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ABSTRACT 
State of the art legged robots, such as Honda’s bipedal walking robot 
ASIMO and the bipedal robot WABIAN of Waseda University, employ 
joint-mount motors, which simplifies the analysis/design and allows an 
effective control system, but results in legs that are heavy and bulky. 
Cable-driven robots overcome this shortcoming by mounting the 
motors on the torso, thereby reducing the weight and inertia of the 
legs, resulting in lower overall weight and power consumption.  
Typical cable-driven robots use non-elastic cables; elastic cable-driven 
walking is explored in this article.  The drive trains of conventional 
joint-mounted and cable-driven designs are rigid, which cannot 
effectively absorb ground impact shocks nor transfer potential energy 
to kinetic energy and vice versa when the robot is in motion, as 
biological animals do. 
 

In this article we present the design and testing of a cat-size 
quadruped robot called RoboCat, which employs stretchable elastic 
cable-driven joints as inspired by biological quadrupeds. Although it 
complicates kinematics and dynamics analysis and design, the elastic 
cables and torso-mounted motors enable weight and power savings 
relative to conventional designs.  The elastic cable-driven joints not 
only absorb ground contact shock, but also transfer potential and 
kinetic energy during walking or running, thereby improving the robot 
motion performance and energy efficiency. In this article we discuss 
the kinematics and dynamics analysis of elastic cable-driven joints, 
implementation of elastic cable-driven joints on the Ohio University 
RoboCat, and control. 

 
1. INTRODUCTION 
Traditional direct-drive robotic actuation systems are one of the easiest 
ways to actuate walking robot, due to mechanical simplicity and the 
fact that the motors rotation is directly mapped into joints rotation. For 
basic robot walking functionality, direct drives with a gear set would 
be a convenient solution. However, biological walkers that use an 
inverted-pendulum-like mechanism [1–3] are considered energy-
efficient relative to the state of the art walking robots [4,5].  Biological 
walkers use a different kind of actuators, the muscles, which can be 
considered as elastic linear actuators. Energy efficiency and walk cycle 
precision and smoothness are among the important reasons for 
mimicking biological walkers. Muscle behavior and structure attract 
special attention in robotics research. There have been a number of 
attempts to produce artificial muscles for use in robotics [6–10], based 
on different principles such as pneumatics, piezoelectric effect, and 
magnetostriction. 
 

One possibility for walking robot muscle-like actuation is to use 
elastic cables. Applications of cable actuation in general robotics [11] 

show that cable actuation can achieve relatively high accelerations, due 
to the reduced mass of the most kinetically-active robot segments. 

Since walking robots usually have to carry an independent energy 
source (batteries), it is critical to reduce the energy consumed per 
distance. Using cables the motors are moved to the sections of the 
robot that are the least kinetically-active and experience the lowest 
accelerations. The main benefits are: balancing stability of the robot is 
improved and the energy consumption is reduced due to the reduced 
mass of the fast moving segments of the walking robot. It will also lead 
to significantly reduced overall weight of the robot. There are other 
benefits not directly included in this article scope. 

 
Some work has been done in the area of cable actuation for 

walking robotics. A partially-cable-actuated hexapod is analyzed in 
[12]. 

 
The current article presents a novel development of kinematics, 

dynamics, and control for elastic-cable-driven walking robots.  Section 
2 presents kinematic and dynamics analysis of a quadruped walking 
robot and Section 3 presents a novel controller for this, with simulated 
results and discussion. 

 
 
2. KINEMATICS AND DYNAMICS ANALYSIS OF THE 
QUADRUPED WALKING ROBOT 
 
2.1 The Walking Robot Architecture 
The walking robot architecture under consideration is shown in Figure 
1a. The robot architecture has 4 actuated dof (hip, knee, ankle, pulley) 
for each leg corresponding to the longitudinal motion and additional 2-
dof (hip and ankle) for each leg corresponding to the lateral motion. 
The actuated revolute joints are marked by R in Figure 1a.  
 

