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ABSTRACT

This paper describes the design, construction, and
control of a planar three degree-of-freedom (dof) in-
parallel-actuated manipulator at Ohio University.   The
actuators are three pneumatic cylinders.  Using real-time
closed-loop feedback control for each actuator length
independently, we develop inverse pose and resolved-rate
control for this manipulator.  The objective of this work
is to implement in hardware a 3-RPR manipulator design
and to evaluate parallel manipulator control using
pneumatics.  The manipulator has been built and
controlled in real-time.

1.  INTRODUCTION

Parallel manipulators are robots that consist of
separate serial chains that connect the fixed link to the
end-effector link. The following are potential advantages
over serial robots: better stiffness and accuracy, lighter
weight, greater load bearing, higher velocities and
accelerations, and less powerful actuators. A major
drawback of the parallel robot is reduced workspace.

Parallel robotic devices were proposed by
MacCallion and Pham (1979). Some configurations have
been built and controlled (e.g. Sumpter and Soni, 1985).
Numerous works analyze kinematics, dynamics,
workspace and control of parallel manipulators (see
Williams, 1988 and references therein). Hunt (1983)
conducted preliminary studies of various parallel robot
configurations. Cox and Tesar (1981) compared the
relative merits of serial and parallel robots.

Aradyfio and Qiao (1985) examined the inverse
kinematics solutions for three different 3-dof planar
parallel robots. Williams and Reinholtz (1988a and

1988b) study dynamics and workspace for a number of
parallel manipulators. Shirkhodaie and Soni (1987),
Gosselin and Angeles (1988), and Pennock and Kassner
(1990) each present a kinematic study of one planar
parallel robot. Gosselin et al. (1996) present the position,
workspace, and velocity kinematics of one planar parallel
robot.

Recently, more general approaches have been
presented. Daniali et al. (1995) present an in-depth study
of actuation schemes, velocity relationships, and singular
conditions for general planar parallel robots. Gosselin
(1996) presents general parallel computation algorithms
for kinematics and dynamics of planar and spatial parallel
robots. Merlet (1996) solved the forward pose kinematics
problem for a broad class of planar parallel robots.
Williams and Shelley (1997) solved the inverse pose and
velocity kinematics problem for this same class.

The current paper presents a 3-RPR planar parallel
robot which has been designed, built, and controlled at
Ohio University.  The paper first presents the
manipulator description including kinematics, followed
by a design and construction discussion and then the
control architecture.

2.  3-RPR DESCRIPTION

The manipulator considered in this paper is
symmetric and composed of three identical legs
connecting the fixed base to the end-effector triangle as
shown in Fig. 1.  Each leg is of RPR design, with two
passive revolute joints and an active prismatic joint in-
between.  Each prismatic joint is an actively-controlled
pneumatic cylinder.



2.1  Kinematics

The 3-RPR kinematic diagram is given in Fig. 2.  The
three grounded passive revolute joints are located on the
base triangle at iA  and the three moving passive revolute

joints are located on the moving triangle at iC , where

3,2,1=i .  The active prismatic joint variables are the
total lengths Li, giving the length between passive
revolute joints.  The moving frame {H} is at the triangle
centroid and the base frame {B} is shown in Fig. 2.  The
Cartesian variables are the triangle link pose

{ }TyxX φ= .  The Grubler mobility equation
predicts this device has three degrees-of-freedom, by
counting eight rigid links connected by nine one-dof
joints.  θi are passive intermediate joint angles which are
not required for hardware control, but which may be
calculated for computer simulation and/or velocity and
dynamics calculations.

Figure 1.  3-RPR Manipulator

Figure 2.  3-RPR Kinematic Diagram

2.1.1  Inverse Pose Kinematics.  The inverse pose
problem is stated: Given the desired Cartesian pose

{ }TyxX φ= , calculate the required prismatic joint

lengths { }TLLLL 321= .  There is a duality with
serial manipulators: generally the inverse kinematics is
straight-forward, while the forward kinematics problem is
difficult, which is opposite the case for serial
manipulators.  For the 3-RPR, since we are given the pose
X, we can easily calculate moving revolute locations iC

and then the inverse pose solution is simply finding the
vector lengths Li between iC  and iA , 3,2,1=i .  For each

RPR leg, the following vector loop closure equation may
be written:
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The intermediate passive joint angles θi are:
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2.1.2  Forward Pose Kinematics. The forward pose
problem is stated: Given the current prismatic joint

lengths { }TLLLL 321= , calculate the Cartesian pose

{ }TyxX φ= .  This problem requires the solution of
coupled nonlinear equations.  The same vector loop
closure equations (1) apply, rewritten in (4), 3,2,1=i :
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Equation (4) includes all unknowns { }TyxX φ=  and

one passive unknown θi.  One approach to solve this
problem is to apply the numerical Newton-Raphson
method.  First, since θi is not required, we can square and
add the x and y component equations in (4) to eliminate
θi.  The result is three equations coupled and nonlinear in
the unknowns X.  Solution details are not given here. θi

can be found after X is known using (3).

