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Linear dynamics of free-piston Stirling engines
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The free-piston Stirling engine (FPSE) is a heat driven mechanical oscillator from which power can be extracted. Linear d ynamics is

applied here in order to obtain: a stability criterion, a means

Jor determining the oscillation Jrequency, relative amplitudes of the

dynamic components, effects of friction on starting and the locus of the roots of the system determinant. Three common configurations

of these engines are investigated.

NOTATION
A cylinder area
Ay displacer rod area
A, piston area
D damping constant
F, pressure forces

F sliding friction force
j V-1

K spring constant

LHP left half plane

m component mass

m, total mass of gas

P pressure

Py gas spring pressure

Po mean cycle pressure

P power

Q stored energy/energy dissipated per cycle
R gas constant

RHP  right half plane

s Laplace transform variable

t time

1. cold end temperature

T, hot end temperature

T, regenerator cffective temperature
14 phasor, volume

v, compression space volume

V. expansion space volume

| heater volume

Y cooler volume

V, regenerator void volume

Ve compression space swept volume
Ve expansion space swept volume
w work

X displacement

X velocity

X acceleration

X transformed displacement

X amplitude, phasor

¢ phase angle, piston to displacer
0 phasor angle

w frequency (rad/s)
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Subscripts

¢ casing, operating condition
d displacer

p piston

1,2 roots

1 INTRODUCTION

Free-piston engines use variations of working gas press-
ure to drive mechanically unconstrained reciprocating
clements. Stirling cycle free-piston engines are driven by
the Stirling thermodynamic cycle which is characterized
by an externally heated device containing working gas
that is continuously re-used in a regenerative, reversible
cycle (1). The ideal cycle is described by two isothermal
processes connected by two constant volume processes.
Heat removed during the constant volume cooling
process is internally transferred to the constant volume
heating process by mutual usec of a thermal storage
medium called the regenerator. Since the ideal cycle is
reversible, the ideal efficiency is that of Carnot.

Potential advantages of the free-piston Stirling engine
arc: high efficiency, few moving parts, multi-fuel capa-
bility and the possibility of generaling power over g
wide range of source temperatures. In addition the
cengine may be hermetically scaled and is therefore not
subject to problems caused by dirt ingress or leakage.
Onc typical configuration of a free-piston  Stirling
engine driving a linear alternator is shown in Fig. 1.
Other applications are water pumps, and, if the load
device is a second Stirling cycle operating as a heat
pump, domestic heat pumps, food freezers and natural
gas liquefiers (1-5),

The purpose of this paper is to describe the dynamic
operation of these machines, and, in particular, to
obtain an understanding of the requirements for oscil-
lation and the general behaviour under load.

2 LINEAR MODEL

Referring to Fig. 1, piston motion causes changes in
working gas pressure, p, that excite motion of the dis-
placer which transfers working gas between the hot and
cold spaces thus changing p and hence also the force on
the piston. Oscillation' occurs under proper conditions
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Fig. 1 Free-piston Stirling engine

and power may be removed by, for example, a recipro-
cating electric generator (linear alternator) as shown.

Consider firstly the displacer. The equation of motion
may be written as follows:

myXy = — DyX4 + Ag(pa — P) (1)

where damping is due to viscous forces on the moving
gas. In general there is a further coupling to the piston
velocity, because piston motion causes a pressure drop
across the heat exchangers. In the interests of simplicity,
this coupling is ignored here as it does not significantly
alter the conclusions of the linear analysis. However this
effect can be included by straightforward extension of
the analysis presented here. Other incidental irrevers-
ibilities such as gas spring hysteresis have been partly
accounted for in Dyand D,,.
Lincarizing cquation (1):

. . G, ap i,
myXg = — DgXq + Ad[(a_zd‘ - gc_)xd - 55 xp:l (2
d d

P

Taking the Laplace transform and writing K4 for the
coefficient of x4 in (2) gives:

J
2 P -
(mys? + Dgs + Kk, = (ﬁxn Ad)xp
+ (initial conditions)y (3)
The term (initial conditions), is of the form (as + b),
where a and b depend on initial values of x4 and x,.

