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Abstract 
Some regional scale environmental simulation models require generalization of high resolution data to obtain an 
acceptable numerical solution within a reasonable interval of time. This paper evaluates the efficacy of geospatial 
data reduction for input to a polylinear groundwater model that relies on the vector-based Analytic Element 
Method (AEM) to represent and simulate a groundwater system. Methods for geospatial data generalization have 
been developed in the past but mainly for addressing cartographic concerns. We therefore suggest a new 
approach—Multicriteria Line Simplification (MCLS) that simplifies polylinear analytic elements under 
constraints determined both by cartographic and geophysical considerations. These constraints are derived from 
experts’ domain knowledge and realized within the simplification system as multiple interactive criteria. In a case 
study, the tradeoff between computation time and the errors introduced in model predictions is analyzed at several 
simplification levels for different weighted combinations of MCLS criteria. The results are used to discuss future 
changes in this framework. 
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1. Introduction 
Regional scale environmental simulation models mathematically simulate real-world geophysical processes based 
on knowledge of both the dominant processes and the mathematical approximations appropriate for numerical 
modeling. Besides knowledge of the process, environmental input is also crucial for the success of the simulation. 
Geospatial databases are therefore queried for accessing environmental data essential for simulation and 
calibration purposes. In the last decade, due to technological advancements and a surfeit of application areas, 
these databases have become quite large. From an environmental modeling perspective, large high resolution 
datasets are not always desirable; in fact it may become an encumbrance if less detailed data can suffice.  

One area therefore, where environmental modelers desire help from data modeling schemes is geospatial data 
reduction. Reducing high resolution geospatial data to a tractable simplified numerical model configuration 
ensures that simulations converge to sufficiently accurate results within a reasonable interval of time. The level of 
detail required for simulation models is a dynamic variable, in that the level of detail varies with the geographic 
sub-domain being resolved. A general modeling approach begins with relatively coarse data and demands higher 
resolution only for certain geographical areas and/or time intervals identified as interesting during the initial 
stages of analysis. This general paradigm is the underpinning of most computational environmental models, 
regardless of the data model in use or the geophysical phenomenon being simulated. The need for data reduction 
is important not only due to practical computational constraints, but from the standpoint of cognitive efficiency as 
well. Preservation of the essential characteristics of dataset facilitates conceptual modeling. Our ability to 
conceive processes within a limited range of spatio-temporal scales is reflected in the way simulation models are 
designed and discretized.  

In this paper we use the Analytic Element Method (AEM) for groundwater modeling to explore the 
significance of geospatial data reduction in environmental modeling. AEM models are complex numerical models 
comprised of vector based hydrographic features that can benefit immensely from simplification based data 
reduction methods. These models often depend on hydrographic, geologic and hyposgraphic data from geographic 
databases. Since linear features tend to dominate the hydrographic database extensively, we provide in this paper 
a new methodology called Multicriteria Line Simplification to automate the simplification of linear hydrographic 
features based on spatial, topological and hydrogeologic constraints. Results show that simplification of 
polylinear elements reduces simulation time considerably. Model error incurred from numerous different 
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 Figure 1.  Hydrographic features and representative analytic elements 
 
 
 
 

simplification schemes is evaluated to show that not only the degree of simplification but the choice of criteria 
and constraints affect model prediction as well.  
 
 
2. Analytic Element Simplification 
 Like many other models of geophysical phenomena, groundwater flow models often rely on numerical 
simulation. One method of simulation, the analytic element method (AEM) (Strack, 1989; Haitjema, 1995) is 
particularly appealing as a test subject for data reduction/simplification techniques because it uses a vector 
representational scheme. In the analytic element method, a numerical model is composed of polylinear, polygonal, 
and point “analytic elements” which represent hydrogeologic features, such as streams, lakes, pumping wells, and 
zones of different aquifer properties. These analytic elements often directly correspond to map features in 

geographic databases. Using the 
geometry and attributes of these 
hydrogeologic features as boundary 
conditions, AEM simulates the 
distribution and magnitude of hydraulic 
head and groundwater fluxes in the 
subsurface through solution of a 
physics-based partial differential 
equation.  

