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Abstract 
 

Many epidemiological studies involve analysis of clusters of diseases to infer 
locations of environmental hazards that could be responsible for the disease. This 
approach is however only suitable for sedentary populations or diseases with 
small latency periods. For migratory populations and diseases with long latency 
periods, people may change their residential location between time of exposure 
and onset of ill health. For such situations, clusters are diffused and diluted by in- 
and out-migration and may become very difficult to detect. One way to address 
the problem of diffused clusters is to include in analyses not only current 
residential locations, but all past locations at which cases might have been 
exposed to environmental hazardous. In this paper, we assume that a person's 
residential history provides such information and represent it through a discrete 
geospatial lifeline data model. Clusters of similar geospatial lifelines represent 
individuals who have similar residential histories—and therefore represent people 
who are more likely to have had similar environmental exposure histories. We 
therefore introduce a lifeline distance (dissimilarity) measure to detect clusters of 
cases, providing a basis for revealing possible regions in space-time where 
environmental hazards might have existed in the past. The ability of the measure 
to distinguish cases from controls is tested using two sets of synthetically 
generated cases and controls. Results indicate that the measure is able to 
consistently distinguish between populations of cases and controls with 
statistically significant results. The lifeline distance measure consistently 
outperforms another measure which uses only the distance between subjects' 
residences at time of diagnosis. However, the advantages of using the entire 
residential history are only partly realized, since the ability to distinguish between 
cases and controls is only moderately better for the lifeline distance function. 
Future work is needed to investigate modifications to the inter-lifeline distance 
measure in order to enhance the potential of this approach to detect locations of 
environmental hazards over the lifespan. 
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1. Introduction 
 
Many aspects of human health are related directly to exposures to environmental toxins or 
hazards. Some of these environmental factors, such as food or tobacco smoke, relate to 
individual lifestyle and habits. Others, such as radon or air pollution, however, relate to the 
external human environment, either in buildings or outdoors in geographic space. Often, the 
locations or spatial concentrations of these environmental health hazards are not known, but 
spatial clusters or "hot spots" may nevertheless be found through spatial analysis and mapping of 
cases. When place of residence at the onset of ill health is used as the basis for mapping, the 
residential location is in effect being used as a surrogate for environmental exposure. However, 
attempts to relate disease clusters to fixed geographic environmental hazards are weakened by 
the fact that many people change their residential location through their life course: current 
residence may not provide the best estimates of lifetime exposure to environmental risks. Many 
health problems require long exposures to risk factors, and many, especially numerous forms of 
cancer, have long latency periods between exposure and onset of symptoms or health problems 
(Rogerson and Han, 2002).  
 
Discovering the environmental factors responsible for hot-spots and clusters for such diseases 
(e.g. many forms of cancer) is difficult because mobile populations tend to break up clusters of 
and obscure patterns of observable cases on account of different mobility patterns (Mark et. al., 
2000). Since human mobility rates influence exposure estimates and risks, mobility at different 
time scales (hour, day, year, life) corresponds to different categories of health problems. For 
example, for an emerging infectious disease such as SARS, details of the mobility of an infected 
person are needed on very fine temporal and spatial scales. On the other hand, for forms of 
cancer exhibiting relatively longer latency periods, hour by hour mobility may be irrelevant; 
broader patterns of residential or work-place history may be more critical to the identification of 
relevant environmental risk factors.  
 
As can be deduced from the above discussion, the spatial distribution of cases of diseases at the 
time of diagnosis within non-sedentary populations does not provide sufficient information to 
estimate locations and times of environmental exposures. But in practice, most attempts to 
estimate environmental health factors related to cancer hot-spots or clusters still rely solely on 
place of residence at the time of disease onset and neglect the impact of the rate of mobility. A 
better alternative is to use the complete residential histories (if available) of people—by 
recording a person's residential history, it becomes possible to account for health risk exposures 
at past residential locations. The basic hypothesis then is that compared to snap-shot information 
of residences at time of diagnosis, accounting for the full spatio-temporal history of cases 
infected with diseases with long latency periods, is a more informed analytical framework for 
migratory populations. If cases were clustered in the past, the locations of those clusters can be 
inferred from residential life-histories, even if most of the people moved away from the area of 
exposure before becoming ill. 
 
In this paper, we use geospatial lifelines (Mark and Egenhofer, 1998) to model residential 
histories within a geographic information systems framework. Clusters of geospatial lifelines 
represent individuals who have similar residential histories—and therefore represent people who 
are more likely to have had similar environmental exposure histories. A lifeline data model 
allows direct comparison of the space-time behavior of cases; measuring distances between 
lifelines will lead to the inference of potential clusters in the past which can be then be subjected 
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to more rigorous two-dimensional cluster analysis techniques (Besag & Newell, 1991; Kulldorff, 
1997). Any measure of distance applicable to lifelines, if correlated with health outcomes, may 
reveal locations of common risk factors that could in turn help reveal causal factors. Such space-
time cluster analysis of lifelines based on residential address histories will be useful in the 
epidemiological investigation of environmentally induced diseases that need cumulative 
exposure or exhibit long latency periods.  
 
In the following sections, we first discuss the ontological underpinnings of geospatial lifelines 
and residential histories. Next, we present a lifeline distance function that we subsequently use 
for a synthetic dataset to measure the similarity of geospatial lifelines. Since this is an 
experimental study to assess the efficacy of a new statistic (namely lifeline similarity), we do not 
use authentic data; instead we rely on simulations to both produce populations with realistic 
residential mobility and to expose them to highly-simplified spatially-localized risk factors. 
Evaluation of the distance function involves consideration of its ability to detect differences 
between populations of cases and controls, which would result in the real world due to different 
kinds, configurations and parameters of environmental risk factors; without real-world test data 
that includes a known source of exposure, the effectiveness of the method can be most readily 
assessed using simulation. 
 
