72!

Since f x
2(`)5A2, the last term in Eq.~72! must be equal to

2«A2/2 and thereforev5A2. By replacingf x by u in Eq.
~72! one obtains

@uxx1~12bA2!u2u3#xxx1
«

2
~u22A2!50. ~73!

Equation ~73! is similar to Eq. ~14! and has an unknown
coefficient (12bA2). Hereb is a given anisotropy constan
in Eq. ~11! andA should be determined.

For «50, Eq. ~73! has the following solutions:

u~x!56A12bA2 tanh@xA~12bA2!/2#. ~74!

Condition ~71! yields A2512bA2 so that
6-11
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A56
1

A11b
. ~75!

Thus, the asymptotics of the pyramid~antipyramid! for y→
1` is

h;7
y

A11b
7A2 ln@cosh~x/A212b!#. ~76!

Using the method of matched asymptotic expansions
scribed in Sec. I for Eq.~73!, one obtains the asymptotics o
the pyramidal slope for 0,«!1. In particular, the corrected
edge slopeA is

uAu5
1

A11b
F12S «

11bD 1/3

225/6G1O~«2/3!. ~77!

B. Periodic pyramidal structures

For the caseb50, Eq. ~11! can be rewritten as

ht5¹2~¹2h1¹4h23hx
2hxx23hy

2hyy!1
«

2
~hx

21hy
2!.

~78!

In this case, one can look for a solution in the form

h~x,y,t !5 f ~x!1g~y!1«vt. ~79!

Thus, for the functionf (x) @and similarly for g(y)], one
obtains

@ f xxx1 f x2~ f x!
3#xxx1

«

2
~ f x2v !50. ~80!

Replacingf x by u one gets

~uxx1u2u3!xxx1
«

2
~u22v !50. ~81!

This equation coincides with Eq.~14!, wherev5A2. Thus,
the problem of finding a two-dimensional~2D! periodic so-
lution is reduced to the 1D problem considered in Sec.
Using the method of matched asymptotic expansion we c
struct periodic solution with period 2L of Eq. ~81! on the
interval (2L, L). As a result we obtain solution of Eq.~78!
as a double-periodic function consisting of square pyram
Example of such pyramid is shown in Fig. 12.

C. Selection of pyramid orientation

We have so far considered solutions of Eq.~11! in the
form of pyramids with a particular orientation. At the sam
time, since the rotations by 45° transform Eq.~8! into the
same equation with different coefficients, solutions of E
~8! and ~11! in the form of pyramids with the orientatio
rotated by 45° also exist. It is convenient to consider
selection of pyramid orientation using Eq.~8!. One can see
that if h(x,y,a,b) is the solution of Eq.~8!, then the rotated
02160
e-

.
n-

s.

.

e

pyramid, h(j,h,ã,b̃) is also a solution, wherej5(x
1y)/A2, h5(x2y)/A2, ã5(a13b)/2, b̃5(a2b)/2. In
particular, if A(a,b) is the slope of the pyramid face fa
from the vertex whereh;A (x1y), then the face of the
rotated pyramid far from its vertex will be given byh
;Ã(j1h)5A2Ãx, whereÃ5A(ã,b̃); other faces are ob
tained by the transformationsx→2x, y→2y, x→y. Take
for simplicity m5d51 andF50 in Eq. ~8! to obtain forA
and Ã

A25
1

a/31b
, Ã25

3

2a
. ~82!

It is natural to assume that the selected orientation will
that for which the Lyapunov functional densityF defined in
Eq. ~7! will have the smaller value. Neglecting the energi
of edges and vertices and taking into account the energie
the planar faces only~which is justified for large enough
pyramids! one obtains for pyramids with different orienta
tions, whose faces are described byhL;A$(x1y), (x
2y), (y2x), (2x2y)% andhh;ÃA2$x,2x,y,2y%,

FL528A21S 2

3
a12b DA4,

~83!

Fh528Ã21
4

3
aÃ4.

Using Eq.~82! and ~83!, one can easily see that

FL,Fh for 0,b,
a

3
, L pyramids selected,

FIG. 12. One pyramid from a double-periodic system of py
mids described by Eqs.~79! and ~80! for L5200 and«50.001.
6-12
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FACETING OF A GROWING CRYSTAL SURFACE BY . . . PHYSICAL REVIEW E67, 021606 ~2003!
FL.Fh for
a

3
,b,a, h pyramids selected,

~84!

andFL5Fh for b5a/3 whenA5Ã; note that in this case
F, together with Eq.~8!, becomes isotropic.