The complexity of an AEM model 
is a function of the geometric and 
parametric model configuration and the 

 
total number of elements in the system. Higher complexity typically translates into higher computational costs 
and undermines comprehension of groundwater system interactions; but it also tends to produce more accurate 
results.  Highly detailed geometry (i.e., more polylinear element segments), however, does not necessarily 
translate into more accurate models, primarily due to the unknown makeup of the subsurface and the often 
minimal impact of minor geometric variations. Thus, there are dual benefits to AEM model simplification: the 
generalization process can boost model performance and improve the level of confidence in the generality of the 
results.   

Because of the geometric model (points, lines, polygons) used for representing geographic features, 
geographic databases are predominantly populated with linear features (McMaster & Shea, 1992). Since there is a 
correspondence between geographic reality and the AEM groundwater model, polylinear elements which 
represent surface linear hydrographic features are the most important class of analytic elements. Hence, in this 
paper, we focus exclusively on the simplification of polylinear elements.  

Each polylinear element is a composite of segments topologically connected through nodes. This topological 
connection is required to maintain the continuity of flow of water down “stream” elements or to ensure 
consistency of boundary conditions along “inhomogeneity” elements (Strack, 1989). Other inter-element and 
intra-element consistency constraints are also required for effective solution.  This means that purely geometric 
method of line simplification (as in cartography and computer vision) will generally not suffice in the context of 
AEM model simplification. 

 
 

3. Cartographic Line Simplification 
Polylinear analytic elements can be derived from geographic databases by identifying the corresponding linear 
hydrographic features (e.g. rivers and streams) and linking their geometry to analytic elements. Geographic data 
are geometrically modeled in GIS through three spatial primitives: points, lines and polygons. Lines are ordered 
sets of points, and polygons are generally constructed as boundary enclosed areas. The problem of polylinear 
analytic element simplification therefore translates into the reduction of the arity of the set of geometric points 
that comprise a line in a GIS database. 

The simplest way to select points from a line automatically is to treat all points as having equal probability of 
selection and choose random points or every nth point (Lang, 1969). However this is too simplistic an approach 
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and assumes an equiprobable field of selection-potential for all points. Automated line simplification has 
progressed much beyond this simple concept in the digital age. The philosophy of line simplification and its 
automation has been discussed extensively by cartographers (Buttenfield, 1985; McMaster, 1987; Beard, 1991). 
Many algorithms have been proposed to automate lines; McMaster & Shea (1992) provide a good discussion and 
classification scheme for line simplification algorithms. Line simplification algorithms tend to concentrate on 
preserving the shape and positional accuracy of the original line. The line is treated as a perceptual phenomenon 
(Buttenfield, 1985) and characteristics (e.g. bends, sinuosity, position) that control the visual perception of the 
line are paid the most attention. In the past few years, the scope of line simplification philosophy and its 
algorithms has been broadened by considering the geometric context to guide the actual choice of simplification 
operators (Plazanet, 1995; Wang & Muller, 1998; Skopeliti & Tsoulos, 1999).  

There are two reasons however, why cartographic line simplification operators (algorithms) should not be 
directly applied to polylinear element simplification. First, the cartographic view of the line as only a geometric 
entity is inconsiderate of the domain specific treatment of the line; for process modelers, the actual nature of the 
geographic feature as it exists and interacts with other features in its real-world setting is more important for 
modeling purposes. This is reflected in the context of AEM model simplification, as the position, spatial 
configuration and hydrographic properties of polylinear elements are all important input parameters in AEM 
modeling. Groundwater modelers have, besides shape and position, many other factors (e.g. hydraulic 
conductivity, proximity to pumping wells, topographic slope) to consider before deciding on the optimal 
geometry of the problem.  

