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Free-Piston Machines

Hey . . . this engine will work just fine if we simply cut off the rhombic drive . . |

Observation by William T Beale while teaching thermal machinery at the
Ohio University, winter 1964

3.1 Background

One of the most novel applications of the Stirling cycle is in free-piston
configurations and, indeed, this configuration is the one which holds the most
immediate promise.

Free-piston engines operate without physical linkages. They rely only on the
gas pressures (and in some cases mechanical springs) to impart the correct
motions to the reciprocating elements. Such machines have the advantages of
simplicity, low cost, ultra-reliability, and freedom of working gas leakage over
conventional Stirling engines. Depending on the particular configuration,
these engines may also be designed to operate at constant frequency. They are
currently being developed for many diverse applications which include
thermally activated heat pumps, solar electric converters, remote area power
generators, total energy systems and water pumps (Walker 1980).

The invention of the basic free-piston Stirling engine in the early 1960s is
generally attributed to William T Beale (Beale 1969, 1971). Independent
inventions of similar types of engines were made by E H Cooke-Yarborough
and C West at the Harwell Laboratories of the UK AEREt (Cooke-
Yarborough 1967, 1970, Cooke-Yarborough et al 1974). G M Benson has also
made important early contributions to the field and has patented many novel
free-piston Stirling engines (Benson 1973, 1977). Others have since been
working on various aspects and modifications of these original ideas (see
Martini 1975, Reader 1979, Goldwater and Morrow 1977, Goldberg 1979,
Goldberg and Rallis 1979).

An early model free-piston Stirling engine (model M100) produced
commercially by Sunpower Inc is shown in figure 3.1. This machine produces a

"Atomic Energy Research Establishment, Harwell, England.
I This model is no longer available from the company, having been replaced by a more
recently developed one.
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nominal 100 W at 50 Hz. From the figure, components typically encountered
ina Stirling engine are evident, with the exception of gears, crankshafts and the
like, the piston and displacer being mounted on gas springs. This is a common
configuration but is certainly not the only one. Many different configurations
exist, some of which are analysed later in this chapter.
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Figure 3.1 Model M100 free-piston Stirling engine (courtesy Sunpower Incor-
porated).

Consider a free-body diagram (figure 3.2) of the piston and displacer for the
model M100. The equations of motion for these two components would be,
for the piston:

My X, = (p. = py) Ap — Cpo (X, + X,) (3.1)
where C . (X, + x_) is the force exerted by the alternator, and for the displacer:
MD')Ed =ADpe~APpc_Ade (32)
where Ay = A, —A,, ie.
MD’fd =AD(pe_pc)+AR(pc—pd)' (33)
Using p. as a reference pressure, p. may be obtained as follows
Pe = p.+Ap (3.4)

where Ap is the instantaneous pressure difference across the heat exchangers.
Substituting equation (3.4) into equation (3.3) we obtain

M Xy = A Ap+ A, (p. — py) (3.5)
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Figure 3.2 Free-body diagram for the Model M100 engine.

Equations (3.1) and (3.5) are then the equations necessary to determine the
motions of the piston and displacer respectively. To solve these equations,
relationships for p, and Ap in terms of x, and x, are still required. These
relationships are obtained from the thermodynamics of the cycle. For the
moment we shall assume that the thermodynamic equations are available.

The solution of this set of equations may be attempted by a variety of
methods. Possibly the most obvious is by time-stepping integration techniques
similar to the simulation method introduced in Chapter 2. This approach has a
serious drawback if used for initial sizing, in that the choice of piston and
displacer masses, gas springs and other components necessary for the correct
dynamic behaviour are not made evident. These parameters would have to be
chosen on a more or less arbitrary basis and hence there would be no clear
indication, until after the simulation, that a particular engine configuration
might work. This trial and error method would clearly prove tedious and
expensive, particularly if large scale thermodynamic simulations were used.