 
 

2. Ontology of Geospatial Lifelines 
 
The lifeline data model (figure 1) is inspired by time-geography (Hägerstrand, 1970, 1976; Parks 
& Thrift, 1980); it is a representation of an individual’s movement pattern in geographic space; 
Miller (1991) implemented many time-geography principles within a GIS environment. The term 
"geospatial lifeline" has recently been proposed to refer to the type of data that may be modeled 
using time-geography principles: 
 

"A geospatial lifeline is here defined to be the continuous set of positions 
occupied by an object in geographic space over some time period. Geospatial 
lifeline data consist of discrete space-time observations of a geospatial lifeline, 
describing an individual's location in geographic space at regular or irregular 
temporal intervals." (Mark and Egenhofer, 1998).  
 

Most of the work on moving object trajectory data models in the past (Vlachos et. al., 2002a, 
2002b; Yanagisawa, 2003) has been limited to the technical considerations of storage, retrieval 
and computational complexity, with little consideration of the actual phenomena being modeled. 
In this paper, however, explicit attention will be accorded to the ontology of the phenomena 
being represented by the geospatial lifeline. This provides insights into the exact nature of an 
address history and how it is related first to a person's movement in space-time and then in turn 
to environmental exposures.  
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Figure 1. Visualization of 3 lifelines in the space-time cube—with the x- and y-axes 
representing a 2-dimensional projection of geographic space and the oriented z-axis 
representing the progressing time. 

 
 
 
Objects: Objects comprise a very important part of our world. Although one might question the 
existence of an object at the molecular level, objects often exist unambiguously at the perceptual 
level of everyday action and reasoning (Gibson, 1979). Detached objects have complete closed 
boundaries that separate them from their environments. Individual organisms, including people, 
are detached objects in this sense. Attached objects may be conceptualized as being objects, but 
can be modeled and represented as parts of the objects to which they are attached. 
 
Mobile Objects: Physical objects normally are considered to exist continuously in space and 
time. This means that if they move, they are assumed to occupy a connected series of 
intermediate positions between any two observed locations. If the object more or less maintains 
its shape as it moves, then we can separate the form from the location, and represent the 
locations of the object by the location of its centroid. As the object moves, the centroid must also 
occupy a continuous sequence of positions in space-time. 
 
Addresses: It is important to note a number of things about the ontological status of a person's 
legal address. A postal address in the United States and in many other countries is often, but not 
always, a unique identifier of a dwelling place or a building. In many societies, people normally 
have legal or home addresses; but since people do not normally spend all of their time at home, a 
person's address is not a perfect surrogate for his location. People's absences from their legal 
addresses occur at a variety of time scales. On a daily basis, many people in developed countries 
go to work or school five days a week, shop regularly, visit places for vacation or business 
purposes, etc.. They may also go away from home for extended periods, such as for higher 
education or military service, without changing their legal addresses.  
 
Residential History Data. Some comment is needed on the actual residential history data that 
are being collected in cancer studies. For example, our colleague Professor J. Freudenheim and 
her research group are conducting studies of breast cancer, and are including potential impacts of 
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environmental exposure through spatial and spatio-temporal analysis (cf. Han, 2002; Bonner et 
al., 2003). In these studies, cases and controls were asked to list all of their past residences along 
with other background information. Addresses were recalled from memory, and the quality of 
early life addresses might be somewhat suspect. Subjects were asked to list the start year and end 
year for each residence, which means that two (or more) addresses appear to apply to the entire 
year during which the move occurred. Such data characteristics would have to be taken into 
account when applying the measures presented in this paper to real data.  
 
Differences in Ontology of Mobile Objects and Legal Addresses. The ontology of address or 
legal address histories is not the same as the ontology of moving objects. This is not just a matter 
of granularity, scale, or resolution as some have framed the problem in the past (Hornsby and 
Egenhofer, 2002). The geospatial lifeline for a real, bona fide, continuously existing object must 
be continuous (connected) in space-time. But a person's legal home address history might have 
gaps and perhaps even overlaps (two legal addresses at the same time). Different authorities 
might have different standards for legal address. Whereas moving objects move at speeds limited 
by the laws of physics and in practice by transportation technologies, a legal address can move 
great distances instantaneously. When a person moves as a physical object, he or she must 
occupy, however briefly, a connected set of places in between; whereas it would be inappropriate 
to think that a person's home address occupies positions in between the end points when the 
person move their residence. The address therefore refers to a particular place, but the legal 
address is a fiat entity and a virtual place. A residential address history is not merely a 
discretization or sample of their history as a mobile physical object. 
 
 
 

3. Measures of Similarity between Geospatial Lifelines 
 
The main goal of the research reported in this paper is to develop a similarity measure for 
geospatial lifelines, and to test the power of that measure to detect differences between cases and 
a control group. The measures selected should be consistent with the ontology of residential 
histories of mobile populations. As noted earlier, trajectories are a special case of lifelines with a 
particular ontology, based on continuous motion, a property not found in residential histories. 
Hence it is not always appropriate to employ existing trajectory similarity operators for 
residential history data. Nevertheless, research on trajectory similarity is a good starting point for 
understanding the advantages and disadvantages inherent in different kinds of distance or 
similarity functions for spatio-temporal sequences.  
 
A measurement theory for time geography has been proposed by Miller (in press). Yanagisawa 
et al. (2003) and Vlachos et al. (2002a, 2002b, 2003) have previously introduced similarity 
operators for trajectory data. Such operators have been used to measure similarity in diverse 
contexts: stock market indices, animal movements, vehicular navigation paths, mobile phone or 
credit card usage, and many other kinds of temporally varying data. The design of similarity 
operators for trajectory data is motivated by one of the fundamental issues in data mining using 
time-series data: finding sequences which partially or fully match other sequences generally 
provided by the query (Park et al., 2000). In fact, time-series based similarity operators have 
been designed not only for spatio-temporal data but also for sequences defined in 
multidimensional attribute space (Lee et al., 2000; Keogh et al., 1999; Keogh, 1997; Das et al., 
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1997). In a data mining context, the design and success of such similarity functions is contingent 
not only on their ability to return the nearest neighbors (closest matches), but also on their 
algorithmic complexity and processing time.  
 
