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Faceting of a growing crystal surface by surface diffusion
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Consider faceting of a crystal surface caused by strongly anisotropic surface tension, driven by surface
diffusion and accompanied by depositigetching due to fluxes normal to the surface. Nonlinear evolution
equations describing the faceting ofr1l and 2+1 crystal surfaces are studied analytically, by means of
matched asymptotic expansions for small growth rates, and numerically otherwise. Stationary shapes and
dynamics of faceted pyramidal structures are found as functions of the growth rate. h theake it is shown
that a solitary hill as well as periodic hill-and-valley solutions are unique, while solutions in the form of a
solitary valley form a one-parameter family. It is found that with the increase of the growth rate, the faceting
dynamics exhibits transitions from the power-law coarsening to the formation of pyramidal structures with a
fixed average size and finally to spatiotemporally chaotic surfaces resembling the kinetic roughening.
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[. INTRODUCTION of edges and corners is included. This in turn leads to the
dependence of surface tension on the local curvature
Formation of pyramidal structures on growing crystal sur-[6,8,10.
faces is an important phenomenon that has been attracting In the present paper, we investigate the formation of fac-
wide attention due in part to its role in the self-organizedeted pyramidal structures caused by strongly anisotropic sur-
evolution of quantum dot$l]. In epitaxially grown solid face tension and driven by the surface-diffusion mechanism
films, these structures can develop either due to the release iof the case when the crystal is growing. Two types of crystal
elastic stresses caused by the lattice mismatch between tigeowth should be distinguished. In one type, typical of
film and the substratgl—3], or due to anisotropic surface molecular-beam epitaxy, there is a constant vertical flux of
fluxes caused by the Schivel effect[4,5]. Also, they can material onto the surface so that there is a mean surface
result from thermodynamic instability of a growing crystal growth velocity. In the frame of reference moving with this
surface that undergoes spinodal decomposition into facetegk|ocity the surface dynamics it affected by the growth
pyramidal structures with stable orientatid6s-9]. In allthe  and is completely described by the surface-diffusion equa-
cases, the surface-tension anisotropy plays the crucial rolgons that take into account the surface-tension anisotropy
and the main mechanism of the surface relaxation leading tps 7]. In the second type, typical of chemical-vapor deposi-
the formation of surface structures is surface diffusion. tion, the flux of material on a growing crystal surface is from
Faceting(spinodal decompositiorof thermodynamically  the diffusion boundary layer whose shape follows the shape
unstable crystal surfaces caused by strongly anisotropic susf the surface. In this case, the material fline&malto the
face tension and driven by surface diffusion was consideredyrface, similar to the evaporation-condensation growth
in Refs. [6,7] where equilibrium slopes of the pyramidal mechanism considered in Ref8,11].
structures as well as the coarsening rates were obtained. |n the latter case, the corresponding evolution equation
When a crystal surface is growing, both the equilibriumdescribing the surface dynamics contains an additional,
slopes of the pyramidal structures and their coarsening dysymmetry-breaking convective term that describes the effect
namics can substantially change depending on the growtsf the normal growth and significantly changes the surface
rate, as was shown for the evaporation-condensation growlynamics[9,11,14 making it dependent on the growth rate.
mechanism in Ref§9-11]. In particular, in the presence of The interplay between the surface-tension-anisotropy-

growth, the coarsening rate can become unusually fashduced faceting and the surface growth by a normal flux is
[9,11,13. With the increase of the growth rate, one observeshe main subject of the present paper.

a transition from pyramidal structures with specific symme-
tries to spatiotemporally chaotic interfaddd].
W_hen modeling the surface_-te_nsion-anisc_>tropy-induced Il. MATHEMATICAL MODEL
faceting of a crystal surface within the continuum frame-
work, the corresponding evolution equations are ill posed We consider a growing surface of a crystal with cubic
(there is no short-wave cutgffinless the additional energy symmetry and anisotropic surface tensipndepending on
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the surface orientation and the local mean curvatufé as  ers. In order for the long-wave approximatigh) to be

[9] physically meaningful, this equation, fét=0, must have
the form
y=yo[ 1+ €4(Ng+nj+n3) + eg(Ny+no+nd) + - - -] N
= 2_
e (1) "=V 5h ©

2

. . . It is easy to check that fdf =0, Eq.(5) can be written in the
where €, and g are anisotropy coefficients and is the form (6) if c=48. In this caseL=N[d dx dy, where
regularization coefficient induced by edge energies. We as- ' ’

sume that the crystal is growing due to a constamtmal m s o B
flux F of the material, which is adsorbed on the surface and @ =— E(Vh)2+ E(V2h)2+ 1_2(hle+ h§)+ hihi-

is redistributed by surface diffusion. Following Reff$3,14] 2
(see also Ref.15]), a phenomenological equation describing )
evolution of the surface given &=h(x,y,t) can be written ) ]
as Therefore, we shall further consider E§) with c=4p:
2 F
N Do, @  P=5|VhP=NVZ[(=m+ahZ+ Bhdhy,+ (~m+ ph2

vp=——=—==F
" J1+(Vh)? kT

wherev,, is the normal growth ratd)s is the surface diffu-
sivity of the adatoms() is the atomic volumeg is the
surface density of atomg is the Boltzmann constant, is
the absolute temperaturﬁg is the surface Laplacian opera-
tor, u is the surface chemical potential,

+ah?)hy,+4ph,hh,,—5V4h]. (®)

Equation(8) is invariant with respect to transformations
X —X, Yy —Y, andx<Yy. This reflects the fourfold sym-
metry of the[001] surface. Also, after coordinate rotation by
+ /4 it is transformed into the same equation but with dif-

SF ferent coefficientse and 3, that are related to the old coef-
m= (3) ficients bya=(a+38)/2, B=(a—B)/2.

We consider the coefficients and 8 to be positive, since
otherwise the corresponding nonlinear terms will become de-
stabilizing and will not describe the nonlinear saturation of
the surface slopéthis drawback is the consequence of the

]::f y(n,K)dS. (4) long-wave approximation and in principle can be eliminated
by taking into account higher-order terms in the long-wave
o expansions, but we shall not discuss that situatiarso, the
We employ a long-wave approximation and expand Eq

) in th £ h ; | 1o obtain the followi nonlinear terms should be such that no finite slope of the
(2) in the powers of the surface slope to obtain the fo OWINGg \rface bx=A, hy=B) can make the nonlinear terms desta-

evolution equation for the surface shape in the frame movm%ilizing (otherwise it will lead to an unlimited growth and

with the surface in the direction: the problem will become ill posed This requirement is
equivalent to the condition of the positive definiteness of the

1 ;
hy=5 F|Vh[*=NV?[(—m+ahf+ Bh))hy+ (—m+ h quadratic form

and F is the surface free energy,

— 2 2\ 1.2 2 2\ 1,2
+ ah2)hy,+chhyh,,— 5V*h], (5) Qas(ky ky) = (aA™+ BBk, + (BA™+ aBO)k;
i +4BABKkKk,>0, 9)
where N=DQ%0y,/(kT), 8=v/y,>0, and the coeffi-
cientsm, «, B, c can be expressed in terms of the anisotropyW

coefficientse,, €5; see Ref[9] for details. In the derivation faceh— th T
of Eq. (5) we have neglected all nonlinear terms in the sur-Surfaceén=~Ax+By with respect to perturbatiors~exp ot
+ik-r], wherek=(k,,k,). Condition(9) leads to the fol-

face Laplacian operator as well as in the regularization terms. '™ _ X -
Note that one should be cautious when using the long!oWing simple restriction for the coefficients and 5:

wave expansion of the original proble(@). When there is

no deposition,F=0, the original Eq.(2) has a Lyapunov a=p. (10)

functional, £(Vh,V?2h), that satisfies the conditiofj£<0,

and therefore Eq(2) describes the relaxationgpotentia) Note that this condition coincides with the positiveness of

dynamics in which the surface shape is gradually tending téhe nonlinear coefficients in the equation obtained from Eq.