The second impediment arises from the criteria used to evaluate the success of the simplification process. 
Cartographic evaluations involve a consideration of only vector and coordinate based errors (McMaster, 1986; 
Skopeliti & Tsoulos, 2001), but for groundwater modeling, in general, these maybe treated as only partial 
indicators of accuracy and efficiency.  The real indicators of success are simulation time and prediction errors (e.g. 
hydraulic head, flow direction, contaminant concentrations and migration directions). The accuracy of predictions 
made with numerical models, depends upon input data, the size of the spatio-temporal discretization scheme, and 
the numerical method used to solve the governing equations. The accuracy of model predictions and simulation 
time are the two most important criteria that AEM modelers use as indicators of success. In fact, positional 
accuracy and shape of line segments is of secondary importance, if other more significant constraints on the 
simplification system can make the model more accurate. 
 
 
4. Spatial and Semantic Constraints on Line Simplification 
There are numerous spatial and semantic constraints that can be imposed on a line simplification system. Beard 
(1990) used a rule based approach to include multiple constraints for map generalization (i.e. the process of 
reducing detail on maps to facilitate better comprehension). More recently Weibel and Dutton (1998) have also 
advocated the use of graphical, topological, structural, Gestalt and process kinds of constraints to reduce the 
number of acceptable solutions and as map design guidelines. All these constraints should play an important role 
in AEM model simplification as well, especially process based constraints that encompass all the domain 
semantics and will not be considered by cartographers normally. The idea of constraints based simplification is 
the basis of the method used to simplify line analytic elements in this paper.  

Any process of line simplification begins with identification of relevant constraints.  Some of the most 
important constraints for polylinear analytic element simplification are as follows: i) shape of the line and position 
of characteristic points; ii) all topological connections between elements have to be maintained, to ensure that 
water always flows downstream and that tributaries and distributaries connect to larger streams at exactly the 
same location; iii) pumping wells should remain on the same side of the line; iv) known geophysical laws (e.g. 
water only flows downhill) always have to be obeyed regardless of the simplification process chosen and v) 
higher resolution should be maintained near locations of 'semantic events' (e.g. sudden change in conductivity, 
significant change in temperature, etc.). There are many more specific constraints that will appear on a careful 
analysis of the hydrogeologic and numerical modeling aspects of and  given groundwater system; however we 
will limit ourselves to discussing only a few in this paper for illustrative purposes. In the next section we describe 
a framework that relies on decision making techniques to solve problems with constraints such that mathematical 
programming is not feasible. 

 



Accuracy 2004: The 6th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental 
Science, Portland, Maine, June 28-July 1, 2004 

4  

 
5. Spatial Multicriteria Analysis 
It is desirable to have a process based on understanding (Richardson, 1996; Wang & Müller, 1998) while 
generalizing*

Given this paradoxical status of geospatial data reduction, we chose to depend on the Multicriteria Decision 
Making (MCDM) (Zeleny, 1982; Voogd, 1983) paradigm for geospatial data reduction for environmental 
modeling. The basic philosophy of MCDM is to help a decision maker select the ‘best’ alternative from the 
number of feasible choice-alternatives when one is faced with multiple criteria and diverse criterion properties 
(Jankowski, 1995). This paradigm of resolving conflicts is well established and is widely used in spatial analysis 
and environmental planning as well. Malczweski (2000) provides a comprehensive introduction to spatial 
multicriteria analysis in GIS.  

 spatial data. A careful listing of all applicable constraints and desired model characteristics fosters 
such an understanding. It is also true that modelers would prefer to automate whatever little they consistently 
repeat in their model development phase. Hence the knowledge required to generalize geospatial data in general 
has to be encoded into the automatic simplification process. Not only does it free up their time for analysis but it 
provides an element of repeatability so crucial to progress in science. Cartographers have tried to use rules and 
knowledge databases to solve this problem for map generalization (Buttenfield & McMaster, 1991), but the 
process has proved to be generally intractable till now. For now, the AEM modeler will have to be involved in the 
process of analytic element simplification because a number of conflicting constraints that cannot be resolved 
without expert intervention arise during data reduction. 