 
3.1 Distance Functions 

While similarity can be measured directly, it is often more intuitive to measure first the distance 
(conceptual or physical) and then obtain a similarity measure through an inverse function. 
However, measuring distance between complex objects is often itself a complicated process in 
the context of data models used in modern information systems (cf. Okabe and Miller, 1996). 
Many desirable properties for distance or similarity measures have been suggested by respective 
authors, but any one function can generally satisfy only some and not all of those properties. 
Hence the application, more than anything else, decides the design and choice of a particular 
distance function.  
 
One property that is always desired, but sometimes difficult to achieve, is that of a metric— a 
function that gives a generalized scalar distance between two objects. With a metric distance 
function, it is possible to distinguish objects on an interval scale of measurement and then 
develop indexing schemes for databases. For a mapping d: UXU→IR , where U is the set of 
objects or data vectors, IR   is the set of real numbers, and x, y and z are data vectors defined in IR k , 

the metric function d(.,.) must satisfy the following four properties (Duda et al., 2001): 
i) Non-negativity: d(x, y) ≥ 0; 
ii) Reflexivity (uniqueness): d(x, y) =  0, iff  x = y; 
iii) Symmetry: d(x, y) = d(y, x); 
iv) Triangle Inequality: d(x, y) + d(y, z)  ≥  d(x, z). 

 
If d is such a distance metric, ln(d) and –ln(max(d) – d) can also be treated as (metric) distance 
functions; 1/d and exp(-d) assume the status of  (metric) similarity functions; if d is limited to 
finite values only, then 1 – d/max(d)  and           are also similarity functions. 
There have been many measures of similarity suggested in the past to calculate d(.,.)—the best 
known of all metrics is the Minkowski metric.  
If x = (x1…, xi,…..,xm)T and y = (y1…,yi,…..,ym)T are two real vectors in IR k , the Minkowski metric 
is calculated as follows:   
                           
                   (1)  
 
For p = 2, this yields the familiar Euclidean distance between vectors; for p = 1, the Manhattan 
or city-block distance is obtained and for the asymptotic case (e.g. Lt(p) → ∞), we get the 
maximum value metric: maxi ( | xi - yi | ). For p < 1, this measure ceases to be a metric, because 
the triangle inequality is no longer valid. Veltkamp and Hagedoorn (2000) review many other 
properties and measures of similarity for pattern matching, most of which have generic appeal 
and can be adapted for a wide variety of application contexts. 

3.2 Measuring Lifeline Distances 

In this paper we introduce a lifeline distance function based on the Minkowski metric for 
measuring the distance between two lifelines. Proximity in space and the temporal duration of 

d/max(d) -1 
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the proximity are the two essential parameters for the lifeline distance function. To incorporate 
both, a time-weighted distance function is described below. 
            
                                                                   
 
 
                                                                           (2) 
 
 
 
 
 
where, ti and tj refer to times of successive moves by either lifeline; t0 is the time at which the 
lifelines started overlapping; tn is the time of diagnosis; tj – ti is the duration that two people were 
separated by the distance between two location vectors si = (xi, yi) and sj = (xj, yj); M2 is the 
Euclidean distance operator (or a special case of the Minkowski metric for p = 2). 
  
This distance function d1 is defined such that it provides an intuitive way to measure the distance 
between two lifelines. The function essentially is a weighted average of successive separation 
distances between two residences, where the weights are the durations a particular separation 
distance was maintained before either one or both residences were changed.  The range of this 
function spans from a minimum of 0 to the maximum physical distance dm manifestable in the 
geographic domain of interest. Researchers interested in generic similarity measures, rather than 
in distances, can additionally apply mapping functions like exp(-d) or  1-d/dmax  to force the 
function to evaluate always between 0 and 1.  
 
It is necessary to point out here that the distance function introduced in equation 2 is not a metric. 
For example, if this function is used to measure distances between lifelines, two separate 
individuals (e.g. parent and child) with different movement histories before start of overlap at t = 
t0 but identical movement histories after start of overlap, will have zero lifeline distance between 
them; hence the reflexivity (property (ii) above) is not satisfied.  
 
Hence, equation 2 can be further modified, if desired, to penalize the time of non-overlap to 
distinguish between identical lifelines and partially identical lifelines (e.g. identical after start of 
overlap). The modified version of this distance function is defined in equation 3 below. 
 
 
 
                   (3) 
 
 
 
 
 
 
T is the total duration of time for which either of the lifeline existed but did not overlap with the 
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points in the study area. In future, the measure could be further modified to give differential 
weights to different time periods.  
 
The expected distance between lifelines is generally difficult to calculate theoretically if the 
study area is not of a regular geometric shape. Even for regularly shaped areas such as rectangles, 
the mathematical formula for the expected distance between points is difficult to solve exactly 
(Lazoff & Sherman, 1994). Hence, in practice, the expected distance can be calculated through 
Monte Carlo simulations, by randomly generating a large (N > 1000) number of points in the 
study area and creating a distribution of the distances between pairs of randomly selected points; 
the mean of the distribution will approximate the expected distance closely if the sample size is 
large. Note that if lifelines belong to the same cohort, the second terms in both the numerator and 
denominator evaluates to zero (i.e. T = 0) in which case d2 resolves to d1. 

