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were used, for example the Schmidt isothermal power. Again, the correspond-
ing equations for the casing motion mode are obtained by replacing the
subscript p by ¢ and M, by M.

The cyclic work may also be obtained by solving the integral ¢pdv for each
working space. However, the above results yield good answers when the linear
approximations are reasonable and, furthermore, they are easy to apply.
Table 3.1 lists all the pertinent equations derived in this section.

Table 3.1 Set of equations for the generalised dynamic analysis piston motion mode.

Frequency w2 = (deSpd + Sdp[)pd - Ddd Spp - del)pp)/(l)dd + Dpp)

Geometric constraint — @* + (S, + Syq + Dgy Dy — Dyy D, ,)
+ 84S, = SapS,s = 0

p* pd
oD, S,s— D (S, + ?)] )
— [Spdspp + G)Q(Spd + DDdef))]

Piston—displacer
phase angle ¢ =tan"! (

Piston—displacer amplitude ratio
X, (0 +S,,)* +w’D, 2

R : ?
X {[S"d (w?» + SPD) + szpprd]Z +w? [Dpd (w° + Sm)) - Danpd}z } 12

P

Irrecoverable work Wi, = —noMp[(Dyy + Dy Mp /Mp)X * + Dy, X 2]
+rwCy X,

Useful work W= —noMpD, X *~noCy X}

The above equations are subject to w > ./ — See-

The casing motion mode equations are obtained by replacing the subscript
p by ¢ and M by M.. The resulting set of equations is subject to

o> /=S,

3.3 Linearisation

To apply the preceding analysis it is necessary to obtain functions for the
pressure variations in the working spaces and the gas springs (also referred to
as bounce spaces). The Isothermal analysis lends a convenient closed-form
result which is known to be a fairly good approximation to reality. This result,
from Chapter 2, table 2.1, is

"

. I o Vin¢ sty v !
P (1 v 1y (r,—7.) 7, :
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By assuming adiabatic gas springs and a perfect gas, the pressure variations in
these spaces may be described by

Py = Pmean ( VB // Vb)?» (349)

where Vg is the average gas spring volume and J} is the instantaneous value.

Referring to figure 3.6 as a general example of a free-piston engine, the
volume variations are as follows:

V., =Ap(Cr+x,)— (Ap — Ag ) X4 (3.50)
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“Expansion space

Figure 3.6 Volume variations. In the configuration shown, the dis-
placer rod passes through the piston and is rigidly attached to the
displacer. Movement in the positive direction tends to increase working
space volumes.

Substituting equations (3.50) and (3.51) into equation (3.48), we obtain

p=MR (AP(CC + x;?):“ (Ap — Ag)xy N Vk N ’V, '1111 ([h_’_ljiz ;le
N Ik [k {jh - Ik) !h
Ap(Eg + x4+ x) \ !
Th

+ (3.52)

In order to be used in the dynamic analysis, equation (3.52) must be
linearised. For the purposes of this analysis the binomial expansion is used.
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This method of linearisation has been found to work perfectly adequately and
well within the tolerance expected from an analysis such as this. Rewriting
equation (3.52)

MR [ Apx,— (Ap—Ag)x,  Ap(x,+x.)\ !
= MR AR D~ Ar)Xq DXa T Xe 3.53
P="% ( 7,8 TS (33
where
S:M+Q+M+h+é§§_f; (3.54)

P A I R
Using the binomial expansion and neglecting second-order terms we obtain

P="3 7.8 7.5

, ) (3.55)

given the following condition

Apx, — (Ap — Ag)xy + AD(XF +Xx,.) <l
1.8 1,8
which is usually easily satisfied.

Since the mean pressure p, .. in the working spaces is the charge pressure,
result (3.55) may be improved further by writing

p~p 1_AD(xd+xc)__APxpu(AD“AR)xd
mean 'l*hS TkS

(3.56)

which implies that all pressure variations occur symmetrically around the
charge pressure.

The gas spring pressures are linearised in the same way. These results are not
repeated here since they depend on the particular geometry under
consideration.

Since the Isothermal analysis does not account for pressure gradients, the
pressure variation given by equation (3.56) may be thought of as representing
the spatial average pressure at any instant. For the purposes of the dynamic
analysis, equation (3.56) is taken to represent the pressure variation in the
compression space. Academically, it may be more accurate to assume that this
equation describes some intermediate pressure between the compression and
expansion spaces. On the other hand, what this pressure variation is referred
to does not make any significant difference to the dynamic components and,
furthermore, the assumption does simplify the calculations to a great extent.

