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A minimal element, mother body, for a family of bodies producing the same external gravita-
tional field is the body in the family, whose support has Lebesgue measure zero and satisfies
some additional requirements. The finite algorithm of constructing mother bodies in R

2 is
suggested. The local structure of mother bodies near singular points of continued logarithmic
potential is investigated in generic positions.
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1. Introduction

The problem of analytic continuation of solutions to elliptic differential equations
dates back to Schwartz, Herglotz and Poincaré. One of the classical statements of
this problem is called ‘‘balayage inwards’’ and can be stated, for example, as follows.
Given a body � with a known mass distribution. Find a smaller body �1 generating the
same gravitational field outside � [15].

This mathematical problem is known in geophysical literature as a problem of
constructing families of bodies producing the same external gravitational field and
related to inverse problem of geoprospecting. That is why this problem was studied
by both mathematicians and geophysicists (see Novikov [1], Sretenskii [2], Zidarov
[3,4], Strakhov and Filatov [5], Tsyrulskii [6], Kounchev [7,8], Gustafsson [9],
Gustafsson and Sakai [10,11], Shapiro [15] and others).
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To describe the problem, suppose that an external gravitational field generated
by some ‘‘heavy body’’ (i.e., contractible compact set in R

2 provided with a mass
distribution) is known. One wants to find the shape of this body and the mass distri-
bution in it. Such a problem arises, for example, in geoprospecting if one measures
a gravitational field on the Earth’s surface and wants to find the mass distribution
(inside the Earth) generating the field. Obviously, the solution of this problem is not
unique. From Newton’s time, it is known that a sphere with constant mass density
generates the same gravitational field as the point mass of the same magnitude
placed in the centre of the sphere. So, there exist different heavy bodies producing
the same external gravitational field. Such heavy bodies are called graviequivalent
ones, and one can consider a family of graviequivalent bodies. Using the Poincaré
sweeping method, one can show that every family of graviequivalent bodies contain
infinitely many elements. Therefore, this is a good idea to try to characterize each
family by finding a minimal (in some sense) element in it, like a point mass characterizes
a family of concentric balls. Such an attempt was first done by Zidarov [3] in 1968, who
called this minimal element ‘‘mother body’’. Initially this notion was rather heuristic, but
later on, more rigorous definitions of the mother body have been given by various
authors, e.g., [7–9,12,13]. The most complete description of this notion is given in
[9,11] and has function theoretic formulation. It seems, however, that it is possible to
give more simple and geometrically clear definition of a mother body in terms of singu-
larities (and corresponding cuts) of a multi-valued continued gravitational potential. In
this article, we present such a definition for a two-dimensional case (see Definition 2
below). We also suggest a finite algorithm of constructing mother bodies in the sense
of the given definition. The proposed algorithm allows one, in particular, to clarify
whether the searched mother body exists. Moreover, we investigate the local structure
of the mother body, at least in a generic position.

Note that the problem of constructing mother bodies is not always solvable, and the
solution is not always unique. For example, the unit disc D in two-dimensional plane
R

2
ðx, yÞ with mass density f ðx, yÞ ¼ exp xð Þ does not determine any mother body at all.

This is a consequence of the fact that the continuation of the field generated by such
a body inside the unit disc has an essential singularity at the origin. (Connection
between a mother body and singularities of continuation of the corresponding gravita-
tional field will be explained in section 2.) The non-uniqueness of a mother body can
be illustrated by the well-known Zidarov’s example, who considered a square of
constant mass density with deleted quarter and found two different mother bodies
(see figure 1). More recent discussion devoted to polyhedron in two dimensions
can be found in [11].

2. A mother body and a continuation of a gravitational field

Consider a heavy body concentrated in the domain ��R
2
ðx, yÞ and having the

mass density f x, yð Þ � 0. Suppose that the function f x, yð Þ can be continued up to
an entire function in the complex plane C

2
ðx, yÞ, and the domain � has an algebraic

boundary, that is,

� ¼ @� ¼ x, yð Þ
� ��P x, yð Þ ¼ 0

�
, ð1Þ
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where P x, yð Þ is a polynomial with real coefficients.
The definition of the mother body used in this article is the following:

Definition 1 A mother body for a given heavy body � is a distribution with positive
integrable mass density generating the same external gravitational field, whose support
consists of a finite set of curvelinear segments or/and points contained in � and does
not bound a two-dimensional subdomain of �.

