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1.  Introduction 
 

The Baxter Robot System is a human-sized humanoid robot with dual 7-degree-of-freedom (dof) 
arms with stationary pedestal, torso, and 2-dof head, a vision system, a robot control system, a safety 
system, and an optional gravity-offload controller and collision detection routine.  This document presents 
kinematics and dynamics equations for control of this robot. 
 

The Baxter arm design is rather traditional, similar to many previous 7-dof robot arms.  7-dof robot 
arms are classified as kinematically-redundant, i.e. possessing more joint freedoms than necessary to 
operate fully in the desired Cartesian space.  Specifically, Baxter has n = 7 single-dof revolute (R) joints, 
which is one greater than the m = 6 Cartesian dof (3 translations and 3 rotations) for general trajectories.  
When n > m, the robot qualifies as kinematically-redundant, which means that in addition to reaching 
general desired 6-dof Cartesian trajectories, a 7-dof robot arm can also be used for optimizing robot arm 
performance at the same time. 
 

The Baxter arm is rather unique considering its actuation by Serial Elastic Actuators (SEAs).  All 
seven DC servomotor actuators for each arm include a flexible torsional spring in each drive shaft.  This 
allows a naturally-compliant arm which will give when interacting with objects and human beings in its 
workspace.  Baxter is a coBot which is designed specifically to interact safely with humans, unlike 
traditional robot manipulators.  This safety is provided both by the mechanical design (SEAs) and also 
software safeguards.  A side benefit of using the SEAs is that torque sensing is easily available for each 
of the active joints, which is great for statics and dynamics control. 
 

Unlike some previous 7-dof robot arms, Baxter suffers with three unfortunate offsets in the 
kinematic structure – this greatly complicates the analytical kinematics and dynamics equations.  I suppose 
this means that strictly numerical control has taken over in the current generation, which is too bad 
considering physical insights are lost this way.  The Baxter 7-dof arms neither have a spherical shoulder 
nor a spherical wrist (i.e. nowhere are there 3 consecutive coordinate frames meeting at the same origin).  
Actually, the Baxter designers consider a 2-dof shoulder, a 2-dof elbow, and a 3-dof wrist.  The elbow also 
has a kinematic offset.  According to Pieper’s principle, if a 6-dof serial robot has 3 consecutive coordinate 
frames meeting at the same origin, then an analytical solution is guaranteed to exist for the coupled 
nonlinear inverse pose kinematics problem.  This does not occur for Baxter, so I suspect no analytical 
solutions exist for IPK (even for a simplified 6-dof Baxter with the first elbow joint locked to zero) – even 
if they did they would be significantly complicated due to the three offsets mentioned previously.  Why 
do the designers include these pesky offsets?  Why is the wrist of the terrible design wherein the singularity 
is in the middle of the useful rotational workspace (such as in the conventional Puma industrial robot)?  
Do the offsets make for a better workspace?  Do they move the singularities around effectively (they 
cannot eliminate such singularities)?  Or are the offsets just nice for each electromechanical design?  This 
paper intends to answer some of these questions. 
 

Presented is a description of the Baxter Robot System, followed by kinematics analysis and 
equations including Forward Pose Kinematics (FPK) and Inverse Pose Kinematics (IPK) expressions and 
solutions.  Numerical examples are given for both FPK and IPK with both snapshots and trajectories.  The 
velocity equations are also derived and used in a resolved-rate control scheme which has many advantages 
over IPK-based control.  Singularity analysis is also presented.  Then dynamics . . . 
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2. Baxter Robot System Description 
 

The Baxter Humanoid Robot System is shown in Figure 1, in the standard pose with all zero joint 
angles (except for both left/right arm 1  0S  shoulder joint angles – this is discussed later).  Actually, the 

left and right wrist pitch joints 1W  are shown in two configurations, the horizontal ones with 6 0   and 

the vertical down ones with 6 90    .  In the hardware shown in Figure 1, each arm has seven single-

dof revolute (R) joints, and the pan/tilt head has two single-dof R joints.  The head panning is continuous, 
but the head nodding is on/off (up/down).  There is an animated face on a flat screen.  Though this is a 
humanoid robot system, there are no legs for locomotion and the torso is stationary.  Therefore, the overall 
robot has 16-dof, not counting any gripper freedoms. 
 

 
Figure 1.  Baxter Humanoid Robot, Zero Pose 

(Rethink Robotics, 2016) 
 
Each 7-dof arm has a 2-dof (offset-U-joint) shoulder joint, a 2-dof (offset-U-joint) elbow joint, and a 3-
dof (offset-S-joint) wrist joint.  There are no parallel R joint axes anywhere on each arm, nor a series of 
three consecutive R-joints sharing a common origin (either/both of which would significantly simplify 
the kinematics and dynamics equations).  The 2-dof head (U-joint with continuous pan and discrete 
up/down nod) enables pan and tilt for the camera/face. 
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Figure 2.  Baxter 7-dof Left Arm R Joints 
(Rethink Robotics, 2016) 

 
 

Table 1. Seven-dof Left Arm R Joints Naming Convention 
 

Joint Name Joint Motion 

0S shoulder roll 

1S  shoulder pitch 

0E elbow roll 

1E  elbow pitch 

0W wrist roll 

1W  wrist pitch 

2W wrist roll 
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Baxter Robot System Technical Specifications (Rethink Robotics, 2016) 
 
 Baxter is about 3’ tall (around 6’ tall with stationary pedestal) and weighs 165 lbs. (306 lbs. 
including the pedestal).  Baxter has a 103” ‘wingspan’ and a 32” x 36” pedestal base. 
 

Both 7-dof arms include angle position and joint torque sensing.  For Cartesian sensors, there are 
three integrated cameras, plus sonar, accelerometers and range-finding sensors.  Each Baxter arm has a 
temperature sensor, allowing human fingers to be detected for lead-through programming and other 
applications.  The Baxter Robot System (research version) allows programming via a standard, open-
source ROS API interface. 
 
 The first four active joints (the shoulder and elbow) of each 7-dof arm have a peak torque of 50 
Nm, while the three wrist joints have a peak torque of 15 Nm.  The whole-workspace accuracy is published 
to be 5  mm (which can be improved to 0.5  mm to certain unspecified limited portions of the 
workspace.  The maximum payload, including the end-effector in the safety-enabled mode, is 2.3 kg.  This 
increases to about 25 kg with safety disabled. 
 
 The joint sensor resolution for each of the 7-dof arm joints, right and left, is 14 bits for 360 , which 
works out to 0.02197  per encoder count. 
 