the equilibrium configuration. This important property, how- (5) after coordinate rotation by 45°.

ever, can be lost when one approximates &.by taking By rescalingr—ry/8/m, t—t5%(Nm®), h—h\34/a,

into account some long-wave terms and neglecting the othiq. (5) can be conveniently written as

hich is obtained if one considers linear stability of a planar
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1 » o . 5 5 5 (+) with a unit slope. Below, we shall call the solution
he=5D[Vh[*+ VA V?h+V*h— (3hi+bhy)hy—(3hy uf (x)=tanh§/y2) a kink, and the solutionug (x)=
—tanh{/\/2) an antikink.
+bhd)hy,—4bhhyh, ], 1 ForD=g<1, stationary solutions of Eq12) can be ap-
proximately found using the method of matched asymptotic
whereb=3p8/«, andD =F/35%/(Nm?a'?). expansions. Since E@L2) is invariant with respect to trans-

Equation(11) describes evolution in the presence of theformation u——u, x— —x, we seek stationary solutions,
normal growth of thermodynamically unstable crystal sur-odd about the origin, bounded at infinity and, since @®)
face caused by the surface-tension anisotropy and driven by invariant with respect to transformatios— —e, u—
surface diffusion. The first term on the right-hand side is the—u, we takee >0 (the cases <0 corresponds to the with-
typical KPZ-type(Kardar-Parisi-Zhangnonlinearity caused drawal of the material from the surface, i.e., to the surface
by the normal growtti16]. The coefficienD is proportional  etching.
to the growth raté=. The second term on the right-hand side  The stationary version of E¢12) can be integrated once
describes the reconstruction of the surface by means of sufe give a fifth-order differential equation
face diffusion with the linear termsy*h and V®h, corre-
sponding to the spinodal instability and the regularizing ef-
fect of the additional energy of edges and corners,
respectively, while the nonlinear terms are related to the non-
linear stabilization of the anisotropic surface tension that sewhere the integration constanit\/2=gu?(+=)/2, allow-
lects stable orientations of pyramidal structui@s Equation  ing thatu(x) tends to a constant value at infinity.

(12) is similar to that studied in Ref9] for the case of a A unique solution to this equation requires six conditions
thermodynamically unstable surface growing by the(since the constam is unknown. For odd solutionsu(0)
evaporation-condensation mechanism, but contains the u,,(0)=u,,,{0)=0. For solutionsu(x) bounded at in-
higher spatial derivatives associated with the surfacefinity and such thau(x)—ug(x) for e—0, the remaining
diffusion mechanism. Also, similar equation&owever, three conditions should be, for example,

without the KPZ nonlinearity terjrwere considered in Refs.

&
(Ugyt U—U3) st E(LF—AZ):O, (14)

[6,7] for the faceting of thermodynamically unstable surfaces u’(0)=up(0)+2z;, Uu”(0)=ug(0)+2z,,

by both evaporation-condensation and surface-diffusion (15)
mechanisms, as well as for the anisotropic mound formation A==x1+z;,

in molecular-beam epitaxy caused by anisotropic surface cur- )

rents[4,5]. wherez,, z,, andzz are small arbitrary constants such that

z;—0 for e—0 and the prime corresponds to a derivative
with respect tax.
In order to find these constants we examine the solutions
We first consider a model 41 case corresponding to a for largex following the analysis carried out in RefL7] for
two-dimensional crystal with a one-dimensional surface. Ina driven Cahn-Hilliard equation. Linearize EG.4) around
this case, Eq(11) can be rewritten for the surface slope, the valueA for large positivex, u(x)=A+U(x), which
=h,, as gives

Il. 1 +1 MODEL

U= (Uyyt U—Us)xxxx+ Duu,. (12 [Uxx+(1_3A2)U]xxx+ eAU=0. (16)

Equation(12) is a higher-order convective Cahn-Hilliard The general solution of this homogeneous equation is
equation similar to the equation considered in R&¥] for 5
the dynamics of driven phase-separating systems and in Ref. U=> a expo x 1
[11] for the faceting of a crystal surface growing by Zl | eXpaiX, an
evaporation-condensation mechanism. However, it contains .
the higher spatial derivatives associated with the surface diwhereo; are the roots of the equation
fusion. 5 o 3
o’+(1-3A%)c°+A=0. (18
A. Stationary surface shapes: A hill or a valley For U(x) to be small ax— +% (x— —), the coefficients
First we study stationary surface shapes described by E@;, corresponding to the eigenvalueswith positive (nega-
(12) and consider the analytically tractable case viitkre  tive) real part, must vanish.

<1 corresponding to a small deposition rate. Eot0 Eq. Let us compare the number of such roots with the number,
(12) has stationary solutions 3, of arbitrary parameterz [see Eq(15)]. Takex— +, so
that A>0 for a kink, andA<0 for an antikink.
Ug(X) = = tanh(x/ \/5), (13 (@) If 3A2—1>0, A>0, the roots of Eq(18) have the

following asymptotics fore<<1:
corresponding to the surface  shapeshy(x)=

+ 2 Incoshg/\2) that describe a hill £) or a valley o1=+BAT—1+. .., g,=—\BAZ-1+--., (19
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o3=e Y AI(3AZ—1)]¥3+. . ., (20) 1. Inner solution
Look for the inner solution of the equation
o45=eVIAI(BAZ— 1)1 (- 121312+ - .. (20)

~(u2-A2)=0 (31)

(uxx+ u— u?))xxx'i_ 2 (

This situation corresponds to a kink whose principal part
coincides withug=tanh¢/\2) for x=0(1), and hasmall
oscillations forx=0(e ). In this case, there are two roots
with positive real part.

in the form

_ i _ 4l + 203 + +...
(b) If 3A2—1>0, A<0, asymptotics for the roots are Uinner=Uo(X) + & U1(X) + £ 5(x) + e 3(X) ’(32)
o1=+3A2—1+..., g,=—+3A%—1+..., (220  where the first term coincides with E¢L3). Note that in
order to obtain asymptotics for the whole Eg81) one has to
o3=—e"|A|/(3A2—1)]3+. .., (23)  take into account terms at least up to the orelen expan-
sion (32).
04,5281’3[|A|/(3A2—l)]1’3(1/2ti\/§/2)+ e (24 The unknown constam should be expanded as well:
A=+ (1+eBA +e2PA,+eAg+---). (33

This situation corresponds to an antikink whose principal
part coincides withuy=—tanhg/\2) for x=0(1). In this Substituting Eqs(32) and(33) into Eq.(31) and equating
case, there are no oscillations ﬁoatO(s‘m) and there are the terms of equal powers ef one obtains

three roots with positive real parts.