Suppose that M is a mother body (in the sense of this definition) corresponding to �.
It means that M consists of a finite set of segments of curves and, possibly, points.
Note, that the set of curves included into M forms a planar graph, which is a tree,
and, therefore, has ‘‘hanged’’ vertices (vertices of degree 1).

Since the body M generates the same (as �) external field, this field with potential
V x, yð Þ can be continued into R

2
ðx, yÞ nM as a harmonic function. As we shall see

below, this harmonic continuation is a multi-valued function. So, the mother body
M can be considered as a set of cuts selecting a single-valued branch of (multi-
valued) continuation ~VV of the potential V. (During this analysis we neglect the point
components of the mother body M since they are simply univalent singularities of
the continuation. These singularities must be at most of the logarithmic type.)

Further, any hanged vertex of the set M is a singular point of the continuation ~VV .
Actually, if some hanged vertex x0, y0ð Þ 2M is a regular point of the continuation ~VV ,
then the mass density on the curve originating from x0, y0ð Þ vanishes identically
(we recall that the mass density on the curve equals the jump of the normal derivative
@eVV=@n of the potential ~VV ).

Finally, each cut included into a mother body M has to satisfy the following three
conditions:

(1) The cut must be admissible in the sense that the limit values of the potential on
both sides of the cut must coincide with each other. This follows from the absence
of gravitational dipoles.

(2) The cut must be positive, i.e., the sum of normal derivatives of the potential on
the sides of the cut (in the directions of the corresponding inner normals) must
be a positive function. Indeed, this sum is equal to mass density on the cut,
which must be positive from a physical point of view.

(3) All the cuts must be contained in the domain, suppM��.

Of course, as it was mentioned above, for a mother body to exist, one should require
in addition that all singularities of continuation ~VV of the potential V have not more

(b)(a)

Figure 1. Non-uniqueness of a mother body.
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than logarithmic growth. We shall suppose in the sequel that this latter requirement is
fulfilled for all the considered problems.

Thus, we can reformulate the definition of mother bodies, which is equivalent to
Definition 1.

Let � be a contractible compact set in R
2
ðx, yÞ having an algebraic boundary, and

f (x, y) be a positive function vanishing outside � and continuable up to an entire
function in C

2
ðx, yÞ.

Definition 2 A mother body for a given heavy body �, fð Þ is a union of singularities
of the continued potential ~VV and a system of cuts subject to conditions (1)–(3) above.

The algorithm of constructing mother bodies in the sense of this definition will be
considered in section 4 below. In the rest of this section and in the next one we discuss
properties of continued potential ~VV .

We recall that a heavy body �, fð Þ induces a gravitational field on R
2
ðx, yÞ with

potential

V x, yð Þ ¼ �
1

2�

Z
�

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ

2
þ y� y0ð Þ

2

q
f x0, y0ð Þ dx0 ^ dy0 ð2Þ

(we suppose that the domain � is oriented with the positive orientation of the space
R

2
ðx, yÞ), which is a solution of the Poisson’s equation

�V ¼ �f in O

and, since f vanishes outside �, is a harmonic function in R
2
ðx, yÞ n�.

To describe the continuation of V to the domain initially occupied by masses, it is
useful to complexify the problem, i.e., to consider the function V x, yð Þ in the complex
space C2

ðx, yÞ. The variables x0, y0ð Þ become complex as well, therefore the integral (2) is
considered as an integral over a chain in the complex space C

2
ðx0, y0Þ

determined by the
real domain �. After such a complexification, we perform the following transformation
of variables

z ¼ xþ iy, � ¼ x� iy ð3Þ

in integral (2). As a result we obtain1

V z, �ð Þ ¼
1

8�i

Z
�

ln z� z0ð Þ þ ln � � �0ð Þ½ � f z0, �0ð Þ dz0 ^ d�0, ð4Þ

where the branches of the logarithms are chosen in such a way that formulas (2) and
(4) are equivalent. Note, that the variables z, �ð Þ are characteristic variables of the
Laplace’s operator in C

2
ðx, yÞ.