 The onboard computer consists of a third-generation Intel Core i7-3770 8MB 3.4 GHz processor 
with HD4000 Graphics, 4GB 1600 MHz DDR3 memory, and 128 GB solid state hard drive.  The camera 
has a maximum resolution of 1280 x 800 pixels (640 x 400 pixels effective resolution), with a 30 fps frame 
rate and 1.2 mm focal length.  The animated face flat screen has a resolution of 1024 x 600 pixels. 
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3. Baxter Robot System Denavit-Hartenberg (DH) Parameters 
The modified Denavit-Hartenberg (DH, Denavit and Hartenberg, 1955) parameters are presented 

in this section, for each of the serial chains (two 7-dof arms, 2-dof head) for the Baxter Robot System.  
The Denavit-Hartenberg (DH) Parameters (1955) are used to describe the links/joints geometry of a serial-
chain robot.  DH parameters have been adopted for standard kinematics analysis in serial-chain robots 
(Craig, 2005).  The community has come to call Craig-style DH Parameters as ‘modified’, with the 
original DH Parameters interpretation by Paul as ‘standard’.  The modified DH parameters have certain 
advantages over the standard (the main one being that a Craig coordinate frame rotates right at it joint, 
rather than distal from the joint as in Paul). 
 
 
Seven-dof Left Arm 

The Cartesian reference frame definitions for Baxter’s 7-dof left arm are shown in Figure 3. Table 
2 gives the associated DH parameters (Craig convention, known as ‘modified DH parameters’) for the 7-
dof left arm. 
 
 

 
 

Figure 3. Seven-dof Left Arm Kinematic Diagram with Coordinate Frames 
 

Table 2. Seven-dof Left Arm DH Parameters 
 

i 1i  1ia  id i

1 0 0 0 1  
2 90 

1L 0 2 90  
 

3 90 0 2L 3  
4 90 

3L 0 4  
5 90 0 4L 5  
6 90 

5L 0 6  
7 90 0 0 7 
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Seven-dof Right Arm 
The Cartesian reference frame definitions for Baxter’s 7-dof right arm are shown in Figure 4. Table 

3 gives the associated DH parameters (Craig convention, known as ‘modified DH parameters’) for the 7-
dof right arm. 
 

 
 

Figure 4. Seven-dof Right Arm Kinematic Diagram with Coordinate Frames 
 

Table 3. Seven-dof Right Arm DH Parameters 
 

i 1i  1ia  id i

1 0 0 0 1  
2 90 

1L 0 2 90  
 

3 90 0 2L 3  
4 90 

3L 0 4  
5 90 0 4L 5  
6 90 

5L 0 6  
7 90 0 0 7 

 
 Note that the Baxter robot system was designed so that the DH Parameters are identical for the left 
and right arms (compare Tables 2 and 3).  This is a great aspect, so that all kinematics and dynamics 
derivations for the left arm apply equally to the right arm!  Of course, this is with regard to the left and 
right base coordinate frames {BL} and {BR}; poses in the world coordinate frame {WO} are easily handled 
via homogeneous transformation matrices, presented later. 
 
 Note that the kinematic models and DH Parameters presented above agree with the as-delivered 
Baxter left- and right-arms with regard to zero location for all angles and also actual   joint motion 
conventions.  Also note that no calibration procedure is necessary for Baxter upon power-up; instead, all 
14 joint encoders have known absolute zero locations. 
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The joint angle limits for the Baxter Robot System 7-dof arms are given in Table 4 below.  Refer 
to the joint numbering given in Figures 3 and 4.  Note all units in Table 4 are degrees. 
 

Table 4. Seven-dof Left- and Right-Arm Joint Limits 
 

Joint Name Joint Variable i  min i  max i  range 

0S 1  51  141 
 192

1S  2  60  123 
 183

0E 3 173  173 
 346

1E  4 150  3 
 153

0W 5 175  175 
 350

1W  6  120  90 
 210

2W  7  175  175 
 350

 
 
 

Table 5. Seven-dof Left- and Right-Arm Link- and Offset-Lengths 
 

Length Value (mm) 

0L 270.35 

1L 69.00 

2L 364.35 

3L 69.00 

4L 374.29 

5L 10.00 

6L 368.30 

 
 
Note: 6L  is the length from the wrist pitch center to the center of the parallel-jaw gripper fingers – this 

dimension is different to the gripper plate (229.53 mm) and to the tip of the grippers (387.35 mm). 
 
Further note: in MATLAB simulation and real-time Baxter Robot programming we will use m, not mm, 
for the length units.  This will better avoid numerical imbalances between the translational and rotational 
terms. 
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Figure 5a. Baxter Left- and Right-Arm Kinematic Diagrams, Top View 

Zero Joint Angles Shown 
(not to scale) 

 

 
Figure 5b. Top View Details 

 
As shown in Figure 5a, the zero locations for joints left/right arm 1  0S  shoulder joint angles are 

not straight to the sides as indicated in Figure 1, but rather at the 45  angles seen above.  Again, the 
kinematics and dynamics equations analytical terms will be identical for the left and right arms with 
respect to their respective base frames.  However, the absolute terms must be transformed into a common 
frame such as {WO}.  The required homogeneous transformation matrices are given below, by inspection. 

Figure 5b shows the two length offsets L and h, for the joint center of each 0S  shoulder joint angles 

with respect to the origin of {Wo} in the top view, which is located at the center of the torso circle, on the 
floor.  The height from the floor to the level of the {B} frames for the left and right arms is H (see Figure 
6).  The fixed homogeneous transformations giving the pose of each left/right arm {B} frame with respect 
to the world frame {Wo} are given below. 
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 
 
 

 

 
These required left/right arm lengths for the {B} frames to {Wo} frame transforms are given in 

Table 6. 
 

Table 6. {B} to {Wo} Lengths 
 

Length Value (mm) 
L 278 
h 64 
H 1104 

 
 

 
Figure 6. Baxter Front View 
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The robot arm configurations shown in Figures 3, 4, and 5 are for all zero joint angles.  Baxter’s 
‘neutral’ location joint angles are given in Table 7 (these angles are identical for the left and right arms).  
A MATLAB rendition of the neutral joint angles pose is given in the Examples later. 
 
 

Table 7. Baxter ‘Neutral’ Joint Angles 
 

Joint Name Joint Variable i

0S 1 0  

1S  2 31   

0E 3 0  

1E  4 43  

0W 5 0  

1W  6 72  

2W  7 0  
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4. Baxter Forward Pose Kinematics 
 
In general, the Forward Pose Kinematics (FPK) problem for a serial-chain robot is stated: Given the joint 
values, calculate the pose (position and orientation) of the end-effector frame of interest.  For serial-chain 
robots, the FPK problem set up and solution is straight-forward.  It is based on substituting each line of 
the Denavit-Hartenberg Parameters Table 2 into the equation below (Craig, 2005), giving the pose of 
frame {i} with respect to its nearest neighbor frame {i–1} back along the serial chain: 
 

 
1

1 1
1 1 1 11

1 1 1 1

0

0 0 0 1 0 0 0 1

i i i
i i

i ii i i i i i ii
i

i i i i i i i

c s a

R Ps c c c s d s
T

s s c s c d c

 
     
     


 

   

   

  
                
  
      

 
Where the following abbreviations were used: cosi ic  , sini is  , cosi ic  , and sini is  . 

