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ABSTRACT
This paper presents a follow-the-leader algorithm for

serpentine control of hyper-redundant manipulators. Given an
obstacle-free trajectory for the manipulator tip generated by a
path planner or teleoperation, the follow-the-leader algorithm
ensures whole-arm collision avoidance by forcing ensuing links
to follow the same trajectory.  The algorithm requires two steps
to place the tip on each trajectory point:  first, fit the
manipulator to the trajectory, tip to base; and second, solve
inverse position kinematics, base to tip.  The general method is
presented and can be used off-line or on-line.  It is then applied
in a modular manner to a specific serpentine manipulator
system, the Payload Inspection and Processing System (PIPS) at
NASA Kennedy Space Center.  PIPS is designed for inspection
of Space Shuttle payloads after integration and prior to launch.
The follow-the-leader algorithm completely constrains the
kinematic redundancy and limits the manipulator workspace.
This limitation is justified in sensitive, cluttered environments
such as the Shuttle payload bay.  The method has been
successfully implemented on prototype hardware at NASA.

1.  INTRODUCTION
Interest is growing in hyper-redundant serpentine

manipulators for inspection, maintenance, assembly, and
manipulation tasks in space, nuclear, undersea, and industrial
environments.  These devices possess highly kinematically-
redundant degrees of freedom (much greater than the seven or
eight joints of existing redundant manipulators) which enable
snake-like motion through an obstacle field.  Implementation of
such systems requires development of efficient, modular
schemes for controlling this serpentine motion.

Several authors have presented results in this area.  Three
groups of researchers have proposed use of a “backbone curve”
to resolve the redundancy of these manipulators.  Salerno (1989)
uses parametric curves to place the intermediate links of variable
geometry truss manipulators, and the solution is achieved by
closed-form relationships.  Chirikjian and Burdick (1991) use
the backbone curve for the inverse kinematics of modular
extensible hyper-redundant manipulators.  They formulate the
algorithm in a manner suitable for parallel computation.
Naccarato and Hughes (1991) compare the backbone curve
method to a more “traditional” approach to resolving inverse
kinematics.  They find reduced real-time computations using the
backbone curve method.

Hooper and Tesar (1995) present an efficient inverse
kinematics algorithm for serpentine manipulators which allows
multiple criteria to be satisfied by the excess degrees-of-
freedom.  It is applied in simulation to a 21-dof serpentine robot
model.

Other methods are based on the pseudoinverse of the
manipulator Jacobian matrix.  Salerno (1993) solved the inverse
kinematics problem for hyper-redundant variable geometry truss
manipulators using the pseudoinverse of the Jacobian matrix and
projection of objective function gradients into the Jacobian null-
space to achieve performance optimization.  Byers (1994) used a
similar approach, with a potential field for obstacle avoidance.

The current paper implements a general follow-the-leader
(FTL) algorithm for serpentine motion control.  A similar
algorithm was proposed in Asano et.al. (1983).  Large volumes
are not swept by the manipulator.  The method is stable and
programmed off-line or executed on-line.  Path planning is
critical to avoid contact in cluttered environments. The robotics
literature is rich with path planning and obstacle avoidance



techniques (e.g. see the 102 references in Sanderson, 1992, and
several more in Williams and Sklar, 1996).  In this paper the
primary path planning mode is human-based teleoperation to
define an obstacle-free trajectory for the manipulator tip step-by-
step, either on- or off-line.  The FTL algorithm ensures whole-
arm collision avoidance by forcing each manipulator link to
follow the tip trajectory. This algorithm was first presented,
verified by graphical simulation, by Williams and Tamasy
(1996).  The general method is presented and then applied in a
modular manner to the Payload Inspection and Processing
System (PIPS) at NASA Kennedy Space Center.  A discussion
of implementation to prototype hardware at NASA is also given.

Inspection of Space Shuttle payloads after integration and
prior to launch is essential for launch and mission safety.
NASA Kennedy Space Center is developing PIPS for prelaunch
inspection and light tasks in the Space Shuttle bay (Pasch, 1990
and Richardson et.al., 1993).  This device features a hyper-
redundant serpentine truss manipulator for carrying a camera
along obstacle-free trajectories to required goal points for
inspection.  NASA is also interested in serpentine manipulators
for in-space construction (Spanos and Berka, 1993) and in-space
inspection tasks (Lee et.al., 1994).