Equation (3) can be recast in terms of quantities wy, Q4
and a,, defined as follows:

w, = undamped resonance frequency

 (Kgfmy) (3a)
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Qg4 = (stored displacer energy/encrgy loss
per cycle at w,)

Wy My

=44 3b

2n Dd ( }
ap

a, = Ad 'a—xp (30)

with these definitions equation (3) becomes:

Wy 4 -
md(sz + 270, s+ wﬁ)xd + o, X,

= (initial conditions); (4)
With the further definition:

Ty(s) = md(sz - 2:5‘1 s+ wg) (5)

equation (4) becomes:
Ty(s5)%q + o, X, = (initial conditions), (6)

To obtain the linearized equation of piston motion, it
is first noted that the linearized unbalanced pressure
force on the piston, F, is given by:

ap ap
Fp:—(A—Ad}(-?dxdegxp) )]

p

The second term on the right of equation (7) is the
piston gas spring constant, K, that is,

op

K,=(A— Ay ox, (8)

The first term on the right of equation (7) is a ther-
modynamic coupling between piston force and displacer
motion. The piston is also subjected to a damping force
— D, %, from the electric generator (or other useful load)
plus incidental irreversibilities. Thus the Laplace trans-
formed equation of piston motion is:

d
(m, s2 + D,s + K%, + (A— Ay 5}1 X4
Xd
= (initial conditions), (9)

With the further definitions:

w, = \/(K o/m;) (undamped piston resonant
frequency) (9a)

M
Q, =22

52 D (stored piston energy/energy

v loss per cycle at w,) (9b)

)
oy = (A — Ay) L (thermal coupling between
¢X4  displacer motion and

piston force) (9¢)
(0]
T(s) = mr,(s2 + Et“a, s+ m;‘;) (9d)

the equations of motion of displacer and piston are:
Ty(s)%4 + o, X, = (initial conditions), (6)
oy X4 + T(s)%, = (initial conditions), (10)

© 1McchE 1985
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Fig. 2 Bromwich contour

The nature of the solutions for x,(t) and x(t) will be
determined by the location in the complex plane of the
four roots of

TS o |
o TS =0 (11)
or
TS Ty(s) — ooty = 0 (12)

A necessary condition for oscillation is the presence
of at least two roots in the RHP. Whether such roots
exist can be determined by examining a map in the
complex plane of the left side of equation (12) as s traces
the Bromwich contour (Fig. 2) in a clockwise sense.
Since the left side of equation (12) has no RHP poles the
number of clockwise encirclements of the origin by the
map is equal to the number of RHP roots of equation
(12) (6).

Since oy is a negative quantity in practice (pressure
decreases as displacer moves up), an equivalent state-
ment is that the number of RHP roots of equation (12)
is equal to the number of encirclements of the point
— oy or| +j(0) by a map of Ty(s)T,(s) as s traces the
Bromwich contour. Ty(s)T,(s) is of fourth order, and it
can be factored into:

Ta(5)Ty(s) = (5 — Sa, /(s — S, )5 — 85,08 — 5, (13)

where s,,, 54, are the roots of Ty(s) = 0 and s,,, s, are
the roots of T (s) = 0.
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Fig. 3 Zero locations in the complex plane

From the definitions of Ty(s), T,(s), and the quadratic
formula:

| ' 1 \?
“dz:wd{‘@ifﬂ“(wﬂ ]} 9
= 1 + \/ (L ’ 15
‘SDI’SDZ_"CUP _4RQP_J _(4RQp ( )

In practical machines, @, and Q, usually exceed 1.0,
and to the first order in 1/4nQ;

|
Sdl, Stll = w(l( - '&H_Q'"'; :tj) (16)

|
Sm, Sm = (!)p( — M ij) (1?)
p

Figure 3 shows schematically the location of s,,, 54,
sp, and s, in the complex plane. In Fig. 3, the factors of
Ti(s)T,(s) are represented by the phasors Vy, V,, V,, V,
if s is on the imaginary axis.

To begin the mapping of Ty(s)T(s), traversal of the
Bromwich contour can be started at s = 0, for which
point (0, + 0, + 05 + 0,) = 0, hence TH0)T,(0) is real
and positive. As s progresses up the imaginary axis,
angles 8, and 8, increase, while the negative angles 0,,
05 decrease in magnitude and eventually become posi-
tive. Thus the map begins on the real axis and moves
into the first quadrant. As s—j(co), (0, + 0, + 04
+ 04)— 2n. Therefore the map circles the origin
counterclockwise and returns to the real axis at + co.