The RoboCat design considered here is the result of partial 
biomimicry with significant reduction in dof. The trunk segment does 
not contain flexibility, while a biological cat has significant flexibility 
in the trunk, which simplifies a locomotion direction change. The robot 
architecture still enables the locomotion change through the inclusion 
of the two (per leg) revolute antero-posterior-oriented joints at the hip 
and at the ankle. Other revolute joints (hip, knee, and ankle) connecting 
the leg segments provide the motion parallel to the sagittal (symmetry) 
plane.  The initial hardware developed is shown in Figure 1b. 

 
The cables for knee joint actuation are pulled using specially 

shaped pulleys on the trunk. This design detail deviates from the 
biological case and has a significant disadvantage in that the cable 
forces can produce significant coupling between the knee and the hip 
joint, since the cables for the knee can generate significant torque for 
the hip, if controlled for. 
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Figure 1a. The RoboCat architecture 
 

 
Figure 1b. The RoboCat Hardware 

 
The length and the position of the bars with the cable attachment 

points about the knee joint directly influence the required variable 
cable tension over the joint motion range, as well as the variable cable 
pulling speed. Further, the required cable tension and speed to calculate 
power are required for motor sizing.  Also the gear ratio selection 
directly depends on the pulley size and shape.  
 

A biological hip joint is a 3-dof spherical joint, but it is difficult to 
design a direct-drive actuation system for a robotic hip joint. However, 
using cables, the option of using spherical joints is recommended, since 
it reduces the number of cables needed (4 cables for a spherical joint) 
comparing with separate three revolute joints (6 cables for three 
separate 1-dof joints). For the sake of simplicity, we decided to 
consider that only the knee joint is actuated using cables.  

The architecture is presented without specifying details. The 
proper sizing and detailed design specifications need to be done 
iteratively using a mathematical model of the system. 
 
2.2 Mathematical Modeling Parameters and Assumptions 
The significant assumptions for mathematical model derivation are: 
 
1) The contact surfaces between cables and guiding holes are 
frictionless, 
2) The cables are ideally flexible, i.e. bending moments are zero, 
3) The elastic cables behave as linear springs, 
4) The lateral motion does not produce significant inertial effects on 
the longitudinal motion, 
5) Walking is performed on a horizontal flat plane, 
6) The robot system walking is statically stable. 
 

The walking cycle for a leg consists of two main phases: the 
support phase and the swing phase. Since the dynamics of a stance leg 
with the trunk is significantly different from the dynamics of a swing 
leg alone, we can model them separately and combine them in the 
quadruped model via interconnection forces and torques.  Alternatively 
we can model them together, increasing the mathematical model 
complexity. A simplified stance leg model with a concentrated mass of 
the trunk is shown in [13], which represents a compact model 
convenient for model-based control due to relatively low computational 
load. The model of the quadruped in [13] considers dynamics of each 
leg separately and then it combines them via interconnection forces and 
moments. In contrast to that model, here we consider the stance leg, 
swing leg and the trunk together, which increases the complexity of the 
model, but has a potential to give better results for better controller 
performance. The stance and swing leg with the trunk model is shown 
in Figure 2. 

 
The influence of the other legs on the trunk is represented through 

the horizontal and the vertical component of the interaction force 
relocated to the trunk CG (Ct), along with the torque resulting from the 
reallocation of the forces.  

 
The dynamics of this system is governed by several parameters 

that are now discussed in subsections below. 
 

Cable stiffness. One of the most important parameters is the cable 
spring stiffness. The physical quantity in animals that corresponds to 
the stiffness of the cables is the effective stiffness of the muscles and 
tendons. Tendons accumulate a portion of energy that would be 
normally lost due to a foot-ground collision. The accumulated energy is 
released during the next gait cycle to decrease the amount of the kinetic 
energy input via the muscles. A similar effect is expected using the 
elastically stretchable cables for the walking robot. The contact forces 
and joint torques are expected to smooth out, which is desirable in 
robot control. However, a potential problem using elastic cables is that 
the system can experience an oscillating behavior without sufficient 
damping, which requires a dynamic controller to stabilize the system.  
 