1 From now on we do not distinguish the function Vðx, yÞ and its continuation eVVðx, yÞ as well as functions
of ðx, yÞ and functions of ðz, �Þ.
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Clearly, integral (4) hardly can be computed for an arbitrary function f z0, �0ð Þ.
However, all required information can be obtained from singular parts of the deriva-
tives @V=@z and @V=@�. These singular parts can be computed in terms of the
so-called Schwarz function (see [14–16]). We recall that the Schwarz function S zð Þ is
defined as a solution of the equation

P z, �ð Þ ¼ 0 ð5Þ

with respect to �, where (5) is a complexified equation of � in the characteristic variables
z, �ð Þ (see equation (1) above). We also need the inverse of the Schwarz function, eSS �ð Þ,
that is defined as a solution of (5) with respect to �. Since the polynomial P
has real coefficients in the variables x, yð Þ, one can easily verify that the following
relation holds:

eSS �ð Þ ¼ S ���
� �
:

Differentiating integral (4) with respect to z, we obtain

@V

@z
z, �ð Þ ¼

1

8�i

Z
�

f z0, �0ð Þ dz0 ^ d�0
z� z0

¼
1

8�i

Z
�

d
F1 z0, �0ð Þ dz0

z� z0

� �
, ð6Þ

where F1 z0, �0ð Þ is any function satisfying the following condition:

@F1 z0, �0ð Þ

@�0
¼ f z0, �0ð Þ:

Using the Stokes formula, we arrive at the relation

@V

@z
z, �ð Þ ¼

1

8�i

Z
�

F1 z0, �0ð Þ dz0

z� z0
, ð7Þ

where � is considered as a one-dimensional homology class in the complex-analytic
surface �C defined by (5). Solving (5) for � and substituting it into integral (7), one
obtains

@V

@z
z, �ð Þ ¼

1

8�i

Z
�

F1 z0,S z0ð Þð Þ dz0

z� z0
, ð8Þ

where � is again the contour in the complex plane Cz coinciding with the boundary
of the domain � (here we identify the plane Cz with the real plane R

2
ðx, yÞ with the

help of the relation z ¼ xþ iy).
We emphasize that the relation (8) was obtained for values of z lying in the comple-

ment of the domain � in the complex plane Cz (or, what is the same, in the real plane
R

2
ðx, yÞ). To obtain the continuation of this function inside �, we change this contour
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to the contour � encircling both the domain � and the point z, but containing no
singular points of function S z0ð Þ lying outside � (see figure 2).

The residue theorem shows that

@V

@z
z, �ð Þ ¼

1

8�i

Z
�

F1 z0,S z0ð Þð Þ dz0

z� z0
þ
1

4
F1 z,S zð Þð Þ ¼

1

4
F1 z,S zð Þð Þ þ�1 zð Þ,

where �1 zð Þ is holomorphic in the domain �. This expression describes all the
singularities of continuation @V=@z 2 inside the domain �.

Similarly, one can obtain an expression of the derivative @V=@�,

@V

@�
z, �ð Þ ¼

1

4
F2

eSS �ð Þ, �
	 


þ�2 �ð Þ,

where �2 �ð Þ is a regular function in � and F2 z, �ð Þ is a function satisfying the relation

@F2

@z
z, �ð Þ ¼ f z, �ð Þ: ð9Þ

In what follows it will be convenient to fix the choice of the function F2 z, �ð Þ in the
following way:

F2 z, �ð Þ ¼ F1 ���, �zz
� �

: ð10Þ

2 The derivative @V=@z plays a crucial role in the investigation of singularities of continuation of potential V
inside the domain �. This derivative is known in the Russian geophysical literature as a complex vector of
gravitational field (see, e.g., [6]).

z

γ

Γ

sing (S)z

Figure 2. Changing the contour of integration.
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One can verify that this function satisfies (9) for any function f, which is real-valued as
far as (x, y) are real. Thus, up to a regular function in �, one has

V z, �zzð Þ ¼
1

4

Z
F1 z,S zð Þð Þ dzþ

1

4

Z
F2

eSS �ð Þ, �
	 


d�

����
�¼ �zz

¼
1

4
Re

Z
F1 z,S zð Þð Þ dz:

We conclude this section with the following remark:

Remark 1 The location of singularities of the continued potential is uniquely deter-
mined by the Schwarz function S zð Þ, i.e., by the boundary @�, while (as it is shown
below) the geometry of admissible cuts depends on the mass density f x, yð Þ as well.

