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ABSTRACT 

 
A phasor representation of the Stirling cycle process is presented. This includes volume 

variations, mass flows and heat transfer. The resulting pressure phasors are linked to free-
piston dynamics that include the motor or alternator. The phasor analysis provides general 
simplifications that lead directly to a number of useful results that are not obvious from 
conventional approaches. These include  the relationship of the displacer drive area to the 
flow losses and the processes that contribute to the regenerator performance.
 
1. INTRODUCTION 

 
The mathematical description of the Stirling cycle has usually taken the form of simple 

discrete processes [1] or a continuous process based on average conditions at different 
locations in the machine [2] [3]. The cycle is of course not discrete and most continuous 
process methods do not offer a clear, succinct thermodynamic description that allows 
inclusion of fundamental losses. What is needed is an an approach that describes the cycle 
accurately enough to understand the real world consequences of implementation. The 
standard Schmidt or isothermal analysis, though providing convenient closed-form solutions, 
is not easily relatable to practical machines. Simulations are even more alienating when it 
comes to a basic understanding of cycle processes and implications. 

 
In what follows, a phasor description is used to describe all the fundamental processes 

within the cycle. By so doing, simple results fall out of the analysis that are useful guides to 
the understanding of these machines. 

  
2. THERMODYNAMIC PROCESSES 

 
Though the phasor description can be applied to any Stirling machine, we will restrict our 

interest to the beta configuration as shown in Fig. 1. Positive motions will be as indicated, 
sometimes referred to as the ‘in’ direction and negative motions in the ‘out’ direction. In 
addition, all motions will be referenced to the piston motion. So it’s phasor will be the zero 
phase. Fig. 2 shows the piston and displacer motion phasors as xp and xd with the displacer 
leading the piston by φ. Since the piston and displacer are responsible for generating the 
compression and expansion volume variations, we can easily construct the volume variations 
from the motions of the piston and displacer. We see that decreasing expansion space volume 
Ve results from positive displacer displacer motion and therefore the expansion volume is in 
anti-phase to the displacer. The compression space Vc is increased by displacer motions and 
reduced by piston motions, so it is a combination of both these contributions. By convention, 
the leading phase of !"    to !"    is denoted by α. The total volume variation of the engine is 
shown by !"    which is just the sum of the expansion and compression volume variations. Note 
that !"    is almost in anti-phase with xp which is to be expected since the piston contributes the 



 
  
 

majority of the cycle volume variations. The small offset is due to the displacer rod, which of 
course moves in phase with the displacer. Neglected here is the effect of casing motion xc, 
typically small compared to the piston and displacer motions. In situations where this not so, 
casing motion may easily be included. 
 

 
 

Mathematically, the volume variations may be written: 

!" = !" + %&-%( )&∠+-%,), = !" + !"          (1) 

!" = !" -%&'&∠) = !" + !"            (2) 
Where the mean volumes, denoted 	    are not represented on the phasor diagram. 

 

 
 

The principle of superposition holds that for any linear system the net response of two or 
more stimuli is the sum of the responses that would have been caused by each stimulus 



 
  
 

individually. So the combined effects of two or more stimuli are simply the added effects of 
the individual stimuli. This is why the compression volume variation is simply the added 
contributions of the piston and displacer motions. The pressure is treated similarly. Consider 
the displacer stationary and only the piston moving. It can be seen that there will be a pressure 
change in phase with the piston motions. Call this the piston pressure factor pp. For the 
displacer moving and the piston stationary, the pressure change will depend on the 
compression and expansion space temperatures. If the expansion space is warmer than the 
compression space, then positive displacer motions will result in decreasing pressure because 
the gas is moved to a cooler region for positive displacer motions. This is denoted as the 
displacer pressure factor pd. If the temperatures are reversed, i.e., the expansion space is 
colder than the compression space, the pressure will increase for positive displacer motions. 
Clearly from Fig. 3, the resulting pressure will lead in the case of the expansion space being 
warmer than the compression space and lag in the vice versa case. This is of course the 
difference in pressure phase for a power producing device and a heat lifting device.  