(c) If 3A2—1<0, A>0, then (Lug)yxxx=0, (34)
o1=*+iV1-3A2—gAI[2(1-3A%)2]+ ..., (25 (LU2) = (BUGUD) wxxs (35
_ 1
o= e A=A Be (29 (£03) = (BUgUsz + WD = 5 (W3—1), (30
o4s=e Y AI(1-3AY)(12+i\3/)+---, (27

where £=d?/dx?+ (1—3u3).
Integrating Eqs(34)—(36) three times and taking into ac-

and there are two roots with positive real parts. count that the solutions must be odd functionsxpfone

(d) 3A%—1<0, A<O,

obtains
01— *iV1-3A%+¢|Al/[[2(1-3A%?]+---, (29 LU=gi(x), (37)
os=e |A|/(1-3A%) 3+ ... (299  where

as= V| AlI(1—3A2) W~ 17251312+ - - -, 91(X)=C1X,  ga(X)=(3uguy)+CpXx, (38)

(30 g3(X) =6UguqUy+ US+f(x) + CsX, (39)

and there are three roots with positive real parts.
Solutions corresponding to the cagesand (d) oscillate

nearx=0 and are of no interest here since they do not de- \/‘ \/_

scribe appropriate surface shapes in the form of a hillora  f(x)=— —dllog(exr(x\/_)Jrl)— —x — —77

valley. Comparing case&®) and (b), one can see that the

positive and negative kinks are intrinsically different. The

dimension of the stable manifold near the stationary poingng

|A] is equal to 3, while the dimension of the unstable mani-

fold near this point is 2. On the other hand, in the neighbor- ) x =

hood of the stationary point-|A|, the dimensions of the dllog(x)=L(1—t) Intdt.

stable and unstable manifolds are 2 and 3, respectively. Since

for a negative kink the number of roots with positive real Solutions of Eqs(37) are then

parts is equal to the number of arbitrary parameters, the

negative kink is uniquéif exists), while for a positive kink

one can expect a one-parameter family of solutions. In order

to find these solutions we apply the method of matched

asymptotic expansions with the short-scale variaidad the ~ where®; and®, form the system of fundamental solutions

long-scale variablé= 3 [see Eq(17) with Egs.(21) and  for the differential operatot, andW=®,®,—dd, is the

(23)]. Wronskian of this system,

C,, C,, andC; are arbitrary constants,

(40)

—q)zf (I)lgiwildx_q)lJ’ ®2giW71dX, (41)
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®,=[2 costix/\2)]"2, (42)  For the matching, replacgby xs'* and expand E¢50) for
fixed x with respect to smalt,
b,= 2\/§tanhxl ﬁ)[cosf{x\/i)+4] UR=—1+eY(a;— A;)— 22 1, + ex22~ 5%,
-2
+6x[coshix/y2)]72. (43 +ex2” Y3~ 122217+ a, /14— A,— 2783 + o(e).
The constant€,, C,, andC; will be found from the match- (51

ing.
g In the inner solution, one needs the asymptotics of func-

2 Outer solution tions u;, i=1, 2, 3 for x—+%. For u; one hasu;~
—Cyx/2. Comparing this with the second term in E§1)

. Let us start constructing the_outer sglution for [(-311) by [see also Eq(32)] one obtains the first two matching condi-
introducing the long-scale variable=¢'3x. Equation(31) tions

can then be rewritten as
C1=0, al_A]_:O. (52)

1
(73U gt U—U%) g+ E(UZ_AZ) =0. (44 Thus, it follows from the matching that,(x)=0. Matching
conditions corresponding to the terms of the orefét ande
Look for solutionsU(¢) in the form are the following:

U(£,8)=Uo(&) +87U1(£) +2U(£) +8Us(£) + - - —27Way=-Cyl2,  27%a;=-\2/8, (59
(45)
2 Y (—12a3/7+a,/14— A ,— 278 =—Cy/2, (54)

Note that the outer solution includes two parts: the left outer
solution, U- (£<0), and the right outer solutiorJR (¢  since for x—+o, Uy~—Cyx/2, Uz~ —2x?/8—C3x/2.
>0), which are related to each other Hy'(—¢&=  From Egs.(52) and (53) one getsa;=-2%% C,=
—UR(&). For definiteness, we shall further consider ogly —2~ 5 andA;=—2"%% Therefore,
>0. Substitute Eqsi45) and (33) into Eq. (44) and equate 1356 3
the terms of equal powers efto get the following equations A= =142+ 0(e1?). (59

for the functionsU; - Note that the constar@; cannot be determined at this step,

1 since A, is still unknown. In order to determine these con-
(Ug— US)§§§+ E(U(z)_ 1)=0, (46) stants one has to adzd/3u4(x) to the inner solutior{32) and
compare the terms of the ordef”>. From this, one gets
C3=(96+4x 256—69x 23— 4% 216)/56~0.21, A,=(34

LUi=4i+f, 1=12,.., (A7) X214 4% 216 69x 225 4/2)/112~ —0.61, and
where L=(d%d¢®)(1-3U3)+Uy, f;=0, and f;, i A=—1+g327 56— ¢2334x 213+ 4 x 21/6— 9 223
=2, ..., areknown functions olU,, k<<i. The solutions of o3 s o3
Eqs(46) and (47) fori=0, 1 are _4\/5)/1124' o(e )%—14‘0.56]8 +0.606“".
56
Up=*1, (48) (56

4. Effect of the growth rate

U,=a; exp(sgriUg]2 %)+ exp—sgriUg]2~ 43
173 expsgr Uol 3 P59 Uo] 2 We have obtained approximate stationary solutions of Eq.

X[a, sin(27*3/3¢) +az cog2~43/3¢)] (12) describing a stationary hill or valley on at1l surface
growing due to a normal flux and relaxation by surface dif-
+8grUolA;. (49 fusion. The main result of the analysis presented above is

. . ) that a solitary hill(antikink) is unique and its slope depends
For a positive kink,Up=+1, and one must s&;=0 in g the deposition rated. For smallD=ge<1 the depen-
order to eliminate the exponentially growing term. Coeffi- yance is given by the asymptotic formuB6). At the same
cientsa, anq as _should be determined from the matching. time, a solitary valley is not unique and there is a one-
For a negative kinklo=—1; one set@;=az=0, anda;  parameter family of valleykink) stationary solutions with
should be defined from the matching. different slopes. This situation is analogous to that described
_ in Ref.[17] for a convective Cahn-Hilliard equation of the
3. Matching lower order for phase separation in driven systems, which
Let us consider the matching procedure for the negativa@lso governs the faceting of a thermodynamically unstable
kink first, since in this case we are expecting to find all of thecrystal surface growing by the evaporation-condensation
coefficients uniquely. The right outer solutigfor £>0) is mechanism[11]. Also, in a periodic structure of hills and
valleys the slopes of both hills and valleyantikinks and
UR=—1+ea, exg—2 %3¢ —A]+---. (50)  kinks) are defined uniquelysee the following section The
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FIG. 1. Negative kinks(a) and the corresponding hillgb). (b)