The importance of the ability to obtain a preliminary idea of engine
configuration in a short space of time cannot be underestimated. It allows the
designer to determine at an early stage in the design whether or not the size,
performance and operating parameters (such as charge pressure, frequency,
etc) are reasonable, and to some extent whether or not a Stirling engine is
suitable fer the application at hand.

In what follows, a classical dynamic analysis of free-piston Stirling engines is
described (Berchowitz and Wyatt-Mair 1979). This analysis is then coupled
with the ideal isothermal thermodynamics of Chapter 2 to obtain closed-form
solutions for the behaviour, performance and size, as well as the rather narrow
criteria under which successful operation may be expected. Furthermore, the
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solutions also indicate general characteristics such as the effects of changing
load, charge pressure, temperature ratio, etc.

3.2 Generalised analysis

For a given geometry, gas type and temperature distribution, the working gas
pressure is ideally a function of the volume variations only (cf Chapter 2,
table 2.1). Since the volume variations are, in turn, functions of the piston,
displacer and casing motions, the working gas, gas spring and bounce space
pressures may be written:

p=/(x,, Xg, X.). (3.6)

As shown in Chapter 2, ideal thermodynamics exclude the possibility of
pressure gradients. These pressure gradients, however, strongly influence the
dynamic behaviour of the machine in that the reciprocating elements are
subjected to increased dissipative (damping) forces. The major effects here are
the change in phase between the displacer and piston motions, and the change
of displacer to piston amplitude ratio. Together, these two effects significantly
alter the power output. Thus, for meaningful results the pressure gradient
must be accounted for in some way.

If one considers that the pressure gradient is predominantly a result of
viscous friction in the heat exchangers, it is fairly obvious that work against
this pressure gradient is dissipative. Therefore, the force due to the pressure
gradient influences the dynamics as if it were a damping load. Equivalent linear
dampers have been found to work very well in reproducing the effects of the
pressure gradient. For the purposes of this analysis, it will therefore be
assumed that the pressure gradient may be represented as a function of piston,
displacer and casing velocities:

Ap = [(X,, X4, X,). (3.7)

The details of the Ap relationship will be developed later. For the moment,
assume that it is of the following form:

ApAp = C X 4+ CyXy +C %, (3.8)

Another important damping effect is the hysteresis loss associated with gas
springs. The development of this loss mechanism is covered in Chapter 7.
Dynamically, the effects of gas spring hysteresis may also be accounted for by
linear dampers. For the piston gas spring

Jo=Cy (X, +X) (3.9
and for the displacer gas spring
fu = Cu, K4+ %) (3.10)



Generalised analysis 55

where (X, +X,) and (%, + X, ) are the relative velocities with respect to the
casing for the piston and displacer respectively.
The dynamic equations (3.1) and (3.5) should be modified to include gas
spring damping as follows
My, = (P, =) Ap = (Coo +Cy )%, — (Cy_+Cp )%, (1)
Myxy = ApAp + Ag(p. — py) — Cu,, Kq +X,) (3.12)
where the gas spring pressures p, and p, now represent only the pure spring
component of the gas springs, i.e. the ideal pressure swing, which is a function

of displacement only.
Substituting for A, Ap from equation (3.8) into equation (3.12):

Mp%y = ok, + (Cq = Cy )%g + (C, — Cy )% + Ag (po — pa). (3.13)

If it is assumed that p, p, and p, oscillate around a mean value of pressure
given bY P, (the charge pressure), a linear approximation of any of these
pressures would have the form

P = Pmean (1 +ax, +bxy +cx,). (3.14)
Therefore, we may write
(Pe = Po)Ap/Mp = S x, + S 4x4 + S, X, (3.15)
and
(Pe —Pa)Ag/Mp = Sy X, + SgqXq + Sy X, (3.16)

where the linear coefficients (i.e. the S) will be developed later.
Substituting equations (3.15) and (3.16) into equations (3.11) and (3.13)
respectively, we obtain

Xy = 850X, + 8,4 % + 8%, — (Cpe + CHDC)JGD/MP —(C, + CHDC)XC/MP
(3.17)
and
Xg = Sgp X, + 84X +Sye X, + CoXy/Mp +(Cy — CHdc)xd/‘{wD +
(Co—Cy, )X/ M. (3.18)