Another selection criterion for pyramid orientation forD
50 can be obtained from the linear stability analysis of
pyramid faces far from the vertex. In the case of a ‘‘d
mond’’ pyramid, with the asymptotic shape of the face
from the vertex,h;A(x1y), for the perturbations of the
face shape;est1 ik•r, one obtains the following dispersio
relation:

s52k61k2Q~kx , ky!, ~85!

where

Q~kx , ky!5~kx
21ky

2!@12A2~a1b!#24bA2kxky .
~86!

According to Eq.~85! the pyramid face far from the vertex i
stable when the quadratic form~86! is negative definite, i.e.
if and only if the following two inequalities hold:

A2.
1

a2b
, ~87!

a2b.0. ~88!

Using Eq.~82! one finds that the faces of the diamond py
mids far from the vertex are stable for 0,b,a/3. Similarly,
one finds that the faces of the ‘‘box’’ pyramids are stable
a/3,b,a. One can see that the linear stability criteria f
the faces of differently oriented pyramids coincide with t
energetic criteria~84!.

For the rescaled Eq.~11!, the selection criterion become
very simple: diamond pyramids are selected for 0,b,1,
while the box pyramids are selected for 1,b,3. Figure 13
shows the results of the numerical solution of Eq.~11! for
D50, by means of a pseudospectral method with perio
boundary conditions, for two cases:b50 andb52. One can
clearly see the selection of differently oriented pyrami
Figure 13 shows the pyramidal structures shortly after th
formation. The structures will undergo further coarseni
which is discussed in the following section.

FIG. 13. Pyramids with different orientations: numerical so
tions of Eq.~11! for D50 and~a! b50, ~b! b52.
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D. Effect of the growth rate and pyramid stability

As in 111 case, the slope of the pyramids in 211 case
depends on the growth rateD. The increase of the growth
rate leads to the decrease of the pyramid slope so that aftD
exceeds a certain threshold the slope decreases below
spinodal value and the pyramid becomes unstable. The c
cal value ofD can be estimated using the asymptotics for
pyramid slope~77! and the asymptotic shape of the pyram
face far from the vertex,h;A(D)(x1y). For the perturba-
tions of the face shape;est1 ik•r, one obtains the following
dispersion relation:

s52k61k2QD~kx ,ky!1 iDA~D !~kx1ky!, ~89!

where

QD~kx ,ky!5~kx
21ky

2!@12A2~D !~31b!#

24bA2~D !kxky . ~90!

Simple linear analysis similar to that described above sho
that the pyramid face far from the vertex is stable if and o
if the following two inequalities hold:

A2~D !.
1

32b
, 32b.0. ~91!

Using the asymptotic expression~77! for the pyramid
slope for the caseD;e!1, one obtains the following re
striction for the growth rate at which the pyramid structur
are stable:

D,25/2~11b!S 12A11b

32bD 3

, 0,b,1. ~92!

Condition ~92! is derived for the stability of diamond
pyramids. Similarly, one obtains that box pyramids are sta
for

D,27/2S 12
1

Ab
D 3

, 1,b,3. ~93!

One can see from conditions~92! and~93! that the face of
a pyramid far from the vertex is stable only for depositi
rates smaller than the critical value which depends on
anisotropy coefficientb. For b50 condition ~92! gives D
,0.43 that corresponds to the one-term approximation o
11 case considered in Sec. III. Since the stability condit
~92! is based on the asymptotic formula for smallD it should
be considered as an estimate for the critical deposition ra
which pyramid faces far from the vertex become unstab
Above this critical value ofD, one cannot expect the coar
ening of the pyramids to proceed indefinitely since the la
pyramids are unstable. In this case another spatiotemp
dynamics is observed which is discussed below.
6-13
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E. Dynamics of pyramidal structures