 
 
The equation above represents pose (position and orientation) of frame {i} with respect to frame {i–1} by 
using a 4x4 homogeneous transformation matrix.  The upper left 3x3 matrix is the rotation matrix 1i

i R
    

giving the orientation of frame {i} with respect to frame {i–1}, expressed in { i–1} coordinates.  The upper 
right 3x1 vector  1i

iP  is the position vector from the origin of {i–1} to the origin of {i}, expressed in { 

i–1} coordinates. 
 
Then homogeneous transformation equations are used to find the pose of the overall end-effector frame 
of interest with respect to the base reference frame, to complete the FPK solution for each serial chain. 
 
4.1 Seven-dof Left Arm FPK Expressions 
 

The statement of the FPK problem for the seven-dof left arm serial chain of the Baxter humanoid 
robot is: 
 

Given 1 2 3 4 5 6 7( , , , , , , )       , calculate 0
7T    and W

GT   . 

 
where {G} is the left-arm end-effector (gripper) frame and {W} is the World fixed reference frame on the 
floor.  For notational simplicity in Cartesian coordinate frame definition, frame numbers {0}, {1}, … {7}, 
etc. will be recycled for both arm serial chains.  Therefore, in this paper some repeated frame numbers are 
context-dependent, which must be sorted out in programming the Baxter humanoid robot. 
 
Substitute each row of the DH parameters in Table 2 into the equation for 1i

iT
    to obtain the seven 

neighboring homogeneous transformation matrices as a function of the joint angles for the 7-dof left arm. 
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Where the following abbreviations were used: cosi ic  , sini is  , for 1,2, ,7i   . 

 
Now substitute these seven neighboring homogeneous transformation matrices into the following 
homogeneous transform equation to derive the active-joints FPK result. 
 

0 0 1 2 3 4 5 6
7 1 1 2 2 3 3 4 4 5 5 6 6 7 7( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T T T T T                                      

 
 Note this left-arm active-joint FPK solution may be grouped as follows, by the 2-dof shoulder, 2-
dof elbow, and 3-dof wrist joints. 
 

0 0 2 4
7 1 2 3 4 5 6 7 2 1 2 4 3 4 7 5 6 7( , , , , , , ) ( , ) ( , ) ( , , )T T T T                             
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 Further, combining the 2-dof shoulder and 2-dof elbow homogeneous transformation matrices via 
matrix multiplication: 
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( ) ( )

0 0 0 1

s s s L L c s L c s s s c

s s c c c s c c c s c s L s L c c

 
     
    
 
 

 

 
The overall analytical FPK expressions for the active Baxter joints are now given: 

 
0

11 12 13 7
0

0 21 22 23 7
7 1 7 0

31 32 33 7

( , , )

0 0 0 1

r r r x

r r r y
T

r r r z
 

 
 
      
 
 

  

 
 
The orthonormal rotation matrix elements for this result are: 
 

11 4 1 2 4 6 5 4 1 2 4 5 6 7 4 1 2 4 5 5 7

12 4 1 2 4 5 5 7 4 1 2 4 6 5 4 1 2 4 5 6 7

13 4 1 2 4 6 5 4 1 2 4 5 6

(( ) ( ( ) ) ) (( ) )

(( ) ) (( ) ( ( ) ) )

( ) ( ( ) )

r as c c c s bs ac c c s c c c ac c c s s bc s

r ac c c s s bc c as c c c s bs ac c c s c c s

r as c c c c bs ac c c s c s

       

       

     
 

 

21 4 1 2 4 6 5 4 1 2 4 5 6 7 4 1 2 4 5 5 7

22 4 1 2 4 5 5 7 4 1 2 4 6 5 4 1 2 4 5 6 7

23 4 1 2 4 6 5 4 1 2 4 5 6

(( ) ( ( ) ) ) (( ) )

(( ) ) (( ) ( ( ) ) )

( ) ( ( ) )

r ds s c c s fs dc s c s c c c dc s c s s fc s

r dc s c s s fc c ds s c c s fs dc s c s c c s

r ds s c c c fs dc s c s c s

        

        

    
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31 6 5 2 3 5 6 7 5 2 3 5 7

32 5 2 3 5 7 6 5 2 3 5 6 7

33 6 5 2 3 5 6

( ( ) ) ( )

( ) ( ( ) )

( )

r hs gc c s s c c gs c s c s

r gs c s c c hs gc c s s c s

r hc gc c s s s

    

     

   
 

 
where: 

1 3 1 2 3

1 3 1 2 3

1 3 1 2 3

1 3 1 2 3

2 4 2 3 4

2 4 2 3 4

a s s c s c

b s c c s s

d c s s s c

f c c s s s

g s s c c c

h s c c c s

 

 
 

 

 

 

 

 
 Applying another level of substitutions: 
 

4 1 2 4

4 1 2 4

4 1 2 4

4 1 2 4

5 2 3 5

5 2 3 5

A as c c c

B ac c c s

D ds s c c

F dc s c s

G gs c s c

H gc c s s

 
 
 
 
 

 

 

 
 

the same orthonormal rotation matrix elements are: 
 

11 6 5 5 6 7 5 5 7

12 5 5 7 6 5 5 6 7

13 6 5 5 6

( ( ) ) ( )

( ) ( ( ) )

( )

r As bs Bc c c Bs bc s

r Bs bc c As bs Bc c s

r Ac bs Bc s

    

    

   
 

 

21 6 5 5 6 7 5 5 7

22 5 5 7 6 5 5 6 7

23 6 5 5 6

( ( ) ) ( )

( ) ( ( ) )

( )

r Ds fs Fc c c Fs fc s

r Fs fc c Ds fs Fc c s

r Dc fs Fc s

     

     

  
 

 

31 6 6 7 7

32 7 6 6 7

33 6 6

( )

( )

r hs Hc c Gs

r Gc hs Hc s

r hc Hs

  

   

  
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The translational terms for this result are: 
 

0
7 1 1 2 1 2 3 1 3 1 2 3 4 1 3 1 2 3 4 1 2 4

5 1 3 1 2 3 5 1 3 1 2 3 4 1 2 4 5

0
7 1 1 2 1 2 3 1 3 1 2 3 4 1 3 1 2 3 4 1 2 4

5 1 3 1 2 3 5 1 3 1 2 3 4

( ) (( ) )

(( ) (( ) ) )

( ) (( ) )

(( ) (( )

x L c L c c L s s c s c L s s c s c s c c c

L s c c s s s s s c s c c c c s c

y L s L s c L c s s s c L c s s s c s s c c

L c c s s s s c s s s c c

      
    

