
 
 

 

  

Abstract— This paper presents derivation of a trajectory 
tracking and stair climbing stabilization controller for a  
4-wheel driven skid-steered wheeled mobile robot (SSWR). The 
robot vehicle is modeled with six degrees of freedom (6DOF) 
rigid body equations which are later simplified for planar and 
pitched movement. An efficient control algorithm, called 
Trajectory Linearization Control (TLC), is used to tackle the 
challenges posed by nonlinearities of the model. In TLC, state 
dynamics are linearized along the trajectory being tracked. 
Kinematics and dynamics of the vehicle are controlled 
individually by feedback loops, where the former constitutes 
the outermost loop. Simulation results promise trajectory 
tracking with desired accuracy. For the test prototype with 
current physical configuration, an upper limit is found on 
steepness of staircase it can safely climb. 3-sigma Monte Carlo 
analysis is used to show robustness of the controller to 
parametric perturbations.  

I. INTRODUCTION 
kid steered wheeled robots (SSWRs) constitute a genre 
of nonholonomic vehicles that lack a steering column 

and are controlled by differential steer mechanism. Absence 
of a steering column makes them mechanically robust and 
simple to control. Compared to tracked vehicles, SSWRs 
have two major advantages. Firstly, an SSWR with similar 
dimensions and weight would dissipate lesser energy in 
skidding turns compared to its tracked counterpart, owing to 
lesser area of surface contact. Secondly, SSWRs have lesser 
tendency to slip on stair edges and sway from direction of 
maximum ascent, as wheels tend to lock up with stairs. 

Caracciolo et al. [1] approached planar tracking problem 
for an SSWR by constraining the instantaneous centre of 
rotation to between the two axles and used dynamic 
feedback linearization to reduce the control problem to mere 
kinematics. Kozilowski et al. [2] used Dixon’s [3] algorithms 
based on Lyapunov’s approach. Their technique relied on 
backstepping through intensive use of coordinate 
transformations making the algorithm quite complicated. 
Global exponential stability for transformed states was 
achieved by tracking an exponentially decaying tunable 
oscillator signal. This methodology overcame Brockett’s 
condition and regulation problem was realized in contrast to 
Caracciolo et al. and the present paper. 

For stair climbing, Martens and Newman [4] 
experimented with an algorithm by maintaining direction of 
maximum ascent during the climb by compensating for 
gravity-induced drift. A proportional control law was 
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implemented with experimentally determined bandwidth and 
gain. Steplight et.al [5] developed a kinematics-based PD 
controller aided with a suite of sensors, used one at a time 
based on a rule, to estimate stair profile. Xiong and Matthies 
[6] used robust stair edge detection techniques using a single 
camera to estimate heading angle and centre position. They 
experimented stair climbing under various types of stairs in 
varied lighting conditions and shadows to prove robustness 
of their algorithm. Their work was extended by Helmick 
et.al. [7], who used a full-fledged sensor suite with 
accelerometers, vision, sonar etc. with enhanced estimation 
and control laws to detect and estimate stair profile. They 
claim to have achieved climbing speeds over 1½ feet/sec.  

This paper aims to develop a unified controller for planar 
tracking and autonomous stair climbing based on 6DOF 
dynamic model, which is briefed in section II. The 6DOF 
vehicle model is simplified for planar tracking and 
modifications are made to the planar model to account for 
pitch angle during stair climbing. Section III discusses 
derivation of control law, followed by evaluation of 
controller performance by means of numerical simulations. 
Results presented for planar tracking show desirable 
performance with almost zero steady state tracking error. 
Robustness of the controller to parametric perturbations is 
investigated with 3-sigma Monte-Carlo simulations. Of 100 
simulations with randomly perturbed physical parameters 
and friction coefficients, 96 yielded stable results. 
Simulation of stair climb showed that with the current 
configuration of the prototype robot, only a 20° staircase or a 
30° ramp could be safely climbed up at a speed of 0.3m/s. 
This unsatisfactory limit calls for design modifications to the 
prototype robot. 