3. Investigation of admissible cuts and local structure of mother bodies

As we already mentioned, a mother body consists of singularities, sing Sð Þ, of conti-
nuation V and a set of cuts determining a single-valued branch of V. Each cut included
into the set must be admissible, i.e., the limit values of this branch on both sides of
the cut must coincide with each other. In other words, an admissible cut is the set
of zeros of the variation of the potential V along some element, l, of a fundamental
group

�1 �nsing Sð Þ, z0
� �

of domain �nsing Sð Þ with a base point z0 lying on the curve �. The loop l determining
the element of the fundamental group is shown in figure 3.

Γ

z

z 0

l

Figure 3. Definition of an element of a fundamental group.
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This leads us to the following definition:

Definition 3 A cut c is called admissible with respect to the element

l 2�1 �nsing Sð Þ, z0
� �

if and only if varl V jc¼ 0.

Remark 2 All considerations in this section will be carried out on the real plane R2
ðx, yÞ.

We shall use here the characteristic coordinates z, �ð Þ, so that the equation of the real
space is � ¼ �zz.

Using the results obtained in the previous section, we can describe the set of
admissible cuts as the set of integral curves of a certain vector field in the plane Cz.
To do this, we represent any vector tangent to the real space as a complex number c.
Then, in terms of z and � the derivative Dc of the function V z, �ð Þ along the vector c
is given by

DcV z, �zzð Þ ¼ c
@V

@z
z, �zzð Þ þ �cc

@V

@�
z, �zzð Þ �

1

4
cF1 z,S zð Þð Þ þ �ccF2

eSS �zzð Þ, �zz
	 
h i

modulo regular in the domain � functions. Taking into account (10), the latter formula
can be rewritten as

DcV z, �zzð Þ �
1

2
Re cF1 z,S zð Þð Þ½ �: ð11Þ

Let l be, as above, some element of the fundamental group �1 �nsing Sð Þ, z0ð Þ. Then,
taking the variation of the right- and left-hand sides of relation (11), we arrive at the
equality:

Dcvarl V z, �zzð Þ ¼
1

2
Re c varl F1 z,S zð Þð Þ½ �

(regular terms vanish under the action of the operator varl). Equating to zero the
right-hand side of this relation, we obtain the equation for the vector field c:

Re c varl F1 z,S zð Þð Þ½ � ¼ 0: ð12Þ

Integral curves of this vector field are the lines, on which function V z, �zzð Þ is a constant.
So, any admissible cut is an integral curve of the vector field c. Note also that singular
points of this vector field are singular points of the Schwarz function S zð Þ and points, at
which function F1 z,S zð Þð Þ vanishes.

Now we must derive an ‘‘initial conditions’’ for integral curves of the vector field c, so
that they are admissible cuts (that is, zero levels of the function F1 z,S zð Þð Þ). To do this,
it is necessary to investigate a local structure of admissible cuts in neighborhoods of
singularities of the Schwarz function S zð Þ, because admissible cuts have the singular
points of S zð Þ as their origins. We shall carry out such an investigation in the generic
position. In other words, we suppose that the singularity, z0, is brought from a finite
regular characteristic point of the manifold �C, and the tangency between this singular
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point and the corresponding characteristic ray is quadratic. Under such requirements
the function S zð Þ at point z0 has the singularity of the square root type:

S zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
z� z0

p
S1 zð Þ þ S2 zð Þ, ð13Þ

where S1 zð Þ and S2 zð Þ are regular functions of z in a neighborhood of the point z0.
Denoting by �0 ¼ S z0ð Þ ¼ S2 z0ð Þ the value of the Schwarz function at the singular

point z0 and expanding the function F1 z, �ð Þ into the Taylor series at point z0, �0ð Þ,
one has:

F1 z, �ð Þ ¼
X

j�0, k�0

bjk z� z0ð Þ j � � �0ð Þ
k: ð14Þ

Substituting (13) into (14) and expanding the functions S1 zð Þ and S2 zð Þ into the Taylor
series at the point z0, up to the terms regular near z0, one obtains:

F1 z,S zð Þð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffi
z� z0

p X1
j¼0

cj z� z0ð Þ j:

Using the relation @F1 z, �ð Þ=@� ¼ f z, �ð Þ, it is easy to verify that

c0 ¼ f z0, �0ð ÞS1 z0ð Þ:

Note that z0, �0ð Þ is the characteristic point of the surface �C generating the singularity
z0 of the Schwarz function S zð Þ, so that the singularity of the function @V=@z (as well as
@V=@�) is determined by values of the function f at characteristic points of �C. As we
shall see below, the number c0 determines the behavior of admissible cuts in a neighbor-
hood of the point z0. Hence, the set of admissible cuts depends on the mass density
f x, yð Þ (unlike the set of singularities of the potential V x, yð Þ, which is determined by
the geometry of the domain � only).