      
     1 2 4 5

0
7 2 2 3 2 3 4 2 4 2 3 4 5 2 4 2 3 4 5 2 3 5

) )

( ) (( ) )

s c s c

z L s L c c L s c c c s L s s c c c c c s s       

 

 
 
 substituting the a – h terms defined above: 
 

0
7 1 1 2 1 2 3 4 4 1 2 4 5 5 4 1 2 4 5

0
7 1 1 2 1 2 3 4 4 1 2 4 5 5 4 1 2 4 5

0
7 2 2 3 2 3 4 5 5 2 3 5

( ) ( ( ) )

( ) ( ( ) )

( )

x L c L c c L a L as c c c L bs ac c c s c

y L s L s c L d L ds s c c L fs dc s c s c

z L s L c c L h L gc c s s

       

       

     

 

 
 and substituting the A – H terms defined above: 
 

0
7 1 1 2 1 2 3 4 5 5 5

0
7 1 1 2 1 2 3 4 5 5 5

0
7 2 2 3 2 3 4 5

( )

( )

x L c L c c L a L A L bs Bc

y L s L s c L d L D L fs Fc

z L s L c c L h L H

     

     

    

 

 
 
Note that, since the origins of frames {6} and {7} are coincident at the wrist point, the translational terms 
above are only functions of the first five joint angles: 
 

   
0

7
0 0 0

7 7 1 2 3 4 5 7
0

7

( , , , , )

x

P P y

z

    
 
    
 
 

 

 
Of course, the translational terms involving the tool-plate (or gripper) frame {G} with respect to the base,  

 0
GP , are functions of all seven active joint angles.  This is covered below. 
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Additional, Fixed Transforms – Gripper, Base, and World Frames 
 

In addition, the following three homogeneous transformation matrices are required in the overall 
FPK solution.  Note that these three matrices are not determined from any are not evaluated by any row 
in the DH parameter table (those were all used above), since there is no variable associated with these 
fixed homogeneous transformation matrices based on constant lengths and orientation DH parameters.  
Instead, they are determined by inspection, using the rotation matrix and position vector components of 
the homogeneous transformation matrix definition. 
 

0 0
0

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

BL BRT T
L

 
 
          
 
 

  7 7

6

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

GL GRT T
L

 
 
          
 
 

 

 
 The overall 7-dof Baxter left-arm FPK solution involving both active joints and constant 
homogeneous transformations is: 
 

0 7
0 7 1 2 3 4 5 6 7( , , , , , , )W W BL

GL BL GLT T T T T                          

 
Matrices Wo

BLT    and Wo
BRT    were given earlier; these are different for the left and right arms.  Note that 

the other two constant homogeneous transformation matrices are identical for the left and right arms. 
 
 

The FPK solutions can be evaluated numerically or symbolically, or using a combination of these 
two methods. 

 
  



19 
 
 

   

4.2 Six-dof Left Arm FPK Expressions 
In case one wishes to control a 6-dof (rather than the kinematically-redundant 7-dof) Baxter robot 

arm, it is logical to lock joint 3 to 3 0  .  This case, pictured in the kinematic diagram of Figure 7 below, 

has the advantage that now-consecutive active joint angles 2  and 4  rotate about now-always-parallel 

axes 2Ẑ  and 4Ẑ .  This will lead to simpler kinematics equations since we can take advantage of sum-of-

angle formulas (cosines and sines of 2 4( )  ), not to mention that kinematics equations are no longer 

functions of 3 .  Further, this represents much simpler inverse kinematics problems (pose and/or velocity) 

since this is the m = n = 6 constrained case (which is far simpler than the m = 6 < n = 7 underconstrained 
kinematically-redundant case). m is the dimension of the Cartesian space and n is the dimension of the 
joint space (i.e. the number of 1-dof joints in the robot). 
 

 
Figure 7. Six-dof Left Arm Kinematic Diagram with 3 = 0 

 
 The Denavit-Hartenberg Parameters for this 6-dof case are given in Table 8 below.  Please note 
that frame {3} is not included, so the numbering may be confusing at first.  That is, i = 3,4,5,6 now actually 

correspond to frames 4,5,6,7.  Also note that the introduced kinematic link length is 2 2
2 3hL L L  . 

 
Table 8. Six-dof Left Arm DH Parameters 

i 1i  1ia  id i

1 0 0 0 1

2 90 
1L 0 2  

3 0 hL  0 4 90    

4 90  0 4L 5

5 90 
5L 0 6

6 90  0 0 7 
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Note the link length 2L  in Figure 7 is no longer horizontal as it was in Figure 3.  Instead it is 

inclined by the following 2  angular offset: 

 

1 3
2off

2

tan 10.73
L

L
   

  
 

  

 
The statement of the FPK problem for the six-dof left arm serial chain of the Baxter humanoid 

robot is: 
 

Given 1 2 4 5 6 7( , , , , , )       and 3 0  , calculate 0
6T    and W

GT   . 

 
Again, note that the FPK results to follow drop frame {3} such that i = 3,4,5,6 corresponds to frames 
4,5,6,7. 

Substitute each row of the DH parameters in Table 8 into the equation for 1i
iT

    to obtain the six 

neighboring homogeneous transformation matrices as a function of the joint angles for the 6-dof left arm. 
 

1 1

1 10
1

0 0

0 0

0 0 1 0

0 0 0 1

c s

s c
T

 
 
      
 
 

  

2 2 1

1
2

2 2

0

0 0 1 0

0 0

0 0 0 1

c s L

T
s c

 
 
       
 
 

  

4 4

4 42
3

0

0 0

0 0 1 0

0 0 0 1

hs c L

c s
T

  
       
 
 

 

 

5 5

43
4

5 5

0 0

0 0 1

0 0

0 0 0 1

c s

L
T

s c

 
        
 
 

  

6 6 5

4
5

6 6

0

0 0 1 0

0 0

0 0 0 1

c s L

T
s c

 
 
       
 
 

  

7 7

5
6

7 7

0 0

0 0 1 0

0 0

0 0 0 1

c s

T
s c

 
       
 
 

 

 

Where the following abbreviations were used: cosi ic  , sini is  , for i = 1,2,4,5,6,7.  Now substitute 

these six neighboring homogeneous transformation matrices into the following homogeneous transform 
equation to derive the active-joints FPK result. 
 

0 0 1 2 3 4 5
6 1 1 2 2 3 4 4 5 5 6 6 7( ) ( ) ( ) ( ) ( ) ( )T T T T T T T                                 

 

 Note this left-arm active-joint FPK solution may be grouped as follows, by the 3-dof 
shoulder/elbow and 3-dof wrist joints. 
 