In the next section we describe the multicriteria line simplification system. Note that multicriteria analysis can 
be dichotomized into multiobjective and multiattribute analysis. Some authors (Cromley & Morse, 1988; Cromley 
& Campbell, 1991) have used mathematical programming to optimize line simplification under constraints, but 
the method is not easily adaptable for line element simplification. There is no way (and perhaps no need) to 
provide complex and untenable mathematical equations and constraints at a stage when we are merely exploring 
the nature of the simplification system. We rely on heuristics instead to guide us and will depend only on 
multiattribute decision making (MCDM) (Malczweski, 2000; Yoon & Hwang, 1995) to develop our methodology.  
 
 
6. Multicriteria Line Simplification Methodology 
Based on our discussion of the polylinear analytic element as a set of topologically ordered points, and because 
none of the sophisticated line simplification algorithms allow inclusion of semantic criteria in the simplification 
system, the line simplification process is conceived here as a selection (or elimination) of points from the original 
set comprising a line. However, we will not just select the nth 

We begin our multicriteria analysis by defining each point as an alternative that has to be evaluated with 
respect to constraints and criteria available in the simplification system (figure 2).  

point on the line as Lang (1969) did. Through spatial 
multicriteria analysis we will create an information field of varying probability based on the spatial and semantic 
constraints applicable to the system; the multicriteria score determines the probability of a point's selection (or 
elimination). 

The next step is to introduce constraints and criteria of evaluation into the system. We have already provided 
some constraints and we will use them to select criteria on which to evaluate each of the alternatives (point). 
Criteria should be well disaggregated, diverse, small in number, amenable to assignment of numerical values 
(preferably interval or ratio scale), and uncorrelated for maximizing information retrieval (Voogd, 1983). Sinha & 
Flewelling (2002) for specifically discuss the process of identifying multiple criteria in a multicriteria line 
simplification context.   

In multiattribute analysis, criteria and alternatives make up a 2-dimensional matrix; if alternatives are 
arranged in rows (ai*) and criterion in columns (c*j), each cell value (xij) 

                                                 
*  'Generalization' is the term used by geographers for the process of reducing the detail of geographic data through automated heuristics primarily for 
optimizing visual information content of maps. 

of the matrix indicates the level of 
contribution each criterion j makes toward an alternative i. Since such contributions measured for different criteria 
can be on disparate scales, the raw scores for each criterion are usually standardized to fit a range of 0 - 1, using 
one of the many techniques available for standardization. Readers should refer to Voogd (1983), Malczweski 
(2000) for traditional and Wilson & Martinez (1997) for newer methods of standardization. The particular 
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standardization method depend on the set of criteria and scales of measurement. each point can be represented as 
a vector of scores ranging from zero to one (figure 2); each score measures the level of contribution of a criterion 
to the selection or elimination of that point. 

Criteria selection and scoring are the necessary components of the multicriteria line simplification system, but 
not sufficient in themselves; the other crucial component of the system is the AEM modeler's preference structure, 
which will be introduced in the system as a one-dimensional weight vector W, which has as many elements as 
there are criteria. These weights represent the (relative) importance of each criterion in the simplification process. 

The next step in multicriteria line simplification is definition of an aggregation function that reduces the 
multicriteria vector of raw scores into a single composite score. Chrisman (1997) provides an excellent discourse 
on the logic of 'overlaying' and combining criteria spatially into one overall score of desirability. Herwijnen & 
Rietveld (1999) have formalized the process in the spatial context. We will choose the simplest and most popular 
method known as Simple Additive Weighing (SAW) (Eastman et al., 1993; Malczweski, 2000). The general idea 
behind the method is very simple – that of that of weighted averages. Formally SAW can be expressed in matrix 
form as: 
     X * W = A                (1) 
 