This forward pose problem is equivalent to finding
the assembly configurations of a four-bar linkage with
input/output links L1, L2 and an RR constraining dyad of
length L3.  By itself the four-bar linkage has infinite
assembly configurations because it has one-dof.  RR dyad

33CA  constrains the mechanism to a statically-

determinate structure of 0-dof.  Point 3C  defines a four-

bar coupler curve which is a tricircular sextic (sixth-
degree algebraic curve) that has a maximum of six
intersections with the circle of radius L3 centered at 3A

(Hunt, 1990).  This is an alternative analytical solution.

2.1.3  Velocity Kinematics.  Inverse velocity kinematics
is used for resolved-rate control and forward velocity
kinematics may be used for simulation.  To derive the
velocity relationships, the vector loop closure equations
are rewritten again:
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where lHi is the length from iC  to the origin of {H} and

βi is the variable angle, related to φ, from the end of the Li

direction to the current direction of lHi.

The inverse velocity problem is stated: Given the
manipulator configuration and the desired Cartesian rates

{ }TyxX φ���

� = , calculate the required prismatic joint

rates { }TLLLL 321
���� = .  The velocity kinematics

method for all planar parallel manipulators is presented in
Williams and Shelley (1997); the method is briefly
summarized here and the results are given for the 3-RPR.
Taking a time derivative of (5) yields a velocity equation
which can be arranged as a 3x3 Jacobian matrix mapping

joint rates { }Tiiii L βθρ ���

� =  into Cartesian rates

{ }TyxX φ���

� = .  Since we only desire the active joint

rates iL� , we invert this Jacobian relationship.  Then, the

iL�  row only is extracted; this is repeated for 3,2,1=i .
The overall Jacobian relationship for the 3-RPR results:
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Note (6) directly gives the inverse velocity solution
which can be abbreviated XML �� = , where M is the 3x3
inverse manipulator Jacobian matrix.  The forward

velocity solution is then LMX ��

1−= .  Hence we find
another serial/parallel robot duality: the 3-RPR inverse
velocity problem is not subject to singularities, while the
forward velocity problem is.

All kinematics solutions have been implemented in
Matlab; the real-control control architecture presented
later uses Matlab directly.  An example animation
snapshot from Matlab is given in Fig. 3.

Figure 3.  3-RPR Matlab Snapshot

2.2  Workspace

Limited workspace is the principal disadvantage of
parallel robots.  Therefore, we are using a geometric
method (Williams, 1988) to determine the 3-RPR
workspace and design the manipulator parameters to
maximize the workspace.  This effort is not complete, but



the hardware has been built to allow for different ground
revolute locations iA  to evaluate workspace results in the

future, constrained by the hand triangle link (which we
can also change) and the prismatic joint limits.  Figure 4
shows a sample reachable workspace result for the 3-
RPR.

Figure 4.  Example 3-RPR Reachable Workspace

3.  3-RPR DESIGN AND CONSTRUCTION

This section discusses the design and construction of
3-RPR hardware at Ohio University.  The budget for this
project was small, so the most important design
specification was to make use of existing actuators,
sensors, control elements, and I/O boards.  Also, since
most robotic projects at Ohio University make use of DC
servomotors, it was desired to use pneumatic power for a
change of pace.  This dictated the use of existing
pneumatic air cylinders (spring loaded to return to
minimum joint length), linear variable displacement
transducer (LVDT) length sensors, solenoid valves to
regulate air flow to the cylinders, and a PC-based control
system using Quanser Multi-Q I/O boards.  The three
RPR legs are identical, with three independent pneumatic
cylinders and LVDTs across each.  An oil-less air
compressor is the pneumatic power source, providing 120
psi, regulated to a constant 60 psi which is delivered
through a three-way hose coupling manifold to each
solenoid valve to power the cylinders.  Components
which were procured included pneumatic plumbing
elements, Delrin plastic for the hand triangle, link
extensions, and ground fixtures, plus bolts for the passive
revolute joints.

The 3-RPR robot hardware is shown in Fig. 5.  In Fig.
5 the pneumatic cylinders are on the bottom while the
LVDTs are mounted parallel to the cylinders on top.  The
PC I/O boards, the three solenoid valves, and the electric
power supply for the solenoid valves and LVDTs are
shown (left-to-right) in Fig. 6.  The pneumatic power
supply is not pictured.

Figure 5. 3-RPR Hardware

Figure 6. I/O Boards, Solenoid Valves, and Power Supply

The next section presents the 3-RPR control
architecture.  First, on the following page Fig. 7 presents
the overall 3-RPR system diagram which connects
mechatronic design and control architecture for the 3-
RPR hardware.

Three pneumatic cylinder/LVDT units are connected
to the pneumatic power supply as described earlier and
also connected to the control PC.  Each cylinder receives
air pressure by commanding voltage to the solenoid



valve.  The resulting length motion is detected by the
LVDT sensor which is sent to the PC.  There is an
external Multi-Q MQ3 I/O board which interfaces to an
internal Multi-Q control board.  Not shown in Fig. 7 is
the electric power supply which supplies 15±  volts to
the LVDTs and +15 volts to the solenoid valves.  The PC
reads the output LVDT analog voltage value and
commands appropriate voltage values to each solenoid
valve.  Control details are discussed in the next section.