0 0 3
6 1 2 4 5 6 7 3 1 2 4 6 5 6 7( , , , , , ) ( , , ) ( , , )T T T                       
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Since joint 3 is locked to 3 0  , joint axes 2 and 4 rotate about parallel Z axes, which means sum-of-

angles formulas may be applied to simplify the expressions significantly: 
 

 
1 24 1 24 1 1 1 2

1 24 1 24 1 1 1 20
shoulder/elbow 3 1 2 4

24 24 2

( )

( )
( , , )

0

0 0 0 1

h

h

h

c s c c s c L L c

s s s c c s L L c
T T

c s L s
  

    
          
 
 

 

 

 
5 7 5 6 7 5 7 5 6 7 5 6 5 5

6 7 6 7 6 43
wrist 6 5 6 7

5 7 5 6 7 5 7 5 6 7 5 6 5 5

( , , )

0 0 0 1

s s c c c s c c c s c s L c

s c s s c L
T T

c s s c c c c s c s s s L s
  

    
          
 
 

 

 
The following abbreviations were used: cosi ic  , sini is  , for i = 1,2,4,5,6,7, and 24 2 4cos( )c    , 

24 2 4sin( )s    . 

The overall 6-dof analytical FPK expressions for the active Baxter joints are now given: 
 

0
11 12 13 6

0
0 21 22 23 6
6 1 2 4 5 6 7 0

31 32 33 6

( , , , , , )

0 0 0 1

r r r x

r r r y
T

r r r z
     

 
 
      
 
 

 

 
The orthonormal rotation matrix elements for this result are significantly simpler than the 7-dof case: 
 

11 1 24 6 7 24 5 7 5 6 7 1 5 7 5 6 7

12 1 24 6 7 24 5 7 5 6 7 1 5 7 5 6 7

13 1 24 6 24 5 6 1 5 6

( ( )) ( )

( ( )) ( )

( )

r c c s c s s s c c c s c s s c c

r c c s s s s c c c s s c c s c s

r c c c s c s s s s

     
    
  

 

 

21 1 5 7 5 6 7 1 24 6 7 24 5 7 5 6 7

22 1 5 7 5 6 7 1 24 6 7 24 5 7 5 6 7

23 1 5 6 1 24 6 24 5 6

( ) ( ( ))

( ) ( ( ))

( )

r c c s s c c s c s c s s s c c c

r c c c s c s s c s s s s c c c s

r c s s s c c s c s

     
    

  

 

 

31 24 5 7 5 6 7 24 6 7

32 24 5 7 5 6 7 24 6 7

33 24 5 6 24 6

( )

( )

r c s s c c c s s c

r c s c c c s s s s

r c c s s c

  
  
  
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The translational terms for this result are also significantly simpler than the 7-dof equivalents: 
 

0
6 1 1 1 2 4 1 24 5 1 5 1 24 5

0
6 1 1 1 2 4 1 24 5 1 5 1 24 5

0
6 2 4 24 5 24 5

( )

( )

h

h

h

x L c L c c L c c L s s c s c

y L s L s c L s c L c s s s c

z L s L s L c c

    

    

   

 

 
 
Note that, since the origins of frames {6} and {7} are coincident at the wrist point, the translational terms 
above are only functions of the first four joint angles (since now joint 3 is locked to 3 0  ): 

 

   
0

6
0 0 0

6 6 1 2 4 5 6
0

6

( , , , )

x

P P y

z

   
 
    
 
 
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5.  Baxter Robot System Workspace 
 

 
 

Figure 8a.  Baxter Robot Arms Workspace, Side View 
 

(Rethink Robotics, 2016) 
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Figure 8b.  Baxter Robot Arms Workspace, Top View 
 

(Rethink Robotics, 2016) 
 
 
 
 The figure below shows the 3D reachable workspace for the Baxter Left/Right Robot Arms, with 
length units of m.  This was generated by nested FPK numerical iteration in MATLAB, over all joint angle 
limits (excepting 7 , i.e. joint W2, whose wrist roll does not affect the XYZ coordinates of the end-

effectors).  This figure was drawn intentionally sparse in order to see the Baxter Left/Right Arms shown 
at all zero angles.  We see that the workspace corresponds to that given by Rethink Robotics in the figures 
above.  There is significant overlap between the Left- and Right-Arm reachable workspaces.  The 
following figure does not show the internal workspace voids due to the link lengths and the joint limits, 
since the external points occlude them – but they are similar to those pictured above.  The ensuing figure 
shows the Baxter left-arm workspace in the XZ plane of {BL}.  We see that the Rethink Robotics figure 
is essentially correct, but not to scale (the MATLAB figure is to scale). 
 
   



 
Figure 9.  Baxter Left/Right Robot Arms Workspace, Numerically Generated by MATLAB (m units) 
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Figure 10a.  Baxter Left-Arm {BL} XZ Plane Workspace 
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Figure 10b.  Baxter Left-Arm {0} XY Plane Workspace 
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6. Baxter Inverse Pose Kinematics 
 

In general, the Inverse Pose Kinematics (IPK) problem for a serial-chain robot is stated:  Given 
the pose (position and orientation) of the end frame of interest, calculate the joint values to obtain that 
pose.  For serial-chain robots, the IPK solution starts with the FPK equations.  The solution of coupled 
nonlinear algebraic equations is required and multiple solution sets generally result. 

 
The kinematically-redundant 7-dof Baxter arms provide a big IPK challenge compared to that of 

a similar 6-dof robot arm.  Also, for the Baxter Robot arm, the two link offsets L3 and L5 provide significant 
complications to the IPK problem.  According to Pieper’s solution (Pieper, 1968), if three consecutive 
coordinate frames of your serial robot arm intersect in one point, an analytical solution is guaranteed to 
exist.  Unfortunately the offset 5 0L   prevents a spherical wrist (with three coincident coordinate frame 

origins); further, the Baxter robot arm does not have any more than two consecutive coordinate frames 
that share a common origin (only frames {0},{1} and {6},{7}; see Figure 3).  There is no analytical IPK 
solution for the general 7-dof Baxter robot arm with non-zero offsets (however, note Pieper’s criterion 
only speaks to the existence of an analytical solution, not the absence of an analytical IPK solution). 
 

Therefore, to start this chapter, we will simplify the Baxter arm as follows, to derive an analytical 
solution to the IPK problem: let us lock the third joint angle to 3 0   and also assume 5 0L  .  The 

former limitation means this first solution will not exploit the kinematic redundancy of the Baxter robot 
arms.  The latter assumption will lead to some error, but the size of 5 0L   is very small relative to all 

other Baxter robot arm lengths, as seen in Table 5.  The kinematic diagram and FPK solution was already 
presented for the 3 0   case in Figure 7 and ensuing derivations. 