Cable attachment Points. The points where the cables are attached 
relative to the joints and the cable guidance geometry are important. 
The points where the cable guiding holes are positioned (A, A’, B and 
B’ in Figure 2) determine the joint axis moment arm, along with the 
joint angular motion range. Inappropriate position of the guiding holes 
can result in a high cable tension required to generate required torques 
at specific joint angles. Therefore, good positions of the guiding rings 
and the attachment points will be determined via numerical solutions 
and simulations.  
 
Pulleys profile. The pulleys are designed to have a variable radius 
profile, as shown in Figure 3. 
 

The objective of the variable pulley radius is to compensate for 
the difference in the cable length increase on one side and the cable 
length decrease on the other side of the knee joint. Considering the 
architecture shown in Figure 2, the cable length increase between 
points B and B’ is not the same as the cable length decrease between 
points A and A’, as shown in Figure 4. This causes problems if the 

variation of the sum )(BB'AA' 2f  is significant, since a pulley 

with constant radius would release the same cable length as the cable 
length that it stores for the same angle of rotation. This difference can 
be compensated to a certain extent with preloaded springs attached in 
series along the cables. However, experiments showed that the spring 
stiffness must be significantly decreased to compensate large variation 

of )(BB')(AA' 22   , which will reduce the effective torques it can 
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R R
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provide to the joints. The variable radius pulley is an effective solution 
to enable a single motor to drive elastic cables. The design objective is 
that if the cable were not stretched, the pulley angle of rotation should 
be proportional to the rotation of the knee joint, that is  

constant
4

2  k



. 

 
The constant k is a modeling parameter that influences the controller 
sensitivity and performance; it will be considered in simulation results. 
 

Clearly, there is no need for the variable radius pulley in the case 
when two motors are used to pull the two cables separately. However, 
the intention here is to use only one motor to drive a revolute joint. The 
mathematical model derivation requires detailed kinematic analysis, 
discussed next. 

 

 
 Figure 2. The Stance and Swing leg model 
 
2.3 Kinematics  
The objective of kinematics analysis of the walking robot, actuated by 
elastic cables, is to find the relationships between the joint angles and 
the Cartesian positions in an inertial coordinate system, as well as the 
corresponding velocities. The kinematic analysis also needs to provide 
the relationship between cable speed and angular speed of the joint. In 
this particular case, the aforementioned relationship represents the 
relationship between the pulley angular speed and the knee joint 
angular speed for the case when there is no change in the cable length. 
The cables are stretched and are assumed to behave as preloaded linear 
springs, deformation and kinematics are coupled with the dynamics 
through the deformation and forces of the springs. 

 

Figure 3. The pulley profile 
 

Expressing the velocities of the CGs in the ground attached 
inertial coordinate frame requires expressions of the Cartesian 
coordinates in terms of the joint angles, which are obtained as follows. 
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where )2,1(, ilCi  are the lower parts of the leg segments lengths 

from the joints to the CGs, 11'1 CC lll   , '2Cl  represents the distance 

from the knee joint to the CG of the swing leg lower part including the 
foot lumped mass, 1tl  and 2tl  are the xp and yp coordinates of the 

trunk CG (ct) with respect to the hip joint (i.e. the components of thc ); 

the angles with indices are defined as: 
 

jiij   , kjiijk   , nkjiijkn   , and 

mnkjiijknm   , , 1,...,6,8),,,,( mnkji   

 
These angles are indicated in Figure 2. The abbreviation for sine 

and cosine functions are  sins  ,  cosc  , with  denoting 

any angle.  By differentiating (1) we obtain the velocities: 
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Besides the relationships (1) and (2), we need an appropriate 