Regulation problem is not addressed, as it is a concern of 
the highest level of control – the mission trajectory planner, 
to plan a path for the robot. Optimality decisions will be 
made at the same level.  

II. DYNAMIC MODELING 
Physical constants are defined and their values for the 

prototype robot are presented below. 
a, distance of CG from front axle of robot = 0.198 m. 
b, distance of CG from rear axle of robot = 0.2275 m. 
c, half the track width = 0.294 m. 
d, distance from instantaneous center of rotation 
(geometric center by choice) of robot to CG, -0.0148 m. 
h, height of CG above plane of surface of contact. 
Ixx, moment of inertia about body x-axis = 11 Kgm2. 
Iyy moment of inertia about body y-axis = 6.68 Kgm2. 
Izz moment of inertia about bqody z-axis = 12.79 Kgm2. 
Ixy cross moment of inertia = -0.4 Kgm2 
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Ixz cross moment of inertia  = -0.22 Kgm2. 
Iyz cross moment of inertia = 0.9543 Kgm2. 
Km, motor torque constant = 0.74 Nm/A. 
Ke, motor back-emf constant = 0.8433 Vs/rad. 
r, radius of wheel = 0.1778 m. 
Ra, motor armature resistance = 0.22 ohms. 
m, mass of the robot =115.3 kg. 
n, motor gear ratio = 1. 

  u2 ,u3 front left and front right applied motor voltages. 

 τ ,  torque produced by the motor.  

A. 6DOF Model 

The following four equations summarize the 6DOF model 
derived in [8].  

Kinematics of translational motion:  
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Dynamics of translational motion are given by 
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Kinematics of rotational motion are given by 

 

φ = ω x + ω y sinφ tanθ + ω z cosφ tanθ

θ = ω y cosφ − ω z sinφ

ψ = ω y sinφ secθ + ω z cosφ secθ

        (3) 

Dynamics of rotational motion are given by 

 ω x = I xy
x ω xω y + I yz

x ω yω z + gl
x M x + gn

x M z  

 ω y = I xx
y ω x

2 + Izz
y ω z

2 + I xz
y ω xω z + gm

y M y  

 ω z = I xy
z ω xω y + I yz

z ω yω z + gl
z M x + gn

z M z                 (4) 

where, 

   X ,Y , Z  are velocities measured in world frame; φ,θ ,ψ  
are Euler angles roll, pitch and yaw respectively; vx ,vy ,vz  

are vehicle velocities measured in body frame; ω x ,ω y ,ω z  
are angular velocities of the vehicle about x,y,z axes (body 
axes) respectively; Fx ,Fy,Fz denote forces acting on center 

of gravity along x,y,z axes respectively; M x , M y , M z  
respectively denote total moment about body x, y and z-
axes; I xy

x  denotes coefficient of cross moment of inertia 

occurring in ω xω y  term in the equation for  ω x  and gz
x  

denotes coefficient of M z  in equation for  ω x .  Detailed 
expressions for each of them can be found in [13]. 

B. Planar Motion 
For planar motion, we have  

0, 0, 0, = 0, 0x y x y z zM M v vθ φ ω ω= = = = = = =     (5) 
1
m x y zF vω  and 1

m y z xF vω  .        (6) 

Simplifying (1)-(4) using (5) and (6) yields a model as 
presented in [1] and [2], which can be summarized as  

 p = S  q            (7) 

 q = − M −1Cq − M −1R + M −1Bτ                  (8) 
where,  

p =[ ] 
T

X Y  is position vector and q = [ ] T
x zv ω is 

velocity vector; 
cos sin

( )
sin cos

d
S t

d

ψ ψ

ψ ψ
=

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

Derivation and detailed expressions for the matrices 
, , ,M C R B  are presented in [2, 9]. 