2.  TELEOPERATED PATH PLANNING
The follow-the-leader (FTL) algorithm requires an

obstacle-free trajectory for the manipulator tip.  This trajectory
can be generated by any path planning algorithm (see references
mentioned above).  In the current paper, teleoperation is used as
the primary path planning method, where a human operator
determines the obstacle-free tip trajectory step-by-step via
joystick input.  Teleoperation may be performed either on-line
with actual hardware or off-line with a graphical model of the
hardware and workspace.

For spatial obstacle-free trajectory generation via
teleoperation, three-dof input is sufficient, which controls
relative XYZ positions. Manipulator tip orientation (camera
pointing vector) is fixed by the relative locations of the last two
trajectory points.  The three-dof input could be chosen to be
∆ ∆ ∆X Y Z, , .  However, for follow-the-leader control, it is more
convenient to use spherical coordinates to define the next
trajectory point  relative to the current trajectory point.  Starting
from the current trajectory point, the next point is defined using
a hand controller to input a radius P and two spherical angles,
φ θ, .  As shown in Fig. 1, the hand controller can be aligned
with the manipulator tip video monitor so teleoperation is
natural.  Teleoperation is enhanced by placing two or three
cameras in the workspace to provide orthogonal views.

Figure 2 shows the ith teleoperation step where the next

trajectory point { }0 0
1Pi +  is determined based on the current

trajectory point { }0 0Pi  using the following vector-loop-closure

equation. Input motion is relative to the manipulator tip
coordinate frame {i}.

{ } { } { }0 0
1

0 0 0

1P P Pi i
i

i+ += + (1)

(Note: { }A B
CP  is the vector to the origin of frame {C} from

the origin of frame {B}, expressed in the coordinates of frame
{ A}, (Craig, 1989).  If {A} is omitted, it is assumed to be {B}.)
Coordinate frame {i+1} is obtained by two rotations relative to

{ i}:  1) φ  about Xi ;  and 2) θ  about Yi +1  (the Y-axis resulting

from the first rotation).  This sequence is an X-Y (φ θ, ) Euler

rotation.  The relative vector { }0

1
i

iP+  for Eq. 1 is found from:
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1
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The relative vector { }i i
iP+1  in frame {i}  is produced by

rotating vector { }i T
P P= 0 0  through the X-Y (φ θ, ) Euler

rotation sequence described above:
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Figure 1.   Teleoperation Hand Controller

In Eq. 2, the rotation matrix i R0  must be initialized to the

starting orientation.  The rotation matrix i R0  must be updated

after each successful teleoperation input as follows, to prepare
for the next input step:

i i i i
iR R R R0

1
0 0

1→ =+ + (4)

Where the rotation matrix i
i R+1  comes from the current X-Y

( φ θ, ) Euler rotation sequence,

( ) ( )i
i

X YR R R+ =1 φ θ (5)

3.  FOLLOW-THE-LEADER ALGORITHM
This section presents the general, modular follow-the-

leader (FTL) algorithm for serpentine motion control of hyper-
redundant manipulators. Given an obstacle-free trajectory for the
manipulator tip, the FTL algorithm ensures obstacle-free motion
for the entire manipulator by forcing ensuing links to follow the
tip link.  The manipulator must be serial, or an in-parallel-



actuated variable geometry truss with a serial model (Williams,
1995a).  The FTL algorithm moves the manipulator tip along the
given trajectory from the start to the end. The FTL algorithm
controls the locations of spine points along the manipulator.
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X 0
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Z 0
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{  P  }i
00
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Figure 2.   ith Teleoperation Step

In this paper, a serpentine manipulator (SM) is assumed to
have a motion base with a minimum of three-dof to position the
base-most spine point at general locations.  The motion base is
used to feed the SM into the trajectory.  The serpentine portion
is assumed to be modular (allowing tapered modularity), with
two-dof modules.  The method can handle non-modular SMs,
but the solution will be non-modular. Two-dof are required to
position one point relative to another along the given trajectory.
If each SM module is composed of intersecting revolute joints
(such as universal joints or roll-pitch joints) every spine point
can be placed on the trajectory.  For general SMs consisting of
offset revolute joints, only every other spine point can be placed
on the trajectory.  The FTL algorithm controls only the SM
spine; therefore, the path planning algorithm must provide
trajectories with sufficient clearance to allow collision-free
motion considering the manipulator dimensions about the spine.
Figure 3 gives the flow chart for the FTL algorithm.