Grouping the damping terms together, the final forms of the piston and
displacer dynamic equations are generalised as follows:

Xp = SppXy +SpaXy + 5. %, + D X, + D yX4+ D, X, (3.19)

pp p
and
“{C‘d = Sdpxp + dexd + Sdcxc + de :(.p + Dddjcp + Ddcxc (320)

where the D are the composite damping coefficients. Note that in the particular
case of the model M100, D, is zero.
Since there are three unknown quantities (x,, X4, X.), a third equation is
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required before a solution can be attempted. This equation is the dynamic
equation for the casing of the engine. By inspection it will be of the same form
as equations (3.19) and (3.20):

Xe = 8.,X, 4+ ScgXq + S..x. + D x, 4+ D 4%;+ D, x.. (3.21)
Thus, in the general case, the dynamic equations (also referred to as the
equations of motion) may be conveniently represented as

th SDDSpdSpc xp Dpprdec xp
Xa| = Sdded Sae Xq | F deDdd Dy, X (3.22)
X.C Scpscd Scc xc Dchcd Dcc Xc

or in shorthand:
[(X]1=[L1[x] + [2][*] (3.23)

where [ %] and [ 2] are the influence coefficients (per unit element mass) of
the springs and dashpots, respectively. For example, coefficient S, accounts
for the influence on the piston motions by virtue of a spring coupling to the
motions of the displacer, whereas Spp 18 @ spring effect unique to the piston.

In deriving equation (3.22), it is assumed that the pressure terms in the
dynamic equations can be linearised without too great a penalty in accuracy.
Typically, the non-linearity associated with the working gas pressure is small
and can be safely neglected. However, the non-linearity associated with gas
springs and pressure gradient terms can be important. A careful check should
always be made on the second and higher-order terms. For acceptable results
these should never exceed 109, of the linear terms.

The description of the system’s characteristic behaviour may be deduced by
using standard control theory methods (Gupta and Hasdorff 1970). This
behaviour is the way that the three elements (piston, displacer and casing)
move for different values of the damping and spring coefficients, namely
divergence, convergence or steady oscillation. Since we are only interested in
steady oscillation, it is possible to adopt a more straightforward approach by
simply assuming that an oscillatory solution exists. By this method, the
frequency and conditions for oscillation are obtained directly. However, it
should be noted that this approach presupposes that the non-linear elements
or effects will be such that a stabilising influence is generated by their presence.
A perfectly linear machine would be impossible to operate in reality, since it
would be so finely balanced at its operating point that any variation in any
parameter, including the load, would either cause the machine to stop or cause
its oscillations to grow until collisions between its reciprocating parts
occurred. The effects of the non-linearities need, therefore, to be addressed in
any load-matching study.

The following solution is assumed for each element

e
1N
£

X;=X,exp[jlwt+ ¢,] i=7p.d ¢ (3.
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which may be represented in vector form as shown in figure 3.3, where X | is the
amplitude and ¢, is the phase.

From equation (3.24), x; and X, are obtained by successive differentiation:

X; = JjwX;exp[jlof+¢,)] (3.25)
X = —w'X exp[jlwt+¢,)]. (3.26)

Before substituting the above solutions into the relevant equations in (3.22),
the system may be simplified further by noting that there are two distinct
preferred modes of operation: large piston motions relative to casing motions,
when power is mainly removed from the piston, or large casing motions
relative to piston motions, when power is mainly removed from the casing. If
each element is considered as a separate second-order force damped system, we
can represent the behaviour of that element as in figure 3.4 (Gupta and
Hasdorff 1970).

Before considering figure 3.4 further, it is necessary to introduce the concept
of natural frequency. For a hypothetical single degree of freedom system
without damping, as shown in figure 3.5, the equation of motion is

M3 = —kx (3.27)

where M is the mass and k is the spring constant.