C. Introducing Pitch into the Planar Model 
Planar dynamics presented in previous subsection are 

modified to introduce static effects of stair/ramp climbing. 
Changes in normal reactions at wheels due to non-zero pitch 
are the only aspect considered. Body roll and rate of change 
of pitch are neglected assuming that the vehicle is on a 
transversally level (unbanked) ramp/staircase and is heading 
in the direction of maximum ascent. A comprehensive model 
of stair-climb with dynamic effects of body roll and pitch is 
reserved for future work. 

 
Figure 1: Free body diagram of the vehicle on an inclined plane 

(Courtesy: J. Litter [10]) 

The situation differs from planar (i.e. zero pitch) condition 
in that the normal reactions are distributed unequally on 
wheels and, in addition, there is a component of weight 
pulling the robot downwards the incline. 

From the geometry of Figure 1 (best viewed at 250% 
zoom), writing torque equations about CG at surface point of 
contact of each wheel, 

 

rio × Z + rio × N j
j=1
j≠ i

4

∑ = 0,∀i = 1,2,3,4       (9) 

where  rio is the vector from the point of surface contact of 

ith wheel to origin (CG); θ  is measured positive for ascent; 

jN is the normal reaction at  ith wheel; Z is the resultant 



 
 

 

force vector at CG, and 
ˆ ˆ ˆ( sin cos ) ( sin sin ) ( cos )xmv mg x mg y mg zZ θ ψ θ ψ θ= − + − −  

The set of equations in (9) is degenerate. A particular 
solution would exist if it were assumed that the vehicle is 
heading in the direction of maximum ascent (i.e., zero body-
roll angle). In such a case, the front wheels (and so will the 
back wheels) share an equal amount of reaction force.  

i.e.,   N1
= N

4
 and N

2
= N

3
 

This assumption renders y component of   Z to zero. The 
solution to the set of equations would now be  

( )1 4 cos sin 2( )xmgb mv h mgh a bN N θ θ+ + += =

( )2 3 cos sin 2( )xmga mv h mgh a bN N θ θ− − += = . 

These expressions are substituted in the planar model’s 
equations for frictional forces to account for non-zero pitch 
angle.  

Compared to vehicle on a ramp, stability on staircase is 
worsened by the bumping effect when wheels encounter 
stair edges, which in turn introduces random errors in 
heading angle leading to a natural tendency to sway away 
from direction of steepest ascent to zero ascent. On a 
staircase with an inclination ‘θ’, it can be shown that the 
pitch angle variation due to wheel engaging the stairs is 
approximately   δθ = 2arcsin r 1−sinθ

a+ b( ), assuming that step 
height and wheel radius are approximately equal. 

III. CONTROLLER DESIGN 
Consider the time-varying nonlinear dynamic system 

( ) ( ( ), ( ), ( ))t f t t tξ ξ μ σ=  
( ) ( ( ), ( ), ( ))t h t t tη ξ μ σ=        (10) 

where ( )tξ is n x 1 state vector, ( )tμ is p x 1 vector of input, 
( )tη is m x 1 output vector of the system, and σ(t) is a set of 

time-varying parameters influencing the system behavior. 

Define the nominal trajectories by 
( ) ( ( ), ( ), ( ))t f t t tξ ξ μ σ=  
( ) ( ( ), ( ), ( ))t h t t tη ξ μ σ=        (11) 

where an over-bar indicates nominal value of the quantity, 
( )tη is the desired output being tracked, ( )tμ is the nominal 

control input required, and ( )tξ is the nominal state vector.  