 
6.1 Analytical IPK Solution for the 6-dof Baxter Left Arm 
 

The statement of the IPK problem for the reduced 6-dof Baxter serial robot left arm with 3 0   

and 5 0L   is given below.  Remember from the 6-dof FPK solution presented earlier, since frame {3} is 

not included, the frame numbering is such that 7-dof frames i = 4,5,6,7 are now numbered i = 3,4,5,6.  

Also remember that 2 2
2 3hL L L  . 

 
Given:  the constant DH Parameters 

and the required end-effector pose  

0
11 12 13 6

0
0 21 22 23 6
6 0

31 32 33 6

0 0 0 1

r r r x

r r r y
T

r r r z

 
 
      
 
 

 

 
 
Calculate: the joint angles 1 2 4 5 6 7( , , , , , )       to achieve this pose 

 
Actually, in the real world, a more general pose input Wo

GLT    must be given.  Then the associated required 

IPK input 0
6T    is calculated from known constant homogeneous transformation matrices as follows: 
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0 6

0 6

1 1 10 6
6 0

1 10 6
6 0

Wo Wo B
GL B GL

B Wo Wo
B GL GL

Wo Wo
GL GL

T T T T T

T T T T T

T T T T

  

 

                  

                  

              

 

 
With 5 0L  , the 3-dof Baxter wrist is spherical (three coordinate frames sharing a common origin) 

and hence an analytical solution is guaranteed to exist by Pieper’s Criterion.  Assuming 5 0L  , the 

rotation matrix terms for 0
6 R    are identical to those given earlier in the FPK solution for this case.  The 

translational terms for this result are further simplified by using 5 0L  : 

 

 
0

4 1 1 2 4 24
0 0

4 4 1 1 2 4 24
0

4 2 4 24

( )

( )
h

h

h

x c L L c L c

P y s L L c L c

z L s L s

    
         
      

 

 
Note that, with 3 0   and 5 0L  , the translational vector    0 0

6 4P P  is a function of 1 2 4( , , )    only. 

Therefore our solution approach will be to solve 1 2 4( , , )    first given values for  0
6P , and then solve 

for 5 6 7( , , )    second given values for 0
6 R   .  Remember with joint angle 3  locked to zero, the 

numbering has shifted such that i = 4, 5, 6 corresponds to frames {5}, {6}, {7}. 
 
Translational joints 1 2 4( , , )    solution. 

 
 Joint angle 1  is found from a ratio of the Y to X translational equations: 

 
0

1 1 2 4 24 4
0

1 1 2 4 24 4

0
1 4

1 0
1 4

0 0
1 4 4

( )

( )

tan

atan2( , )

h

h

s L L c L c y

c L L c L c x

s y

c x

y x





 


 

 



 

 
where atan2 is the quadrant-specific inverse tangent function.  Now that 1  is known, isolate the 2 4( )   

terms in the X and Z equations as follows: 
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4 24 1 2
1

4 24 2

h

h

x
L c L L c

c

L s z L s

  

  
 

 

where for notational convenience we have shortened names of the constants 
0

4x x  and 
0

4z z .  Square 

and add these two equations to eliminate the 2 4( )   terms by using 
2 2

2 4 2 4cos ( ) sin ( ) 1       , 

obtaining one equation in one unknown 2 : 

 

2 2cos sin 0E F G     

 
where: 

1
1

2
2 2 2 2 1
1 42

1 1

2 ( )

2

2

h

h

h

x
E L L

c

F L z

L xx
G L L L z

c c

 



     

 

 
We can solve this familiar equation for the unknown 2  by using the Tangent Half-Angle Substitution: 

 

If we define  2tan
2

t
   
 

  then 
2

2 2

1
cos

1

t

t
 




  and 2 2

2
sin

1

t

t
 


 

 
Substitute the Tangent Half-Angle Substitution into the EFG equation: 
 

2

2 2

2 2

2

1 2
0

1 1

(1 ) (2 ) (1 ) 0

( ) (2 ) ( ) 0

t t
E F G

t t

E t F t G t

G E t F t G E

           

    

    

 

 
Using the quadratic formula, we can solve for the intermediate parameter t: 
 

2 2 2

1,2

F E F G
t

G E

   



 

 
Then solve for 2  by inverting the original Tangent Half-Angle Substitution definition: 

 

1,2

1
2 1,22 tan ( )t   
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Note that we do not need to use the quadrant-specific atan2 function in the above solution, since the 
multiplier 2 takes care of possible the trigonometric uncertainty (dual values) of inverse trigonometric 
functions.  There are two solutions for 2 , from the   in the quadratic formula. 

 
 To solve for the third translational unknown 4 , return to the two equations that were squared and 

added; use a ratio of the Z to the X equations: 
 

1,2 1,2 1,2 1,24 2 1 2 2
1

atan2( , )h h

x
z L s L L c

c
        

 
Overall, there are two possible solutions for the translational joints as shown in the table below. 
 

1  
12 14  

1  
22 24  

 
These two solutions are provided by a unique 1  and 2 4( , )   pairs corresponding to Elbow Up and Elbow 

Down solution branches. 
 
 
Wrist joints 5 6 7( , , )    solution. 

 
 With the translational joint angles 1 2 4( , , )    now known, we can use the rotation matrix 

expressions to solve for the unknown wrist joint angles 5 6 7( , , )   .  The rotation matrix partitions as 

follows, where the ijr  terms are given from the required pose (i.e. 0
6 R    is known from the IPK input).  

Remember, i = 3,4,5,6 correspond to frames 4,5,6,7. 
 

11 12 13
0 0 3
6 3 1 2 4 6 5 6 7 21 22 23

31 32 33

( , , ) ( , , )

r r r

R R R r r r

r r r

     
 
              
  

 

 
Since 1 2 4( , , )    are now known, we can calculate the required numbers ijR  for 3

6 R    of the given pose, 

where the expressions for 0
3 1 2 4( , , )R       were given in the 6-dof FPK solution. 

 

11 12 13
13 0 0 0 0

6 5 6 7 3 1 2 4 6 3 1 2 4 6 21 22 23

31 32 33

( , , ) ( , , ) ( , , )
T

R R R

R R R R R R R R

R R R

        


 
                       
  
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The equations to solve come from the FPK expressions: 
 

 
1 24 1 24 1 1 1 2

1 24 1 24 1 1 1 20
shoulder/elbow 3 1 2 4

24 24 2

( )

( )
( , , )

0

0 0 0 1

h

h

h

c s c c s c L L c

s s s c c s L L c
T T

c s L s
  

    
          
 
 

 

 

5 7 5 6 7 5 7 5 6 7 5 6 11 12 13
3
6 5 6 7 6 7 6 7 6 21 22 23

5 7 5 6 7 5 7 5 6 7 5 6 31 32 33

( , , )

s s c c c s c c c s c s R R R

R s c s s c R R R

c s s c c c c s c s s s R R R

  
      
             
       

 

 
Due to the six constraints on an orthonormal rotation matrix (three perpendicular and three unit vector 
constraints), only three of these nine equations are independent.  We will use three combinations of the 
equations with the simplest terms in order to solve for 5 6 7( , , )   . 