The next section of the contour to be traversed is an
infinite RHP semicircle. As s moves clockwise on this
section from +joo to —joo, (0, +0,+ 05+ 0,)

Proc Instn Mech Fners Vol 199 No Al
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Imaginary

Fig. 4a  Two RHP roots
Imaginary

Fig. b No RHP roots

decreases from 2z to —2n, and the map of Ty(s)T,(s) is
two circles of infinite radius, traversed clockwise.

The last section of the contour is the negative imagin-
ary axis from —joo to the origin, for which the map is
the complex conjugate of that for the positive imaginary
axis,

Maps of T(s)7.(s) are shown in Figs. 4a and 4b, for
cases where there are two RHP roots of cquation (12)
and no RHP roots, respectively. Figure 4a shows two
clockwise encirclements of — e, |, while Fig. 4b
shows two clockwise and two counterclockwise encircle-
ments, or no net encirclements, hence no RHP roots of

equation (12).
The frequency o, in Figs. 4a and 4b is that for which
0 () + 0)(w,) + 05(@,) + O4lwr) == (18)

From Figs. 4a and 4b, a necessary condition for oscil-
lation is then

| Tyl jon) Tl )| < [oty oty | (19)

From Fig. 3 it is clear that w, lics between w, and w,,
and approximately satisfies the condition

Ol(ﬂ}c) = - 03(0)5) (20)
In the borderline case, characterized by
7:1(.1;“)1:]?—‘['(}“}(:] + Iapal'l = 0 {21]

equation (12) has roots at +jw,. :

It will be shown later that if equation (12) has two
RHP roots, they are a complex conjugate pair rather
than two positive real roots. This is of practical signifi-
cance since the dynamic consequences of RHP real
roots would disqualify the machine as a practical oscil-
lator.

If equation (12) has a conjugate pair of RHP roots,
the remaining two roots are LHP, and their dynamic
consequences eventually disappear.

If a conjugate pair of RHP roots of equation (12)
does exist, the machine will oscillate with exponentially
increasing amplitude until limited by non-linearities,
which can be artificially introduccd by feedback mecha-
nisms, or be inherent in the internal gas dynamics.
Without non-linearities, oscillation will build up to
mechanical limits.

The oscillation criterion (19) can be expressed in a
practical form involving engine parameters. The first
step in doing so is to determine w,, using equation (18).
For practical cases, 0, + 0, ~ n al w = w_, and w, is
located by requiring 0, = — 0, which leads to:

L wa (O, + Q4) (22)
¢ 0, Qy + w40,

If Q4> Q,, w.xwy; and if Q,> @y, w,x w,. In
general, it follows from equation (22) that w, is closer to
the resonance frequency associated with the higher Q. A
further observation is that since Q, changes with load,
the operating frequency is, in general, a function of load.
The engine may be made to operate at a constant fre-
quency over a wide range in load by arranging w, = o,
in which case w, is independent of Q4 and Q. An alter-
native way of achieving near constant frequency with
load variations is to cnsurc that Q4 > Q,, over the full
range of load, so that m, = m, regardless of Q..

In terms of w,, wy and w,, the oscillation criterion (19)

becomes:
- ) w? 2
m,my(w, + ), + wd]L(wc —wy)” + (4RQ.1}2J
C()l 1/2
. |:((uc — wp}z -+ {4?IQp ]Z:I <layor] (23)
p

which is a general criterion for oscillation. For the
special case w, = w, = wy, equation (23) reduces to

4
m._ n,
——— <o 0] (23a)

4H2Q|1 Qd

3 ROOT LOCI

The locus of the roots of equation (12) as | o, oer| varies
can be inferred from equation (18) and the fact that the
starting points of the root loci, for |o,ar| =0, are the
roots of Ty(s) =0 and T(s) =0, as given by equations

e AL LI ROYVOE



LINEAR DYNAMICS OF FREE-PISTON STIRLING ENGINES 207

Fig. 5 Root locus with |« oy | as parameter

(16) and (17). Figure 5 shows typical resulting loci for a
casc @, > Q.