Define the state, input and output errors respectively as 
( ) ( ) ( ),  ( ) ( ) ( ),  ( ) ( ) ( ).t t t t t t t t tξ ξ ξ μ μ μ η η η= − = − = −

                                                                               (12) 

Taking time derivative of the state error vector and 
eliminating ( )tξ , ( )tμ , ( )tη , and ( )tσ  using (12) yields the 
tracking error dynamics 

( , , ) ( , , ) : ( , , , , )

( , , ) ( , , ) : ( , , , , )

f f F

h h H

ξ ξ ξ μ μ σ ξ μ σ ξ μ ξ μ σ

η ξ ξ μ μ σ ξ μ σ ξ μ ξ μ σ

= + + − =

= + + − =
 

                                                                                  (13) 
The tracking error dynamics are stabilized by designing a 

PI controller using PD-eigenstructure placement techniques 
[11, 12, 13]. 

Open loop control ( )tμ  and nominal state ( )tξ  could be 
computed with a perfect inverse system that yields identity 
on cascade with the actual system. In general, this is neither 
possible nor desirable. Hence, a pseudo inverse system is 
designed to estimate the nominal control input required (to 
achieve desired output) and PI control is used to drive the 
tracking errors to zero. Pseudo inverse (or equivalently, 
nominal control) is expected to do a fair job in keeping open 
loop control errors small enough so that linearization of (10) 
about origin (i.e. zero errors) is valid at any given point of 
time. 

Time variable has been dropped to avoid clutter, but 
quantities in the above equations are not constrained to be 
time-invariant. Also, it is assumed that the parameter set σ(t) 
of the system is known and does not require to be estimated 
or errors accounted for.  

Equation (13) when linearized, the state, input and output 
would be linear approximations of the actual errors. Hence, 
corresponding variables are changed while writing the 
linearized tracking error dynamics as: 

( ) ( )( ) ( ), ( ), ( ) ( ), ( ), ( )x t A t t x t B t t u tξ μ σ ξ μ σ= +      

( ) ( )( ) ( ), ( ), ( ) ( ), ( ), ( )y t C t t x t D t t u tξ μ σ ξ μ σ= +       (14) 

where ( ), ( ), ( )x t u t y t are linearized approximations of the 

error state ( )tξ  the error control input ( )tμ  and the output 
error ( )tη  respectively, and A, B, C, D (with dependencies 
are dropped to avoid clutter) are Jacobian matrices in the 
Taylor expansion of (13) at  [ ] [ ], 0, 0ξ μ = . 

Adding an integrator to the linear system in (16), 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

x t A t x t B t u t

y t C t x t D t u t

t x tζ

= +

= +

=

         (15) 

Now a state feedback PI control law is implemented as 
( ) ( ) ( ) ( ) ( )P Iu t  K t x t K t tζ= − −        (16) 

Substituting (16) in (15) and rewriting in matrix form, 

[ ]

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( )

( )
( )

P I

P I 

x t A t B t K t B t K t x t

t I O t

x t
K t K t

t
u t

ζ ζ

ζ

=

= −

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

  (17) 

Using PD-eigenstructure assignment [11, 12, 13] for the 
system in (17), for constant PD-eigenvalues, the gains 

( )PK t  and ( )IK t can be evaluated for a desired polynomial  
1

1 1 0
...n n

n
λ α λ α λ α−

−
+ + + +   

where n is the order of the system and  
i

α  for i = 0 to n-1 

are coefficients of the polynomial.  



 
 

 

Figure 2: Trajectory linearization control schematic

Figure 2 depicts a schematic representation of TLC. 

A. Kinematics controller 
The procedure outlined in the preceding section is applied 

to the kinematics system of (7) with   p(t)  as output. For the 
closed loop system  

2 2

( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( )

K K KP K KIA t B t K t B t K tx t x t
I Ot tζ ζ

⎡ ⎤⎡ ⎤ ⎡ ⎤− −
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
, (18) 

the expressions for PI gains KKP, KKI  are evaluated using 
PD-eigenvalue placement techniques. Detailed expressions 
can be found in [9]. 