 
 From a ratio of the (3,3) to (1,3) equations, we can solve for wrist angle 5 . 

 

5 6 33

5 6 13

5 33 13atan2( , )

s s R

c s R

R R




 

 
 From a ratio of the (2,2) to (2,1) equations, we can solve for wrist angle 7 . 

 

6 7 22

6 7 21

7 22 21atan2( , )

s s R

s c R

R R




 
 

 
 And finally, knowing 7  and using a ratio of the (2,1) to (2,3) equations, we can solve for wrist 

angle 6 . 

 

6 7 21

6 23

21
6 23

7

atan2( , )

s c R

c R

R
R

c





 
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6.2 Numerical IPK Solution for the General 7-dof Baxter Left Arm 
 

The statement of the IPK problem for the general 7-dof Baxter serial robot left arm with all seven 
joints active and all kinematics lengths and offsets included is given below. 
 

Given:  the constant DH Parameters 

and the required end-effector pose  

0
11 12 13 7

0
0 21 22 23 7
7 0

31 32 33 7

0 0 0 1

r r r x

r r r y
T

r r r z

 
 
      
 
 

 

 
 
Calculate: the joint angles 1 2 3 4 5 6 7( , , , , , , )        to achieve this pose 

 
We will implement the numerical iterative Newton-Raphson method to solve this IPK problem.  

This requires a good initial guess to the solution and will only yield one solution set.  If the initial guess 
is ‘sufficiently close’ to an answer, quadratic convergence is guaranteed and generally the solution set 
closest to the initial guess will be found. 

 
The Newton-Raphson method requires the definition of six scalar functions for the solution 

process.  These are the three translational functions and three of the nine rotational matrix terms from the 
general 7-dof FPK expressions (presented earlier). 
 
 The first three of these nonlinear, coupled functions are the three translational functions from FPK; 
the functions must all be rearranged so their right-hand-side is zero.  Again, since the origins of frames 
{6} and {7} are coincident at the wrist point, the translational terms are only functions of the first five 
joint angles: 
 

   
0

7
0 0 0

7 7 1 2 3 4 5 7
0

7

( , , , , )

x

P P y

z

    
 
    
 
 

 

 
The first three functions for the Newton-Raphson IPK solution method are: 
 

1 1 1 2 1 2 3 1 3 1 2 3 4 1 3 1 2 3 4 1 2 4

0
5 1 3 1 2 3 5 1 3 1 2 3 4 1 2 4 5 7

2 1 1 2 1 2 3 1 3 1 2 3 4 1 3 1 2 3 4 1 2 4

5 1 3 1 2 3 5 1 3 1

( ) ( ) (( ) )

(( ) (( ) ) )

( ) ( ) (( ) )

(( ) ((

f L c L c c L s s c s c L s s c s c s c c c

L s c c s s s s s c s c c c c s c x

f L s L s c L c s s s c L c s s s c s s c c

L c c s s s s c s s

       

     

       

    0
2 3 4 1 2 4 5 7

0
3 2 2 3 2 3 4 2 4 2 3 4 5 2 4 2 3 4 5 2 3 5 7

) ) )

( ) ( ) (( ) )

s c c s c s c y

f L s L c c L s c c c s L s s c c c c c s s z

 

         
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The second three functions for the Newton-Raphson IPK solution method must be chosen from 
the rotation matrix terms.  They must be independent (not all three from one row or column) and we will 
choose those elements with the simplest analytical terms: the (1,3), (2,3), and (3,2) terms. 
 

4 1 3 1 2 3 4 1 2 4 6 1 3 1 2 3 5 1 3 1 2 3 4 1 2 4 5 6 13

5 1 3 1 2 3 4 1 2 4 6 1 3 1 2 3 5 1 3 1 2 3 4 1 2 4 5 6 23

6 2 4 2 3 4 5 2 3 5 7

( ) (( ) ) (( ) (( ) ) )

( ) (( ) ) (( ) (( ) ) )

( ) (( ) )

f s s c s c s c c c c s c c s s s s s c s c c c c s c s r

f c s s s c s s c c c c c s s s s c s s s c c s c s c s r

f s s c c c s c s c c

          

         

     2 4 2 3 4 6 2 4 2 3 4 5 2 3 5 6 7 32(( ) (( ) ) )s c c c s s s s c c c c c s s c s r     

 

 
The vectors for Newton-Raphson method implementation are: 
 

 

1

2

3

4

5

6

( )

( )

( )
( )

( )

( )

( )

f

f

f
F

f

f

f

 
  
      
 
 

  

      

1

2

3

4

5

6

7









 
 
 
 
    
 
 
 
 
 

 

 
The Newton-Raphson Method involves numerical iteration to solve coupled sets of m nonlinear 

equations (algebraic transcendental) in n unknowns.  It requires a good initial guess of the solution to get 
started and it only yields one of the possible multiple solutions.  The Newton-Raphson method is an 
extension of Newton’s single function/single variable root-finding technique to m functions and n 
variables.  The following is the form of the given functions to solve. 
 

   ( )F   0  

 
Perform a Taylor Series Expansion of {F} about {}: 
 

          2

1

n
i

i i j
j j

f
f f O  




       

   1, 2 , ,i m   

  

Introduce    ( ) i
NR NR

j

f
J J


 

    
  

 as the Newton-Raphson Jacobian Matrix, a multi-dimensional form 

of the derivative and a function of {}.  If    is small, the higher-order terms   2O   from the 

Taylor Series Expansion are negligible.  For solution, we require: 
 

     0if       1, 2 , ,i m   
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Now with   2 0O    we have: 

 

       

       
1

0

n
i

i i j
j j

i NR

f
f f

f J

 







     



    


  1, 2 , ,i m   

 
So to calculate the required correction factor   at each iterative solution step, we must solve 

        0NRF J     .  However, in the case of the 7-dof kinematically-redundant Baxter robot 

arm, the Newton-Raphson Jacobian matrix is not square, but 6 x 7, so these equations are 
underconstrained, the good case since there are infinite solutions to the   vector at each iteration step.  
A possible solution is: 
 

       *

NRJ F     

 
where we use the right Moore-Penrose pseudoinverse of the Newton-Raphson Jacobian matrix: 
 

        1* T T

NR NR NR NRJ J J J


  

 

Note that  *NRJ  is of size 7 x 6.  One very cool aspect of this formula is that, no matter how many joints 

your kinematically-redundant robot has beyond 7, only a 6 x 6 (m x m) inversion is ever required. 
 
