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Abstract

The geographic origin of Malagasy primates is a rich source of debate, providing a
useful context for understanding effects of differing phylogenetic interpretations upon
area of origin reconstructions. This study has evaluated the biogeographic implications
of competing primate phylogenies in order to reconstruct the area of origin of Malagasy
strepsirhines. The robusticity of biogeographic inference is examined based on sensi-
tivity to tree topology. The results demonstrate extreme vulnerability to both out-group
choice and internal tree topology, suggesting caution for area of origin interpretations
from phylogenies that exclude fossil taxa. Moreover, even a single taxon can have a
powerful effect upon biogeographic interpretations. Perhaps not surprisingly, it is only
with greater phylogenetic resolution that a clearer understanding of the biogeograph-
ic origins of Malagasy primates will emerge. Copyright © 2006 5. Karger AG, Basel

Introduction

Madagascar’s floral and faunal uniqueness is well documented in the literature,
with endemicity in the majority of the island’s recorded plants, invertebrates, fresh-
water fishes, amphibians, reptiles, birds, and mammals [Perrier de la Bathie, 1936;
Paulian, 1961; Albignac, 1972; Koechlin, 1972; Tattersall, 1982; Blommers-Schlosser
and Blommers, 1984; Wilmé, 1996; Fisher, 1997]. This pattern masks complex ele-
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ments of the island’s biogeographic history, which likely reflects geographic isolation
over tens of millions of years [e.g. Coffin and Rabinowitz, 1987; Storey, 1995; Hay et
al., 1999; de Wit, 2003]. For example, some Malagasy taxa appear to share taxonom-
ic affinities with continental African fauna, suggesting dispersal across the Mozam-
bique Channel [Leroy, 1996; Yoder et al., 2003; Vences et al., 2004], whereas other
taxa may be more closely related to Asian forms [Eger and Mitchell, 1996; Rage, 1996;
but see Thewissen and McKenna, 1992; McKenna, 1995]. In particular, numerous
studies have contemplated the biogeographic origins of Malagasy strepsirhine pri-
mates [e.g. Wallace, 1876; Simpson, 1940, 1965; Tattersall, 1982; Yoder, 1996a; Mar-
tin, 2000; Yoder et al., 2003; Poux et al., 2005; and papers in this volume]. -

Biogeographic Mechanisms

Two mechanisms often used to explain faunal distributions are habitat vicari-
ance and species dispersal [Pielou, 1979; Pianka, 1994]. Vicariance scenarios rely
upon the emergence of barriers to explain faunal distributions, with drift and allo-
patric speciation resulting from separation of habitats and their resident biota [Pielou,
1979]. Inferences regarding habitat vicariance are strengthened by common specia-
tion patterns in unrelated groups [Myers and Giller, 1988]. For example, hypotheses
abound as to the sequence and timing of the breakup of Gondwanan landmasses
during the Cretaceous [Coffin and Rabinowitz, 1987; Storey, 1995; McCall, 1997,
Hay et al., 1999; de Wit, 2003]. Congruent phylogenetic patterns in different verte-
brate clades have been used to test ideas regarding the persistence of connections
between certain landmasses or habitats to the exclusion of others [Raxworthy and
Nussbaum, 1996a; Krause et al., 1997; Sampson et al., 1998].

But what happens when species distributions do not support a clear pattern of
vicariance? For example, although a handful of taxa represent surviving phyletic
lines present on Madagascar since the Mesozoic [Leroy, 1996; Schatz, 1996; Le
Thomas and Doyle, 1996], continental vicariance likely predated the origin of many
vertebrate groups that currently reside on the island [Simpson, 1940; Tattersall, 1982;
Vences et al,, 2001; Raxworthy et al., 2002; Yoder et al., 2003; but see Hedges et al,,
1996; Tavaré et al., 2002]. Some species may have arrived via aerial dispersal from
nearby landmasses [e.g. plants: Meve and Liede, 2002; birds: Louette, 1996; insects:
Bernardi, 1996], and the presence of temporary land connections has been suggested
[McCall, 1997]. Nonetheless, dispersal by rafting and/or island hopping is the dom-
inant explanation for the presence of various mammalian groups [e.g. Simpson,
1940; Yoder, 1996a, b].