Inverse Kinematics 
A stable and causal pseudo inversion in this case is 

straightforward due to absence of zero dynamics. Inverse 
system is described by the equations: 

1( ) ( ) ( )q t S t p t−=         (19) 
where  ( ) p t is obtained from   p(t) using a pseudo-
differentiator whose bandwidth is dictated by that of the 
input   p(t ) .  

B. Dynamics controller 
The closed loop state equation with state feedback 

becomes 

   
x(t )
ζ (t )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
AD (t)− BD (t)KDP (t) − BD (t)KDI (t)

I2 O2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x(t)
ζ (t)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.   (20) 

KDP, KDI are derived using PD-eigenvalue techniques. 
Their exact expressions (evaluated using symbolic toolbox 
of Matlab®) are presented in [9]. 

Inverse Dynamics 
The state (which is the output too) and input are 

decoupled in forward dynamics of the robot as described by 
(8). It is, hence, possible to write a stable and causal pseudo-
inverse relation by simple rearrangement of terms as  

12 1 1 1 2
2

3 2 2 1 21

1u q q q cq
B M C K B R

u q q q cqK
−

−
= + + +

+

⎡ ⎤ ⎛ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎞
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎠⎣ ⎦

     (21) 

where,   q is pseudo derivative of q . 
TLC relies on an important assumption that errors are 

small, without which linearization may be invalid. A large 
step command may be sufficient to invalidate this 
assumption. It is hence desired that all commands input to 
the controller-plant system be smooth. This is achieved by 
forcing all input commands through a low pass filter called 
‘command shaping’ whose bandwidth depends on the 
trajectories the robot is expected to track. Command shaper, 
typically a low pass filter, would make a step command into 

a smooth trajectory that becomes nominal input to the 
controller. The model used for simulations presented in this 
paper had such a filter in inverse kinematics and inverse 
dynamics blocks. Time varying bandwidth filter has been 
found to be advantageous over a constant bandwidth one in 
applications where commands are expected to have wide 
range of bandwidths [11, 12, 13].  

IV. NUMERICAL SIMULATIONS 
Performance of the controller is evaluated for planar 

tracking and stair climbing by means of numerical 
simulations in Matlab-Simulink. To simulate performance of 
the tracking controller, the robot is commanded to trace the 
curve,  

3 2,  -.002 .1 .1X t Y t t t= = + + , where t is time variable. 
Figure 3 depicts performance graphs of the controller in 

nominal conditions. Subplot1 (1, 1) shows a bird’s eye view 
of path traced by the robot, which nearly overlaps with the 
commanded curve. Subplot (1,2) shows tracking error. It 
first increases because the commanded trajectory starts with 
a velocity of 1.005m/s, where as the robot starts from rest. 
With only one integrator in the kinematics loop, this curve 
should show a quadratic rise2; but as command shaping filter 
gains (of both outer and inner loops) are increased as time 
progresses, the deviation decreases later on. Heading angle 
is closely tracked and catches up almost instantaneously as 
shown by subplot (3,1).  

Initial motor voltages (subplot (2,2)) and currents (subplot 
(2,3)) are well within their practical limits. With Roboteq 
motor controllers (AX2550) used on the test robot, 110A can 
be delivered to each motor. Subplot (2,2) shows that near the 
end of tracking session, motor voltages approach their 
supply limit of 24v (with currently installed batteries on the 
test prototype) as the robot pushes its speed beyond what it 
was built for (15km/h or ~4m/s). 

Left and right motor currents (and hence torques) as seen 
in subplot (2,3) change directions for the commanded 
trajectory. This makes sense because the robot is initially 
commanded to turn to its left and later towards its right. This 
is exactly the same test trajectory Caracciolo et al. used in 
[1]. However, their torque curves didn’t show such a 
behavior and did not cross zero during the course, which 
appears to be in error. 