Therefore we assume that
p. =~ p. (3.57)

A result describing the pressure gradient across the heat exchangers is
required in addition to the compression space pressure. This result would have
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to account for the character of the gas flow which typically may be laminar or
turbulent at any instant. The exact form of the pressure gradient result,
therefore, is quite complex. Fortunately, in most machines the gas flow is
predominantly turbulent in the cooler and heater and laminar in the
regenerator. Thus it is convenient to assume that the pressure drop is made up
as follows:

Ap = Ap, + Ap, + Ap, (3.58)

where Ap,, Ap, and Ap, are the pressure drop over the cooler, regenerator and
heater, respectively. For the cooler and heater, then, the pressure drop may be
assumed to be of the form

Apk, h = %p(f[ + k)i || (3.59)

where f, is the turbulent friction factor and is given by f, = 4f, L/d, where f, is
the Fanning friction factor, L is the heat exchanger length and d is the hydraulic
diameter. k, is the head loss coefficient due to bends and entrance and exit
effects. For the regenerator

Ap, =fu (3.60)

where f, is the laminar friction factor.

Equations (3.59) and (3.60) are both approximate but they do describe the
pressure gradients quite accurately in the majority of free-piston Stirling
engines. Equation (3.59) is non-linear and must therefore be linearised before it
can be incorporated into the dynamic analysis. The variation of density with
pressure is neglected since in most high pressure free-piston engines the
pressure swing is usually a small fraction of the charge pressure (typically less
than 159%). It is therefore assumed that density is only a function of local
temperature, which in the isothermal case is constant. Thus the major
contribution to the non-linearity is the velocity term.

Since the pressure drop constitutes a damping effect on the reciprocating
components, it is necessary to find an equivalent linear damper which will
dissipate the same energy. The condition for equivalence to be satisfied is: the
energy dissipated per quarter cycle by actual damping must equal the energy
dissipated per quarter cycle by an equivalent linear damping (Anvoner 1970).
From equation (3.59), the energy dissipated per unit flow area is

n/2
E, =—§g( fo+ky) f ()% iadwt. (3.61)
0

For sinusoidal displacements the flow velocity is approximated by
u = Ucos wt. (3.62)

Substituting equation (3.62) into equation (3.61) and integrating, we obtain

E; =4p(f, +k,)U? . (3.63)
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In the case of linear damping, the damping force per unit flow area is given by

Ap = Cu. (3.64)
In this case the energy dissipated per unit flow area is:
E, = CJ : (> det. (3.65)
0
Substituting equation (3.62) into equation (3.65) and integrating, we obtain
C
E,=2=u2. (3.66)
4w
Equating (3.63) and (3.66) and solving for C, we obtain
=3(p/m) (f, +k,)U. (3.67)

The turbulent pressure drop may now be represented by

Ap, ., > 3(p/m)(f, + kU, (3.68)

Thus the total linear pressure drop across the heat exchangers is given by

AP = % (1/17[) { [ﬂl] (/x + kh)a]cooler + [[)(] (/l + kh)a]h"‘“er}

+ﬁ aregenerator M (369)

It is now necessary to find the gas flow velocities in terms of the velocities of
the reciprocating elements. This is done by obtaining the net volumetric flow
rate through the heat exchanger loop and dividing by the relevant flow area to
obtain the corresponding gas velocity. Obviously the volumetric flow rate is
not uniform throughout the heat exchangers and therefore the velocities so
derived are approximate.

The volumetric flow out of the compression space is given by

vV, =dl,/di (3.70)
and the volumetric flow out of the expansion space by
Vo=dV,/di. (3.71)
Therefore, from equations (3.50) and (3.51):
Vo= ApX, = (Ap— Ag)¥, (3.72)
Vo= Ap (5, +X,). (3.73)

Positive values for I, and I, indicate increasing volumes, and therefore the
net volumetric flow rate through the heat exchangers is given by

V=1 —}. (3.74)

< €’

which from equations (3.72) and (3.73) becomes

Vi Apx, — QA — A )X, — A, (3.75)
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The approximate velocity through each heat exchanger component is then
given by

u = V/A, (cooler velocity) (3.76)
0=V /A, (regenerator velocity) (3.77)
u, = I;’/’Ah (heater velocity) (3.78)

where A,, A, and A, are the flow areas of the cooler, the regenerator and the
heater, respectively.
The pressure drop given by equation (3.69) may now be written

Ap = BWDAUS, + k) / A+ P Uy (fu+ ko /An] +1,/4,) T (3.79)
where p, and p, are given by

Px = Pmean/ (RT) (3.80)
Ph = Pmean/ (RT},) (3.81)

and U, and U, are the velocity amplitudes (or peak velocities) in the cooler and
the heater and are given by