Such scenarios often emphasize intrinsic morphological or physiological attri-
butes that permit organisms to disperse. For example, three of the four radiations of
mammals that colonized Madagascar have members that are capable of undergoing
torpor [Albignac, 1972; Racey and Stephenson, 1996; Warren and Crompton, 1996;
but see Mzilikazi et al., this vol., pp. 465-476]. This physiological ability may have
conferred an advantage to animals during a rafting dispersal event between land-
masses by providing enhanced tolerance of food/water deprivation [Mzilikazi et al.,
this vol., pp. 465-478]. Dispersal scenarios can be greatly strengthened by refine-
ments of geophysical evidence documenting barriers, land bridges or stepping stones
that may have influenced the movements of animals in the past [e.g. de Wit, 2003;
Masters et al., this vol., pp. 399-418]. But from which landmass did the Malagasy taxa
disperse?
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Recent studies have employed an understanding of phylogenetic relationships
to provide a context for the interpretation of biogeographical patterns [Raxworthy
and Nussbaum, 1994, 1996b; Raxworthy et al., 1998; Beard 1998; Humphries and
Parenti, 1999; Stevens and Heesy, 2000; Heesy et al., 2006]. Yet biogeographic inter-
pretations are complicated by the presence of numerous competing phylogenies, of-
ten constructed using differing data sets collected on different taxa. Many recent
studies have relied on molecular data sets, and are thereby limited to modern and
relatively recent taxa [e.g. Yoder et al., 1996]. However, fossils often preserve charac-
ter states absent in extant taxa [Gauthier et al., 1988; Donoghue et al., 1989; Shoshani
etal, 1996], and a similar argument can be made that fossils preserve temporal and
geographic data critical for biogeographic reconstructions [Stewart and Disotell,
1998; Heesy et al., 2006]. Today, lemuroids exist only on Madagascar, whereas living
non-Malagasy strepsirhines occupy the African continent (galagids and lorisids), as
well as Asia (lorisids). In the past, strepsirhines enjoyed an even greater distribution,
including Europe and North America [Fleagle, 1999]. Uncertainty regarding Mala-
gasy primate origins is amplified by a relative paucity of fossils from Madagascar and
sub-Saharan Africa during the key interval of time suggested for their dispersal
[Martin, 2003].

African or Asian Origins of Malagasy Primates

Much of the debate regarding Malagasy primate origins has hinged upon phy-
logenetic relationships among lorisoids (lorises and galagos), cheirogaleids and le-
murids [e.g. Yoder, 1996a, b; Martin, 2000; Roos et al., 2004]. Traditional morpho-
logically based phylogenies emphasized shared cranial and vascular characters sup-
porting a sister taxon relationship between lorisoid and cheirogaleid primates [e.g.
Szalay and Katz, 1973; Tattersall and Schwartz, 1974; Cartmill, 1975], implying le-
muroid polyphyly or paraphyly. To explain the species distributions we observe to-
day, this arrangement would necessitate successful water crossings to Madagascar by
two separate lineages (cheirogaleids and other lemuroids) either separately [Martin,
2000] or via a shared sweepstakes dispersal event. More recent molecular approach-
es have advocated lemuroid monophyly, requiring just one colonization of Madagas-
car by a single taxon of continental African strepsirhines [e.g. Yoder et al., 1996; Roos
et al., 2004]. Yet lemuroid monophyly does not necessarily imply a simple biogeo-
graphic story.