Now we have

V z, �zzð Þ ¼
1

2
Re

Z
F1 z,S zð Þð Þ dz �

1

2
Re

2

3
c0 z� z0ð Þ

3=2 1þ  zð Þð Þ

� �
,

where  zð Þ is a regular near z0 function vanishing at this point. Taking the variation of
both sides of the latter relation, we arrive at the formula

varl V z, �zzð Þ ¼
1

2
varl Re

2

3
c0 z� z0ð Þ

3=2 1þ  zð Þð Þ

� �
:

Let us introduce the polar coordinates in a neighborhood of the point z0:

z ¼ z0 þ �e
i’:

Then the equation of admissible cuts near this point looks

varl V z, �zzð Þ ¼
2R

3
�3=2Re e

3i’
2 þi�ð Þ 1þ  z0 þ �e

i’
� �� �h i

¼ 0,
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where R and � are determined by the relation c0 ¼ Rei�, or

cos
3’

2
þ �

 �
Re 1þ  z0 þ �e

i’
� �� �

� sin
3’

2
þ �

 �
Im 1þ  z0 þ �e

i’
� �� �

¼ 0: ð15Þ

Suppose that � is small, and consider (15) as an equation for ’. Since the function
 z0 þ �e

i’
� �

is of order O �ð Þ, the principal term in this equation gives

cos
3’

2
þ �

 �
¼ 0, or ’ ¼ ’k ¼

�

3
�
2�

3
þ
2�k

3
, k ¼ 0, 1, 2: ð16Þ

The derivative of the left-hand side of equation (15) with respect to ’ does not vanish
for �¼ 0 at each point ’k, therefore this equation has the unique smooth solution
’ ¼ ’k �ð Þ near �¼ 0 such that ’k 0ð Þ ¼ ’k. Each of these solutions determine an admis-
sible (with respect to a small loop l encircling the point z0) cut near the point z0. So, the
initial condition for an admissible cut near the singular points is:

lim
�!0

’ �ð Þ ¼ ’k,

where ’k are given by formula (16). The above consideration can be summarized in the
form of the following theorem.

THEOREM 1 Each admissible cut is an integral curve of the vector field c determined by
relation (12). Moreover, under the requirements of a generic position, in a neighborhood of
each branch point of the Schwarz function there exist three directions of admissible cuts
given by relation (16). These cuts are positive or negative depending on the sign of the
derivative with respect to ’ of the left-hand side of relation (15) at the point
’ ¼ ’k, � ¼ 0ð Þ.

4. Algorithm of constructing mother bodies

Now we are in the position to formulate an algorithm for constructing a mother
body for a given heavy body �, fð Þ assuming that the following is true:

(1) The boundary � of the domain � is an algebraic curve.
(2) The function f x, yð Þ is continuable up to an entire function in the complex

space C
2
ðx, yÞ.

(3) The singularities of the continuation of the potential inside the domain � are not
more than that of logarithmic type.

The last requirement can be verified using the formulas for singular parts of the
continuation of the potential obtained in section 2.

The suggested algorithm consists of the following four steps:

Step 1 Determining singularities of the Schwarz function lying inside the domain �
(that is, the set of singularities of the continuation of the potential V x, yð Þ into the
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domain initially occupied by masses). This step simply requires solving algebraic
equations describing the boundary in terms of the characteristic variables z, �ð Þ.

Step 2 Constructing a set of admissible cuts, Ca, for each simple loop with a base
point z0, surrounding one or more of the branch points found in Step 1. To carry
out this step one has to compute integral curves of the vector field c constructed
above. The initial conditions for this integral curves are defined as follows:

For a loop l encircling a single singular point, (e.g., loops l1 or l2 in figure 4) the initial
condition is given by the local structure of the set of admissible cuts in a neighbor-
hood of this point.

For a loop surrounding two singular points (see loop l3 in figure 4), the initial
condition for the set of admissible cuts is given by the intersection, A, of admissible
cuts (cuts c1 and c2 in figure 4) corresponding to each of these points.