An obstacle-free trajectory for the manipulator tip must be
generated and discretized into piecewise linear segments off-line
(teleoperation automatically provides this discretization).  The
variable SM home position is defined as the fully retracted
motion base position, with the SM portion straight out along the
variable feed line.  The manipulator tip in the home position is
the trajectory start point.  All trajectory points must be reachable
subject to joint limits.

To place the manipulator tip at a given trajectory point,
FTL performs two steps:  1) The manipulator is shaped to the
trajectory from tip to base.  The tip is placed on the current
trajectory point and in-board spine point locations are calculated
by intersecting the manipulator segment link sphere with the
appropriate trajectory straight-line segment.  Each solution
becomes the sphere center for the next link.  The process,
pictured in Fig. 4, continues until the base-most spine point is
placed on the trajectory.  For this purpose, the trajectory is
appended with the feed line from the base to the first trajectory
point.  In Fig. 4, the module lengths are Qi  and the spine points

are numbered 1,2,...,n.  The trajectory is shown in solid lines
and the SM links in dotted lines.  2) Inverse position kinematics

then calculates the required joint values, from the base to the tip.
This solution is decoupled into the motion base solution,
followed by n applications of the modular inverse position
solution for the n SM modules.  The resulting joint values place
the spine points on the trajectory.

Repeat for
each trajectory

point

Iterate until
max position error
less than tolerance

Fit SM
to Trajectory

Read
TrajectoryStart
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Controller

Graphical
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Figure 3.   Follow-the-Leader Algorithm Flowchart
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Figure 4.   Fit SM to Given Trajectory

For SM modules with intersecting revolute joints the above
steps are sufficient.  However, for SMs with joint offsets, the
link sphere radii are not fixed but functions of the intermediate
joint angles.  Therefore, steps 1) and 2) must be performed
iteratively (the process starts with straight-out values for link
radii) until the position errors between the desired spine points
on the trajectory and the actual spine points achieved by inverse
kinematics are sufficiently small.  This is the inner loop in Fig.
3.

This process is repeated for each point on the trajectory,
indicated by the outer loop of Fig. 3.  At each step, the joint
values are saved.  Smooth serpentine motion may be obtained by
providing a fine trajectory discretization.  Retraction of the SM
along the same obstacle-free trajectory is accomplished by
reversing the joint values array.

4.  IMPLEMENTATION TO PIPS
This section presents implementation of the general follow-

the-leader algorithm to the Payload Inspection and Processing
System (PIPS) at NASA Kennedy Space Center.  For more



detailed reports, see (Williams, 1995b and 1996).  PIPS features
a hyper-redundant serpentine truss manipulator (STM) for
prelaunch inspection of Shuttle bay payloads.

Eighteen-dof  prototype PIPS hardware has been built, with
a two-dof motion base and sixteen-dof STM.  The motion base
has a prismatic joint d1  and a pitch joint θ 2 , shown in Fig. 5.

Figure 5 gives the zero position for θ 2 ; nominal FTL

trajectories have θ 2 90= − $  so the spine is aligned with d1 .

Frame {0} is the base coordinate frame for the system.  Frame

{3} is aligned 45$  from horizontal.  Fig. 5 also shows the first
two STM spine segments.
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Figure 5.   Motion Base for Prototype PIPS

The STM is a sixteen-dof tetrahedral variable geometry
truss (VGT) as shown in Fig. 6.  The rotation axes are

orthogonal, rather than spaced by 120$  as in the standard
tetrahedron VGT (Subramaniam and Kramer, 1992).  Also, the
structure is tapered and there are joint offsets.  The corners of
the solid tetrahedra along the manipulator from base to tip,
opposite the linear actuators, are the spine of the STM.  Figure 6
is mirror-image of the as-built hardware, with one segment
missing.