New Taxon from Pakistan

Marivaux et al. [2001] reported the discovery of a fossil from the Early Oligo-
cene Bugti Hills of Pakistan, suggesting close affinities between this form, Bugtile-
mur, and the modern fat-tailed dwarf lemur, Cheirogaleus. The phylogeny based on
dental characters presented by Marivaux et al. [2001] generally supports lemuroid
monophyly, yet the presence of so derived a cheirogaleid as early as 30 million years
ago on the Indian subcontinent implies an ancient divergence between Cheirogaleus
and other Malagasy lemuroids, and raises questions about the directionality of dis-
persal events to and from the island of Madagascar [Marivaux et al., 2001]. Deeper
divergence times for strepsirhine clades are not entirely controversial, having been
suggested by previous molecular work as well as by estimates utilizing statistical ap-
proaches to model the completeness of the known fossil record [e.g. Eizirik et al.,
2001; Arnason et al.,, 2002; Tavaré et al.,, 2002; Yoder and Yang, 2004; but see Godi-
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not, this vol., pp. 446-464]. Implications of a 30-million-year-old cheirogaleid in
Pakistan for biogeographic reconstructions, however, are far more complicated.

In one scenario, lemuroids may have arisen on continental Africa, dispersed
across the Mozambique Channel to Madagascar, and then again traversed a water
barrier to reach Pakistan. In another scenario, deeper divergence times may have
permitted them to reach and disperse throughout Indo-Madagascar prior to the
separation of these landmasses. Martin [2003] has suggested that strepsirhines arose
on Indo-Madagascar, with lemuroids and lorisoids diverging as a result of the vi-
cariance of these landmasses. Finally, Marivaux et al. [2001] caution that the pres-
ence of a lemur in the Oligocene of Pakistan means we cannot exclude the possibil-
ity that lemuroids arose in Asia or Pakistan, dispersing later to Madagascar across
the Indian Ocean.

Yet the phylogenetic affinities of Bugtilemur are far from resolved [e.g. Seiffert
et al., 2003; Godinot, this vol., pp. 446-464]. The analysis by Marivaux et al. [2001]
that included adapiform primates rendered the conventional family Cheirogaleidae
polyphyletic, joining the Cheirogaleus-Bugtilemur clade with lemurids rather than
with the group comprised of Microcebus, Mirza, Phaner and Allocebus. Moreover,
this phylogenetic reconstruction supported an untraditional grouping of lorisoids,
whereby lorisids were polyphyletic with the inclusion of Galago. Their subsequent
analysis excluded adapiforms and added additional morphological characters, pro-
viding a more conventional phylogenetic arrangement with monophyly observed in
lorisids, cheirogaleids and lemuroids [Marivaux et al., 2001], raising questions about
why the inclusion of adapiforms destabilized particular clades in analyses based only
on this set of dental characters. With respect to adapiforms, lorisoids, and lemuroids,
Bugtilemur preserves a strikingly derived dentition in lacking upper molar hypo-
cones, a feature shared only with Cheirogaleus and forming a basis for their proposed
Bugtilemur-Cheirogaleus clade. Yet adapiform affinities remain a possibility for
Bugtilemur, as no specimens retrieved to date have been demonstrated to preserve
decisive evidence of tooth comb use, such as microwear generated by the passage of
hairs between the teeth during grooming. Moreover, other dental features preserved
in Bugtilemur may reflect plesiomorphic features problematic for its assignment to
so derived a position within the Lemuroidea [Godinot, this vol., pp. 446-464].

Ancient Lorises and Galagos

In 2003, Seiffert et al. reported the first definitive paleontological evidence of
crown strepsirhines, recovered from the Late-Middle Eocene Jebel Qatrani Forma-
tion of Egypt. Karanisia and Saharagalago share a number of derived dental features
with extant lorisoids including upper molar hypocones [Seiffert et al., 2003]. More-
over, Karanisia exhibits alveolar morphology in the anterior mandible consistent
with the presence of a tooth comb, an inference confirmed by the presence of micro-
scopic wear grooves on the mesial aspect of the canine [Seiffert et al., 2003]. The
phylogenetic analysis presented by Seiffert et al. [2003] placed Saharagalago in crown
Galagidae, and tentatively allocated Karanisia to the Lorisidae as a sister taxon to
Arctocebus. It should be noted that this analysis recovered an unconventional tarsier-
strepsirhine sister grouping to the exclusion of anthropoids, and that subsequent
analyses [Seiffert et al., 2005] have placed both taxa in a more basal position among
lorisoids. Yet the study remains significant in that Karanisia and Saharagalago are
twice the age of the previously known fossil lorisoids Komba, Progalago, and
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Mioeuoticus [e.g. Le Gros Clark and Thomas, 1952; Phillips and Walker, 2002]. Re-
cent molecular studies support lorisid monophyly [e.g. Roos et al., 2004], suggesting
a divergence between lorisoids and lemuroids well before the Late Eocene [Seiffert et
al., 2003], and influencing arguments regarding the age of the Malagasy primate ra-
diation [Roos et al., 2004].