function that indicates how much and with which rate the cable should 
be pulled to obtain a desired joint angle and angular speed. The cable 
length change on the two sides of the pulley in Figure 3 is due to the 
change in the joint angle and to the change in the cable tension. The 

cable length change rates due to the knee angles change 2  and  6  

are: 
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where rl  and ll  are the cable lengths on the right and on the left of the 

stance leg pulley, respectively, rS  and lS  are the cable tensions, and 

the quantities with “sw” in the notation are for the swing leg.  In the 
combined geometrical parameters: 
 
 rrBBs hhhhh 4231     rrBBc hhhhh 4132    

 llAAs hhhhh 4231     llAAc hhhhh 4132   

 

rh1 , lh1 , 2h , 3h , rh4 , lh4  denote the position (with 5h  negligible) 

of the  cable attachment points relative to the knee joint, as shown in 
Figures 4a and 4b.  

(a)   (b)  
 

(c)  
Figure 4. (a) Cable attachment design, (b) The cable attachment 

points parameters, (c) Cable length change difference 
 
The total cable length changes on the two sides of the pulley are: 
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where srk , slk  are the cable spring stiffness coefficients for the right 

and left cable segments. 
 

We need to determine the pulley profile function that will provide 
proportional rotations of the knee joint and the pulley, for an 
approximately constant cable tension. The general profile of the pulley 
is shown in Figure 3, which indicates two rigidly joined segments 
corresponding to the right and left cables. The objective of this design 
is to reduce normally large spring deformations due to the geometrical 
joint angle changes. 

 
To compensate the necessary difference in the cable stored on and 

released from the pulley (Figure 4c), the radius functions )( 4rr  and 

)( 4lr  must cancel the nonlinearity in )(AA' 2  and )(BB' 2 . The 

two functions are: 
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where k
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 is the desired ratio of the two rotations, minR  

and maxR  are the positive minimum and maximum radii of the pulley 

and the derivatives are given in (3), with the plus sign for s=r and P=B. 
The ratio cannot be exactly constant since the cable is elastic.  We 
cannot compensate a general cable tension force, since it is not only a 
function of angles, but also depends on the inertial forces and payload.  
 

For the following parameters: m1.03211  hhhh lr , 

m1.044  lr hh , k=0.5, the radii functions of the two pulley 

segments are: 
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(in meters), where the plus sign is for s=r. 
 

The profile plot for the set of parameters is shown in Figure 5. The 
pulley profile consists of the two sections corresponding to the back 
and the front cable of the knee drive unit. The derivation of the pulley 
assumes that the knee joint design (such as shown in Figure 4a) 

restricts hyperextensions, which means that the angle 2  has only 

positive values for the back legs and only negative values for the front 
legs of the RoboCat. We can see that two radii have the same value 

only for 02  , when this symmetry exists. 
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The Lagrange energy method that we will use for the dynamics 
model derivation requires the CG velocities, but not the  accelerations. 
Now, we will use the kinematics expressions to derive the walking 
robot dynamics model. 

 

 
Figure 5. The pulley profile 

 
 
2.4 Dynamics of the RoboCat 
Using the Lagrange energy method, a set of nonlinear differential 
equations of second order is derived. Since the derivation details would 
take significant space, we will include the final results for each dof. 
The dynamics of the system can be represented by the matrix equation: 
 

      )())(P()())(,)(C()())(M( ttttttt 


    (7) 

 

where )(t


, )(t


 and )(t


 are the joint angle, velocity and 

acceleration vectors, respectively,  ))(M( t


 is the inertial matrix; 

 ))(,)(C( tt  
 is the angular speed coupling matrix,  ))(P( t


 is the 

vector that includes gravity and cable tension terms and )(t


 is the 

vector of joint torques. The product   )())(,)(C( ttt  
represents all 

combined products of the joint angular speeds, which consists of the 
Coriolis and relative normal accelerations. The matrix  )M(


 and 

vector   )())(,)(C( ttt  
 are given in [16]. 