Robustness evaluation via Monte-Carlo simulations 
To assess robustness of the controller to parametric 

perturbations, Monte-Carlo simulations were run 
programmatically in a loop with random dispersions in 
physical parameters and friction coefficients based on an 
assumed normally distributed statistical model. Table 1 
shows various parameters with their nominal values and 
assumed standard deviations. Figure 4 shows performance 
plots resulting from one hundred simulations for planar 
tracking. The parameters were normally dispersed about 
their nominal value by three times their (assumed) standard 

                                                 
1 Subplot (i,j) refers to the plot in row i and column j in the figure. 
2 The commanded curve has nonzero rate of acceleration (a jerk). 



 
 

 

deviation. Friction profiles were smoothly varied with time, 
within preset limits randomly unique to each simulation.    

 

 
An exhaustive analysis of logged data and performance 

plots revealed that, out of one hundred simulations, four 
went unstable (seen as spikes at end of simulation time). In 
the first instance of instability, motor torque constant Km was 
perturbed by ~30%, which is unrealistic for normal 
operating conditions. Second instance of instability was 
caused by a hike in wheel radius ‘r’ by over 6cms (~34%). 
Such a variation is unusually high even if improper tire 
inflation is considered. In the third instance, moment of 
inertia was perturbed by approximately 20%. Using 
perturbation analysis, this parameter was found to be critical 
for stability at high speeds. A perturbation of 70% in 
armature resistance resulted in fourth instance of instability. 
These cases suggest that the perturbation models need 
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Figure 3: Nominal performance graphs 
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Figure 4: 3-Sigma Monte-Carlo simulations simulation 
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Figure 6: Performance graphs for stair climb-up 

TABLE I 
STANDARD DEVIATIONS OF PHYSICAL PARAMETERS 

Parameter Nominal Value Standard 
Deviation 

a 0.2275 m 5mm 
b 0.1980 m 5mm 
c 0.2940 m 5mm 
d -0.0147 m --- 

mul 0.6000  0.05 
mus 0.0600 0.005 
m 115.30 kg 1.00 kg 
I 12.79 kg 0.50 kg 
r 0.1778 m 1mm 
h 0.2769 m 1mm 

Ke  0.84 Vs/rad 0.04 Vs/rad  
Km 0.75 Nm/A 0.04 Nm/A 
Ra 0.22 ohms 0.02 ohms 



 
 

 

further validation with practical situations. 

Stair Climbing Simulations 
Figure 6 shows nominal performance simulating the robot 

climbing up the stairs. Pitch angle has been chosen to be 20° 
plus a disturbance3 of ±10° to account for bouncing effect. 
Simulations show that the robot tips over with any pitch 
angle more than this. A uniform random disturbance within 
±10° is added to heading (yaw angle) to account for random 
errors introduced due to slipping of tires on stair edges.  

Subplot (1,2) shows a maximum deviation of 40cm from 
the median of staircase during the climb. This could be 
decreased by placing the controller eigenvalues farther to the 
left. Performance is achieved as a trade-off with energy 
consumption. Logic was implemented in the model to stop 
simulation if reaction-force on front wheels becomes 
negative at any point. Such situation did not arise in this 30s 
simulation (at 21s, the reaction was still slightly positive).  

Mass and moment of inertia when individually perturbed 
by 1kg and 0.5kgm2 respectively, did not challenge stability. 
Low speed of climb (0.3m/s) also aids stability of the 
vehicle. Height of CG above ground critically influences the 
limit of grade. An increase of 5mm in height of CG caused 
the robot to tip over amid a 30sec climb up. A 20° grade is 
too low for a typical indoor staircase and suggests that 
improvement is needed in mechanical design of the vehicle.  

V. CONCLUSION 
A unified controller for planar tracking as well as stair 

climbing of a SSWR has been presented. Simulation results 
show that the TLC controller is well suited to the application 
yielding desirable results with required robustness to 
physical parameters. Kozilowski et al. in [2] opined that a 
control algorithm relying on linearizing the dynamic 
equations is not possible due to unknown lateral skidding 
forces. This paper, on contrary, shows it is indeed possible.   