Curves 1, 2, and 3 correspond #6=0.05, e=0.1, ande=0.2, ) . ) ) )
respectively. FIG. 2. (a) Family of positive kinks for fixed:=0.3. (b) Family

of positive kinks for fixedA=0.8: the solid curve corresponds to

dependence of the hill slope on the deposition Eaend the £=0.3, the dashed curve corresponds:tqo.l, t_he dashed-dotted
nonuniqueness of a kink solution corresponding to a valleyurve corresponds 1=0.03. The lower figure is the enlargement
are illustrated by Figs. 1 and 2, respectively. The figuresOf the middie one.
show the finite-difference numerical solutions of EG2) )
that we performed in a large domain, with the boundary con}A|<1/y3. From Eq.(55) one gets the estimate for the sta-
ditions Uy = Uyyy=Uyxx=0 ON both ends of the interval. bility threshold value ofc ase~0.43, while from Eq.(56)
Note that even in the case when the dimensionless depositidhe estimated threshold is 0.12. Numerical simulations give a
rateD is small it significantly affects the shape of the surfacevalue between thems~0.2, corresponding thA| = 1/y/3.
structures since the slope correction is proportionaD 6.
When the deposition rate grows above some critical value,
the surface slope decreases below the spinodal one and the
surface becomes unstable. One can estimate the critical value . . ]
of the parameteb using the asymptotic formula&5) and Using asymptotic solutions obtained above, we now con-
(56). Substitute the perturbed slope= A+a exp(ot+ikx) in st'ruct a unique periodic 'sta'tmn_ary solution of K§2) that
Eq. (12) to obtain the characteristic equation will c_orrespond to a periodic h|II-ar!d-vaIIey structgre on a
growing crystal surface. For a period.2 this solution is

o= —Ko+k4(1-3A2) +icAk, (57)  schematically shown in Fig. 3. Since it is symmetric with
respect to the centex&L, u=0), the solutionu(x) needs
from which one concludes that the instability occurs forto be specified on the interval (@) only.

B. Stationary surface shapes: Periodic array of hills
and valleys
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' Ayj=—a;—as, (62)

r outer solution
Cp=—2 (2a,-az+a,\3), (63
2a,—a,\/3—a;=—21 (64)

inner solution . .
for kink faner splution

The asymptotics for the inner solution for a negative kink
located at the point (see Fig. 3for L—x>1 is

inner solution 1 2
for Rink u~1—§Cn32’3(x—L)+ gs(X—L)Z, (65)

whereC,, is as yet an unknown constant. Matching the outer

outer solution solution with the negative kink yields

-1+

0 L 2L Ch=—2 Y{2a, exp(l)+(—az+a,\3)
X

x exp(1/2)cog1/3/2) — (ag\/3+a,)

FIG. 3. The scheme of a periodic solution of Ed4) in the

form of kink-antikink pairs. X exp(—1/2)sin(l \/§/2)], (66)
theAfiI%"OWS from Eqs(48) and(49), the outer solution has a, exp(l)—a, exp( —1/2)sin(| 312+ 713)

—ag exp(—1/2)cog|y3/2+ 7/3)=2"5C. (6
U=1+eY3A,+a, exgl(/2) Y] +exg —2~ %% %) 2 exH(~1/2)c081 V3/2+ /3) 67

X[y, sin(y/3 273 ¥3) + a; cog 3 273 3%) |}

Solving the system of linear algebraic equatiditg),
(64), and(67), one finds the coefficients, , a,, andas, and

4. (58 after that, using the expressiof@2), (63), and(66), one can
findA,, C,, andC,,.
It is convenient to rewrite E(58) as An example of the solution found above, for=200 and
£=0.001, is shown in Fig. @), with the corresponding sur-
U=1+&"3{A;+a; exdllexd (e/2)*3(x—L)] face shapeh(x), shown in Fig. 4b). Figure 4c) shows the
_ zoom of the valley region in Fig.(). One can see that the
+a* exf (— 1/2+i3/2)1] slope of a hill is smaller than that of a valley. This is the

consequence of the surface growth described by the convec-

—4/3_.1/3/ _ H _
xexp 2 e 1+|\/§)(X L] tive term Duu, in Eq. (12) (the termDhi/Z in the corre-

+aexd(—1/2—i \/§/2)|] sponding equation for the surface shéx)e Due to the depo-
_ sition normal to the surface, the concave parts of the surface
xexg 2 M~ 1-iV3)(x—L)]}H+- -, (590 tend to become sharper and to produce caustics while the

_ _ s convex parts get smoothed. The interplay between this kine-
wherea* =(as—ia)/2, a=(ag+ia,)/2, 1=(e/2)""L. The  matic effect and the surface-tension anisotropy, which tends
coefficientsa,, a,, as, andA; will be determined from the to select a specific slope, leads to the asymmetry between

matching conditions. . . ~ hills and valleys and to the existence, within some interval of
The first matching equation can be obtained by expandinghe deposition rat®, of stationary surface shapes.
Egs.(58) and (59) for 3 <1 ande3(x—L)<1, respec- Figure 5 shows the combined asymptotic solutions that

tively, and equating the terms of the ordef°. This gives use the four-term inner solution82) and (41), matched to
the two-term outer solutiori58), with the coefficients ob-

as[exp(l)—1]+a, exp(—1/2)sin(1\/3/2) tained from Eqs.(60), (62)—(64), (66), and (67) (dotted
lines), together with the numerical solutions of E42) ob-
+aglexp(—1/2)cog1/3/2 —~ 1]=0. (60 tained by means of a pseudospectral method with periodic

) . ) . . boundary conditiongsolid lineg, for two different values of

The qsymptotlcs for the inner solution for a positive kink for parameteD. Figure §a) shows the whole period and
x>11s Figs. §b,0) give the detailed view. One can see a very good
agreement between the asymptotic and numerical solutions.

U~1— EC 82/3)(—\/—58X2 61) Note, however, that fob sufficiently small, the described

2P 8 ’ kink-antikink (hill-and-valley periodic solution is stable
only in the case when there is one kink-antikink pair in the
whereC, is a constant to be determined. Matching the outeregion. In the case when there is more than one kink-antikink
solution with the asymptotics for the inner solutigfl) pair in the region, the solution is unstable with respect to
gives the following equations: coarsening that proceeds until there is one kink-antikink pair
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FIG. 5. (a) Surface slopau(x) for two different values of the
parameteD: numerical solutions of Eq.12) by means of a pseu-
dospectral method with periodic boundary conditigsslid lineg
together with the asymptotic solutiof82), (41), and (58) (dotted
lines); one can see the two solutions almost coincide. Detailed view
at the numerical and asymptotic solutions shown(an for D
=0.001(b) andD=0.01(c).

left. At the same time, with the increase of the deposition
rate, a single kink-antikink pair in a large region becomes
unstable much like a single kink or antikink in an infinite
region discussed above, and exhibits transitions to a dynamic
behavior. This is described in the following section.

400 =300 200100 0100 200 300 400 C. Surface dynamics, coarsening, and roughening

(b)

x In order to investigate the dynamics of a growing,

thermodynamically unstable crystal surface that undergoes
faceting by the surface-diffusion mechanism, we have per-

y €] / formed a numerical simulation of Eq12) by means of
Y / a pseudospectral code, in a large domdin=@0w) with
| s
Y 1 : : : . . :
\ 4 / 30 Y
\‘.‘ /’ _1 A A
\ ; 50 100 150 200 250 30
."\_‘ 34 /;,' 1 T T T T T n_
Y2 / -t n . = . " -
\ / 50 100 150 200 250 30
3 i 20 . . . . . .
.“. " s
€ -4 =2 0 2 4 6
(c) "
=20 L L L L . L
50 100 150 200 250 30

X

FIG. 4. (a) One period of the periodic kink-antikink solution of FIG. 6. Surface slopa(x) and the corresponding surface shape
Eq. (14) for L=200 ande =0.001.(b) The corresponding shape of h(x) at two moments of time: right after the formation of hill-and-
the crystal surfacétwo periods; the dashed line shows the Wulff valley structure {;), and at the late stage of coarsenirig) { Nu-
slope.(c) The zoom of the valley region itb). merical solution of Eq(12) with D=0.02.
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9 1 . . , . . .
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(a) . 8. Examples of statlo_nary numerical periodic solutlc_)ns of
Eqg. (12), and the corresponding surface shapes for two different
values of the paramet®.

y formation of larger hills and valleys with the same slope. For
D=0 (no deposition, pure surface-diffusion-driven faceting
the coarsening is logarithmically slow as shown in Fi@g)7
that presents the dependence of the mean spatial scale of the
structure L), on time, wher€L) is averaged over ten real-
izations with different random initial data. However, fDOr
10; >0, no matter how small, the coarsening kinetics changes.