 
The vector of conservative generalized forces  ))(P( t


 requires an 

explanation that is related to further analysis. The vector of 
conservative generalized forces  )(


P  is: 
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where srk , slk  are the cable stiffness coefficients for the front and the 

back cable, and: 
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are the deformation of cable springs as functions of the knee and pulley 
angles. The new quantities included in (9) denote the following: 0rS  

and 0lS  are the cable pre-tensions, )(PrR  and  )(PlR  are the pulley 

variable radii given by (6) and  is the geometrical angle of the cable 
guide on the pulley, as shown in Figure 3. The integrals in (9) represent 
the stored cable along the pulley thread.  The vector of torques   in (7) 
is: 
 

  Ttttttt )()()()()()( pswhswaph  


 (10) 

 

where )(h t , )(p t and )(a t  are the torques at the hip, pulley and 

ankle joints of the stance leg. )(hsw t
 and )(psw t are the torques at 

the hip and the pulley of the swing leg. 
If we consider the system shown in Figure 1, each leg would be 4-

dof and matrices in (7) would be 8 x 8 and the vectors would be 8 x 1, 
which would increase the computational efforts in the system controller 
algorithm. By neglecting the pulley drive moment of inertia and 
neglecting the swing leg foot dynamics (the foot is considered as a 
point mass at the end of the swing leg), the mathematical model is 
reduced to five differential equations of the second order. However, we 
need the moment balancing equation of the pulley–cables system. The 
equation is: 
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)()(),()(),( psw886S886S tRlkRlk PlswlswlPrrswr    

 
where )(p t  and  )(psw t  are the torques provided by the pulley 

drives.  
Equations (7) through (11), along with the kinematic relations, 

and the matrices M( )  


 and C( ( ), ( ))t t  
  

 
 given in [16] represent 

the walking robot mathematical model. For the purpose of controller 
design, the mathematical model (7) must be converted to a state-space 
model, i.e. a set of first order differential equations. 
 
2.5 State-space model 
Since the mass matrix in (7) is always invertible, the equation can be 
explicitly solved with respect to the angular accelerations as 
 

          
 111 )()()(),()(   MPMCM   or 

 

 
 )(),( Gf                                       (12) 

where  
 

       )()(),()(),( 11 
 PMCMf   ,   1)()(  


MG  

 

By assigning variables: 11   , 112    , 23   , 234    , 

35   , and 356    , 57   , 578    , 69    and 

6910     the state-space model has the form: 

 

 













































































































































psw

hsw

a

p

h

555251

454241

353231

252221

151211

10

9

8

7

6

6

4

4

2

2

10

9

8

7

6

5

4

3

2

1

)()()(

000

)()()(

000

)()()(

000

)()()(

000

)()()(

000

)(

)(

)(

)(

)(














































 




 




 




 




 






















GGG

GGG

GGG

GGG

GGG

f

f

f

f

f

    (13) 

 

where )(


if , )(


ijG  (i = 2,4,..,10;  j = 1,2,...,5) represents the entries 

of the functions in (12).  
 

2. 6 Interconnections with other supporting legs 
The interconnections with other supporting legs can be viewed as 
disturbances when it is not convenient to expand the mathematical 
model of the system and the controller complexity. However, if it is 
necessary to obtain better controller performance, the interconnections 
can be modeled as follows. 