 
From the foregoing, the pressure variations may therefore be written: 

!	 ≈ 	 ! + %&
%'(

)& + %&
%'*

)+           (3) 

where 
!" ≝ $"

$%&
    and         (4) 

!" ≝ $%
$&'

             (5) 
 
There are many ways to determine pp and pd, including experimental measurement. For 

simplicity, we will follow the isothermal assumptions of Schmidt [4] to derive the pressure in 
terms of xd and xp. The details being elementary, are excluded: 
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And, finally the pressure in phasor form: 
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The work may now be calculated and follows from:
	! = #	d&'              (13) 

where 
!" = !" -%"&"              (14) 

Giving the following for the isothermal assumptions: 

! = -$%&'& ( )& sin -           (15) 
A positive value implies power production. Therefore negative β or lagging pressure implies 
power production and positive β or leading pressure implies power absorption. Observing 
result (15) and Fig. 3, we see that: 

! "# sin ' = )#
)*+

,- sin.          (16) 

Thus allowing (15) to be written: 

! = -$%&'&'( )&
)*+

sin/ = -$01 '&'( sin/       (17) 

where α T has been called the thermal coupling [5] and is given by: 
!" ≡ $% &%

&'(
   (negative for engines, positive for heat pumps)   (18) 

Result (15) shows that the work is proportional to Xp, Xd and the sine of the included angle 
and is maximized for ! = 90°.   

 
For isothermal work spaces, the heat input is given by the expansion space work: 
!" = $ d&" = -()*+* $ ,- sin 1-2          (19) 

Leading to the efficiency and COP as follows: 

! = #
$%
= &'(' )*+ ,

&-(- )*+ ,-/ = 1 − 23
24
- &5&- = !678+9:- &5&-        (20) 



 
  
 

 
     COP = %&'()*+,-

./0102%&'()*+,-
            (21) 

The reduction of the Carnot performance due to the area ratio reflects the fact that the rod 
area, AR is needed to provide non-recoverable work to the displacer to overcome flow losses. 
The maximum work condition ! = 90°,   does not necessarily imply maximum efficiency. 

 
We now turn our attention to the mass flows which are important in the evaluation of flow 

losses and heat transfer. By our convention, positive mass flow at the compression space / 
rejecter boundary is the negative value of the rate of change of the mass within the 
compression space. For the isothermal system or where temperature variations are small 
compared to volume and pressure variations, the compression space boundary mass flow may 
be written: 

!" = -%" = - &'
(
)*
	,"	+ ./

)*
0           (22) 

Increasing mass in the expansion space results in positive expansion space boundary mass 
flow, therefore: 

!" = 	%" = &
'

(
)*
	+"	+ -.

)*
/   	         (23) 

 
Noting that the first derivative of a phasor is in quadrature (90°) to the original phasor, it is 

possible to construct the phasors for the boundary mass flows from (22) and (23). Fig. 4 
shows this for engines and Fig. 5 for heat pumps. Any mass flow within the machine will fall 
on a line connecting !"    to !"    as indicated by !"    in Fig. 4. 
 

 



 
  
 

 
 
Regenerator heat transfer is made up of the enthalpy entering its two ends and the change 

of internal energy due to the expansion and compression of the gas within the regenerator. 
The rate equation representing these processes is as follows:  

!" = $% &'( ) + $+ ,-."--,0.0"           (24) 

The regenerator boundary mass flows need to include the effect of mass change within the 
associated heat exchanger. These results are: 

!"# = - &'
(
)*
	,-	+ /0 1/*
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2            (25) 

	"#$ = &
'
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1            (26) 

There is now sufficient information to plot the regenerator heat transfer phasor as shown in 
Fig. 6 for engines and Fig 7 for heat pumps. Note that the regenerator heat transfer is not 
necessarily in quadrature with the displacer motion. Also note that for engines, the 
regenerator heat transfer is almost in phase with regenerator mass flow. That is, the gas is 
heated as it flows towards the expansion space. For heat pumps, the heat transfer is almost 
opposite to the mass flow, as would be expected. Furthermore, regenerator heat transfer is 
ideally imagined as a constant volume process implying maximum heat transfer at minimum 
volume change. For that to happen, regenerator heat transfer should be roughly in phase or 
anti-phase with total volume variations. From Figs. 6 and 7 one can see that regenerator heat 
transfer has this approximate relationship with !"   . 