This work will be extended to improve fidelity of the 
dynamic model and incorporate body roll and pitch 
dynamics in control design. A comprehensive evaluation of 
robustness of the controller to singular perturbations in 
addition to regular perturbations should be performed. 

ACKNOWLEDGEMENT 
This work was sponsored by Ohio University, Athens. 

The authors thankfully acknowledge support and 
suggestions of Dr. Frank van Graas and Dr. Maarten Uijt de 
Haag, School of Electrical Engineering & Computer 
Science, Ohio University. 

REFERENCES 
[1]    Caracciolo L., De Luca A. and Iannitti S., “Trajectory tracking 

control of a four-wheel differentially driven mobile robot”, IEEE 
Int. Conf. Robotics and Automation, Detroit, MI, 1999, pp. 2632–
2638 

[2]     Krzysztof Kozłowski and Dariusz Pazderski, “Modeling And 
Control Of A 4-Wheel Skid-Steering Mobile Robot”, Int’l. J. 
Applied. Math. Computer  Science, 2004, vol. 14, No. 4, pp477–
496. 

                                                 
3 Disturbance was modeled as a triangular wave. 

[3]    Dixon.W.E, Dawson.D.M., Zergeroglu.E, Behal.H, Nonlinear 
Control of Wheeled Mobile Robots, Springer, London, 2001. 

[4]    Martens J.D. and Newman W.S., “Stabilization of a mobile robot 
climbing stairs”, Proc. IEEE International Conference on Robotics 
and Automation, Page(s): 2501 -2507 vol.3, 1994. 

[5]     Steplight.S, Egnal.G, Jung.S-H, Walker.D.B, Taylor.C.J, 
Ostrowski.J.P. “A Mode-Based Sensor Fusion Approach to Robotic 
Stair-Climbing”, Proc. 2000 IEEE/RSJ International Conference on 
Intelligent Robots and Systems, 2000, Page(s): 1113 – 1118, vol. 2. 

[6]    Yalin Xiong and Larry Matthies, “Vision-Guided Autonomous Stair 
Climbing”, Proc. 2000 IEEE International Conference on Robotics 
and Automation, Apr 24-28, 2000, pg.1842 -1847 vol.2. 

[7]    Helmick D.M., Roumeliotis S.I., McHenry M.C., Matthies L., 
“Multi-sensor, high speed autonomous stair climbing”, Intelligent 
Robots and System, 2002. IEEE/RSJ International Conference on, 
2002, Volume: 1, page(s): 733- 742 vol.1 

[8]     Robert Nelson, Flight Stability and Automatic Control, 2nd edition, 
McGraw Hill 

[9]     Chandrakanth Terupally, “Trajectory tracking control and stair 
climbing stabilization of a skid–steered mobile robot”, masters’ 
thesis, Dept of Electrical Engineering and Computer Science, Ohio 
University, Athens, Nov 2006. 

[10] J.Litter, “Mobile robot for search and rescue”, masters’ thesis, Dept. 
Mechanical Eng. Ohio University, Athens, June 2004. 

[11] C. M. Mickle, “Nonlinear Tracking Control Using A Robust 
Differential-Algebraic Approach”, Ph. D. Dissertation, Dept. of 
Electrical and Computer Engineering, Louisiana State University, 
Baton Rouge, Louisiana, Dec. 1998. 

[12] M.C. Mickle, Rui Huang, J. Zhu, “Unstable, Non-minimum Phase, 
Nonlinear Tracking by Trajectory Linearization 
Control,” Proceedings, 2004 IEEE Conference on Control 
Applications, pp. 812-818, Taipei, Taiwan, Sept. 2004. 

[13] R. Huang, M. C. Mickle, and J. Zhu, “Nonlinear Time-varying 
Observer Design Using Trajectory Linearization,” Proceedings, 
2003 American Control Conference,  pp. 4772-4778, Denver, CO, 
June, 2003. 

 