The interconnections between the supporting leg models can be 
interpreted through the interconnecting force and torque, as shown in 
Figure 2. The interconnecting force and torque can be included in the 
existing model through the joint torque expressions. The augmented 
torque vector given by (10) becomes: 
 

)()( 1232123112321231h1  clslFslclF PPtyPPtxt   

 )( 123212312312  slclclF PPtxt  

       )( 12321231231  clslclF PPty 
                              

(14)  

 )( 1232123123132a3  slclclclF PPtxt

)( 1232123123132  clslslslF PPty   

hsw4   , psw5    

 
where the meaning of the interconnecting forces and the torques is 
explained earlier and shown in Figure 2, while the swing leg torques 
remain the same.  There is influence of the interconnection forces on 
swing leg dynamics, through the trunk accelerations inertial effects.  
However, these effects are already included in the swing leg dynamics. 
The next section designs a controller from the dynamic model.  
 
 
3. CONTROLLER DESIGN 
The controller design for the walking robot will be based on trajectory 
regulation control [14]. 
 
3.1 Controller Architecture  
The control system architecture, shown in Figure 6, consists of [14, 
15]: 

(a) Nominal trajectories generator, 
(b) Inverse dynamics for nominal control calculation, 
(c) Tracking error regulation controller, 
(d) Measurement system, and  
(e) Plant 

 

 
 

Figure 6. The trajectory regulation controller architecture 
 
The nominal motion specification block generates the joint trajectories 
that will provide a balanced walk. The nominal joint angles at every 
time step is sent to the error dynamics controller and the nominal 
torques generator. The nominal torques are generated based on the 
inverse dynamics mathematical model. Since the robot mathematical 
model is not an exact dynamic description, there will be errors in the 
resulting motion. The amount of the resulting motion deviation from 
the desired motion is calculated based on the measurements of the joint 
angles which is used by the error dynamics controller to generate 
correction torques.  

The inverse dynamics that is used to generate the nominal torques 
is obtained directly from (7), where the torques are explicitly expressed 
in terms of the functions of angles and their first two derivatives. 
However, the derivatives of the input signals must be obtained in the 
Laplace domain via pseudo-differentiators of the form: 
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to obtain physically-realizable derivatives. Since the controller 
architecture is based on error dynamics, we need to obtain the 
appropriate error dynamics model. 
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3.2 Error dynamics 
The error dynamics model is based on the state-space model (13): 
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(15) 

where 


 denotes the nominal trajectory of the system state (angles and 

angular velocities) in the state-space, iii  
~

 is the error of the i-th 

variable with respect to its nominal value for the specified time and j~  

(j  {h,p,a,hsw,psw}) represents corrective torque inputs, generated by 
the feedback controller with the objective to exponentially satisfy 

0
~



. Error vector is stabilization is discussed in the following. 

3.3 Control Law 
The control law should provide the corrective torques such that the 
errors exponentially converge to zero. To achieve this goal, the control 
inputs cancel the nonlinearity (feedback linearization) and introduce 
the terms proportional to the errors of the states as follows. 
 

11514131211
~

gpswhswaph bGGGGG    

22524232221
~

gpswhswaph bGGGGG    

33534333231
~

gpswhswaph bGGGGG    (16) 

44544434241
~

gpswhswaph bGGGGG    

55554535251
~

gpswhswaph bGGGGG    

 
where 

222121221
~~

)()(
~

 kkffbg 


 

444343442
~~

)()(
~

 kkffbg 


 

666565663
~~

)()(
~

 kkffbg 


 

888787884
~~

)()(
~

 kkffbg 


 

101010910910105
~~

)()(
~

 kkffbg 


 

 
and ijk  (i = 2,4,...,10; j = i-1,i) are constants to be determined, such 

that the closed control loop error dynamics are exponentially stable and 
have desired transient behavior.  

We specify overshoot less than 5%, and settling time less than 0.5 
seconds for each joint, which results in the damping coefficient

69.0  and the natural frequency 
s

rad
59.11n  .  To obtain these 

two values, the coefficients ijk  need to have the following values: 

2

1, s

rad
3.134 






iik , 








s

rad
16iik , )10,...,4,2( i  

 
The control law is: 

 gbG
 ~~ 1  (17) 

 
Where G is the reduced input matrix in (15) (without zero rows) 

evaluated at the nominal trajectory 


.  Next, we will evaluate the 
performance of the control law via simulations. 
 