_C} Examples of the coarsening kinetics for differént-0 are
given in Fig. 1b). One can see that after the formation of a
hill-and-valley structure with the preferred wave number,

l . = \/2_/3 given by the linear growth rate of the perturbations
of the initial unstable state,=0, the coarsening starts which
consists of three stages: slow power-law coarsening, fast
power-law coarsening, and extremely slow or no coarsening.

) ) ) One can see that with the increasebbthe fast stage starts

10’ 10° 10° 10* 10* earlier, and the slow down starts earlier as well. For very

(b) t small D the fast stage is probably scale invariant with)

o - ~1%%% The power law at the initial slow stage should be
FIG. 7. (@) Coarsening kinetics for zero deposition rale=0;  considered as an intermediate asymptotic behavior and is not
g’)zcé’grls_emr"”gi'gegfgor Vgiog‘z E‘_)’?L‘;eSDOLg]i deposition fte:  associated with scale invariance. With the increasb ¢ee
I e e " graphs forD=0.05 andD=0.1), after the fast stage, the
coarsening stops completely and one observes the formation
periodic boundary conditions, starting from small-amplitudeof a stationary structure.
random initial data. The dynamics strongly depends on the With further increase of the paramefer we observe the
dimensionless deposition rafz For smallD we have ob- formation of stationary or oscillating structures that do not
served the formation of a hill-and-valley structure that underundergo any coarsening. Some typical examples of these
goes further coarsening. Figure 6 shows an example of thstructures are shown in Figs. 8 and 9. Figure 8 shows two
slopeu(x) and the surface shaggx) for D=0.02 at two typical stationary structures. They can consist of arrays of
different moments of time: at the beginning of the coarseningzqual or slightly modulated hills and valleys or of several
(t1), when the hill-and-valley structure has been just formedhill-and-valley arrays divided by deeper valleys. These
with the preferred wavelength and the slope close to that ofleeper valleys correspond to the pairs of “up” and “down”
the equilibrium crystal shape without depositiob,=0 structures inu(x) (denoted by the letters andd in Fig. 8,
(Wulff slope, u==1), and at the late stage of coarseningrespectively, the remnants of kink-antikink pairs. Similar
(t,). The spatial period of the initial hill-and-valley structure structures were observed in the dynamics of a growing crys-
is determined by the balance between the corner regularizéal surface controlled by the evaporation-condensation
tion energies and the surface-tension anisotropy causing thmechanism and described by a convective Cahn-Hilliard
spinodal decomposition of the planar surface. Note that oncmodel studied in Ref.11]. Selection of a particular structure
formed, the slope of hills and valleys does not change andepends on initial conditions and on the valuedofFigure 9
the hill-and-valley structure coarsens in time leading to theshows a typical oscillatory pattern. Here, the upper figure is
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300

150 200 250 300 ( a)
X

100

FIG. 9. Space-time diagram of the oscillating numerical solution
of Eq. (12) u(x,t) for D=0.7 (upper figurg, with u(x) and the
correspondindn(x) at a particular moment of timgower figures. <0

a space-time diagram representing the oscillatory dynamics¢ -5
of the order parametar. The lower figures show(x) and

h(x) corresponding to a particular moment of time. One can 5
see that, similar to the structure shown in Fig. 8, there are
arrays of hills and valleys divided by deeper valleys. How- <9
ever, here some of the hill tops exhibit spatially localized
oscillations.

A further increase of the dimensionless deposition Eate  »
leads to the transition to a chaotic spatiotemporal dynamics 4 | D=10.0
of the surface structures. Figure(dDshows spatiotemporal
diagrams corresponding to the dynamics of the order param
eteru for three different deposition rates. One can see that _ , , ‘ ‘
with the increase oD the chaotic component of the hill 0 50 100 150 200 250 300
oscillations becomes more pronounced, the characteristi(P
spatial scale decreases, and the events of splitting and merg- . . ) )
ing of kinks and antikinkgvalleys and hills become more FIG. 10. () Space-_tlme diagrams of nonstationary solutions of
frequent. Figure 1®) shows the surface shapkéx) corre-  Ed- (12 u(x.t) for various values oD; (b) surface shapeh(x)
sponding to particular moments of time for different deposi-c0rresponding to the nonstationary solutions of EtR) u(x,t)
tion ratesD. One can see that for smallBrhills and valleys ~ S°Wn in(@, at a particular moment of time.
with a particular slope dominate, while with the increase of
D the slope of hills and valleys become more and more ransystem, close to the most rapidly growing wave number
dom. In all cases there is a tendency to form a rough surfacgiven by the linear theor= \/2/3. The time-average spatial
For largeD, the surface structure consists of mounds, ranpower spectra of chaotic solutions of E§8) corresponding
domly distributed in space and merging and splitting in ato different values oD are shown in Fig. 1(B). These spec-
chaotic manner, much similar to the dynamics described byra are similar to those of chaotic solutions of the Kuramoto-
the Kuramoto-Sivashinsky equatidi8]. Indeed, by the Sivashinsky(KS) equation. One can see that the characteris-
transformatioru—u/D, Eq.(12) is transformed to the equa- tic lateral scale of the surface mounds increases with the
tion decrease of the deposition rdde Note a characteristic shift
of the spectrum in the short-wave region: it corresponds to
the appearance of kink-antikink pairs divided by a boundary
layer (top of a hill or bottom of a valley A characteristic
wave number at which this shift occuks=1.7, corresponds
which, for D—oo, is reduced to a Kuramoto-Sivashinsky- to a typical width of the “interface” between kinks and an-
type equation whose linear operator has higher derivativesikinks, A =2#/k~3.7. The number of kink-antikink pairs
Like a Kuramoto-Sivashinsky equation, E(8) with D increases with the decrease Df Note also that there is a
—o has a Galilean invariance and exhibits chaotic spasignificant input of long-wave modes corresponding to a pla-
tiotemporal dynamics. The characteristic feature of this dyteau of the spatial power spectrum. One can see that the
namics is that there is a preferred spatial scale present in thi@wer of the long-wave modes increases with the increase of