As op increases (due to increase in hot end tem-
perature, as will be shown later), one conjugate pair of
roots moves from +s, toward the jw axis, eventually
reaching it at a value of oy o, predicted by the stability
criterion, whereupon oscillation begins. The other two
roots are a conjugate pair in the LHP and are associ-
ated with dynamic evanescence.

In practice, oscillation amplitude is limited by non-
linearities, either artificially induced by means of closed
loop mechanisms that control @, or Q, in response to
piston amplitude, or inherent in the working gas flow
processes, or both. Their effect is to decrease the posi-
tive real part of the conjugate root pair associated with
oscillation as amplitude increases, until the roots even-
tually reach the imaginary axis at an equilibrium ampli-
tude, as illustrated in Fig. 6 for a situation where Q
decreases with amplitude.

When cquilibrium is reached, piston and displacer
motion are expressible in complex form as:

xglt) = Xqed (24)
x,(1) = X, e/ (24a)

where X, and X, are complex amplitudes and the oper-
ation of taking the real part of the right hand sides is
understood. X, and X, are not independent but are
related by either equations (6) or (10), which are equiva-
lent by virtue of equation (11) at s = 4 jw,. Thus, from
equation (6):

X
Zd _ % (25)

X,  Tyjo)

from which follows the stroke ratio and piston/displacer
phase angle:
Xa

X —Kd - w,/ my 2mQy

e AR LT d e #

r

Imaginary

L — Amplitude increasing
~es, A
Oscillatory root,
amplitude - 0

L]
Sdi

Real

Sd2

e sz

Fig. 6 Root locus for @, decreasing with increasing ampli-
tude

(e, 1 J(
(T (0

For practical engines, ¢ is usually between 40° and
90°. For the special case v, ~ w, = @y, ¢ = n/2 and
IXd/Xpl = (J‘x;\/pr)'

At equilibrium, the average power taken from the
piston by useful load and internal losses is balanced by
the average power, P, supplicd to the piston by the
working gas. The latter is the time average of the
product of pressure forces on the piston and piston
velocity, or

P = {(K,x, — o Xg)x,» (28)
where the brackets denote time average. However,
(X&) =0, &, = joX e and, in general, the time
average of the product of (wo sinusoidal quantitics des-
cribed by phasors 4 and B is given by (AB* + A*B)/4
where A* and B* denote complex conjugates. Therefore,

P= -jw%? (XX, — X X3)

or

wlor]

P imag (X, X})

If X,/X, = Re?, R real and positive, then

||

P ==Xl X,|sin ¢ (29)

Power is maximized for ¢ = 90°, which, from equa-
tions (27) and (22), occurs when @, = w,. However, in
practical cngincs the efficiency usually improves at the
lower values of ¢ owing to reduced gas flow losses
through the heat exchangers.
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From equations (29) and the results for stability, fre-
quency, stroke ratio and phase angle, i.e. equations (22),
(23), (26) and (27) respectively, it is possible to define an
engine. The accuracy. of the result for power is limited
by extrapolation of the linear solutions to large ampli-
tudes and, of course, the accuracy in determining a, and
oer. For the purposes of preliminary design, simple iso-
thermal thermodynamics has been found to return rea-
sonable approximations for &, and oy .

4 SIMPLE THERMODYNAMICS FOR
EVALUATING a, AND oy

a, and oy can be approximated from simple thermody-
namics which assumes all the gas in the hot space is at
temperature T; and all the gas in the cold space at T_ (1,
2, 7). From the ideal gas law:

=p(VJ/T. + WT. + VT, + VJT, + VJT)/R  (30)

where m, is the invariant total mass of gas in the
working space of the engine and p is the gas pressure
which is assumed to be spatially constant but time
variant. T, is the effective gas temperature in the regen-
erator and is usually taken to be the log mean tem-
perature difference (7):

T, = (T, — T)/In(Ty/To) (1)

In equation (30), ¥, and V, are functions of x, and x,,.
Referring to Fig. 1, the following holds:

dv,

dtd —A (32)

v,

E=(d-4) (33

Xq

av,

— = —(A—-4 34

o=~ (34)