For admissible cuts corresponding to a loop encircling n singular points, initial
points can be found as intersections of admissible cuts corresponding to a loop l1
encircling the first n� 1 of these points and the cuts corresponding to the loop l2
surrounding the last of them.

Obviously, the described process will be completed in a finite number of steps.
Certainly, if there exist singular points of the vector field c different from singular
points of the Schwarz function (that is, points of singularity of c determined by zeros
of the function F1 z,S zð Þð Þ; see relation (12)), then one has to investigate the local struc-
ture of the vector field c near such a point. This can be done using the formula (12)
defining the field c.

Step 3 Selecting a set of bounded admissible cuts Cb � Ca, such that Cb ��.
This step can be fulfilled simply by deleting those edges from the graph Ca

constructed in the previous step, that intersect the complement of the domain � in
the plane R

2
ðx, yÞ.

Γ

z

z 0

l

l

lc
c

A3

2

1

1

2

Figure 4. Non-elementary loop.
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Step 4 Constructing a mother body for �, fð Þ. This can be done by examining each
maximal tree of the constructed graph Cb (or of each maximal forest, if this graph is a
non-connected). If all cuts of that maximal tree are positive, then it determines a mother
body for �, fð Þ.

In the next section we employ this algorithm for constructing mother bodies for
specific domains.

5. Examples

For simplicity, we suppose that the mass density of the heavy body is identically equal
to 1 for all examples considered below. Thus, all mother bodies are uniquely determined
by the geometry of the domain �.

5.1. An ellipse

Let

� ¼
x2

a2
þ
y2

b2
� 1

� �

be an ellipse with the half-axes a and b, a>b (see figure 5). Then the Schwarz function
is given by

S zð Þ ¼
a2 þ b2

d 2
þ
2ab

d 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � d 2

p
,

z

d−d

b

a

Γ

Figure 5. Admissible cuts for an ellipse.
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where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
is the half of the interfocal distance. In this simple case the

complex field vector @V=@z can be explicitly computed using the formula (8):

@V

@z
z, �ð Þ ¼

1

8�i

Z
�

S z0ð Þ dz0

z� z0
¼

ab

2d 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � d 2

p
� z

	 

:

Similarly,

@V

@�
z, �ð Þ ¼

ab

2d 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � d 2

p
� �

	 

:

Therefore, the potential V (up to the constant term) is given by:

V z, �ð Þ ¼
ab

d 2
Re z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � d 2

p
� d 2 ln zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � d 2

p	 

� z2

n o
þ const:

Since the function

varl
@V

@z
z, �ð Þ ¼

ab

d 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � d 2

p

does not vanish at any point except the singular points of the Schwarz function, points
�d, the vector field c determining the set of admissible cuts has singularities at these
points only. Let us determine the directions of admissible cuts originating, say, from
the point z¼ d. Using the formula (16) one obtains

’k ¼
�

3
þ
2�k

3
, k ¼ 0, 1, 2,

since c0 ¼ 2ab=d 2 and, hence, �¼ 0. Similarly, the directions of admissible cuts at
z ¼ �d are

’k ¼ �
�

3
þ
2�k

3
, k ¼ 0, 1, 2:

One of the admissible cuts is the interfocal segment, while the rest of the four cuts go to
infinity in the plane R2

ðx, yÞ. Hence, the picture of the admissible cuts is such as it is drawn
in figure 5. So, the finite graph mentioned in Step 3 of the algorithm formulated above
consists of the interfocal segment, and the only thing left is to verify the positivity of
this cut. The simple calculations lead us to the following expression for the mass density
(of the mother body) having the interfocal segment as a support:

� ¼
ab

d 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d 2 � x2

p
:

Since the right-hand side of this expression is a positive function of x, the interfocal
segment is the unique mother body of the ellipse uniformly filled by masses.
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5.2. A curve of the fourth order

Here we consider a heavy body �, 1ð Þ with the domain � given by

x4 þ y4 � 1

(see figure 6).
The corresponding Schwarz function is

S zð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3z2 þ 2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
z4 þ 1

pq
: ð17Þ

This function has singularities at eight points

z ¼ ei �=4þ�k=2ð Þ, k ¼ 0, 1, 2, 3,

z ¼ 2
ffiffiffi
2

p
ei�k=2, k ¼ 0, 1, 2, 3:

The last four of these points lie in the complement of the domain � and, hence, are
of no interest. The four singular points lying inside � are plotted in figure 6.