1. Pyramids and antipyramids

In order to study the dynamics of pyramidal structur
described by Eq.~11! we solved this equation numerically
by means of a pseudospectral code for various values o
deposition rateD in a square domain with the sideL
540p. For zero and small deposition rates, the pyrami
structure undergoes further coarsening so that the lateral
and the height of the pyramids grow in time in such a w
that the pyramid slope remains the same. Figure 14 sh
typical pyramidal patterns observed forD50 when there is
no deposition, just pure faceting of a thermodynamically u
stable crystal surface by the surface-diffusion mechani
The two figures correspond to two different moments
time: right after the formation of the pyramidal structu
@Fig. 14~a!# and at the late stage of the coarsening proc
@Fig. 14~b!#. The important feature of the pyramidal structu
in the absence of deposition (D50) is that the pyramids and
pits ~‘‘antipyramids’’! are equivalent. This is because forD
50, Eq. ~11! is symmetric with respect to transformationh
→2h. However, a nonzero deposition rate,D.0, breaks
this symmetry and results in the growth of pyramids a
disappearance of antipyramids. Indeed, as follows from
dispersion relation~85!, perturbations of a pyramid shape a
convectively transported downhill into pits~antipyramids!
making them gradually disappear. This can be seen in Fig

FIG. 14. Surface pyramidal structures in the case of pure fa
ting without growth—numerical solutions of Eq.~11! with a5b
50 andD50.0 right after the structure formation~a! and at the late
stage of coarsening~b!.

FIG. 15. Surface pyramidal structures in the case of pure fa
ting without growth—numerical solutions of Eq.~11! with a5b
50 andD50.01 right after the structure formation~a! and at the
late stage of coarsening~b!.
02160
s

he

l
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f

s
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e

5

that shows typical pyramidal structures for a small depo
tion rate,D50.01, shortly after the structure formation@Fig.
15~a!# and long time after it@Fig. 15~b!#. One can see tha
antipyramids have disappeared so that only pyramids divi
by valleys are finally left. Note that in the case of etchi
(D,0), the effect of the symmetry breaking will be th
opposite: the antipyramids will survive while the pyrami
will disappear.

2. Coarsening and roughening

The dynamics of the pyramidal structures after their f
mation strongly depends on the deposition rateD and is
somewhat similar to the dynamics observed in the case
111 model. The coarsening dynamics is shown in Fig.
where the mean spatial scale of the pyramidal structu
^L&, is shown for different values ofD, averaged over ten
random initial data for each value ofD. The mean spatia
scale was computed aŝL&5(^Lx&1^Ly&)/2, where ^Lx&
and ^Ly& are the mean scales inx and y directions, respec-
tively; ^Lx& and ^Ly& are defined aŝLx&5(yL0 /Nx

y and
^Ly&5(xL0 /Ny

x , whereL0 is the size of the square compu
tational domain,Nx

y (Ny
x) is the number of zeros ofhx (hy) in

a fixedy ~x! layer, and the summation is over ally ~x! layers.
When there is no deposition,D50, there is pure faceting

and we have observed a rather slow coarsening of the p
midal structures. One can clearly see two stages. First,
observes the power-law coarsening^L&;t0.17. Then there is
a crossover to even slower coarsening,^L&;t0.11. The expo-
nent of the first stage is very close to 1/6. This can be
derstood from the balance of several simultaneous proce
described by Eq.~11!. Indeed, after the pyramidal structur
has been formed, the linear term describing the spinoda
stability of the surface,¹4h, is balanced by the nonlinea
anisotropic stabilization terms, so that ifL is a characteristic
width of the pyramid andH is its characteristic height the
HL24;H3L26 and thereforeH;L, which means that the
slope of pyramids remains unchanged during the coarsen

e-

e-

FIG. 16. Coarsening kinetics of pyramidal structures for vario
values of the deposition rate:s, D50.0; h, D50.01; n, D
50.02; ,, D50.05; L, D50.1.
6-14
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and this is what is observed. Thus, the coarsening dynam
is driven by the balance of the two terms, the rate of chan
ht , and the regularization,¹6h, describing the additiona
energy of edges and corners. If a characteristic time sca
T then the balance between the two terms givesHT21

;HL26 from which one obtainsL;T1/6. These estimates
are valid, however, when the width of the edges are not v
small in comparison with the width of the pyramids@22#.
Also, since the duration of this coarsening stage is only s
eral times more than the characteristic time of the format
of the pyramidal structure this power law should be cons
ered as an intermediate asymptotics which is not associ
with long-time scale-invariant behavior. With further pyr
mid growth, when the width of edges becomes much sma
than the characteristic pyramid scale, the estimate¹6h
;HL26 is no longer valid and the coarsening rate is go
erned by a complicated dynamics of the web of edges
valleys @5,25#. At this stage, the crossover to the slow
coarsening occurs. The slow coarsening stage starts lon
ter the characteristic time of the pyramidal structure form
tion and the power-law kinetics can be associated with
scale-invariant behavior. Presumably, a detailed consi
ation of the dynamics of the web of edges similar to th
considered in Refs.@5,25# could explain the crossover to
slower coarsening and the small coarsening exponent,
this is beyond the scope of the present paper.