If m is the number of alternatives and n the number of criteria,  X is the m x n matrix of raw criterion scores 
provided by spatial data analysis, W the n x 1 weight matrix provided by the user, and A is the m x 1 outcome 
matrix with final composite scores, for each of the m points. Note that since each weight is expressed as a 
percentage, and the standardize scores vary from 0 - 1, each composite score will vary from 0 to 100 The 
composite score allows the ranking of points with respect to their amenability for selection, after simplification. It 
can also be interpreted as a measure of the probability (likelihood) of selection. Since each point will get a 
different score normally, this creates an uneven information selection field for a given line. The likelihood of a 
point being retained in the simplified version of the line varies with the particular constraints imposed, the 
criterion scores and weights, and the aggregation function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 2. Multicriteria Line Simplification Schema  
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'best' point (one which has the highest composite index), but all those points as well that meet the criterion of 
selection. The selection rule we follow is based on the simple idea of setting a threshold percentage (0 – 100); 
invoking this threshold will allow one to select only those points whose composite score is greater than the 
threshold. Setting a low threshold to zero will select all points, and setting it to 100 will eliminate all points. 
However one has to be careful here because certain constraints need to be considered at this stage of elimination 
of points; for example, to preempt the elimination of the anchoring points (first and last nodes) for preserving 
topological continuity between line elements, we enforce the constraint that their composite score is always 100. 
This can also be done for any other point, whose presence is regarded as mandatory during initial spatial analysis 
of the groundwater model. The constrained threshold selection rule provides the modeler with another opportunity 
to enforce his preference after the criteria selection and weight vector specification.  

 
 

7. Calibration of the Multicriteria Line Simplification System 
The process described above is a heuristic and there is no theoretical way to prove its optimality. Only empirical 
results can indicate the optimal configuration of the multicriteria line simplification system. The simplification 
phase therefore should always be followed by an evaluation phase, during which model performance and results 
are calibrated. The multicriteria simplification system can be made to produce significantly different results by 
changing either the system state (scored criteria) or system parameters (criterion weights, aggregation function, 
thresholds). Generally, if a relatively stable list of criteria can be generated, calibration of the line simplification 
system will involve only changing the parameters. If the aggregation function is also invariable, then calibration 
involves repeating simplification of linear analytic elements for different combinations of weights and thresholds.  

  In an earlier work, McMaster (1986) suggested six different statistical measures to calibrate the performance 
of a line simplification algorithm. Recently Skopeliti & Tsoulos (2001) have also suggested similarity measures 
for comparing two lines. However, these are based only on the geometric differences between the original and 
simplified line. As explained earlier, these measures may not be relevant in our case because our ultimate 
objective is not simplification itself, but reducing simulation time and also minimizing prediction errors. 
Geometric measures may classify two simplified versions of the same original line as very similar, but their 
relative impact on the model may differ significantly depending on the set of points comprising the two simplified 
versions. Hence we suggest three AEM model dependent measures to calibrate the simplification process.   

 
i) Simulation time = Ti 
where T

  i = 1, 2,…,s                (2) 
i 

 

 is the time the model takes to converge to an acceptable solution at a fixed level of precision, and s 
is the total number of simulations made, each for a different (simplified) model.  

ii) Mean Global RMS Error =                             i = 1,2,…,k,             (3)
        

where yi is the predicted value for the chosen output parameter from a simplified model for an error node i, Yi

 

 
is the predicted value of the same parameter as calculated from the original unsimplified model for the same 
error node i, and k is the total number of error nodes. An error node is any location in the geographic area 
where model predictions are valid; typically these are chosen well within the geographic boundary of the 
groundwater system to avoid spurious errors induced by artificial boundary conditions imposed for modeling 
purposes. This error measure indicates how well the simplification does over the whole geographic study area. 

iii) Mean Local RMS Error =                                         i = 1,2,…,k
 

j                (4) 

Local RMS error values are similar to global RMS errors, but are calculated separately for different delineated 
zones of interest, instead of for the whole study area. The suffix j in equation 4 identifies the zones; y and Y 
identify the predicted values from the simplified and unsimplified model and ki refers to the number of error 
nodes in the jth

 
 zone.  