Taken together, recent fossil discoveries from Indo-Pakistan {Marivaux et al,
2001] and continental Africa [Seiffert et al., 2003] call for a closer examination of the
biogeographic history of Malagasy strepsirhines, including sensitivity of area of ori-
gin reconstructions to out-group choice, in-group topology, and missing fossil data.

Methods

In order to reconstruct the biogeographic area of origin for the Malagasy strepsirhines,
this study optimized geographic area onto competing phylogenetic trees using maximum par-
simony in MacClade 4.0 [Maddison and Maddison, 2000], reconstructing the most parsimoni-
ous sequence of dispersal events to produce the observed distributions of primates. Continents
or subcontinents were the minimum geographic unit coded as a trait, an optimization method
applied in previous biogeographicanalyses [Beard, 1998; Strait and Wood, 1999; Murray, 2001].
For the purposes of this study, continental distribution was treated as an unordered, multistate
character, with no constraints on dispersal between landmasses. Hence, taxa could theoreti-
cally disperse from South America to Asia. For a given phylogeny, the set of equally most par-
simonious solutions to the optimization of a trait was retrieved using the maximum parsimony
option in MacClade. Equivocal reconstructions were recovered for nodes and interriodes with
multiple possible solutions. Equally parsimonious solutions included optimizations favouring
parallelisms (ACCTRAN), and reversals (DELTRAN) in addition to all other parsimonious
solutions. Because they may not apply to all characters simultaneously, ACCTRAN and DEL-
TRAN do not necessarily demonstrate the most appropriate solution to the evolution of a trait
of interest. When node reconstructions were unequivocal, major clades such as the Lemuroidea,
Platyrrhini, and Catarrhini were condensed to streamline illustrations.

We examined the role of differing in-group topologies by individually optimizing biogeo-
graphic areas onto phylogenies published by Marivaux et al. [2001] and Seiffert et al. [2003]. In
addition, we included a composite ‘supertree’ recently assembled by Heesy et al. [2006], gener-
ated by the cladistically based matrix representation using parsimony [Baum, 1992; Ragan,
1992; Purvis, 1995a, b; Bininda-Emonds and Bryant, 1998; Sanderson et al., 1998]. This com-
posite tree of living and fossil primates incorporated information from a broad range of phylo-
genetic sources, including Fleagle and Kay [1987], Jungers et al. [1991], Beard et al. [1991, 1994],
Purvis [1995a], Rose [1995a, b], Begun [1995], Begun and Kordos [1997], Benefit and McCros-
sin [1997], Horovitz and Meyer [1997], Kay et al. [1997, 1998], Harris and Disotell [1998], Ross
et al. [1998), Horovitz [1999], Fleagle [1999], Horovitz and MacPhee [1999], Jaeger et al. [1999],
Norejko [1999], Purvis and Webster [1999], Ross [2000], Gebo et al. [2000], and Seiffert et al.
[2000]. New fossil taxa, Bugtilemur, Karanisia and Saharagalago, were inserted in the compos-
ite phylogeny following the taxonomic assignments by Marivaux et al. [2001] and Seiffert et al.
[2003]. Generic monophyly was assumed for fossil taxa Eosimias, Archaeolemur, Palaeopro-
pithecus and Megaladapis, with individual species manually inserted as sister taxa. The data
matrix is available from the authors on request.