Figure 6.   Prototype STM

Figure 7 shows the as-built kinematic diagram for the STM.
Views A and B are “flattened” about the spine.  There are
sixteen linear actuators L L L3 4 18, , ,� , controlling the angles

θ θ θ3 4 18, , ,�  about axes Z Z Z3 4 18, , ,� .  All X axes are along

the spine.  Figure 7 presents the zero position for all STM
angles. The spine points i are the origins of coordinate frames
{ i}.  Spine point 3 is attached to the motion base, and spine
point 18 is associated with the last moving joint.  The link
lengths are given for each segment i, where Si  is the major

length and ∆ i  is the joint offset.  Each joint pair is an offset

universal joint.  Table 1 gives the Denavit-Hartenberg (DH)
parameters (Craig, 1989) for the prototype PIPS hardware.  The
modular pattern established by rows 4,5 and 6,7 and concluded
by rows 16,17 are repeated for rows 8-15.

X18

X3

Z8Z6

Q7

DH Lengths

Segments

Spine Points

Module Lengths

1 2 3 4 5 6 7 8

S1 S2 S3 S4 S5 S6 S7 S8
∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8

Q1 Q2 Q3 Q4 Q5 Q6

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Z3 Z5 Z7 Z9 Z11 Z13 Z15 Z17

Z4 Z10 Z12 Z14 Z16 Z18

View A

View B

Spine View AView B

L 3 L 5 L 7
L 9 L 11 L 13

L 15 L 17

L 18
L 10

L 8L 6L 4 L 12 L 14 L 16

Figure 7.   Kinematic Diagram for Prototype STM

Table 1.   Prototype PIPS  DH Parameters
i α i −1 ai −1 di θ i

1 0 a0 d1 0

2 -90 0 d2 θ 2

3 -45 a2 d3 θ 3

4 -90 S1 0 θ 4

5 90 ∆1 0 θ 5

6 -90 S2 0 θ 6

7 90 ∆2 0 θ 7

8 -
15

... ... ... ...

16 -90 S7 0 θ16

17 90 ∆7 0 θ17

18 -90 S8 0 θ18

4.1 Spine Points and STM Modules
Given a serpentine truss manipulator (STM) to control in

follow-the-leader (FTL) mode, the first step is to select the spine
points and identify the repeating modules.  Since three-dof are
required to position a point, the first serpentine joint θ 3  is

combined with the motion base variables d1  and θ 2  in order to

position the first spine point 4.  Two-dof are required to position
a point a fixed distance from another point along a given
trajectory; therefore, every second spine point following 4 can
be fit to the trajectory.  There are a total of eight spine points for
the prototype PIPS hardware:  4, 6, 8, 10, 12, 14, 16, and 18.  In
this paradigm, STM joint values from neighboring segments are
treated as modules to place each ensuing spine point.  Figure 8
shows the spine of general STM module i controlling spine
point j+2 with respect to spine point j using STM joint angles
θ Ei  and θ Oi  (E, O stand for even and odd).

The intermediate spine point j+1 cannot be placed in general on
the given trajectory.  The fixed lengths are ∆ i  and Si +1 , from

segments i and i+1, respectively.  The DH parameters for
Module i are given in Table 2.
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Figure 8.   General Prototype STM Module

Table 2.   DH Parameters for Module I
i α i −1 ai −1 di

θ i

j -90 Si 0 θ Ei

j+1 90 ∆ i 0 θ Oi

j+2 -90 Si +1 0 θ Ei+1

The variable distance Qi  from spine points j to j+2 is the

magnitude of the vector j jP +2 ; it is a function of the

intermediate joint angle θ Oi :
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Table 3 summarizes the spine point and module paradigm
for the prototype hardware.  The first row of Table 3 gives the
motion base information; the seven STM modules follow.