 
The unidirectional regenerator heat transferred is simply: 
!" = $

% !"d' = (
% !")*+

)       (ϕ is zero crossing point and phase)    (27) 

 



 
  
 

 
 

 
 

The regenerator effectiveness may now be defined [6].  
! = #$_&'( #$              (28) 
 

The unregenerated energy must be accounted for by external heat transfer. Therefore: 
!"_$%& = !( + !* 1 − -            (29) 



 
  
 

From which the following results are obtained for efficiency and COP: 

!"#$ = &
'()*)+ ',-

= &./0123-56 57
'( ',- 8* 8+

          (30) 

COP$%& = COP 1 − *+
*,

1 − - = ./0123456
78./01234569: 9;

1 − *+
*,

1 − -      (31) 

Where both the lost work due to driving the displacer and the effects of imperfect 
regeneration have been accounted for. The heat transfer ratio !" !#    is a critical parameter 
and ranges from about 4 for engines to about 200 for cryocoolers. The area ratio !" !#    
generally ranges roughly between 0.05 to around 0.15. For example, the well described RE-
1000 machine [7] has an area ratio of 0.085 and a heat transfer ratio of about 4. 
 
 
3. MECHANICAL DYNAMICS 

 
The phasor description of the thermodynamic processes extends directly to the mechanical 

dynamics. Referring to Fig. 1, the force balance of the displacer is as follows: 
!"#" = %"-%' ()-%"(*-+"_-./0 #"-#)        (32) 

The bounce space pressure swing is assumed to be small compared to the working space and 
has therefore been neglected. Further, noting that (pc - pe) is simply the pressure drop across 
the heat exchanger loop, Δp, (32) becomes: 

!"#" = %"Δ'-%)'*-+"_-./0 #"-#*         (33) 
The Δp term is the result of flow dissipation in the heat exchangers. Since this is a dissipative 
force, it may be represented as a function of displacer, piston and casing velocities (!   terms). 
The pc term is taken as a function of displacer, piston and casing displacements (x terms). We 
will furthermore assume a perfectly balanced machine (xc = 0). Equation (33) may therefore 
be written: 

 !"#" + %"#"+	%"'#' + ("#"+	)'#' = 0        (34) 
where 

!" ≡ -%" &'(
&)*

            (35) 

!"# ≡ -&" '(#
')*

   (piston gas flow coupling, typically negative)   (36) 

!" ≡ !"_%&'( + *+ ,-.
,/0

           (37) 

!" ≡ $% &"'
&()

   (piston pressure coupling)      (38) 

Some researchers [8] prefer to combine the pressure terms into a single term called the 
displacer rod force, which is in phase with the pressure, as follows: 

!" = $% &'(
&)*

+" + &'(
&)-

+'           (39) 

Again, noting that the first derivative rotates the phasor by 90° and the second derivative 
by 180°, equation (34) may be represented in phasor form as shown in Figs. 8 and 9. In the 
case of an engine, the change of pressure with displacer motion is negative so Kd is reduced 
by the !" #$%

#&'
   term whereas for a heat pump, this term will add to the spring effect. We also 

have the direction and magnitude of the pressure drop, so the expansion space pressure may 
be added to the phasor diagram. 

 
The piston equation follows similarly and is also shown in Figs. 8 and 9. 



 
  
 

!"#" + %"#"+	'(#) + '*+ = 0          (40) 
where α T is the thermal coupling as in (18), !"#   is the current force due to the linear alternator 
or motor and has the phase of the current, and 

!" ≡ $" %"&
%'(

            (41) 

For perfect balance (xc = 0) the balance mass phasor must satisfy the system momentum 
equation.  