It can be shown that the average pressure, p,, is
approximately the pressure for which V, = V/2 and
V., = Vg/2, thus,

(Ve V. 1(V, -
= == - - W

SNTICICRIT
or defining

v, 1(V V. 1 /W

=2 = |4 - |4 35

T, 1:(2+ )*T:*T;,(?-J“ ") &)

p. = m RT/V, (36)

From equations (30), and (32-36) and assuming that
m, is constant, the following is obtained at p = p,, V, =
Vef2, V. = V/2.

o LAl T A,
R A e 37
3xe ""V.,T;( T, ,4) 4D
o T A A,

| —— 38
ax, Py, r( A) ©35)

From equations (37) and (38) and the definitions of a,
and o [equations (3c) and (9¢)]:
T, Ay

% =Py 7 (4= 4) (39)

T T T T T
581 —
Isothermal
56 model —
54 - . o
8
E 52
el a
Blasol  ©
o o .
I°] o Cooling down
2| 48 : m
E o ® Heating up
46[-o ° T, taken equal to source |
° temperature
4§ 4
421 -
1 | 1 | | | 1 1 1

40
300 400 500 600 700 800 900 1000 1100 1200
Temperature

K

Fig. 7 Piston resonance versus temperature

T T, Ay
oy = V T. — (A - Ad}(l - i A) (40)

Noting that for bounce space pressures approx-
imately constant, K, the piston spring constant is given
by:

d
—(4 - Ad)a—"— @1)

it follows that
K,=ayA/A;— 1) (42)

From equations (39) and (42) it can be seen that K, is
temperature dependent. The tcmpcrature dcpendency of
K, given by equations (39) and (42) is compared in Fig.
7 wlth results of an experiment involving a typical
engine.

The experiment was performed on an  engine-
alternator with the displacer locked at its nominal mid-
stroke and the alternator used as a motor. Experimental
data were obtained by driving the alternator with a
variable frequency oscillator, and, by means of electrical
measurements, determining the piston resonance at
various temperatures. The isothermal prediction can be
seen to give a fair approximation for K.

With the isothermal approximations for o, and oy
given by equations (39) and (40), the stability criterion
(23) becomes:

Do ey ey
My W \w, + w/\wy + w,
—1f2
[( ') o }
-1/2
[(“ B 1) "m0 )’J

(AA j;‘) - _,__)>1 (43)

4
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In practice, Aw terms and A4/A are usually small, and
the stabi]ity criterion is approximately:

o ffoufz )}
A

(44)

It follows from equation (44) that the lowest T, for
onset of oscillation occurs for the special case w, =
w, = wy, for which the start-up criterion becomes:

2 My T. Ay
4n? = QdQ( TL_A)>1 (45)

At slart-up sliding friction is dominant and deter-
mines Q, and Q. If sliding frictional forces F,, and F,
exist against displacer and piston motions respectively
and are given by:

Xdq
Faa= _1F5|d|‘—““|).c |
d
X
Fao= —|Fg,l
SRR Y
P

then at start-up, the quantities Q,, Q, are amplitude
dependent according to:

0, = my| X4l ?
8| Faal

0. my| X, |
? 8| Fopl

and the start-up criterion for equal resonances of the
piston and the displacer becomes:

n? m, Ay w [ Xall X ( 1. Ad)
——nm e - -] >
6mg 4 " Tl ' "1 A

(46)

which shows that the effect of sliding friction is to
impose a minimum product of amplitudes, | X4[| X |,
as a condition for starting. Since equation (46) does not
account for flow losses or external loading which
become dominant over friction at larger amplitudes, the
cngine may well start if equation (46) is satisficd but
then fail to build up to design amplitudes.

An important conclusion that may be drawn from
cquations (44) and (46) is that a free-piston Stirling
engine can be designed to self-start easily providing that
the sliding friction is small and that the small amplitude
resonances of the displacer and piston are such that the
start-up inequality is satisfied. Practical considerations
will often result in the resonances being detuned at rest,
For example, the effect of gas spring centering ports,
leakage between the gas spring and working gas, and
drift of the moving parts under gravity. In these cases
the machine will require some input of energy to initiate
oscillation.