Table 3.   STM Modules
Module

i
Spine
Point

DH
Lengths

Joint
Variables

Module
Length

Base 4 - d1 2 3, ,θ θ -

1 6 ∆1 2,S θ θ4 5, Q1

2 8 ∆ 2 3,S θ θ6 7, Q2

3 10 ∆ 3 4,S θ θ8 9, Q3

4 12 ∆4 5,S θ θ10 11, Q4

5 14 ∆5 6,S θ θ12 13, Q5

6 16 ∆ 6 7,S θ θ14 15, Q6

7 18 ∆ 7 8,S θ θ16 17, Q7

In this paradigm, the last STM joint angle θ 18  is not required to

place the last spine point, 18.  It can be used in conjunction with
a wrist mechanism for fine camera pointing. For the prototype

STM hardware, module index i and spine point index  j are
related by ( )j i= +2 2 .

4.2 General Feed-Line
The prototype hardware is designed primarily to push the

serpentine manipulator onto trajectories straight-out along the
prismatic joint d1 .  A greater motion range is possible if general

feed lines are enabled.  See Williams (1996) for more detail.
Figure 9 shows the general feed line trajectory geometry.

Length L1  is the X0  distance from the origin to point {4} in

the reset position and length L2  is the straight STM distance

from spine points {4} to {18}. As discussed in Section 4.1,
joints d1 , θ 2 , and θ 3  are used to push spine point {4} onto

trajectories.  Since spine point {4} is the first to be pushed onto
the trajectory, the feed line starts at the nominal reset position
for this spine point.  The initial position for the STM tip, spine
point {18}, is determined by a sequence of two rotations of
length L2:  1) α  about Y0 ;  and 2) β  about X0 .  This

sequence is a Y-X (α β, ) fixed rotation, described by the
rotation matrix:
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Figure 9.   General Feed Line Geometry

For all trajectories, the first two points are: { }F T
P1 0 0 0=

and { }F T
P L2 20 0= .  The first point cannot be reached by

the STM tip but must be defined in order to intersect the STM
back onto the feed line.  If remaining path is determined in the
{ F} frame, we must first transform all trajectory points to {0}:
0 0P T Pi F

F
i= , where:

F

S
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s s c c s
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α α
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4.3 Fit STM to Trajectory
To fit the STM to a given trajectory, the following process

is used.  The manipulator tip (the last spine point) is placed on
the current trajectory point.  The next in-board spine point is fit
to the trajectory by intersecting a sphere (centered at the last
spine point and radius equal to the module length) with the
piecewise linear trajectory.  The module lengths initialize at
their maximum values and are updated by Eq. 8 with the current
joint angles after each inverse kinematics solution.  The
intersection attempt starts at the trajectory line segment
containing the current trajectory point.  If no intersection is
found, preceding trajectory segments are tried until the
intersection is found.  For ensuing modules, the newly
calculated spine point becomes the sphere center and the next
in-board module length the radius.  This process repeats until
the first spine point is placed on the trajectory (which includes
the feed line).  The intersection of a sphere with a 3D line
segment must be solved repeatedly and is presented below.

The parametric form for a line from points P1  to P2  is:

x at P
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= +

= +
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y y

z z

= −
= −

= −

2 1

2 1

2 1

t P
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=
=

0

1
1

2

@

@
(11)

The equation of a sphere with radius r and center x y zc c c, ,

is:

( ) ( ) ( )x x y y z z rc c c− + − + − =2 2 2 2 (12)

The intersection of the sphere surface and line segment is
found by substituting x,y,z from Eqs. 11 into Eq. 12, yielding:

At Bt C2 0+ + = (13)

where:  ( )
A a b c

B ad be cf

C d e f r

= + +
= + +

= + + −

2 2 2

2 2 2 2

2

d P x

e P y

f P z

x c

y c

z c

= −
= −

= −

1

1

1

(14)

Equation 13 is solved for t using the quadratic formula,
and x, y, z is evaluated from Eqs. 11.  There are two solutions,
easily seen by imagining a pencil passed through a softball.  The
following intersection conditions exist for each of the two
solutions.

• If 0 1< <ti , the intersection lies on the line

segment.
• If ti < 0 or ti > 1 the intersection lies on the line

but off the line segment.
• If t t1 2=  the one intersection occurs where the line

is tangent to the sphere; the above two rules apply.
• If t1 2,  is imaginary, no intersection exists.

4.4 Inverse Kinematics
Given an STM fit to a given trajectory, this section presents

the second basic FTL component, inverse position kinematics.
This problem solves the joint values given the spine points.
First, the motion base solution is presented, followed by the
general STM module i solution.