<0 F _

A | J

U = U Uy — Uy Uxxxxxx ™ S(Us)xxxx: 0, (68)
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10° . : (68) for infinite and finite values oD in a chaotic regime.
104 D100 We leave this for future investigations.
50
10° D=3.0 ' IV. 2+1 MODEL
102 | D=2.0 4 Now we consider faceting of a growing crystal surface
. caused by anisotropic surface tension and driven by the
20 3 surface-diffusion mechanism, in a more realisti¢ 2 case
°-100 ] corresponding to a two-dimensional surface of a three-
dimensional crystal. The surface evolution, in the case of
10~ y [001] surface, is described by E@¢l1). As we did for the
» model 1+1 case, we first consider stationary solutions of
10 3 Eq. (11) corresponding to pyramidal structures.
107 4
B A. Single pyramid
10 : :
107 , 10° 10° Here we shall study a stationary solution of Etfl) in the
(@) form of a square pyramid. We will be interested in the case
. of a small deposition ratd) =e<<1.
10 . Consider a symmetric square pyramid oriented in such a
way that projections of its edges on the basis plane coincide
104 with x an<_jy axes. The_n, the pyramidal shapéx,y,t) has
the following asymptotic$9]:
103} h~*Ay+f(xX)+evt as y—=xoo, (69
D=10. h~*=Ax+f(y)+evt as X— +oo, (70)

Byn2
S0

= D=5.0
D=3.0

10"}
20—

whereev is the speed of the surface growth in theirec-
tion, A<O is the slope of the pyramidal edges, itd) is a
function to be determined. From the symmeitpmpare, for
example, Eqs(69) and(70) when both variableg andy tend

100 P
to infinity) it follows that
-1 ) L ) 4 =
(l;)o 1072 107 10° F(re)==A, 7D
®

where the prime means a derivative.

FIG. 11. (a) Time-averaged spatial power speda¢k) (k is the Substitute Eq.(69) in Eg. (11) to obtain the following
wave numberof chaotic solutions of Eq12) for various values of  equation forf (x):

D. (b) Space-averaged time power specki§w) (o is the fre-
quency of chaotic solutions of Eq12) for various values oD.

——v|=0.

€ A?
[fxxx+ fx(l_ bAz) - fg]xxx+§f>2<+ € 2

D. The long-wave modes are known to play a crucial role in
the roughening dynamics described by the KS equdti&h
The space-averaged time power spectra of chaotic :~:olutior§:,mcef
of Eqg. (68), corresponding to different values @, are
shown in Fig. 11b). One can see that with the increase of the
deposition rateD, the power of the high-frequency oscilla-
tions increases.

Transition from the coarsening dynamics, typical of [Ugt (1= DA U— U3t f(uz_Az)zo_ (73)
phase-separating systems, to a chaotic spatiotemporal dy- 2
namics with the increase of the deposition rate is also ob-
served in the convective Cahn-Hilliard models with Equation(73) is similar to Eq.(14) and has an unknown
evaporation-condensation mechani§i]. Such behavior —coefficient (1-bA?). Hereb is a given anisotropy constant
resembles the phenomenon of kinetic rougheribg,20.  in Eq.(11) andA should be determined.
Indeed, the KS equation describing the shape of a growing Fore=0, Eq.(73) has the following solutions:
thermodynamically unstable surface for large growth rates
(D—x) exhibits roughening of the KPZ universality class u(x)=*y1—bA? tanx(1—bA?)/2]. (74
[18,21]. An interesting question which remains open is what
are the roughening exponents of a surface described by Eqondition(71) yields A>=1—bA? so that

(72)
i(oo)=A2, the last term in Eq(72) must be equal to

—&A?/2 and therefore =A2. By replacingf, by u in Eq.
(72) one obtains
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1
1+

A==

(75

o

Thus, the asymptotics of the pyram(antipyramid for y—
+o s

y

o F V2 In[coshix/\2+2b)].

h~=

(76)

H

Using the method of matched asymptotic expansions de:
scribed in Sec. | for Eq.73), one obtains the asymptotics of
the pyramidal slope for €e<1. In particular, the corrected

edge slopéA is

1 1/3

V1+b

A= 1- 27%%1+0(e?9).  (77)

1+b

B. Periodic pyramidal structures
For the casé&=0, Eq.(11) can be rewritten as
&
hy=V?(V?h+V*h—3hZh,,—3h’hy, )+ E(h§+ hy).
(78)
In this case, one can look for a solution in the form
h(x,y,t)=f(x)+g(y)+evt. (79

Thus, for the functionf(x) [and similarly forg(y)], one
obtains

t]
[fxxx+ fx_(fx)a]xxx+§(fx_v):0- (80)
Replacingf, by u one gets
to
(UgyF U—U3) s+ E(uz—v) =0. (81)

This equation coincides with Eq14), wherev =AZ?. Thus,
the problem of finding a two-dimensionéD) periodic so-

lution is reduced to the 1D problem considered in Sec. lIl.
Using the method of matched asymptotic expansion we co

struct periodic solution with period2 of Eq. (81) on the
interval (—L, L). As a result we obtain solution of E¢78)

FIG. 12. One pyramid from a double-periodic system of pyra-
mids described by Eq$79) and (80) for L =200 ande =0.001.

pyramid, h(¢,7,@,B8) is also a solution, wheref=(x
+W)V2, n=(x=Y)I\2, a=(a+3B)/2, B=(a—B)/2. In
particular, if A(a,B) is the slope of the pyramid face far
from the vertex whereh~A (x+y), then the face of the
rotated pyramid far from its vertex will be given bly
~A(&+ 7)=\2Ax, whereA=A(«,B); other faces are ob-
tained by the transformations— —x, y— -y, x—Yy. Take
for simplicity m=6=1 andF=0 in Eq.(8) to obtain forA
andA

A2= ! A 82
Cal3+ B’ 2a° (82)
It is natural to assume that the selected orientation will be
that for which the Lyapunov functional densiy defined in
Eq. (7) will have the smaller value. Neglecting the energies
of edges and vertices and taking into account the energies of
the planar faces onlywhich is justified for large enough
yramids one obtains for pyramids with different orienta-
ions, whose faces are described hy, ~A{(x+Y), (x

—y), (y=x), (—x—y)} andhg~A\2{x,—x,y,~y},

as a double-periodic function consisting of square pyramids.
Example of such pyramid is shown in Fig. 12.

2 4
§a+2ﬁ A,

CI)Q:_SAZ‘F

C. Selection of pyramid orientation (83

We have so far considered solutions of Efl) in the
form of pyramids with a particular orientation. At the same
time, since the rotations by 45° transform E§) into the
same equation with different coefficients, solutions of Eqs
(8) and (11) in the form of pyramids with the orientation
rotated by 45° also exist. It is convenient to consider the
selection of pyramid orientation using E@®). One can see
that if h(x,y, a,B) is the solution of Eq(8), then the rotated

- 4
d=-8A%+ §aA4.
Using Eq.(82) and(83), one can easily see that

b <Py for 0<'B<§' & pyramids selected,
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D. Effect of the growth rate and pyramid stability

As in 1+1 case, the slope of the pyramids ir-2 case
depends on the growth rai®. The increase of the growth
rate leads to the decrease of the pyramid slope so thatlafter
exceeds a certain threshold the slope decreases below the
spinodal value and the pyramid becomes unstable. The criti-
cal value ofD can be estimated using the asymptotics for the
pyramid slopg77) and the asymptotic shape of the pyramid
face far from the vertexh~A(D)(x+Yy). For the perturba-
tions of the face shape e”'*'k" one obtains the following

. o . ] ) dispersion relation:
FIG. 13. Pyramids with different orientations: numerical solu-

tions of Eq.(11) for D=0 and(a) b=0, (b) b=2. o=~k +k*Qp(Ky.k,) +iDA(D)(ketky), (89