This analysis represents the first examination of Malagasy primate origins to employ char-
acter mapping on a phylogeny that comprehensively samples extant and extinct primates at the
generic or specificlevel. Influence of out-group choice upon biogeographic reconstructions was
explored by varying out-group combinations to include major continents from which fossil and
living primates are known, with equivocal node reconstructions considered irresolvable based
on currently available data. The impact of additional fossil finds was explored by experimen-
tally inserting taxa coded from different geographical areas into existing primate clades.
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Fig. 1. Biogeographic implications of Bugtilemur. a Geographic area mapped onto the tree to-
pology published by Marivaux et al. [2001]. This topology retrieves an Asian origin for Mala-
gasy strepsirhines. b Geographic area mapped onto the second tree topology published by
Marivaux et al. [2001]. Note that this topology omits adapiform primates, and retrieves an
Asian area of origin for Malagasy strepsirhines.

Results and Discussion

Impact of Newly Discovered Fossils on Malagasy Primate Origins

When geographic area is mapped onto the taxonomic framework of Marivaux
etal. [2001] that included adapiforms, an Asian origin for Malagasy strepsirhines is
retrieved (fig. 1a). Marivaux et al. did not discuss their rationale for excluding Kom-
ba and the modern African galagids, Otolemur and Galagoides, but these taxa may
not have offered further illumination given the traits examined in their study. The
taxonomic framework from the analysis of Marivaux et al. that excluded adapiforms
also yielded an Asian origin for the Malagasy lemuroid node (fig. 1b).

Mapping geographic area onto the phylogenetic tree of Seiffert et al. [2003], how-
ever, yields an African origin for Malagasy strepsirhines (fig. 2a). The role of fossil
taxa in recovering an African origin for lemuroids is clearly demonstrated by re-ex-
amining the tree topology of Seiffert et al. [2003] with all extinct taxa omitted. The
reduced tree recovers an equivocal reconstruction for the area of origin of the Mala-
gasy primate clade (fig. 2b), underscoring the sensitivity of biogeographic reconstruc-
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Fig. 2. Biogeographic implications of Karanisia and Saharagalago. a Geographic area mapped
onto the tree topology published by Seiffert et al. [2003]. This topology retrieves an African
origin for Malagasy strepsirhines. b Geographic area mapped onto the tree topology of Seiffert
etal. [2003], but with the omission of all extinct taxa. Note that this topology retrieves an equiv-
ocal area of origin for Malagasy strepsirhines.

tions to missing data and raising the issue of whether including more Asian fossil taxa
might also influence area of origin reconstructions for Malagasy primates.

Visions from a Fuller Tree

Not surprisingly, the examples discussed above suggest that biogeographic re-
constructions employing character mapping depend directly on tree topology, with
particular sensitivity to missing data. Hence, analyses based on trees including pri-
marily African taxa tend to favour an African origin of Malagasy lemuroids, just as
analyses based on trees that emphasize Asian out-groups yield reconstructions fa-
vouring an Asian origin. No study to date has examined Malagasy primate origins
in light of all available fossil and modern evidence. The remainder of this paper ex-
plores the impact of altering both out-group choice and in-group topology on bio-
geographic reconstructions using a composite tree recently generated by Heesy et al.
[2006] that densely samples extant and extinct primates at the generic level.

The effects of out-group choice on biogeographic reconstructions are illustrated
in figure 3. Primate out-group variations included Africa, Asia, North America, and
Europe, all continents previously debated as an ancestral area for the order Primates
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Fig. 3. Effects of out-group choice on biogeographic reconstructions. a African primate out-
group retrieves an African origin for Malagasy strepsirhines. b Asian primate out-group re-
trieves an Asian Malagasy primate origin. ¢ An equivocal reconstruction is retrieved with a
North American {pictured) or European primate out-group. d Increasing phylogenetic resolu-
tion alters the reconstruction to equivocal for the Asian primate out-group.