A

Imaginary axis

<
w

(0

Pg=0

Real axis

Figure 3.3 Vector notation.
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Figure 3.4 Generalised single degree of freedom system:
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Assuming a solution of the form given by equation (3.24), together with
equation (3.26), substitution into equation (3.27) yields

Mw? = [ (3.28)
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Figure 3.5 Simple spring mass system.

from which the natural tfrequency follows:
w, = Vk/M. (3.29)
In terms of the notation used in equation set (3.22), this may be written:
w, =/ —S. (3.30)

Thus it is evident that the natural frequencies of the piston, displacer and
casing are given by / —S,,, \/ — Sy and \/—S,., respectively.

Returning to figure 3.4, it can be seen that operation at a frequency
sufficiently higher than the natural frequency of a particular element will cause
that element to oscillate at a considerably reduced amplitude.

The conditions for each mode of operation may thus be generalised as
follows:

(a) predominant piston motion:

natural frequency of casing \/——S,CC < operating frequency o

{h) predominant casing motion:

natural frequency of piston \//“ S,, < operating frequency .

[t should be sufficient that the unwanted amplitudes be kept to at least one
order of magnitude smaller than any of the active amplitudes.

The equation set in (3.22) may now be considerably simplified by ignoring
the terms due to the element with small amplitudes but making sure that the
conditions for the required operating mode are satisfied. Therefore, for the
predominantly piston motion mode the describing equations are

X, = S,,%,+S,4Xq + D X, + D Xy

X+ S4a Xy + DX, + Dyy Xy,

dp-

(3.31)

%,=5

subject to /=S, < w.
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Similarly, for the predominantly casing motion mode, the describing
equations are

Xq = Sqa¥Xa+ SgeXe + DygXy + Dy X,

jc‘c = Scdxc + S X+ Dcdi‘d + Dcc‘)&c’

cCTre

(3.32)

this time subject to /- S, < w.

By substituting equations (3.24), (3.25) and (3.26) into equation (3.31), the
following simultaneous algebraic equations are obtained for the piston motion
mode

(Spa +i0D ) X&)% + (0* + S, +jwD, )X e!* =0 (3.33)

(@7 + Sgq +j0Dgyg) X 4€'% + (S, + joD,,) X &% = 0. (3.34)

The corresponding equations for the casing motion mode may be inferred
from equations (3.33) and (3.34) by simply replacing the subscript p by c. Since
the governing equations are generically similar, only the piston motion mode
will be analysed further.

Eliminating the amplitudes by substitution yields the characteristic
equation

@* + (S, + Sug + Dy D s — DyyD,) + SuaSop = SapSpa
+jolw?(Dyg + D) + DygS,p + SeaDypp — D g Spa — SepDpal =0,  (3.35)

where both the real and imaginary parts are identically zero, thus

@* + (S, + Saa + DapDys — DagDyp) + SeaSpp — SupSpa = 0 (3.36)
and
o = (DdDSpd + SdpDnd —Dyq Spp - deDpp)/(Ddd + DDD) (3.37)

which are of course, subject to w > ./~ S, by at least a factor of three.
Correspondingly, the equations for the casing motion mode (by replacing the

subscript p by ¢) would be subject to w > ./ — S,, by a similar factor.

The operating frequency is obtained from equation (3.37) whilst the physical
constraints for operation are obtained by satisfying both equations (3.36) and
(3.37) simultaneously. :

Note that D, (and D, ) are load coefficients. Since they appear in the
frequency equation, it can be seen that, in general, free-piston Stirling engines
have load-dependent frequencies. However, it will be shown that in some
designs, with prudent selection of geometry, it is possible to reduce the
variation of frequency with load to a negligible level.