Once the machine has started, and reached a cyclic
steady state, the power follows from equations (29) and
(40):

w P(,T:, T. Ay -

(47
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Fig. 8 Comparison between cycle work based on non-linear
pressure and linearized pressure

where

v, 1/(V A v
2o (24 V,
T, 71(2+ “) T*n(z”“ “)

the amplitude ratio and phase angle having been
obtained from equations (26) and (27).

Since power is directly proportional to the mean
cycle pressure, Stirling engines usually require pressuri-
zation to improve their specific power.

Figure 8 shows the power as predicted by the linear
analysis compared to experimental and computer simu-
lation results. Also shown is a solution for power
(labelled ‘non-linear’) assuming isothermal thermodyna-
mics and sinusoidal volume variations (1, 2, 7). The
‘non-linear’ solution accounts for, among other things,
the fact that gas spring ‘constants’ are amplitude depen-
dent.

5 HIGHER DEGREE OF FREEDOM SYSTEMS

In the foregoing analysis the casing motion has been
assumed to be zero. However, there are FPSE configu-
rations in which casing motion plays an essential
dynamic role. Two such systems will be briefly analysed
here, viz., the Harwell thermomechanical generator and
the so-called free-cylinder cngine. Obviously lincar
dynamics is applicable to other higher order systems
such as the duplex Stirling heat pump and refrigerator,

both of which are systems with three degrees of freedom
(4, 5).

5.1 Harwell thermomechanical generator

This device was originally developed as a long-life
(better than ten years) high efficiency electrical gener-
ator to be powered by nuclear radioisotopes (8). Refer-
ring to Fig. 9, the machine consists of a displacer and
piston both of which are mechanically sprung to the
casing. The load is located between the casing and
piston and is indicated by D, . Casing motion drives
the displacer through K, . Typically, the piston is
replaced by a weighted flexing diaphragm.

The casing motions are usually of much smaller
amplitude than either the displacer or piston motions.

Proc Instn Mech Engrs Vol 199 No A3
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spring rate

Kpe
area 1 D Load

1 b LOa I
mp/ Xe

Fig. 9 Harwell thermomechanical generator

Viscous coupling between the casing and displacer or
piston may therefore be neglected and the effect of
casing motions on the working gas pressure may also be
assumed to be negligible. In addition, the viscous coup-
ling between the piston and displacer is ignored with
the same reservations as in the previous case. The trans-
formed equations of motion for the displacer and piston
may be written:

(mygs? + Dyos + Ky )%y — Ky %, =0 ‘ (48)
(m,s*> + Dp.s + K, + AB)%, + APy Xy — Ky X =0
(49)
where
ap _Op
P ax, "¢ x4

The force exerted by the mounting springs is small
compared to the inertia force so that the entire engine is
essentially a free body. Thus the transformed equation
of motion of the centre of mass may be written:

23 25 2
Mes“X, + mys°X, + mys“Xy =0
or

R m . my .
ko=——L% ——%, (50)

c me

Eliminating X_ and with the following definitions:

HIE
= ch
m,

p

m
=A K, —
CCT Bd + pc m

(negative for sufficiently high T;)
Ky = Kg{l + my/m,)
K, = AB, + K (1 + m,/m,) .
the following characteristic equation is obtained:
Ty(s)T(s) — apor =0 (51)

which is identical in form to equation (12) and therefore
the same stability criterion holds, i.e. equation (23).
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Fig. 10 Free-cylinder engine

Using the isothermal model, a, and o; may be evalu-
ated and substituted into equation (23) giving:

myl p, T, 1 1 K, my
4n? e e gy () e
§ Qd QP jl“t‘.‘lif<dc V; D(Tc T;l) Kd_c m, =1
(52)

foro,=wy=w.and Q4> 1,0, > 1.

If the contribution of the diaphragm stiffness to the
piston spring rate is small compared to the contribution
of the working gas, then for oscillations:

A
4120, 0,2 2= (1 = TyTy) > 1 (53)
mg A,

It is interesting to note that since the displacer is
mechanically sprung and the piston is a flexing dia-
phragm, there is no sliding friction or need for centering
ports, thus the stability criterion suggests these engines

will self-start on application of heat and they in fact do
s0.

