The cooler heat transfer performance function 'kolsim'
function tgk = kolsim(var,twk,qrloss)
% evaluate cooler average heat transfer performance
% Israel Urieli, 7/22/2002
% Modified 2/6/2010 to include regenerator qrloss
% Arguments:
% var(22,37) array of variable values every 10 degrees (0 - 360)
% twk - cooler wall temperature [K]
% qrloss - heat loss due to imperfect regenerator [J]
% Returned values:
% tgk - cooler average gas temperature [K]
% Row indices of the var, array:
TC = 1; % Compression space temperature (K)
TE = 2; % Expansion space temperature (K)
QK = 3; % Heat transferred to the cooler (J)
QR = 4; % Heat transferred to the regenerator (J)
QH = 5; % Heat transferred to the heater (J)
WC = 6; % Work done by the compression space (J)
WE = 7; % Work done by the expansion space (J)
W = 8; % Total work done (WC + WE) (J)
P = 9; % Pressure (Pa)
VC = 10; % Compression space volume (m^3)
VE = 11; % Expansion space volume (m^3)
MC = 12; % Mass of gas in the compression space (kg)
MK = 13; % Mass of gas in the cooler (kg)
MR = 14; % Mass of gas in the regenerator (kg)
MH = 15; % Mass of gas in the heater (kg)
ME = 16; % Mass of gas in the expansion space (kg)
TCK = 17; % Conditional temperature compression space / cooler (K)
THE = 18; % Conditional temeprature heater / expansion space (K)
GACK = 19; % Conditional mass flow compression space / cooler (kg/rad)
GAKR = 20; % Conditional mass flow cooler / regenerator (kg/rad)
GARH = 21; % Conditional mass flow regenerator / heater (kg/rad)
GAHE = 22; % Conditional mass flow heater / expansion space (kg/rad)
global tk % cooler temperature [K]
global freq omega % cycle frequency [herz], [rads/s]
global ak % cooler internal free flow area [m^2]
global awgk % cooler internal wetted area [m^2]
global dk % cooler hydraulic diameter [m]
% Calculating the Reynolds number over the cycle
for(i = 1:1:37)
ak(i) = (var(GACK,i) + var(GAKR,i))*omega/2;
gk = gak(i)/ak;
[mu,kgas,re(i)] = reynum(tk,gk,dk);
end
% Average and maximum Reynolds number
sumre=0;
remax=re(1);
for (i=1:1:36)
sumre=sumre + re(i);
if (re(i) > remax)
remax = re(i);
end
end
reavg = sumre/36;
[ht,fr] = pipefr(dk,mu,reavg); % Heat transfer coefficient
tgk = twk - (var(QK,37)-qrloss)*freq/(ht*awgk); % Heater gas temperature [K]
fprintf('============ Cooler Simple analysis =============\n')
fprintf(' Average Reynolds number : %.1f\n',reavg)
fprintf(' Maximum Reynolds number : %.1f\n',remax)
fprintf(' Heat transfer coefficient [W/m^2*K] : %.2f\n',ht)
fprintf('cooler wall/gas temperatures: Twk = %.1f[K], Tk = %.1f[K]\n',twk,tgk);
|
______________________________________________________________________________________
Stirling Cycle Machine Analysis by Israel
Urieli is licensed under a Creative
Commons Attribution-Noncommercial-Share Alike 3.0 United States
License