!"#" + !%#% + !&#& = 0          (42) 
This happens when the balance mass is resonant at the operating frequency. 

 
The last items to add to the mechanical dynamics phasor diagram are the voltages for the 

motor / alternator, also called a linear force transducer. The applied voltage is as follows: 
!"## = !%&'-!)-!*"+    (alternator)    !"## = !%&' + !) + !*"+    (motor)    (43) 

where Vind is the voltage generated by the movement of the magnets and is always in phase 
with piston velocity, and VL and VRac are given by: 

!" = $	&     (inductive voltage)       (44) 
!"#$ = &'(	*   (voltage drop across effective resistance at ω )   (45) 
 

 
 

The current in the linear alternator / motor may also be determined from the mechanical 
dynamics phasor diagrams. From Figs. 8 and 9 we see that: 

 !"# sin'( = !* +, sin-          (46) 
giving: 



 
  
 

! = #$
#%
&' ()* +

()* ,-
            (47) 

The current phase may be obtained from the geometry of the piston force diagram. 

!" = tan-( )* +, -./ 0
)* +, 12- 0345+5-6578+5

         (48) 

 

 
 

The alternator / motor efficiency is given by accounting for the energy dissipated in Rac. 

!" = 1 − 2' ()*+,
-.             (49) 

This result is only approximately true for motors but the error is not large when the efficiency 
is better than 85%. For alternators it is accurate. 
 

 
4. DISCUSSION AND CONCLUSIONS 

 
The principle of superposition allows the phasor description to offer insights that are not 

obvious from the classical analyses. The relationship between processes is easier to 
understand and more importantly, the descriptive language that can be applied by this method 
is succinct and precise. The consequences of the non-ideal processes associated with flow 
losses, imperfect regeneration and transducer efficiency are easily included. Of course, the 
phasor description assumes that the processes can be modeled by first harmonic or sinusoidal 
functions. This is only true for a linear system which is generally a good approximation for 
free-piston machines [9]. For crank machines, this may not be a valid model since the 
mechanical motions often have significant higher harmonics, which together with the higher 
harmonics in the gas processes, will result in additional terms of significance. As a general 
rule, if the mechanical motions of the piston and displacer are closely sinusoidal, the system 
may be linearized without too much penalty to accuracy. 
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NOMENCLATURE 
A      = area (m2) 
COP = coefficient of performance 
D      = damping coefficient (Ns/m) 
Ddp   = displacer – piston damping coefft. (Ns/m) 
I       = current (A) 
K     = effective spring stiffness (N/m) 
Kd_mech = displacer mechanical spring (N/m) 
L     = inductance (H) 
m    = mass (kg) 
p     = pressure (Pa), pressure factor (Pa/m) 
 

α    = volume phase angle (°) 
α l  = linear alternator / motor constant (N/A) 
α p  = pressure coupling (N/m) 
α Τ  = thermal coupling (N/m)  
β   = pressure phase (°) 
δp  = pressure ratio (-) 
 

Subscripts 
a = accepter  
b  = balance mass 
c  = compression space, casing 
d  = displacer 
e  = expansion space 
 

Other 
				  = first derivative w.r.t. time 
				  = second derivative w.r.t. time 

Q   = heat input (J) 
R   = gas constant (J/kg K) 
Rac = effective resistance (Ω) 
S    = collection of terms (m3/K)  
T   = temperature (K) 
V   = volume (m3), voltage (V) 
w   = mass flow (kg/s)  
W  = work (J) 
x   = displacement (m)  
X   = amplitude (m) 
 

ε   = regenerator effectiveness (-) 
φ   = displacer phase (°) 
η   = efficiency (-) 
ϕ I  = current phase (°) 
ω   = frequency (rads/s) 
 
 

 
k  = rejecter 
l  = linear alternator / motor 
p = piston 
r  = regenerator 
R = displacer drive 
 

 
	    = mean value 
			    = phasor quantity when ambiguous 

 