A further observation is that it appears from equation
(53) that the instability may be increased by making m,
and 4, small. However, it may be necessary to limit the
instability to avoid excessive amplitudes which could
have an adverse effect on the life of the diaphragm
owing to higher stresses. In this case, the instability may
be reduced by reducing 0, and Q, or by increasing the
casing mass and/or the piston area.

5.2 Free-cylinder engine

The free-cylinder Stirling engine offers a means by
which mechanical power extraction devices (e.g., a water
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pump) may be coupled externally to a pressurized,
sealed engine. It uses a relatively heavy piston so that
useful forces and motions are transferred to the engine
casing (9). Linear dynamics predicts that, unlike the
free-piston engine, it has the ability to start at any value
of load (D, in Fig. 10).

The lincar analysis summarized below shows that the
frece-cylinder engine behaves essentially like a free-piston
engine for which w, and Q, vary with load damping D..

With the definitions:

i
dx

C

ap

= b
dxg

i,
Bp=i ﬁd

ox,’
K, =(A— A)B, + Kqp
Ky =(A4B4 + Kgp)

(positive for K4, sufficiently high)
oy = — (A — Ag)fs — Ky,

(positive for T;, sufficiently high)
Ay = Ag By — Kyp

ﬁcz

(positive for A, i sufficiently high)

where, again, A is the cylinder cross-sectional area and
A, is the displacer rod cross-sectional area. The Laplace
transformed equations of motion of displacer, piston
and centre of mass respectively, linearized about a point
for which p = p_, are:

(mgs> + Dgs + KgXq + 05903, + Agf. X, =0 (54)

(mys® + KX, + (4 — AJB ke —or Xy =0 (55)
N (56)
m.s+ D,

Some terms that have little influence on the dynamics
in practical cases have been dropped.

Using the equation of centre of mass motion to elimi-
nate %, and with the further definitions:

K.=—(A—- Ad}ﬁc%? (positive quantity)

C

o= — Ay ,-‘fL.EE (positive quantity)

<

the transformed cquations of displacer and piston
motion become:

(mys* + Dys + K3y

s .
+ [apd + acd(;——ﬁ—+ Djm ):|xp =0 (57

s “
H!pSZ + KP + Kc(m)]tp =0 (58)

Two limiting cases can be distinguished. First, for
D, = oo (fixed casing), equations (57) and (58) reduce to:

oy Xq —

(mys? + Dgs + Kg)Xy + 0pq X, =0 (59)
ap kg — (mys® + K%, =0 (60)
Equations (59) and (60) are the equations of a free-
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piston engine having infinite piston Q and a piston res-
onance frequency w,; given by

1/2
Wy = (&) (61)

mP
If D, = 0, equations (57) and (58) reduce to:
{”ld 32 + f)d s+ Kd)id + (Ctl,d + acd}.{(r’ =0 (62)
oy Xg — (my, s+ K, + Kok, =0 (63)

Equations (62) and (63) arc again the equations of
motion of a free-piston Stirling engine having infinite
piston @ and, in this case, a piston resonance frequency,
,,, given by:

K, + K.\
wpoz(-ib) (64)
m,

Comparison of equations (59) and (62) shows that the
coupling constant relating piston movement to driving
force on the displacer increases from o, for a locked
casing 1o (a,q + 0q) for a free casing. This is because of
casing motion in opposition to piston motion and has
dynamic consequences which will be discussed later.

As previously, the general characteristic equation of
the system is found by sctting the determinant of the
coefficients of equations (57) and (58) equal to zero. The
characteristic equation is:

m,mals(s? + wp) + (De/mo)(s* + wpy)]
[s? + wy /210, + w3]
s + Dooyg/[m(ong + oey)]
+ a']'{apd + acd) = 0 {65]

From equation (65) it is evident that a single LHP
pole of the first term of equation (65) exists at:
m (0, + %eq)

There are five zeros since the numerator is fifth order.
Two of these are roots of:

wy

st + 210, s+ mi=0 (606)
For Q,> 1, the rools of cquation (66) arc
5= — w,/4nQ, + jow,. The remaining three zeros are
rools of: '
2 2 Dc 2 2
s(87 + wp) +—= (" + wy) =0 (67)
I

(4

If D, =0, the roots of equation (67) are s =0 and
s =+ jw,,. As D, = o0, the roots of equations (67) are
s = —D/m and s = + jo,;.