4.  3-RPR CONTROL

The 3-RPR hardware real-time control architecture is
discussed in this section.  The 3-RPR can be controlled in
joint mode, either open-loop or closed loop with LVDT
length feedback.  The 3-RPR can also be controlled in
Cartesian mode (inverse pose control or resolved-rate
control using inverse velocity) which in turn requires
closed-loop control of all three pneumatic actuators
simultaneously.

The required kinematic solutions (discussed in
section 2) for control are implemented in Matlab's
Simulink graphical interface.  As shown in Fig. 7,
Simulink model output commands real-world hardware
via the Quanser Wincon software and internal and
external Multi-Q boards.  In the open-loop case, the
Simulink model commands desired voltage values to the
solenoid values which operate the pneumatic cylinders
without LVDT feedback.  In the closed-loop case (joint
control, Cartesian pose control, or Cartesian velocity
control), the Simulink model commands voltage values to
the solenoid values based on values calculated by the on-
line controller for achieving the three desired link
lengths.  Solenoid voltage commands go out and the
LVDT voltage readings come into the PC via the external
I/O board and internal board, which interfaces with
Simulink via Wincon software.  Three analog inputs and
three analog outputs on the external boards are used, one
for each pneumatic cylinder/LVDT combination.

Figure 7. Overall 3-RPR System Diagram



Figure 8 shows the closed-loop feedback control
block diagram for achieving the desired commanded
pneumatic cylinder lengths.  The block diagram is for one
cylinder; all three use the same block diagram.

Figure 8.  Leg Length Control Block Diagram

In Fig. 8, LC is the commanded leg length for prismatic
actuator i.  LE is the length error.  V is the solenoid
voltage to be applied, calculated by the proportional-
integral-derivative (PID) control law. LA is the actual
pneumatic cylinder length resulting from this voltage
command (and the ensuing dynamic response of the
entire system, i.e. three actuators operating
simultaneously).  LS is the sensed value of this actual
length, as read by the LVDT feedback.

In this manner we achieve coordinated Cartesian
control of the 3-RPR via linearized independent (but
simultaneous) prismatic joint control.  We have not
derived the system dynamics block for Fig. 8; in fact, the
Simulink diagram implementation of Fig. 8 is open at this
block (the real-world hardware closes the loop). Rather,
the PID gains have been determined experimentally by
setting the proportional gain first (starting with low
values and working up!) and adding the integral and
derivative terms as needed (again, starting with low
values).  We use the Simulink PID block (with
approximate derivative to minimize the problems with
numerical differentiation).

In the hardware control implementation, it was found
that a PD controller worked well.  The D term was
essential to maintain stability, which is expected from
theory.  The I term is supposed to reduce the steady-state
error, but was set to zero in the 3-RPR; other I values
caused erratic, marginally stable results.  Each pneumatic
cylinder has a stiff spring which returns the prismatic
joint length to the minimum limit when the pressure is
released (or at a low value).  It was found that this spring
stiffness dominated the response.  In the near future we
are planning to implement a feedforward term in Fig. 8 to
neutralize the effect of this spring (depending on the

magnitude of the commanded length LC) so the PID
controller can be concerned with fine positioning control.

Figure 9 shows the PC screen during experimental
length control of one pneumatic cylinder.  The
background window is the Simulink model controlling
the 3-RPR hardware.  The lower small window on the
right is the Wincon window.  The small window directly
above that is the real-time numerical display of the
LVDT's measurement of this pneumatic cylinder length.
The graph window on the left displays in real-time the
time history of this controlled length.

Figure 9.  Simulink/Wincon Interface to the 3-RPR

5.  CONCLUSION

This paper has presented kinematics, hardware
construction, and control architecture for the planar
parallel 3-RPR manipulator built at Ohio University.
This three degree-of-freedom manipulator is actuated by
pneumatic cylinder prismatic joints.  The revolute joints
are all passive.  In a limited workspace the robot can
reach general planar poses (translation and rotation).
Applications for this type of robot include manufacturing
and assembly where high speed and accuracy are required
in a relatively small workspace.  Other applications are
planar motion simulators and haptic interfaces.

The 3-RPR hardware is controlled in real-time via a
PC with a Matlab Simulink model reading LVDT



feedback and commanding solenoid valves via the
Quanser Multi-Q boards and Wincon software.  The
control architecture controls the three pneumatic cylinder
lengths independently but simultaneously in this
environment.  Open-loop leg control is possible, as well
as leg length control and Cartesian pose and velocity
control using LVDT feedback for closed-loop pneumatic
cylinder control.  This type of control was found to be
effective in experiments.  More experiments will be
conducted to assess the strengths and weaknesses of the
as-built system.  Future work includes evaluation of this
type of parallel hardware compared with serial robots.
Also, comparing pneumatic control with DC servomotor
actuation can now be performed.
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