4.4.1   Motion Base Solution.   The motion base inverse

position problem is:  Given 0
4P , calculate d1 2 3, ,θ θ .  The DH

parameters are the first three lines of Table 1.  The kinematic
diagram is shown in Fig. 5.  Equation 15 gives the
transformation relating the variables to the given information.
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This expands to Eq. 16, where 0
4P  is given and K = 2

2
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The solution of Eq. 16 follows the order:  1) θ 3 ;  2) θ 2 ;  3) d1 .

From the Y component of Eq. 16:

θ 3
1 2 3

1

=
+ −


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

−sin

d Kd Y

KS
(17)

There is a unique solution: considering joint limits, the inverse
sine ambiguity presents no problem.  Given the θ 3  solution, the

X component of Eq. 16 yields:

E F Gcos sinθ θ2 2 0+ + = ( )
E S c a

F K S s d

G a X

= +
= − +
= −

1 3 2

1 3 3

0

θ
θ (18)

Equation 18 is solved using the tangent half-angle substitution
(Craig, 1989), which yields two valid solutions for θ 2 .  The

solution chosen must lie within joint limits, closest to the

nominal STM home position, θ 2 90= − $ .

θ 2
1

2 2 2

1 2
2

,
tan= − ± + −

−













− F E F G

G E
(19)

Given the θ 3  and θ 2  solutions, the Z component of Eq. 16

solves the prismatic joint variable d1 .  There is one solution for

each θ 2 , θ 3 .

( ) ( )d Z s S c a Kc S s d1 2 1 3 2 2 1 3 3= + + + +θ θ θ θ (20)

4.4.2   Module Solution.   When the solutions for the motion
base variables are known, the remaining STM joint angles can
be found, proceeding from the base to the manipulator tip.  The
prototype STM hardware consists of repeating modules, as
discussed previously.  Though the STM is tapered so the DH
lengths are not repeating, the kinematic structure of the solution
is identical for each module.  The general solution derived



below is applied seven times, from module one through seven.
Since θ18  is not required to position the STM tip, spine point

18, it is set to zero, and can be used in conjunction with camera
pointing after the serpentine motion is complete.

The general module inverse kinematics problem is:  Given
two consecutive spine point locations, plus the previous joint
values, calculate θ θEi Oi, .  The vector difference between

neighboring spine points can be expressed in two ways which
are equated (see Fig. 8):

0
2

0 0
2P P R Pj j j

j
j+ +− = (21)

Equation 21 is rearranged to show the dependence on the
unknown joint angles.

( ) ( )0
2

0
1
0 1

2P P R R Pj j j j
j

Ei
j

j Oi+ −
−

+− = θ θ (22)

The left-hand-side vectors are given from the known spine
points, referred to the {0} frame.  The rotation matrix

j j
jR R R R− −
−=1

0
1
0

2
1

1
2

�  is a known function of previously-

determined joint angles.
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2θ θ (23)

The vector ( )j
j OiP +2 θ  was given in Eq. 7.  The rotation matrix

expressing the unknown θ Ei   is:

( )j
j
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Substituting these values into Eq. 23 yields:
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In Eq. 25, the left-hand-side is known, while the right-hand-side
contains the unknowns θ θEi Oi, .  Solution of these unknown

joint angles is obtained by equating like components. θ Ei  is

solved from a ratio of the z to the x component.  The four-
quadrant inverse tangent function, atan2, must be used in Eq.
26.
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; ( )θ Ei a z x= −tan ,2 (26)

θ Oi  is solved from a ratio of the y to the x component using

atan2.
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This completes the general solution for θ θEi Oi, . Joint

angle pairs θ θ4 5,  through θ θ16 17,  are solved from Eqs. 26 and

27.

4.5  Convergence
As shown in Fig. 3, iteration is required due to the joint

offsets.  However, if the initial segment radii are chosen to be
Q Si i i= +∆  and updated continuously with Eq. 8, only one

iteration is required for the entire FTL trajectory to achieve tip
errors less than 0.1 inch.  Therefore, to achieve this adequate
error tolerance, the solution is essentially closed-form for all
tested trajectories.