For finite values of D_, root locus techniques can be
used to give general information on the roots of equa-
tion (67). It can be shown that as D_ increases from zero,
two roots depart from +jw,, into the left half plane, in
a direction parallel to the rcal axis, and, as D ,— o0,
these two roots approach + jw,; from a direction paral-
lel to the real axis. For m,/m > 1, it can be shown that
the loci of these two roots arc semicircles in the left half
plane. Root locus methods also show that the root at
s = 0 moves to the left on the real axis as D, increases,
and approaches — D /m_ as D, — c0.
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Fig. 11 Loci of poles and zcros of [ree-cylinder engine

Figure 11 shows the loci of the poles and zeros of the
first term of equation (65) for a case where w, lies
between w,, and w,;.

With the help of Fig. 11, a map of the first term of
equation (65) as s traverses the Bromwich contour can
be sketched, as shown in Fig. 12 for a typical value of
D,.

If the first term of equation (65) is expressed in
magnitude-angle form M/ 6 then @, in Fig. 12 is the
frequency at which 8 = n. If

M(w,) < axlatyg + ocq) (68)

then there are two clockwise encirclements of the point
—og(%,g + 0q) by the map, otherwise there are no net
encirclements (two clockwise, two counterclockwise).
Thus equation (68) is a necessary condition for oscil-
lation. For Q, high, o, & w4 for finite D,. Then, since
M(w,) is proportional to the product of phasors joining
the point s = jm, to the zeros of the first term of equa-
tion (05), it is clear from Fig, 11 that Q, is critical in
determining whether oscillation will occur over the
entire range of D.. Also important is the value of m,
relative to w, and w,. To minimize the maximum
value of M(w,) over the entire range of D,, w, should
evidently lie between w,, and ;. Since the coupling
constant between piston movement and driving force on
the displacer is higher for the free casing than for the
fixed casing, instability is easier to achieve for D, near
zcero than for high values of D_.. Thus, w, should be
closer to w,; than w,, in order to achieve approximately
the same value of ay for instability at all values of D, .

6 CONCLUSIONS

By the application of linear dynamics to free-piston
Stirling engines the following has been shown:

1. Existence of a stability criterion which relates mecha-
nical dynamics and thermodynamics and shows that
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Fig. 12 Location of oy(a,, + a.4) for two RHP roots

there is a minimum hot end temperature for which
oscillation may be expected.

2. That there is only one mode of oscillation for each of
the engines treated here, i.e., only one pair of RHP
roots.

3. Frequency is generally load dependent but the engine
may be configured to operate at essentially constant
frequency for wide changes in load.

4. Once the machine begins to oscillate, non-linearities
must act to prevent a runaway condition.

5. The presence of sliding friction imposes a condition
of a minimum amplitude product, | X,||X |, for
starting. In the absence of sliding friction, a properly
configured engine will self-start at or above a
minimum starting temperature.

6. Arranging wy = w, allows the engine to start at a
lower hot end temperature, and maximizes the power
for a fixed geometry.

1. The closed-form results from linear dynamics and
simple isothermal thermodynamics offer a quick and
convenient method for preliminary engine sizing.

8. The casing plays an essential part in the operation of
two higher degree of frecedom cengines. In particular,
for the Harwell machine the casing reaction to piston
motion is the source of feedback to excite the dis-
placer. The free-cylinder engine employs the motion
of the cylinder to deliver its power. This machine has
the unique characteristic in that, if properly designed,
it will continue to oscillate at any load from zero to
infinity and will also self-start under any load.

More generally, linear dynamics provides direct
means for understanding the behaviour of a free-piston
engine over the complete operating parameter set and
shows the influence of engine geometry on this behav-
iour. Practical issues such as sliding friction, the pre-
sence of centering ports or the effect of drift under
gravity may also be included. By virtue of being able to
address the broad spectrum of operating conditions and
design parameters, the analysis therefore offers a clear
qualitative appreciation of these engines’ idiosyncracies
too.
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