 
 

4. Simulation of Lifelines 
 

4.1 Why Simulation? 

While using authentic real-world data would have benefits, synthetic (simulated) data offer a 
better basis for understanding the behavior of a new method of analysis, because they can be 
generated for a wide range of parameter values and forced to operate in specific regions in 
parameter space. Simulation allows the researcher to control the 'true' pattern of environmental 
influences on health, thus enabling the verification and calibration of methods to infer such 
differences given only residential history data on cases and controls. Similarly, the efficacy of 
the lifeline distance function in clustering similar lifelines (i.e., cases due to the same 
environmental hazard) as opposed to dissimilar lifelines (i.e., controls who have not been 
exposed to the same hazard), must be evaluated rigorously for a wide range of space-time 
configurations of exposures and lifelines, and this would not be possible with real data. 
Hägerstrand (1970) himself suggested that "reasonably good simulations should improve our 
ability to survey whole systems and help to reduce the considerable trial and error component in 
applications," and Parks and Thrift (1980) stated that "simulation is seen as a means to a sharper 
appreciation of the possibilities open to individuals and population aggregates and is generally 
preferred to inductive, sample survey techniques".  
 
There are many other practical constraints that make use of simulated data attractive to us. 
Residential histories generated through interviews and questionnaires may have missing 
components due to failing memories or incomplete surveys, in which case either the distance 
function has to be modified to reason with incomplete histories, or residential histories would 
have to be interpolated before the distance function can be applied without modification. 
Obtaining samples may also be prohibitive economically, since considerable resources are 
required to conduct surveys of sample sizes appropriate for statistical analysis. Also, the measure 
of similarity would have to be evaluated with many different samples from different mobile 
populations to achieve significant confidence about predictions made regarding the likelihood of 
a test subject as a potential case.  
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Lastly, in the bio-medical domain, real case-control data carry serious confidentiality constraints. 
Colleagues conducting medical research prefer not to provide access to such data until the 
potential utility of analysis methods has been demonstrated. Consequently, we use only synthetic 
data to specifically control where to evaluate the lifeline distance function in the exposure-
lifeline parameter space.  
 
 

4.2 Simulation Procedure 

In this study, we employ two different methods for simulating populations of lifelines, one based 
on successive residential locations being completely independent and random within the study 
area (a typical 'null hypothesis' approach), and the other based on a modified random walk model 
based on an exponential model of 'migration move distances' observed in the US for migratory 
populations (Rogerson et al, 1993). We generated training datasets for both kinds of lifeline 
patterns.  
 
In order to test the similarity measures, we also must simulate environmental exposures. In this 
paper, we have adopted an extremely crude and unrealistic model of exposure and ill health. 
Exposures at work place and from foods and similar sources are ignored, and all exposures to the 
simulated risk are assumed to be at the place of residence. Furthermore, for this initial study, the 
risk area is considered to be a circle of fixed location and radius. Lastly, we assume a 
deterministic relation between exposure and ill health—all simulated individuals who live in the 
risk area for more then the arbitrary threshold of years are classified as cases, and all those 
individuals who for any reason do not meet the criterion are classified as controls. 
 
Each model of residential mobility was then combined with three different variations on the 
exposure model. The lifeline distance function defined in equation 3, was then used to measure 
the expected case-to-case, case-to-control, and control-to-control lifeline distances. Results are 
analyzed to show that the lifeline distance function is more efficient in distinguishing cases from 
controls, than snap-shot based two-dimensional analysis of distances at the time of diagnosis.  
 
 
4.2.1 Random-Positions (RP) Migration Model  
 
This method of simulation assumes that with each change in residence, a person moves to any 
other point in the study area with equal probability. All individuals are equally likely to move in 
a given time period; all lifelines and all moves within a lifeline are independent of each other and 
the direction and distance of the move is constrained only by the extent of the study area. In the 
simulation, the probability of a move is evaluated only once each year; hence the minimum 
temporal granularity is one year. The pseudo-code in Fig. 2 was used to generate random 
lifelines for a rectangular shaped study area. The pseudo code ensures that no location or move 
time is recorded twice for a lifeline, that the moves are ordered in increasing temporal order and 
that all locations are generated from a uniform random distribution that produces all abscissa and 
ordinate values with equal probability for the defined abscissa and ordinate range. Obviously this 
is an unrealistic model of actual human behavior, but it provides a sort of null hypothesis against 
which to evaluate results obtained from a more realistic model of residential histories, discussed 
next.  
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Figure 2. Pseudo Code for generating lifelines by the Random-Positions (RP) method 

 
 
 
 
4.2.2 Exponential-Distance (ED) Migration Model 
 
This method of simulating lifelines is more realistic; it also uses a random walk model of 
residential mobility but chooses move probabilities and move distances from empirically-derived 
patterns of residential mobility in the United States taken from Plane and Rogerson (1993). The 
implementation uses a exponential model of move distances for individuals in different age-
groups described in Yang (2001). The method involves certain assumptions for making the 
simulation tractable:  

 
i) individuals either belong to the same age-cohort or their age composition has the 

same cumulative distribution as published by the Census Bureau of the United States; 
ii) the annual probability of movement is dependent on age only; (the probabilities are 

obtained from Plane & Rogerson, 1993);  
iii) for each individual's movement, the moving distance is calculated as in equation 4; 

this is derivable through simple algebraic manipulation from equation 5, 
            (4) 
             

                              (5) 
 

where b is the median moving distance, y is the cumulative probability of a move, 
and x is the moving distance (Rogerson, et al, 1993); 

(iv) the moving direction is randomly distributed between 0 to 360 degrees. 
 
All moves are restricted to end within a rectangular study area, so that if a simulated move would 
have taken the person outside the study area, that move is not made and another potential move 
is simulated. The minimum time interval between moves was set to one year, as for the random 
positions simulation. The pseudo-code that was used for simulation for this case study is 
provided in Yang (2001). 
 