For positive power, the piston and casing motions are required to lag behind
those of the displacer. Therefore, it is convenient to measure phase displace-
ments relative to the displacer motions. For the case of predominant piston
motions, equation (3.24) becomes

x, = X_exp [jlwr+ ¢)] (3.38)
Xg = X, exp (jor) (3.39)
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where ¢ is defined as negative for piston motions lagging behind those of the
displacer.
This allows equation (3.33) to be rearranged thus

X, exp (jo) = —(Spq +joD )Xo/ (w* +S,, +jwD, ) (3.40)

from which the phase and amplitude ratio are obtained:

¢ = tan ! ( ©LDypS 4 — Dya(Spp £ ) ) (3.41)
- [SpdSnp +w (Spd + Dpdep)]
é‘:‘i = o - (wz + Spp)z + szgp )
X, {[Spa(@® +8,,)+w?D,, D, 1% + @?*[Dyy(@* +S,,)— D, S,a1*} 172
(3.42)

Typically, ¢ lies in the third or fourth quadrant (180° < ¢ < 360°) depending
on the size of the denominator in equation (3.41).

Note that both amplitudes cannot be obtained simultaneously. One
amplitude must be specified, usually estimated from geometric limitations or
other non-linear effects.

Once the motions of the reciprocating elements have been determined, the
work transfer may be calculated easily. The cyclic work is divided into two
parts: irrecoverable work and useful (or recoverable) work, both of which are
evaluated from the damping coefficients.

Cyclic work done against damping is given by

W= §; Fxdx (3.43)

where F is the damping coefficient in NSm™'. Assume x is given by

x = X sin wt. (3.44)
Then equation (3.43) may be integrated over a cycle to give

W=nFwX? (3.45)
The irrecoverable work is then

Wie = =1oMp[(Dyg + DpaMp /Mp) X §+ Dy X 2]+ nwoCy X2, (3.46)

ir

veing the work done against the damping caused by working gas viscous
friction and gas spring hysteresis, and the useful work is

W= —noM,D, X} ~nwCy X}, (3.47)

being the difference between the work done against the damping due to the
load and the irrecoverable work due to the piston gas spring. The first term on
the right-hand side of equation (3.47) may be equated with the thermodynamic
pV power, in order to estimate the piston amplitude. Of course, this would be
an iterative procedure unless a simple functional relationship for p}’ power
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were used, for example the Schmidt isothermal power. Again, the correspond-
ing equations for the casing motion mode are obtained by replacing the
subscript p by ¢ and M, by M.

The cyclic work may also be obtained by solving the integral ¢pdv for each
working space. However, the above results vield good answers when the linear
approximations are reasonable and., furthermore, they are easy to apply.
Table 3.1 lists all the pertinent equations derived in this section.

Table 3.1  Set of equations for the generalised dynamic analysis piston motion mode.

Frequency ? = (DypSpy+ Sep D, — DyyS,y — SgaDpy)/(Dyg + D)
Geometric constraint — w* + w*(S, +S,, + DyyDyy—DyyD,,)
+ 84S, — SapS, = 0
w[DDDSPd — Dpd (Spp + wz)] )
- [SpdSpp + wz(spd + DDanp)]

Piston-displacer
phase angle ¢ =tan"! (

Piston—displacer amplitude ratio

Xy _ (@*+S,,) +a?D, 2

Yo A50a(@7+8,) + 0Dy, Do ] 4 07 [Dyy (@0 +5,,) = D, 8,17}

p pp*pd

Irrecoverable work Wi = —noMp[(Dyg+ Doy Mp /Mp) X 2 + Dy, X 7]
+ nﬂ)CHm X’pz

Useful work W= —noMpD, X >~ nwCy X

&

The above equations are subject to @ > v SCC’.

The casing motion mode equations are obtained by replacing the subscript
p by ¢ and M, by M.. The resulting set of equations is subject to

wP»/=5,.

3.3 Linearisation

To apply the preceding analysis it is necessary to obtain functions for the
pressure variations in the working spaces and the gas springs (also referred to
as bounce spaces). The Isothermal analysis lends a convenient closed-form
result which is known to be a fairly good approximation to reality. This result,
from Chapter 2, table 2.1, is

Voo Vi@t s‘if o
p=MR| -S4 Lyt bR - . (3.48)
{/E; !}; {jhw‘ik,} !E‘; !izm