 
3.4 Simulation Results and the Performance Analysis 
The block diagram shown in Figure 6 is implemented in 
MATLAB/Simulink; the control law is tested on a combination of 
ramp inputs for the joints angles and the simulation results are shown 
in the following figures. 
 

The nominal joint angles and the smooth pseudo-differentiator-
obtained angular velocity trajectories are shown in Figure 7 and 
nominal torques predicted by the inverse dynamics block are shown in 
Figure 8. The results in the nominal torques plot agree with the 
expected results since the moment arm is significantly greater for the 
knee joint than for the other two joints. The hip joint has low predicted 
torque due to the fact that the CG of the trunk for the prescribed motion 
is vertically above the hip.  

 
Cable tensions to provide the knee joint angular trajectory are 

shown in Figure 9. The plot shows that the cables pre-tension was 50 N 
and could have been reduced more and still avoid a slack cable case. 
 

 
Figure 7. Nominal walking state trajectories 
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Figure 8. Nominal joint torques 

 

 
Figure 9. Cable forces (tensions) 

 
The comparison of the actual vs. the desired angles is shown in 

Figure 10. The plot shows very low errors of the actual trajectories (the 
ankle and the hip have the same nominal trajectory in the plot). 
Deviation is noticeable at the instants when there are sharp changes in 
the desired trajectory slope. The small deviation of the actual from the 
desired angles can be seen in the errors plot, Figure 11. 

 
Total robot joint torques are shown in Figure 12. If the nominal 

torques, shown in Figure 8, are compared with the total torques, 
significant corrective torque values can be noticed at the instants when 
there is significant change in the desired speed of the joints, due to the 
inertial effects and the effect of the pseudo-differentiation. The total 
torques consist of the nominal torques shown in Figure 8 and the 
corrective torques shown in Figure 13. The reason that the corrective 
torques do not approach zero in a steady state condition is that the 
controller is tested on a regular perturbation by changing the position 
of the trunk CG for 0.05 m (horizontally). However, the actual 
trajectories of the joint angles still approach the nominal trajectories 
with satisfactory dynamics and error limits. 

 

 
Figure 10. The actual versus desired trajectories 

 

 
Figure 11. Hip, knee and ankle joint angle errors for the stance leg 
 

 
Figure 12. Total joint torques 
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Figure 13. Corrective torques signals generated by the controller 

 
4. CONCLUSION 
This article presented a walking robot actuation system based on a 
combination of direct-drive actuation and elastic-cable actuation. 
Several benefits are introduced using the cables to actuate joints. 
Energy consumption is reduced through the reduction of the inertial 
forces on most mobile robot parts. A threaded pulley profile with the 
variable radius is introduced to ensure that, along with relatively small 
deformations of the cable spring, the cables do not become loose, 
which would lead directly into complications with pure transport 
delays in the control law. 
 

The mathematical model is derived, with respect to the 
assumptions that are listed. The stance leg – swing leg – trunk 
dynamics model is presented in state-space form and the corresponding 
error dynamics is used to design the controller using trajectory 
regulation control with an open-loop nominal controller and a closed-
loop tracking error regulation controller. The nominal controller is 
based on the inverse dynamics model of the plant. The closed-loop 
controller is based on feedback linearization control, where plant 
nonlinearity is cancelled by state feedback, and desired linear dynamics 
are assigned.  It is shown how the model can be combined through the 
interconnection quantities with another leg-trunk model to consider the 
dynamic impact from the other supporting legs. 

 
The performance of the joint trajectories tracking was analyzed 

using simulations, which showed satisfactory results of tracking the 
prescribed joint trajectories.  Possible problematic cases in tracking 
include cases with sharp changes and/or associated noise in the desired 
trajectories, due to the need of finding approximate derivatives. 
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