 
 

b
x-

e    1    )x(F    y 

b*y)-(1 ln-   x 

for i = 1; i < #moves {    
do { 

for (xi, yi є study_area(min_x, min_y, max_x, max_y)) & (t0 < ti < tn) { 
   xi = rand(min_x, max_x);  
   yi = rand(min_y, max_y);  
   si = (xi , yi) ; 
   generate ti-1 < ti < tn; 
} 

}  while  (si, ti) != unique((si, ti) 
   lifeline_node(i) = (si, ti) 



Journal of Geographical Systems Vol. 7 (1), 2005, pp. 115-136 
 

11 

4.2.3 Environmental Exposure 
 
For purposes of this study, we generated environmental health risks through a deterministic 
model. Simulated people were labeled cases if they lived for sufficient time within an area of 
risky environmental conditions. We further simplified the model by assuming that the risk area 
was a circle based on a fixed distance from a point source of risk. The environmental risk region 
thus was modeled as a static, 3-dimensional space-time cylinder of constant radius r and height h; 
the radius r of the cylinder determines the spatial extent of the exposure at any given time and 
the height determines the duration of the exposure. Simulated people whose residential lifelines 
were generated by each of the above methods were then classified as cases or controls depending 
on their spatio-temporal interaction with the risk area. Any simulated person that spends 
cumulatively more time (not necessarily continuously) than the minimum required for 
contracting the disease is labeled as a case; a simulated person whose lifeline spends less than the 
threshold time inside the exposure cylinder is treated as a control, unaffected by the exposure.  

 
It is important to state the assumptions we have made in designing the study—we assume that 
the exposure affects all individuals similarly, and that the intensity and spatial dimensions of the 
environmental hazard remain unchanged throughout its existence. In the real world, these 
assumptions may be violated, but these assumptions greatly simplify the investigation of the 
lifeline similarity measure, without compromising much on the generalizability of the measure.  
 
 
4.2.4 Monte Carlo Simulation of Cases and Controls 
 
The Monte Carlo simulation method is applied here to generate a large number of cases and 
controls, based on each of the two migration models (random positions and exponential) for 
statistical evaluation of results. The threshold time for becoming a case could be varied 
depending on which disease is being investigated. The generation of a large number of controls 
and cases may become an issue if the ratio of the volume of the cylinder and the space-time 
study area is very small. This is because the Monte Carlo simulation method employed here 
generates a cohort of lifeline cases and controls in exactly the same way; only the random 
interaction of the lifeline with the exposure when evaluated after the full generation of the 
lifeline is used to classify it is as a case or control. Since normally the area of high risk is 
significantly small compared to the study area, the requisite number of controls can be generated 
with relative ease; on the contrary, many lifelines generally will have to be simulated and 
rejected as controls before the requisite number of cases can be generated. 
 
 
4.2.5 Simulation Parameters 
 
Both the random position and exponential-distance random walk migration models were used to 
generate lifelines for three different exposures. To simplify the modeling in this proof-on-
concept study, we chose to model only a single cohort (age at conclusion = 70 years) for all 
simulations to avoid complications arising due to inaccurate population composition when all 
age groups would be considered. Six situations were run, based on three different exposure risk 
region sizes, for each of the two migration models were generated, and the case-case and control-
control distributions of lifeline distances were calculated using equation 2. The details of all the 
simulations are as follows:  
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i) Simulation Models: Random Positions (RP) & Exponential-Distance (ED) Random 
Walk models. 

ii) Distance Function: d1(equation 2). 
iii) # Cases: 2000. 
iv) # Controls: 2000. 
v) Study Area: 200 X 200 km2 rectangle. 
vi) Age of all cases and controls at end of study period: 70 years. 
vii) Median Distance b (for ED migration model): 11.2 km. 
viii) Exposure threshold for contracting disease: 10 years. 
ix) Exposure cylinders <r, h>: <5km, 70 years>; <10km, 70 years>; <10km, 20 years>  

 
 
 

5. Results  
 
5.1 Comparing Distributions 

Both the Random-Positions (RP) and Exponential-Distance (ED) methods of lifeline simulation 
were used to evaluate the lifeline distance function d1 for a cohort of simulated subjects who all 
were born in the same year and who lived to be 70 year olds. Figures 3a, 3b display the 
distribution of the lifeline-distance statistic for 1000 pairs of cases and controls generated by the 
RP method; Fig. 3c, 3d display the same for cases and controls generated by the ED  method. 
From visual inspection, the distributions in figures 3a and 3b closely resemble a normal 
distribution while that in Fig. 3d do not. The distribution in figure 3c resembles a normal 
distribution based on visual analysis, but given the large sample size, statistics indicate that the 
distribution in figure 3c also is significantly different from normal. This can be verified from 
tables 1 & 2, where the skewness of the RP distributions is almost zero, but is much higher for 
cases under the ED model of migration.  
 
The one sample Kolmogorov-Smirnov (K-S) composite goodness-of-fit (GOF) test was used to 
test the null hypothesis that each empirical distribution was similar to a normal distribution with 
mean and standard deviation as estimated from the samples for an exposure of 10km radius and 
that had a 70 years long presence from 1930 to 2000. The null hypothesis could not be rejected 
for either of the two RP distributions (p-value = 0.5) but was strongly rejected for the two ED 
distributions (p-value ≈ 0)*.  Repeating the test for the other two exposures and for other cohorts 
(age = 30, 50, 90) reproduced these results, albeit at slightly different levels of significance (p-
values). The null hypothesis that RP and ED models generate sampling distributions from the 
same population was also rejected by the two-sample K-S test (p-vale ≈ 0), thus additionally 
verifying that the difference between the (mean) lifeline distances calculated for RP and ED 
migration models is statistically significant.  
 
These results show that the lifeline distance function d1 can be used to distinguish between 
different migration patterns, just from an examination of the distributions of case-case or control-
control lifeline distances. 
 