[e.g. Jacobs, 1980; Gingerich, 1990; Sigé et al., 1990; Gingerich et al., 1991; Kay et al,,
1992; Beard, 1993; Rose et al., 1994; Bloch, 2001; Bloch and Boyer, 2002; Silcox,
2002]. Figure 3a illustrates nodes collapsed to the superfamily level with an African
primate out-group resulting in the inference of an African origin for Malagasy strep-
sirhines. In contrast, North American and European primate out-groups yield an
equivocal reconstruction for the area of origin of Malagasy primates (e.g. fig. 3b). An
Asian primate out-group implies an Asian origin for lemuroids (fig. 3¢). In a less
compressed tree, an Asian primate out-group choice reveals an equivocal origin for
Malagasy strepsirhines (fig. 3d), demonstrating the role of increased taxonomic res-
olution for character mapping of biogeographic data.

Figure 4a depicts the expanded topology of the fossil and modern primate com-
posite tree of Heesy et al. [2006] with resolved nodes compressed. The original anal-
ysis excluded Bugtilemur, recovering an equivocal area of origin for Malagasy pri-
mates [Heesy et al., 2006]. As discussed above, Marivaux et al. [2001] suggested that
the presence of a sister taxon to Cheirogaleus in Pakistan would have profound im-
plications for Malagasy primate geographic origins. Contrary to this expectation,
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Fig. 4. Biogeographic reconstructions in densely sampled composite phylogeny taken from
Heesy et al. [2006]. Shading follows legends in figures 1-3. a Equivocal ancestral area recon-
struction for Malagasy strepsirhines. b Inclusion of Bugtilemur does not alter the area of origin
reconstruction at the lemuroid node.
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including Bugtilemur as a sister taxon to Cheirogaleus does not influence the area of
origin reconstruction using this tree topology (fig. 4b). This seems to result from the
derived nature of the purported cheirogaleid, causing Marivaux et al. [2001] to nest
it deep within the lemuroid clade. Thus, if their phylogenetic assessment is accurate,
the taxon does little to clarify the biogeographic origins of this enigmatic group. A
similar situation is observed with the addition of fossil lorisoids Karanisia and Sa-
haragalago; in this case, the inclusion of two important lorisoid out-groups from
continental Africa does not alter the equivocal ancestral area reconstruction for le-
muroids. Again, it would appear that the crown position of these fossils dampens
their impact upon the reconstructed area of origin (but see Seiffert et al., 2005). This
should not be taken to imply that fossils are unimportant to biogeographic recon-
structions that employ character mapping approaches, but rather that their phyloge-
netic placement (i.e., position within a given topology) plays the most significant
role. Hypothetically, the discovery of a stem sister taxon to lemuroids in Asia would
result in the reconstruction of an Asian area of origin for Malagasy primates (fig. 4c),
just as an African taxon in the same position would favour an African ancestral area
reconstruction. Notably, the discovery of a stem haplorhine from Africa would also
imply an African origin for lemuroids (fig. 4d), demonstrating that, depending on
its phylogenetic position, even a single new fossil can have a dramatic impact on bio-
geographic inference.

Pitfalls in Character Mapping Approaches
Although the reconstruction of biogeographic history remains a central topic in
studies of vertebrate evolution, this study offers a cautionary note for interpreting
areas of origin using phylogenies that do not densely sample the taxa of interest. And
as Cunningham et al. [1998] pointed out, parsimony-based character mapping may
yield misleading character states when evolutionary rates are rapid and when there
is an unequal probability of losses or gains. Large-scale dispersal events may be spo-
radic and relatively rare, but when they do occur, they have the potential to alter fau-
~ nal distributions rapidly. Moreover, the probabilities of dispersal are clearly different
between various landmasses, and even in different directions between two given
landmasses. Differential extinction and the - as yet - low rate of recovery of fossils
from many geographic regions provide additional challenges for retrieving mean-
ingful biogeographic reconstructions. Nonetheless, approached with healthy skepti-
cism, character mapping remains a straightforward method for directly assessing
biogeographic implications of different phylogenetic tree topologies, offering some
degree of improvement over scenario building for understanding the impact of new-
ly discovered fossils on competing ancestral area hypotheses.
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