Similar to the previous example, the vector field c determining the set of admissible
cuts does not vanish at any point but for the singular points of the Schwarz function.
Let us investigate the local structure of admissible cuts in a neighborhood of each
branch point. For the point z ¼ ei�=4, due to equation (16), one has the following
expression for the directions of the admissible cuts:

’k ¼
7�

12
þ
2�k

3
, k ¼ 0, 1, 2:

c
c

c
Γ

z

1

c4
3

2

3iπ/4e
iπ/4e

Figure 6. Admissible cuts for x4 þ y4 ¼ 1.
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Here the argument � of the number c0 is equal to �3�=8. Thus, the picture of admissible
cuts is such as it is drawn in figure 6. The fact that the straight line segment connecting
points ei�=4 and e5i�=4, as well as the segment connecting e�i�=4 and e3i�=4, is an admis-
sible cut follows from the symmetry. The rest of the cuts are not contained in the
domain � and, hence, are of no interest. So, the graph mentioned in the Step 3 of
the algorithm, consists of two straight line segments mentioned above. This graph
is a tree, and the only thing rest is to verify the positivity of all the cuts included in
this graph.

Verification of the last assertion is a little bit more complicated problem than it was
in the previous example, and we shall point out the main steps of this verification.
Clearly, due to the symmetry it is sufficient to carry out this verification for one of
the four singular points of S zð Þ, lying inside �, say, for the point z ¼ ei�=4.

The expression for the sum of normal derivatives of the potential V on both sides
of the cut c1 (see figure 6) equals

De�i�=4 V�½ � þDe3i�=4 Vþ
� �

,

where Vþ and V� are values of the potential V on the upper and lower sides of the
cut c1, respectively. Here, as above, for any given complex number c we denote the
derivative in the direction of the vector c

!
2R

2. Due to formula (11), this expression
can be rewritten as

1

2
Re e�i�=4S zð Þ

� ��
þ
1

2
Re e3i�=4S zð Þ

� �þ
: ð18Þ

Let us first calculate the first summand of the latter expression up to derivatives
of functions regular near the point ei�=4 (such terms do not contribute to the final
expression). One has

1

2
Re e�i�=4S zð Þ

� ��
¼

1

2
Re e�i�=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3z2 þ 2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
z4 þ 1

pq� ��
: ð19Þ

To determine the right branches of the square roots involved into the last expression,
we perform the analytic continuation of the function (17) along the path l1 shown in
figure 7. At the origin A of this path � ¼ S zð Þ, � ¼ z ¼ 1, and, therefore, both square
roots must have positive real values. Now one can verify that the expression under
the square root on the right in (17) changes along the path ell1 shown in figure 8.

This path consists of the straight line segment 1, 2
ffiffiffi
2

p�
� of the real axis and the

segment of the ellipse

x2

8
þ
y2

9
¼ 1

lying in the fourth quarter of the plane R
2
ðx, yÞ. Extracting the square root of this

expression and multiplying the result by e�i�=4, one can see that the expression
under the Re sign on the right of (19) changes along the path l01 drawn in figure 7
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when z changes along the cut c1. Hence, the first summand in the expression (18)
is positive.

Similarly, one can see that the expression under the square root in the right in (17)
changes along the path ell2 shown in figure 8 when the point z runs along the path l2
(see figure 7). Hence, the expression under the Re sign in (18) changes along the path
l02 (figure 9), and the first summand in (18) is also positive.

So, the union of the four cuts cj , j ¼ 1, 2, 3, 4 forms the (unique) mother body of �, 1ð Þ.

3/2 3/2
22−2 −1 1

2i

i

−i

−2i

−3i

3i

l l12

−2

~ ~

Figure 8. Expression under the square root sign.

z

3iπ/4e iπ/4

C

O

B

A

l

l

2

1

e e5iπ/4 7iπ/4

e

Figure 7. Paths of analytic continuation.
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5.3. One more curve of the fourth order: Cassini oval

Here we consider a heavy body �, 1ð Þ, where the domain � is given by the equation

x2 þ y2
� �2

�2b2 x2 � y2
� �

¼ a4 � b4,

where a and b are positive constants (so-called Cassini oval). This curve consists of
two closed curves for a<b, and one closed curve for a>b. We shall investigate the
last case. This example is interesting from the following point of view. If we
compute the Schwarz function of the Cassini oval, we shall obtain the expression

S zð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2z2 þ a4 � b4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � b2

p ,

which has (inside the domain �) two singular points z ¼ �b with singularities of the
type of the inverse square root (the domain and the singular points are shown in
figure 10). This happens since these singularities are generated not by regular
characteristic points of the surface �C but by singular points of this surface.