0 50 100 150

o
®o>0y for z<p<a, [ pyramids selected, where

84
®9 Qo(ky ky) = (K+K2)[1-A*(D)(3+b)]

and® , =&, for = a/3 whenA=A; note that in this case — 4bA2(D)kk, . (90)
&, together with Eq(8), becomes isotropic. i

Another selection criterion for pyramid orientation for Simple i vsis simil hat d ibed ab h
=0 can be obtained from the linear stability analysis of the Imple finear analysis similar to that described above shows

pyramid faces far from the vertex. In the case of a “dia-that the pyramid face far from the vertex is stable if and only
mond” pyramid, with the asymptotic shape of the face farIf the following two inequalities hold:

from the vertex,n~A(x+y), for the perturbations of the
face shape~e”*'k'" one obtains the following dispersion

1
2
relation: A“D)>5— 3—b>0. (91

3-b’
o= _k6+k2Q(kX1 ky)! (85) . A " .
Using the asymptotic expressiaf77) for the pyramid

where slope for the cas® ~e<1, one obtains the following re-
striction for the growth rate at which the pyramid structures

Q(ky, ky)=(Kg+K)[1—A%(a+ )]~ 4BA%KK, . are stable:
(86)
3
According to Eq.(85) the pyramid face far from the vertex is 52 A b
stable when the quadratic for(86) is negative definite, i.e., D<2"1+b){ 1 3—-b/ "’ 0<b<1. (92
if and only if the following two inequalities hold:
1 Condition (92) is derived for the stability of diamond
A2>m, (87 pyramids. Similarly, one obtains that box pyramids are stable
N for
a—B>0. (89
1 3
Using Eq.(82) one finds that the faces of the diamond pyra- D<2" 1- %) ,  1<b<a3. (93

mids far from the vertex are stable forQ83<a/3. Similarly,
one finds that the faces of the “box” pyramids are stable for
al3< B<a. One can see that the linear stability criteria for One can see from conditiori82) and(93) that the face of
the faces of differently oriented pyramids coincide with thea pyramid far from the vertex is stable only for deposition
energetic criterid84). rates smaller than the critical value which depends on the
For the rescaled Eq11), the selection criterion becomes anisotropy coefficienb. For b=0 condition (92) gives D
very simple: diamond pyramids are selected ferl<1, <0.43 that corresponds to the one-term approximation of 1
while the box pyramids are selected foxb<3. Figure 13  +1 case considered in Sec. lll. Since the stability condition
shows the results of the numerical solution of Efjl) for  (92) is based on the asymptotic formula for snfalit should
D=0, by means of a pseudospectral method with periodibe considered as an estimate for the critical deposition rate at
boundary conditions, for two casds=0 andb=2. One can which pyramid faces far from the vertex become unstable.
clearly see the selection of differently oriented pyramids.Above this critical value oD, one cannot expect the coars-
Figure 13 shows the pyramidal structures shortly after theiening of the pyramids to proceed indefinitely since the large
formation. The structures will undergo further coarseningpyramids are unstable. In this case another spatiotemporal
which is discussed in the following section. dynamics is observed which is discussed below.
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FIG. 14. Surface pyramidal structures in the case of pure face- 1007
ting without growth—numerical solutions of E@ll) with a=b 6 3
=0 andD =0.0 right after the structure formatida) and at the late o8
stage of coarsenintp). 107 . . .
10’ 102 10° 10

E. Dynamics of pyramidal structures
) ) ) FIG. 16. Coarsening kinetics of pyramidal structures for various
1. Pyramids and antipyramids values of the deposition rated, D=0.0; [J, D=0.01; A, D
In order to study the dynamics of pyramidal structures=0.02;V, D=0.05; ¢, D=0.1.
described by Eq(11) we solved this equation numerically,

by means of a pseudospectral code for various values of th@at shows typical pyramidal structures for a small deposi-
deposition rateD in a square domain with the side  tion rate,D=0.01, shortly after the structure formatiffig.
=407. For zero and small deposition rates, the pyramidali5(g)] and long time after ifFig. 15b)]. One can see that
structure undergoes further coarsening so that the lateral sizgtipyramids have disappeared so that only pyramids divided
and the height of the pyramids grow in time in such a wayby valleys are finally left. Note that in the case of etching
that the pyramid slope remains the same. Figure 14 show <0), the effect of the symmetry breaking will be the

typical pyramidal patterns observed for=0 when there is  opposite: the antipyramids will survive while the pyramids
no deposition, just pure faceting of a thermodynamically un-will disappear.

stable crystal surface by the surface-diffusion mechanism.
The two figures correspond to two different moments of
time: right after the formation of the pyramidal structure
[Fig. 14a)] and at the late stage of the coarsening process The dynamics of the pyramidal structures after their for-
[Fig. 14b)]. The important feature of the pyramidal structure mation strongly depends on the deposition r&teand is
in the absence of depositioD & 0) is that the pyramids and somewhat similar to the dynamics observed in the case of a
pits (“antipyramids”) are equivalent. This is because for ~ 1+1 model. The coarsening dynamics is shown in Fig. 16
=0, Eq.(11) is symmetric with respect to transformation ~ Where the mean spatial scale of the pyramidal structures,
— —h. However, a nonzero deposition ra@>0, breaks (L), is shown for different values db, averaged over ten
this symmetry and results in the growth of pyramids andrandom initial data for each value &@. The mean Spatial
disappearance of antipyramids. Indeed, as follows from th&cale was computed ag )= ((L,)+(L,))/2, where(L,)
dispersion relatiori85), perturbations of a pyramid shape are and(L,) are the mean scales inandy directions, respec-
convectively transported downhill into pit&antipyramids  tively; (L,) and(L,) are defined aglL,)=ZX,Lo/N} and
making them gradually disappear. This can be seen in Fig. 15_y)=2XL0/N§‘,, wherel is the size of the square compu-
tational domainNy (NJ) is the number of zeros df, (hy) in
a fixedy (x) layer, and the summation is over gl(x) layers.

When there is no depositioD,=0, there is pure faceting,
and we have observed a rather slow coarsening of the pyra-
midal structures. One can clearly see two stages. First, one
observes the power-law coarsenifig ~t°’. Then there is
a crossover to even slower coarseniflgy~t%% The expo-
nent of the first stage is very close to 1/6. This can be un-
derstood from the balance of several simultaneous processes
described by Eq(11). Indeed, after the pyramidal structure

- has been formed, the linear term describing the spinodal in-

0 50 100 150 50 100 150 stability of the surfaceV*h, is balanced by the nonlinear

FIG. 15. Surface pyramidal structures in the case of pure facednisotropic stabilization terms, so thatlifis a characteristic
ting without growth—numerical solutions of Eql1) with a=b width of the pyramid and is its characteristic height then
=0 andD=0.01 right after the structure formatiqa) and at the HL *~H3L~° and thereforeH~L, which means that the
late stage of coarsening). slope of pyramids remains unchanged during the coarsening,