5.  IMPLEMENTATION TO PROTOTYPE HARDWARE
This section discusses prototype hardware implementation

of the FTL algorithm at NASA KSC.

5.1  Prototype Hardware
The kinematic structure of the prototype hardware is

presented in Section 4.  Each joint is driven by a ball-screw
mechanism.  Each ball screw is actuated by a rotary stepper
motor through a gear box.  The feedback element for each joint
is a LVDT across the ball-screw which gives a linear
relationship between the length and the output voltage.
Eighteen commands are sent to the eighteen joint controllers via
serial communication from the host control PC.  Currently
teleoperation is implemented through keyboard inputs; a 3-dof
joystick would greatly improve teleoperation.

5.2  Calibration and Mapping
The FTL algorithm output is d1 , followed by seventeen

joint angles.  Low-level control of the serpentine truss
manipulator is through voltage commands to all eighteen joints.
Therefore, two transformations are required for each joint:  1)
Angle-to-length calibration for each joint excluding the first
(prismatic) joint;  and 2)  Length-to-voltage mapping for all
joints.  The length-to-voltage mapping is a linear relationship.
Both transformations required extensive physical measurements
of the prototype hardware.  For more details, see Williams
(1996).

5.3  Programming Options
There are several off- and on-line programming options for

the prototype hardware system.  The FTL algorithm was
originally developed in the MATLAB simulation environment
with basic graphical animation.  An IGRIP (then upgraded to
TELEGRIP) model was developed to display the MATLAB
results with greater graphical fidelity.  The low-level
manipulator control program was written in C code and the
operational FTL algorithm in C++ code interfaces with it.  To
ensure safety in sensitive environments, off-line trajectory
development and simulation is performed before the hardware is
operated.

The prototype hardware can be run under FTL via two
main options:  1)  Teleoperation;  and 2)  Run Trajectories.



With teleoperation, the user specifies an obstacle-free trajectory
on-line, step-by-step.  Under trajectories there are three sub-
options:  a) Load Existing XYZ Trajectory (from off-line
teleoperation with the graphical model or from a model-based
path planning algorithm);  b) Calculate XYZ Trajectory (by
combining basic curve primitives);  and  c) Load Voltage
Commands (created by the MATLAB code under any of the
possible modes).  In all cases, retraction of the manipulator after
FTL motion is accomplished by reversing the joint commands.

5.4  STS-82 Payload Hardware Simulation
The prototype hardware FTL capability was demonstrated

for inspection of the STS-82 payload, which is scheduled to fly
in February, 1997 on the second Hubble Telescope repair
mission.  The hardware setup includes the eighteen-dof STM,
Shuttle pallet, and mock-up STS-82 payload.

Four follow-the-leader trajectories were developed and
implemented in hardware control to demonstrate representative
inspection locations and tasks for the STS-82 payload.  All
trajectories were developed free of hardware joint limits and
proved to be free of collisions in hardware.  Figures 10 are
photographs of the initial and final STM configurations for one
of these trajectories.  A videotape (Williams et.al. 1997) was
produced to summarize the FTL simulation and hardware
results.

  

Figure 10.   Initial and Final STM Configurations

6. CONCLUSION
This paper presents development of a follow-the-leader

(FTL) algorithm for whole-arm obstacle-free control of hyper-
redundant serpentine manipulators.  It was successfully applied
to the Payload Inspection and Processing System (PIPS) at
NASA Kennedy Space Center.  The algorithm was developed,
implemented, and tested in a modular manner for the prototype
hardware, and validated using computer graphics and hardware
control.  Given an obstacle-free trajectory for the manipulator
tip (from teleoperation or path planner), the FTL algorithm
ensures whole-arm collision avoidance for the manipulator by
forcing ensuing links to follow the trajectory.

Implementation of the FTL algorithm to prototype
hardware yielded several design lessons which should be
improved in the final hardware:  1) Joint offsets should be zero;
2) Motion base translational travel should be equal to the STM

length;  3) Motion base must have more range in three
dimensions;  4) Joint limits should be increased;  5) Control
system must allow all motors to reach each command set in the
same time interval;  6) The hardware must be lighter yet stiffer;
7) Actuation redundancy should be provided for joint failures;
and 8) LVDT voltage noise must be reduced.
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