 
                                                 
* The mean and standard deviations were obtained from the samples. This is allowed in the K-S test, if the reference 
distribution is normal (MathSoft, 2000). 
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Figure 3. Distributions of lifeline distance statistic for cases and controls for RP and ED 
migration models for simulating lifelines for an exposure cylinder of 10km radius and 70 years 
duration (1930-2000). 
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5.2 Comparing Statistics 

 
Tables 1 and 2 show 12 different sets of statistics that were calculated for control-control and 
case-case distance measurements (n=1000) for 3 different exposure cylinders for the RP (table 1) 
and ED (table 2) migration models.  
 
The mean lifeline distance for controls in both tables is very similar for all exposures and is 
actually very close to the expected value of 104.28 km between two randomly generated points 
in a 200km X 200km rectangle (we used Lazoff & Sherman's (1994) formula for calculating this 
expected distance). This result is to be expected because of the following. Our simulation 
procedure randomly distributes in the study area the origins of all lifelines for both simulation 
methods (RP and ED). The lifelines then 'evolve' (non-randomly) in space-time as controlled by 
the parameters of the particular migration model. As explained earlier, the lifeline distance d1 can 
be interpreted as duration-weighted average of Euclidean distances between pairs of residences. 
The mean lifeline distance d1 between pairs of randomly selected control lifelines (these will 
have a random separation vector throughout on account of their random separations at birth) 
should therefore approximate the theoretically expected Euclidean distance between any two 
points, randomly located in the same area as used for constraining the sample space of spatial 
locations for lifeline nodes. 
 
 

 
Exposure 

Type 

Controls 
(RP)

Cases 
(RP) 

Mean 
(km) 

Std. Dev. 
(km) 

Skewness Mean 
(km) 

Std. Dev. 
(km) 

Skewness 
 

1930 – 2000; 
10 Km radius 

104.62 16.90 0.250 90.03 15.71 0.175 

1930 – 2000; 
5 Km radius 

104.79 16.35 0.115 88.83 15.66 0.011 

1950 – 1970; 
10 Km radius 

104.80 17.04 0.112 80.64 16.56 0.097 

 
Table 1.  Statistics for lifelines generated by the RP migration model 

 
 

 
Exposure 

Type 

Controls 
(ED)

Cases 
(ED) 

Mean 
(km) 

Std. Dev. 
(km) 

Skewness Mean 
(km) 

Std. Dev. 
(km) 

Skewness 

1930 – 2000; 
10 Km radius 

105.21 45.29 .098 37.92 14.93 .719 

1930 – 2000; 
5 Km radius 

102.96 44.99 .177 33.58 13.52 .898 

1950 – 1970; 
10 Km radius 

105.45 44.67 .206 28.36 10.61 .822 

 
Table 2.  Statistics for lifelines generated by the ED migration model 
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The real power of the lifeline distance is revealed when statistics for cases and controls are 
compared. Foremost, it can be seen that mean lifeline distances for cases are always lower than 
that for controls for both RP and ED migration models. The statistics for controls and cases, for 
lifelines generated by the ED migration model, give a strong indication that the lifeline distance 
measure is able to distinguish clearly between lifelines which have had similar exposure history 
compared to those who have not been exposed to the same environmental hazard (exposure 
cylinder in our case study). The Kolmogorov-Smirnov two sample test (MathSoft, 2000) for 
comparing empirical distributions indicates (p-value ≈ 0) that cases and controls have different 
empirical distributions for all exposures and for both simulation methods.  
 
For the ED migration model, the mean lifeline distance for cases is much smaller than that for 
controls for all exposures—this is expected intuitively because the median distance of any move 
for a lifeline is only 11.2 km (i.e., b = 11.2 in equation 4) and therefore lifelines diverge 
relatively more slowly (and more realistically). Hence, if lifelines have to have similar exposure 
histories, then they will also have to originate relatively close in geographic space. Thus cases 
for the ED simulations tend to cluster strongly over their entire lives and not just during exposure. 
Controls also diverge equally slowly, but since they will tend to originate anywhere in the study 
area, their mean lifelines distances are much higher than that of controls.  
 
It can also be observed, from comparing distribution means from tables 1 and 2 that, for the RP 
migration model (table 1), the distribution for both cases and controls are characterized by higher 
mean lifeline distances as compared to ED distributions. For example, for the same exposure 
(1930-2000; 10km radius) the difference of means for cases and controls is only 14.59 km for the 
RP model, while it is 67.29km. This can be explained briefly thus: if a lifeline has to be exposed 
for at least 10 years to be labeled as a case, it tends to spend much more time near the exposure 
than a corresponding RP lifeline—this is because a lifeline from the RP simulation can migrate 
far away from the exposure with one move, while a lifeline from the ED simulation will 
generally take several moves to migrate to large distances away from the exposure site.  
 
Hence, it is relatively more difficult to distinguish between RP cases and controls than between 
ED cases and controls.  This means that for populations, which are sufficiently mobile and 
whose successive moves can be characterized as practically random (and hence can be simulated 
by the RP method), the distinction between cases and controls will be masked (if we were to use 
only the lifeline distance function for distinguishing between them). The degree of masking will 
be dependent on the extent of the randomness, the move vectors and the rate of movement. 
However, the distinction between cases and controls gets stronger as the cylinder gets smaller, 
since the 'opportunity' to be exposed decreases and cases must be closer in space-time to share 
the smaller exposure cylinder volume. 
 
 
5.3 Use of Lifeline Distances at Time of Diagnosis only 

It is also important now to re-assess the need for the lifeline distance operator—it was suggested 
because the spatial distribution of the cases at the time of diagnosis is not useful in retrodicting 
the exposure clusters in the past. To verify this, for the same set of simulated data as simulated 
by the ED method, we used a new time-of-diagnosis distance function, described in equation 6, 
to distinguish cases from controls,  
                       (6) 
 

 2n1n221n
ss ,   M  )L,L(dt
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where tn is the time of diagnosis; sn1 and sn2 are the locations of the individuals at tn, as obtained 
from lifelines L1 and L2 respectively and M2 is the Euclidean distance operator. This function 
considers only the last pair of distances (i.e., at the time of diagnosis) from the pair of lifelines, to 
create a distribution for controls and cases; statistics generated for this function are compared to 
that from the lifeline distance function from equation 2. 
 