Due to this fact, we cannot apply directly the result of the investigation of the
local structure of the set of admissible cuts obtained in section 3. However, the compu-
tations similar to those in the mentioned section show that each of the two branch
points possesses exactly two directions of admissible cuts emanating from these
points, namely ’¼ 0 and ’ ¼ �. From symmetry, it immediately follows that the
only admissible cuts for the heavy body are three segments �1,�b½ �, �b, b½ �

and b,þ1½ � of the real axis. Since only one of these segments is contained in the
domain �, the only possibility of constructing a mother body is to consider the

S

S

_

+

l

l

′

′1

2

e3iπ/4

eiπ/4

Figure 9. Jump of the normal derivative.
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segment �b, b½ �. Computation of the mass distribution, supported on this segment and
generating the same gravitational field as the initial body, leads us to the expression

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2x2 þ a4 � b4

p

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x2

p :

Since this expression is positive and integrable function on the segment �b, b½ �, this
segment is a unique mother body for the Cassini oval.

5.4. A rectangle

This last example shows that even in the case when we cannot use the Schwarz function
for the investigation of singularities, the above described algorithm of constructing
a mother body is applicable. Consider a heavy body �, 1ð Þ, where the domain � is a
rectangle

0 � x � a,
0 � y � b

�

in the plane R2
ðx, yÞ. Here a and b are positive constants and we suppose, to be definite,

that b<a (see figure 11).
Using relation (6) for the complex field vector, one has

@V

@z
�

1

8�i
�2z ln �zð Þ
�

� 2 a� zð Þ ln a� zð Þ

þ 2 aþ ib� zð Þ ln aþ ib� zð Þ � 2 ib� zð Þ ln ib� zð Þ
�

2(a − b

2(a

 −b b

z

− b2−(a

)2

)2

+ b
2+ b 1/2)2−(a 1/2)2

1/2

1/2

Figure 10. Cassini oval.
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and, consequently, up to the regular terms

Z
@V

@z
dz �

1

8�i
�z2 ln �zð Þ
�

þ a� zð Þ
2ln a� zð Þ

� aþ ib� zð Þ
2ln aþ ib� zð Þ þ ib� zð Þ

2ln ib� zð Þ
�
:

Hence, one has

varl

Z
@V

@z
dz

� �
¼ �

1

4
z2,

where the variation is taken over the loop l encircling the point z¼ 0. Consequently,

varl V½ � ¼ 2Re varl

Z
@V

@z
dz

� �
¼ �

1

2
x2 � y2
� �

:

So, the point z¼ 0 determines four directions of admissible cuts that emanated from
these points. Moreover, it is obviously that the lines x ¼ �y are admissible cuts.

Similarly, investigation of all other vertices of the rectangle leads to six more admis-
sible cuts, which are also straight lines that emanated from these vertices with the angles
��=4 (see figure 11). The constructed set of admissible cuts determines two open rec-
tangles c1 and c2 with hanged vertices at those of the rectangle. However, these two
cuts do not determine a single-valued branch of the potential V. One has to take into
consideration the admissible cuts corresponding to the loop l0 encircling the two left
(or the two right, which leads a posterior to the same result) vertices of the rectangle.

b

a

z
l′

c c
21

0

Figure 11. Admissible cuts for a rectangle.
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The computation of the variation along this loop gives

varl0 V½ � ¼ b y�
b

2

 �

and, hence, the admissible cut corresponding to this loop is the straight line y ¼ b=2.
Adding the segment of this straight line connecting the two angular points of the
open rectangles c1 and c2, we arrive at the system of cuts (shown in figure 11 by
thick lines) which determines a single-valued branch of the potential V. We leave to
the reader the verification of the fact that this system consists of positive cuts
(see also [3,4,9,11]), so that the mother body of the rectangle occupied by the uniform
mass distribution has the support shown in figure 11.
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