U=V, /A, (3.82)
U, =V,/A, (3.83)
where V), is the net volumetric flow rate amplitude and is evaluated from
equation (3.75) by assuming sinusoidal displacements. The results for the two

operating modes are:
(i) piston motion mode

Vi = o[(4,X,)* - 224, - Ag)Ap X, X sin ¢ + (24, — Ag)? X212
(3.84)
(i1) casing motion mode
Va=0[ApX)* +2Q2Ap — A )Ap X X, sin ¢ + (24p — Ag)* X2]172,
(3.85)

From equations (3.75) and (3.79) it can be seen that the pressure drop is now
a linear function of the velocities of the reciprocating elements. Recalling the
assumed Ap relationship given by equation (3.8), we have

ApA, = Co%) +Cyxy +C. %, (3.86)

Comparing this result with equation (3.79) and equating the respective
coetlicients of Xy, X4 and X, we have

Cp = ApAp P (3.87)
Co= -4, — A )Ap P (3.88)
Cc = ADz PC (389)
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where P is given by

PC == %(1/7[) [pk Uk (f! +kh)k/Ak + ph Uh (ft +l\h)h/Ah] +f1/Ar’ (390)

which is the final form of the linear damping due to the heat exchanger
pressure drop.

A similar pressure drop analysis was done by G Wood at Sunpower
Incorporated (Wood 1980). Table 3.2 lists a comparison of his linear results for
A, with those predicted by a more complete simulation routine such as that
developed in Chapter 5. The agreement between the linear analysis and the
simulation can be seen to be perfectly adequate for the purposes set out for the
linear analysis.

Table 3.2 Comparison of the Linear and Simulation Ap amplitudes (after Wood
1980).

Displacer  Displacer— Piston Peak Reynolds

amplitude piston phase amplitude number Ap (bar)
(cm) (degrees) (cm) C R H Simulation Linear
1.27 65.00 1.27 19780 6 5136 0410 0.345
098 21.94 1.12 6311 2 3734 0.126 0.118
0.87 25.00 1.12 7543 2 335] 0.108 0.097
045 65.00 1.12 15790 3 1917 0.178 0.146
0.40 90.00 1.12 18440 4 1693 0.230 0.193

The above results were evaluated for a machine operating at 60 Hz: C, cooler; R,
regenerator; H, heater.

Finally, we require to calculate the damping effect due to gas spring
hysteresis loss. The details of this loss mechanism are outlined in Chapter 7.
Therefore, referring to Chapter 7, equation (7.31), the hysteresis loss is given by

= k |w AV \?
W=- [—y(y=1T.[—] . 391
y /2%}(7’ 1) “(VB) (3.91)

The work done against damping is given by (equation 3.45)
W=nChoX? (3.92)

where Cy, is the gas spring damping coefficient and X is the amplitude of the
damped motions.
Expressing (3.92) as a power

.

W=13C,(wX)>. (3.93)
Equating (3.91) and (3.93) and noting that AV = AX

w A\
A N S N e 3.94
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where A is the relevant presented area of the reciprocating element. Equation
(3.94) thus gives the damping due to gas spring hysteresis. All the relevant
linear equations are listed in table 3.3.

Table 3.3 Set of linearised equations for pressure, pressure drop and gas spring
hysteresis damping.

Compression
Ap(Xg+X,)  ApX, ~(Ap— AR)%)
space pressure p. =~ pmean( 1 - - .
() r.S
where
s=ACc Vi Vin@yT) V, ApEg
Tlc Tk (Th - Tk) Th Th
Pressure drop ApA, = C X +CyXy+ C X,
where
and
Pe=35(Ump Ul fi+ k) / A+ 0y Uy (f, + )/ A, ] +/i/4,
Gas spring k 2
A
hysteresis Cy= 3 /;3—)’(? -7, Aw< % )
damping %o “Vs

Note that other methods may be used to generate the linear functions. For
example, if a sophisticated computer simulation is used to analyse the
thermodynamic cycle, the pressure variations will only be known implicitly. In
this case, volume variations would be assumed, the resulting pressure
variations analysed by Fourier techniques and then, using only the linear
terms, the dynamic analysis would be performed to obtain new volume
variations. This process is therefore iterative unless one is solving for the
reciprocating masses, in which case the solution is obtained directly. The
second-order terms neglected should be of the order of 109 or less of the
linear terms (Gedeon 1978). Particular examples are now considered.

3.4 The Sunpower RE-1000 engine

The RE-1000 was developed at Sunpower to investigate free-piston Stirling
engine applications. The engine is primarily a research machine and is the
seventh in a series which began with an engine being built for the American
Gas Association (Beale et al 1975). The power to load is of the order of 1 kW
(figure 3.7). '