In the presence of even small deposition, the coarsen
dynamics drastically changes. Typical examples are show
Fig. 16 for D50.01 andD50.02. One can clearly see se
eral stages. At the first two stages, the coarsening dyna
is the same as in the case without deposition: one can s
slow coarsening,;t0.17, with the later crossover to the eve
slower coarsening,;t0.11. At this stage, the convective term
1
2 Du“hu2 is small and does not affect the pyramidal structu
which at this stage looks like those shown in Figs. 14~a! and
15~a!, and exhibits the symmetry between pyramids and
tipyramids. However, with further growth, the convectiv
term becomes larger and breaks the symmetry between p
mids and antipyramids, which corresponds to a transitio
stage showing an accelerated coarsening. Finally, when
pyramids disappear, so that the surface structure exh
only pyramids divided by narrow valleys, the stage of fa
coarsening takes over, at which we observe^L&;t0.57. Simi-
lar behavior, exhibiting a crossover from a slow to a fa
coarsening in the presence of the KPZ-type nonlinear t
breakingh→2h symmetry was observed and discussed
Ref. @12#. According to Ref.@12#, in the presence of this
nonlinear term, the faces of the pyramids with a nonz
slope grow faster than valleys whose average slope is
~or very small!. Since the characteristic width of valleys
O(1) and the spatial fraction of the surrounding valleys
larger for small pyramids than for large ones, the effect
growth rate of small pyramids is smaller than that of lar
pyramids which leads to preferential coalescence of sm
pyramids and to the coarsening rate;t0.5 ~see Ref.@12# for
detailed explanation!. It is interesting that in our system, th
fast coarsening stage exhibits further crossover to a slo
~but still relatively fast! regime at long times,;t0.42 for D
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50.01, and;t0.33 for D50.02. The origin of this regime a
well as for how long it lasts is as yet unknown.

With the increase of the deposition rate, the initial slo
stage of coarsening disappears and the fast coarsening
right after the formation of the initial pyramidal structure
which the pyramid-antipyramid symmetry is already broke
In this case, one observes a relatively long stage of
coarsening,;t0.4, that, however, stops after some time a
becomes extremely slow,;t0.054. Examples are shown in
Fig. 16 for D50.05 andD50.1. Since the fast coarsenin
stage starts right after the formation of the pyramidal str
ture, its power-law kinetics should be considered as an in
mediate asymptotics rather than a scale-invariant long-t
behavior.

With further increase of the deposition rateD, the fast
coarsening stage becomes shorter so that a pyramidal s
ture with a certain scale is established, which does
coarsen in time but undergoes a slow chaotic spatiotemp
dynamics. In this structure, which is shown in Fig. 17~a!, a
fourfold symmetry of the@001# surface is still present. How
ever, for largerD the symmetry disappears and the surfa
exhibits chaotic spatiotemporal dynamics of splitting a
merging isotropic mounds, shown in Fig. 17~b!, which is
typical of 2D Kuramoto-Sivashinsky equation@18#. Indeed,
similar to what has been discussed in 111 case, in 211
case, by changingh→h/D and takingD→`, Eq. ~11! is
also transformed into an isotropic, Kuramoto-Sivashins
type 2D equation with a higher-order linear operator,

ht2
1

2
u“hu22¹4h2¹6h50. ~94!

Equation ~94! is rotationally invariant and the surface d
scribed by Eq.~94! looks rough. We have not studied th
roughening characteristics in this limiting case and postp
it to future investigation. Note that the roughening propert
of a 2D KS equation are still under discussion@18#.
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FIG. 17. Surface structures described by solutions of Eq.~11!
with a5b50 and~a! D50.5, ~b! D510.0.
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