In this section we will compare results only for the Exponential-distance migration method of 
simulating lifelines. Initially all parameters (e.g. study area, exposure cylinders, mobility rate, 
cohort age, number of cases and controls) for the simulation remained the same, except the use 
of the new distance function. The first set of simulations was conducted for all three exposure 
cylinders used earlier in tables 1 & 2. The statistics obtained are shown in table 3 and the sample 
distributions of cases and controls for one exposure (70 years, 10 km radius) are shown in Fig. 4 
(below). The distribution is obviously not normal and visual inspection for the cases distribution 
indicates similarity with some form of an exponential distribution. The statistics and distribution 
for controls are almost identical to that obtained for the lifeline distance function d1 (table 2). For 
cases, the means are almost identical for the two distance measures (equations 2 & 6), but the 
dispersion (std. dev.) and skewness is higher for dtn (table 2).  
 
 
 
 
 
 
  
 
 
 
 
 

 
(a) Controls            (b) Cases 

 
Figure 4. Distributions for dtn (distance at diagnosis) for cases and controls for ED 
migration model lifelines for an exposure cylinder of 10km radius and 70 years duration. 

 
 
 

 
Exposure 

Type 

Controls (dtn) Cases (dtn) 
Mean 
(km) 

Std. Dev. 
(km) 

Skewness Mean 
(km) 

Std. Dev. 
(km) 

Skewness 

1930 – 2000; 
10 Km radius 

104.54 47.91 0.112 38.55 26.85 0.98 

1930 – 2000; 
5 Km radius 

103.29 48.11 0.167 33.77 24.76 1.08 

1950 – 1970; 
10 Km radius 

102.41 48.30 0.159 27.08 18.87 1.51 

 
Table 3. Statistics for dtn for the ED migration model lifelines 
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Thus results indicate that the two distance functions d1 and dtn differ only in distribution shape; 
they are almost identical in terms of central location statistics. This would mean that the distance 
function designed to exploit complete residential histories is after all just as good as the distance 
at time of diagnosis—which defeats the whole purpose of using a lifeline based statistic. To 
investigate further, we simulated a new set of lifelines, with the median move distance doubled 
to 22.4 km. The cohort age was maintained at 70 years; three exposure cylinders were used, two 
of which were the same as before. 100 unique pairs of comparisons (100 controls and 100 cases) 
were made, statistics for which are shown in table 4. (The statistics and distributions for controls 
were similar to that observed in table 2 and are omitted here). 
 
 

 
Exposure 

Type 

Cases (d1) Cases (dtn) 
Mean 
(km) 

Std. Dev. 
(km) 

Skewness Mean 
(km) 

Std. Dev. 
(km) 

Skewness 

1930 – 2000; 
10 Km radius 

59.52 19.12 0.27 55.46 36.76 0.80 

1950 – 1970; 
10 Km radius 

64.94 18.05 0.45 85.00 44.55 0.53 

1955 – 1960; 
2 Km radius* 

55.95 18.75 0.29 68.24 33.25 0.11 

    * The threshold for getting ill is set to 2 years for this small exposure cylinder 
 

Table 4. Comparison of lifeline distance function and the time of diagnosis distance function for the 
ED migration model lifelines for median move distance = 22.4km 

 
 

 
Table 4 indicates that if the exposure has a large space-time presence, such that people can get 
affected over a wide range of time, the lifeline based distance function is almost just as bad (or 
good) as the distance at time of diagnosis. On the other hand, as the exposure gets relatively 
smaller, such that simulated cases have to be more clustered to become exposed, the lifeline 
distance case-case distribution does center itself farther away from the control distribution and is 
easier to distinguish. Table 4 suggests that d1 is only marginally better than dtn. Comparison of 
standard deviations for the two statistics indicates that d1 has much less uncertainty associated it 
than dtn. This might be a crucial fact, as this increases the power of d1 to reject false cases.  
 
Before concluding, we briefly discuss the results from another set of simulated data for the same 
study area and the median move length of 11.2 km for the ED model of migration. We measured 
the means and standard deviations for the two distance functions for 5 different age cohorts 
(table 5). Now, just as is common for a random walk phenomenon (the exponential distance 
model of simulation is similar to a floating random walk process as opposed to grid based equal 
length walks) we see in table 5 that with increasing age people tend to be farther from each other 
(all lifelines for all cohorts started at the center of the study area). The rate of separation is the 
maximum in the twenties and then slows down considerably around 50 years of age (this is due 
to the particular age based mobility rates used for the ED model simulation from Plane & 
Rogerson, 1993). If we were to interpret the cohort ages in table 5 as the ages of diagnosis, we 
can make two observations: 
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i) the mean for the distances at diagnosis is always larger than the mean lifeline distances 
for the same pairs of lifelines and  

ii) with increasing cohort age, the merit of the time-averaged distances as used in the 
lifeline distance function becomes more pronounced because the distinction between 
cases and controls is more difficult to make due to similar central location values. 