 
While the Mean Global RMS error is an easy way to compare results, it lacks spatial expression. Local RMS 
errors tend to capture some of that, especially if they are used for spatial statistical analysis later on. This will help 
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identify areas of over or under prediction; additional constraints can then be added or criteria weight vectors 
modulated to further minimize errors, during the sensitivity analysis phase.  
 
 
8. Case Study 
 
8.1 MCLS System Description 
In order to verify the above theory, we constructed an AEM groundwater model for the geographic area between 
Oil and Ischua creek in Cattaraugus County in Western New York, USA. 42 streams and 57 pumping wells were 
used as inputs to the model. Based on previous calibrations and studies (Hart, 2001) the recharge†

 

 rate for the area 
was set to be 0.03 inches/day; the background conductivity was input as 0.3 m/day. No inhomogeneities were 
input to the system for this case study. SPLIT (Jankovic, 2001) was used as the AEM engine.  

Three criteria for multicriteria line simplification were chosen:  
i) Douglas-Peucker Amplitude (DPAmp): The amplitude essentially indicates the 'geometric potential' of a 

point for selection; higher distances mean that it is further away from the local trend of the line and hence  
its ability to be a 'geometric event' is higher. The raw criterion score is the amplitude (distance) of a point 
from the baseline in use before the point divides the segment containing it into two segments, during a 
simplification run of the well known Douglas-Peucker algorithm. The algorithm was first suggested by 
Douglas-Peucker (1973) and has been the most popular (and often most efficient) algorithm of line 
simplification since then (White, 1985; McMaster & Shea 1992; Visvalingam & Whyatt, 1991). Cromley 
(1991) used the same approach to construct a hierarchical tree based on Douglas-Peucker distances; here 
we use the distances to instead score the geometric criterion representing a geometric event.  

 
ii) Change in Topographic Slope (Slo): The change in topographic slope was calculated along the surface 

hydrographic features (streams); this criterion is designed to capture semantic events like waterfalls (i.e., 
sudden change in heads). Higher scores on this criterion for a point indicates that slope changes rapidly 
near the point. This criterion is designed to help maintain downslope flow of water by scoring points with 
large curvature higher. 

 
iii) Log Inverse Distance to Nearest Well (Log1/DW): This criterion measures for each point the log of the 

inverse distance to the nearest well. This was included in the system to model the constraint that stream 
segments near wells should be preserved to obtain accurate local heads near these anomalous regions. 
Higher scores indicate that the point is near to a well and hence should be preserved after simplification.  

 
Seven different weighing schemes were designed such that each criterion got 100%, 50% and 25% of the weight. 
Based on the tuple structure (DPAmp, Slo, Log1/DW), the schemes can be represented as 3 element weight 
vectors: <33⅓,33⅓, 33⅓>, <100,0,0>, <0,100>, <0,0,100>,<50,25,25>,<25,50,25> & <50,25,25>. So for 
example, the weight vector (50, 25, 25) represents a simplification scheme in which DPAmp receives 50% 
importance and Slo and Log1/DW receive 25% weight each during simplification. For each such scheme, the 
composite score threshold was varied to choose 25%, 50% and 75% of the total points (sum of all points on all 
streams) in the system. Thus 21 different simulations were conducted and the simulation time and Global RMS 
errors calculated for each. Table 1 and 2 present the results for the case study. 
 
 
 
 
 
 
 

                                                 
† Recharge (Infiltration ) is calculated as: Recharge = Precipitation – Surface Runoff. The runoff in this area is typically 70-
80% of the precipitation leaving; average precipitation assumed is around 30-40 inches/year. 
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8.2 Results 
 
i) Simulation Times

 

: Table 1 below indicates that the simulation time averaged across weight vectors for drops by 
more than 50% for only a 25% reduction in time and by more than 75% with a 50% decrease in points. 
Simulation time is not necessarily a function of only the number of points, since average time for all thresholds 
varies with respect to the weight vectors. The best average time was obtained for <25,25,50> but others were 
almost as time efficient. However, when distance to wells (Log1/DW) (i.e., <0,0,100>) was the only criterion 
used to simplify lines, simulation time was considerably high. Analysis of all the simulation times table indicates 
that even if the number of line segments (or arity of the set of selected points) is held constant, the simulation time 
can change depending on which points were selected (as would happen if different schemes were used to select 
points).  