2. Coarsening and roughening

\
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and this is what is observed. Thus, the coarsening dynamic a)
is driven by the balance of the two terms, the rate of change150 g
h;, and the regularizationy®h, describing the additional
energy of edges and corners. If a characteristic time scale i
T then the balance between the two terms giw§ !
~HL~® from which one obtaind ~TY¢, These estimates
are valid, however, when the width of the edges are not very g
small in comparison with the width of the pyramifi22].
Also, since the duration of this coarsening stage is only sev-
eral times more than the chgracterlstlc time of the formatl_on 00 50 100 150 o 50 100 150
of the pyramidal structure this power law should be consid-
ered as an intermediate asymptotics which is not associated FIG. 17. Surface structures described by solutions of (Ed).
with long-time scale-invariant behavior. With further pyra- with a=b=0 and(a) D=0.5, (b) D=10.0.
mid growth, when the width of edges becomes much smaller
than the characteristic pyramid scale, the estim@fh  =0.01, and~t%33for D=0.02. The origin of this regime as
~HL ™ is no longer valid and the coarsening rate is gov-well as for how long it lasts is as yet unknown.
erned by a complicated dynamics of the web of edges and With the increase of the deposition rate, the initial slow
valleys [5,25]. At this stage, the crossover to the slowerstage of coarsening disappears and the fast coarsening starts
coarsening occurs. The slow coarsening stage starts long afght after the formation of the initial pyramidal structure in
ter the characteristic time of the pyramidal structure formawhich the pyramid-antipyramid symmetry is already broken.
tion and the power-law kinetics can be associated with thén this case, one observes a relatively long stage of fast
scale-invariant behavior. Presumably, a detailed consideeoarsening~t°4 that, however, stops after some time and
ation of the dynamics of the web of edges similar to thatbecomes extremely slow:-t%%4 Examples are shown in
considered in Refd5,25] could explain the crossover to a Fig. 16 forD=0.05 andD=0.1. Since the fast coarsening
slower coarsening and the small coarsening exponent, bgtage starts right after the formation of the pyramidal struc-
this is beyond the scope of the present paper. ture, its power-law kinetics should be considered as an inter-
In the presence of even small deposition, the coarseningiediate asymptotics rather than a scale-invariant long-time
dynamics drastically changes. Typical examples are shown iBehavior.
Fig. 16 forD=0.01 andD=0.02. One can clearly see sev-  With further increase of the deposition rafg the fast
eral stages. At the first two stages, the coarsening dynamigsarsening stage becomes shorter so that a pyramidal struc-
is the same as in the case without deposition: one can seet@e with a certain scale is established, which does not
slow coarsening;-t%’, with the later crossover to the even coarsen in time but undergoes a slow chaotic spatiotemporal
slower coarsening;-t%* At this stage, the convective term dynamics. In this structure, which is shown in Fig(d7 a
3D|Vh|? is small and does not affect the pyramidal structurefourfold symmetry of thé001] surface is still present. How-
which at this stage looks like those shown in Figsal4nd ever, for largerD the symmetry disappears and the surface
15(a), and exhibits the symmetry between pyramids and anexhibits chaotic spatiotemporal dynamics of splitting and
tipyramids. However, with further growth, the convective merging isotropic mounds, shown in Fig. (bY, which is
term becomes larger and breaks the symmetry between pyreypical of 2D Kuramoto-Sivashinsky equati¢h8]. Indeed,
mids and antipyramids, which corresponds to a transitionasimilar to what has been discussed i1 case, in 2-1
stage showing an accelerated coarsening. Finally, when ani¢ase, by changinh—h/D and takingD —, Eqg. (11) is
pyramids disappear, so that the surface structure exhibitslso transformed into an isotropic, Kuramoto-Sivashinsky-
only pyramids divided by narrow valleys, the stage of fasttype 2D equation with a higher-order linear operator,
coarsening takes over, at which we obsegfg~t%5". Simi-
lar behavior, exhibiting a crossover from a slow to a fast
coarsening in the presence of the KPZ-type nonlinear term h— E|Vh|2—V4h—V6h=O (94)
breakingh— —h symmetry was observed and discussed in b2 '
Ref. [12]. According to Ref.[12], in the presence of this
nonlinear term, the faces of the pyramids with a nonzerdquation(94) is rotationally invariant and the surface de-
slope grow faster than valleys whose average slope is zersxribed by Eq.(94) looks rough. We have not studied the
(or very small. Since the characteristic width of valleys is roughening characteristics in this limiting case and postpone
O(1) and the spatial fraction of the surrounding valleys isit to future investigation. Note that the roughening properties
larger for small pyramids than for large ones, the effectiveof a 2D KS equation are still under discussidr].
growth rate of small pyramids is smaller than that of large
pyramids which leads to preferential coalescence of small ACKNOWLEDGMENTS
pyramids and to the coarsening rat¢®®° (see Ref[12] for
detailed explanation It is interesting that in our system, the  This research was supported by the National Science
fast coarsening stage exhibits further crossover to a slowdfoundation, Grant No. 0102794, and by the U.S.-Israel Bi-
(but still relatively fast regime at long times;t°4? for D national Science Foundation, Grant No. 9800086.

021606-15



SAVINA et al. PHYSICAL REVIEW E 67, 021606 (2003

[1] V.A. Shchukin and D. Bimberg, Rev. Mod. Phygl, 1125 [14] W.w. Mullins, Metall. Mater. Trans. 26A, 1917(1995.

(1999. [15] J.W. Cahn and J.E. Taylor, Acta Metall. Matef2, 1045
[2] B.J. Spencer, P.W. Voorhees, and S.H. Davis, Phys. Rev. Lett.  (1994).
67, 3696(199). [16] M. Kardar, G. Parisi, and Y.C. Zhang, Phys. Rev. L&6,. 889
[3] Y.W. Zhang, Phys. Rev. B1, 10 388(2000. (1986.
[4] M. Siegert and M. Plischke, Phys. Rev. Lét8, 1517(1994). [17] C.L. Emmott and A.J. Bray, Phys. Rev.52, 4568(1996.
[5] M. Siegert, Phys. Rev. Let81, 5481(1998. [18] T. Bohr, M.H. Jensen, G. Paladin, and A. Vulpiabiynamical
[6] J. Stewart and N. Goldenfeld, Phys. Rev48, 6505(1992. Systems Approach to Turbulen&@ambridge University Press,
[7] F. Liu and H. Metiu, Phys. Rev. B8, 5808(1993. Cambridge, London, 1998
[8] M.E. Gurtin, Thermomechanics of Evolving Phase Boundaries[19] J. Krug, Adv. Phys46, 139(1997.
in the Plane(Clarendon Press, Oxford, 1993 [20] A. Pimpinelli and J. Villain,Physics of Crystal GrowtiCam-
[9] A.A. Golovin, S.H. Davis, and A.A. Nepomnyashchy, Phys. bridge University Press, Cambridge, London, 1998
Rev. E59, 803(1999. [21] V. Yakhot, Phys. Rev. R4, 642 (1981J).
[10] A.A. Golovin, S.H. Davis, and A.A. Nepomnyashchy, Physica [22] There are other models as well as experimental observations
D 122 202(1998. that give the same exponent, 1/6, see, e.g., R2&24], and
[11] A.A. Golovin, A.A. Nepomnyashchy, S.H. Davis, and M.A. references therein.
Zaks, Phys. Rev. LetB6, 1550(200J. [23] M. Papoular, Europhys. Let83, 221(1996.
[12] P. Smilauer, M. Rost, and J. Krug, Phys. Rev5& R6263 [24] S. Song, M. Yoon, S.G.J. Mochrie, G.B. Stephenson, and S.T.
(1999. Milner, Surf. Sci.372 37 (1997.
[13] W.W. Mullins, J. Appl. Phys28, 333(1957). [25] D. Moldovan and L. Golubovic, Phys. Rev.@, 6190(2000.

021606-16