 
 
   

Cohort Age 
(years) 

Mean (d1) 
(km) 

Std. Dev(d1) 
(km) 

Mean (dtn) 
(km) 

Std. Dev(dtn) 
(km) 

10 21.52 12.66 34.52 19.66 
30 37.78 16.65 55.63 29.14 
50 47.56 22.17 63.73 34.52 
70 53.19 23.94 68.65 36.10 
90 55.35 24.52 69.16 35.72 

 
Table 5. Comparison of lifeline distance function and the time of diagnosis distance 
function for the ED model based lifelines for different age cohorts 

 
 

7. Discussion of Results 
 
The use of two different methods of simulation in this case study is important when evaluating 
the robustness of the lifeline distance function. The ED model, although much simplified through 
its assumptions, is still based on actual data regarding human residential mobility in the United 
States (Rogerson et al. 1993)—it therefore should simulate the actual distribution of residential 
history lifeline distance statistics much more faithfully than the RP migration model, which 
imposes no realistic constraints on the migration of an individual, except that they must stay in 
the 200 by 200 km square study area. Due to the lack of constraints, and as statistics indicate 
(tables 1 & 2), the RP model makes it much more difficult to distinguish between cases and 
controls, especially as the exposure cylinder grows in volume. Therefore, if the lifeline-distance 
statistic is robust enough to detect differences for this model, then it is likely to be that much 
more effective in the case of real data as well.  
 
Our results indicate that the lifeline distance measure d1 is able to consistently distinguish 
between the distributions of cases and controls for both simulation methods. However, the 
efficiency varies with the exposure size and duration. Results are much more promising for 
populations generated by the more realistic simulation in which people migrate relatively shorter 
distances than in the case of a purely random migration process. It is also true that the 
performance of the lifeline distance function deteriorates as the movement pattern becomes 
randomized because cases become less clustered relative to controls as the spatio-temporal extent 
of the exposure risk area becomes larger. Interestingly, the standard deviations for RP lifelines 
(table 1) are considerably smaller than those obtained for the ED Model lifelines (table 2). Thus, 
in the case of the ED lifelines, the statistical power of the lifeline distance statistic is reduced 
somewhat because of the higher variability. 
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When we compared the lifeline distance function with the time of diagnosis distance function, 
we found no significant benefits for the former—until we increased the median move length to 
twice what it was before and reduced the critical exposure time from 70 years to 20 years. From 
this result, it would seem reasonable to propose that the lifeline distance function will be better 
than the distance at diagnosis function at higher mobility rates. This would be especially true if 
lifelines diverged substantially after exposure; this scenario is observable for small exposure 
cylinders experienced sufficiently early on in life when mobility rates were still high so that 
lifelines could separate far from each other by the time of diagnosis. However, there is a caveat 
to be raised here—for the RP method (randomized movement histories) higher mobility and 
smaller exposure cylinders make the difference between cases and controls distributions more 
difficult to detect for the lifeline distance statistic. Hence for d1, there is an inverse relationship 
between power to distinguish between cases and performing better than dtn. 
 
 

8. Conclusions and Future Work 
 
The lifeline distance function was designed in the hope that it would be able to detect similarities 
in the patterns of residential histories of people and find groups of people who have clustered 
sometime in the past, well before time of diagnoses. Combining the information from table 5 
with the prior discussion on the performance of the lifelines, we can offer two favorable 
situations in which the lifeline distance function is a better function than the simple distance at 
time of diagnosis, for classifying cases and controls:  
 

i) Cases cluster sufficiently early on in their lives near an exposure and then continue 
spreading far from each other after exposure (to diffuse the cluster with increasing 
time). In such a scenario, mean time of diagnosis distance (dtn) between cases is 
significantly larger when compared to mean lifeline distance (d1). This is because dtn 
in this case will be reflective of the increased distances between cases at the final time 
of diagnosis, whereas d1, because of its time-weighted distance averaging 
characteristic, is a relatively more robust measure in the case of diffusion of cases, 
subsequent to clustering near an exposure,. Note that if the exposure is long persistent, 
such that cases can be exposed over a wide duration, the suggested lifeline distance 
function is not as effective.  

 
ii) Highly mobile populations will make the case-control distributions more similar but 

they will also make the use of the lifeline distance function more effective relative to 
simple distance at time of diagnosis   

 
However, a good lifeline distance function must be generalizable to all scenarios. Hence, the 
lifeline distance function must be modified to make it much more robust to case-control 
distinctions for a wide variety of exposure histories. For example, Vlachos et al. (2003) use a 
modified Euclidean-distance-based similarity measure which makes the similarity measure more 
robust to unusually large distances (outliers) between lifelines. Another way to discount these 
outliers would be to use the geometric or the harmonic means instead of the arithmetic means 
used to average the distances for a pair of lifelines. The geometric mean is however not 
applicable if the lifelines intersect, unless the minimum distance is set to a non-zero threshold. 
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Yet another way to modify the lifeline distance function is to limit the time-weighted averaging 
to only the lower quartile of distances generated during a lifeline, thus eliminating separation 
vectors larger than a threshold magnitude. Thus we can preferably use only those distances 
which characterize the scale of clustering for an exposure (given that we have a hunch of the size 
of the exposure). Similarly, lifeline distances could be calculated only for specific time windows, 
if some information is available about when likely exposures might have been encountered or 
some temporal regions can be eliminated with certainty. 
 
It may also be useful to develop visualization schemes for lifelines that can afford visual 
detection of similar lifelines. This will be difficult when the number of lifelines is large. One 
could also count the number of years for which the lifelines were within threshold of each other, 
where the threshold distance might relate to typical sizes of exposure areas. In this paper we do 
not present the results of validation by testing with new cases after building characteristic 
distributions for cases and controls for a given exposure.  
 
Finally, one thing should be kept in mind: if lifelines do not tend to diverge much, i.e., the 
sampled population has been not very mobile, the simple distance between cases at the time of 
diagnosis will be as good an indicator as the lifeline distance function. 
 
Future work therefore must include more new lifeline distance functions and must simulate new 
cases for a given exposure and then set up a misclassification matrix. The function that classifies 
new cases most accurately will be the best measure. It may be the case that different measures on 
account of different distribution shapes and statistics might exhibit different classification 
accuracies for different exposure histories. Exploring classification accuracies of different 
functions for different exposure types, population types, migration vectors and mobility rates will 
help us significantly improve our capability to reason about how environmental hazards affect 
different cohorts.  
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