 

 

 
Table 1: Simulation Times 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Table 2: Global RMS Errors 

 
ii) Global RMS Errors

 

: If we look at the Global RMS errors calculated for 450 error nodes (Table 2), groundwater 
heads are least accurate for all threshold values when Log1/DW is given 100% weight. Hence, it is obvious, while 
nearness to well is an important criterion for maintaining the position of wells with regard to the stream bank, 
using it as the only criterion in simplification of polylinear elements tends to be both computationally expensive 
and highly inaccurate. This is to be intuitively expected since using distance to well as the only criterion imposes 
no geometric constraints on the movement of the simplified line, i.e., in other words, the actual position of surface 
features has no contribution to groundwater heads. However, as any groundwater modeler can verify, heads are 
mostly influenced by surface water flow characteristics, especially in areas of high conductivity. The criterion 

 
 

Time(minutes) 

Schema Weight Vector Unsimplified 
25% 

Points 
50% 

Points 
75% 

Points 
Average 

Time 
Equal Wts <33⅓,33⅓, 33⅓> 

510.683 

28.350 88.733 275.850 130.978 
100%DPAmp <100,0,0> 26.400 140.800 226.950 131.383 
100%Slope 

Change <0,100,0> 29.250 138.667 222.817 130.244 
100%Log1/DW <0,0,100> 136.817 128.183 279.950 181.650 

Divided Wts <50,25,25> 20.600 112.450 279.833 137.628 
Divided Wts <25,50,25> 23.217 120.433 273.717 139.122 
Divided Wts <25,25,50> 22.917 115.933 225.767 121.539 

  
Average 

Time 41.079 120.743 254.983 138.935 

  Global RMS Error 

Schema Weight Vector Unsimplified 
25% 

Points 
50% 

Points 
75% 

Points 
Average 

Err 
Equal Wts <33⅓,33⅓, 33⅓> 

 

7.460 1.153 0.060 2.891 
100%DPAmp <100,0,0> 0.373 0.042 0.006 0.140 
100%Slope 

Change <0,100,0> 3.267 0.485 0.219 1.324 
100%Log1/DW <0,0,100> 18.983 2.989 1.171 7.714 

Divided Wts <50,25,25> 5.574 0.120 0.219 1.971 
Divided Wts <25,50,25> 9.713 2.664 0.063 4.147 
Divided Wts <25,25,50> 4.945 0.279 0.095 1.773 

   Average Err 7.188 1.105 0.262 2.851 
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'Slo' alone (i.e., <0,100,0>) produces better results because indirectly it does contribute somewhat to the way a 
stream flows and captures some of the environmental variation generally found along stream reaches. 

The most interesting conclusion that can be drawn from the Global RMS errors obtained in this case study is 
related to the <100, 0, 0> (i.e., DPAmp is effectively the only criterion) simplification scheme. Quite contrary to 
our original hypothesis that cartographic methods of line simplification will not suffice for environmental 
modeling, the Douglas-Peucker Amplitude, when used to simplify lines, produces the most accurate model results. 
It appears that on a global scale, geometric simplification, relying only on positional accuracy and vector 
displacement, has the strongest influence on groundwater heads. Other artificial constraints like well location and 
abnormal head drops appear to be local events that do not affect estimations of global heads throughout the 
domain. 
 
 

 
 
Figure 3

 

:  As 3c shows the flow pattern is significantly changed near the well since the <100,0,0> (i.e., pure Douglas-Peucker 
simplification) shifts the stream segment erroneously south of the well. Flow pattern near the well for <33⅓,33⅓, 33⅓> 

weight vector, (3b) which gives equal importance to all criteria, remains similar to that observed for the unsimplified (3a) i.e., 
most accurate model. 

 
 

Schema Weight Vector 
Local RMS 

Err 
Time 

(minutes) 

Equal Wts <33⅓,33⅓, 33⅓> 0.476 36 

100%DPAmp <100,0,0> 106.477 52 

100%Log1/DW <0,0,100> 0.427 31 
 

Table 3: Local RMS Err and Ti
 

 around a well that changes relative position after simplification 

 
iii) Local RMS Errors

Figure 3 and Table 3 show Local RMS model errors for the <100,0,0> and <33⅓,33⅓, 33⅓> weight vectors 
at 25% threshold, as measured with respect to the new base results (unsimplified model run) around the new well. 
Figure 3 clearly documents the local change in flow potential around the well for the unsimplified model and the 

: On a full investigation of the model configuration for all simplification schemes, we 
realized that due to the scale of digitization of hydrographic data (≈100m), geometry was overwhelming the other 
criteria. No constraints (e.g. wells on wrong side of stream bank) appeared to have been violated. We therefore 
modified the model for further academic investigation. A pumping well was artificially introduced such that its 
position with respect to stream banks will change after simplification with the scheme  (<100,0,0>). Two new 
simulations were conducted (unsimplified and simplified (<100,0,0>) model).  

3a: Unsimplified Model 

Original Line 

Flow Direction 

Pumping Well 

Simplified Line 

Simplified Line 

Original Line 

Flow Direction 
Flow Direction 

3b: <33⅓,33⅓, 33⅓> Simplified 3c: <100,0,0> Simplified 

Original Line 

Pumping Well 



Accuracy 2004: The 6th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental 
Science, Portland, Maine, June 28-July 1, 2004 

10  

two simplified ones. Flow direction (which is orthogonal to the equipotential contours) changes abnormally for a 
purely geometric simplification scheme (<100,0,0>). Weighing criteria equally, in this case, prevents the stream 
segment from crossing over to the other side of the well (figure 3b). Table 3 below indicates that local errors rise 
phenomenally if incorrect criteria are used to simplify segments but are moderated if appropriate constraints are in 
place. Simulation time increases too indicating that the model takes relatively longer to converge in case of this 
new geometric setting. 

 
 

 9. Conclusions and Future Work 
The stress in this paper has been on the emplacement of semantic constraints while processing raw geospatial data 
for environmental modeling. The Multicriteria Line Simplification (MCLS) system was introduced to explicitly 
model relevant constraints on simplification of linear hydrographic features for AEM groundwater modeling. The 
method is however generic and can be used for any vector based environmental model. It was hypothesized that 
traditional line simplification heuristics are not efficient since they focus on the geometric caricature of the line 
and neglect semantic constraints. However, AEM modeling depends heavily on surface feature geometry and 
hence the Douglas-Peucker Amplitude criterion is a good method of polylinear element simplification when 
major constraints will not be violated globally. It was also shown that local errors are magnified significantly 
where constraints having local impacts are violated. In this paper we chose only three criteria and used a global 
weighing scheme. Polylinear elements in constrained regions should be simplified with different weighing 
schemes than used globally. This dual approach of weighing should help improve results. 

More diverse constraints and spatially varying weight vectors will be needed for more complicated analyses. 
Other criterion aggregation functions besides Simple Additive Weighing (SAW) should also be considered (see 
Malczweski, 2000). One should also be careful of the method used for scoring criteria since results are heavily 
contingent on measurement scales and standardization methods. Future work will consider extending the 0-
dimensional point based simplification scheme with l-dimensional line based multiconstraint simplification 
scheme. Most importantly, since the geometric criterion outperformed others, other geometric criteria besides 
DPAmp should be explored. If future analyses indicate overwhelming influence of geometric or any other 
criterion, this simplification scheme will constrain modelers by prescribing minimum relative weights that should 
be given to such criteria.  
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	Like many other models of geophysical phenomena, groundwater flow models often rely on numerical simulation. One method of simulation, the analytic element method (AEM) (Strack, 1989; Haitjema, 1995) is particularly appealing as a test subject for d...