 In this numerical IPK iterative solution approach, no attempt is made to optimize anything, i.e. we 
are not exploiting the kinematic redundancy of this robot (see the Velocity chapter to remedy this 
limitation).  Instead, the Moore-Penrose Pseudoinverse ensures that the vector Euclidean-norm of   is 
the minimum possible at each step (not necessarily a great idea). 
 
Newton-Raphson Method Algorithm Summary 
 

0) Establish the functions and variables to solve for:      F   0  

 
1) Make an initial guess to the solution:  0  

 

2) Solve          NR k k kJ F      for  k X , where k is the iteration counter. 

 
3) Update the current best guess for the solution:       1k k k      

 

4) Iterate until  k   , where we use the Euclidean norm and  is a small, user-defined scalar 

solution tolerance.  Also, halt the iteration if the number of steps becomes too high (which 
means the solution is diverging). 
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If the initial guess to the solution  0  is sufficiently close to an actual solution, the Newton-

Raphson technique guarantees quadratic convergence. 
 
Now, for Baxter Robot inverse pose kinematics problems, the Newton-Raphson technique requires 

a good initial guess to ensure convergence and yields only one of the possible multiple solutions.  
However, this does not present any difficulty since the existing known pose configuration makes an 
excellent initial guess for the next solution step (if the control rate is high, many cycles per second, the 
robot cannot move too far from this known initial guess in one step).  Also, except in the case of 
singularities where the multiple solution branches converge, the one resulting solution is generally the one 
you want, closest to the initial guess, most likely the preferred configuration of the real robot. 

 
There is a very interesting and beautiful relationship between numerical inverse pose solution and 

the velocity problem for serial robots (presented next).  The Newton-Raphson Jacobian Matrix is nearly 
identical to the serial arm Velocity Jacobian Matrix.  This reduces computation if you need both inverse 
pose computation and inverse-velocity-based resolved-rate control. 
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7. Baxter Velocity Kinematics and Resolved-Rate Control 
 

So above we have seen that the Inverse Pose Kinematics (IPK) problem for the 7-dof Baxter robot 
arm is a huge problem.  Due to the arm offsets there is no closed-form analytical solution to the IPK 
problem.  Therefore, a numerical procedure is required, with no set number of iterations; this is a challenge 
for real-time control. 
 

An attractive alternative for control of kinematically-redundant serial robot arms is the resolved-
rate control method, based on the inverse velocity solution.  The inverse velocity solution uses a linear set 
of equations which can easily be solved in a control loop at real-time rates.  This section presents the 
Baxter velocity kinematics, including the Jacobian matrix, followed by the resolved-rate control method 
for the kinematically-redundant Baxter robot arm. 
 

A kinematically-redundant robot arm is one whose joint-space degrees of freedom, n, is greater 
than the Cartesian-space degrees-of-freedom, m, it is required to operate in.  The n = 7 dof Baxter robot 
arm is kinematically-redundant for operating in the m = 6 3D Cartesian space (three translations and three 
rotations), since n > m. 
 
7.1 Baxter Robot Jacobian Matrix 
 

The Jacobian matrix [J] is a linear transformation mapping joint rates    to Cartesian velocities 

 X : 

 

   ( )

1 ( )( 1)

k kX J

m m n n

    

   

 

 

 
Where m is the dimension of the Cartesian (task) space, n is the dimension of the joint space, and we can 
express the resulting Cartesian velocities in any frame {k};    are the relative joint angle rates and hence 

are expressed about the n different local Z axes.  The Jacobian matrix is a function of the n joint angles , 
in general; therefore, it must be calculated anew with each motion. 
 
 The Jacobian matrix is a multi-dimensional form of the derivative: 
 

  i

j

f
J


 

  
  

 

 
where fi are the six pose functions, and j are the seven joint angles.  A thousand and one references state 
this about the Jacobian matrix, but it is only half-true.  It works well for translational terms, where: 
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but there are no possible functions with respect to which we can take the partial derivatives to obtain the 
rotational terms of the Jacobian matrix.  The rotational terms may be found using a relative angular 
velocity equation. 
 
For the n = 7-joint Baxter robot arm operating in the standard m = 6-dimensional Cartesian space: 
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

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There are at least four methods to derive the Jacobian matrix for a serial-chain robot; my favorite 

is now presented. 
 
 
Physical interpretation of the Jacobian matrix 
 

The ith Jacobian matrix column is the end-effector translational and rotational velocity due to joint 
i, with the joint rate factored out.  Then by linear superposition, the overall end-effector Cartesian velocity 
is the sum of all n columns (each multiplied by the respective joint rate).   Each Jacobian matrix column i 
is the absolute Cartesian velocity vector of the last active joint frame {N} with respect to the base frame, 

due to joint i only, and with the variable joint rate i  factored out. 
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Figure 11.  Jacobian Matrix Column i Derivation Image, Revolute Joints 

 
Here is Jacobian matrix column i, for a revolute joint: 
 

 
   

 
 
 
ˆˆ

ˆˆ

k k i ik i
i i Ni Nk

i k ik
i ii

R Z PZ P
J

R ZZ

              
         

 
where: 

   ˆ ˆk k i
i i iZ R Z     

 

is the third column of orthonormal rotation matrix 
k
iR    and: 

 

   k ii k i
N i NP R P     

 

where  i i
NP  is the translational part of homogeneous transformation matrix 

i
NT    (the fourth column, 

rows 1 through 3).  Here is the Jacobian matrix for an all-revolute-joint manipulator: 
 

 
   

 
   

 
   

 

1
1

1

ˆ ˆ ˆ

ˆ ˆ ˆ

k
k k kk k i k N

N i N N Nk

k k k
i N

Z P Z P Z P
J

Z Z Z

                                 

 

 
 
For the 7-dof Baxter arm, N = 7, i = 1,2,3,4,5,6,7, and the Jacobian and Cartesian velocity frame of 
expression (basis) is any convenient coordinate frame k.  Often k is chosen to be {0}. 
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Jacobian Matrix Expressed in Another Frame 
 
 Here the Jacobian matrix still relates the end-effector frame velocity with respect to the base frame.  
But simpler analytical expressions are possible for the Jacobian matrix, by choosing an intermediate frame 
to express the coordinates of the velocity vectors (different basis of expression).  For the Baxter robot arm, 
intermediate frame k = {4} will yield the simplest analytical expressions for the Jacobian matrix, for 
analytical singularity analysis and other purposes. 
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Remember,    is not dependent on a frame, since all seven joint rates are relative to their previous 

moving link. 
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 
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k
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k

R
J J
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                
 
For numerical implementation, this transformation is not as important as for analytical analysis. 
 
Crucial - Units 
 The translational rows of the Jacobian matrix have length units (m).  The rotational rows of the 

Jacobian matrix are unitless.  Therefore, since Cartesian velocity units of  X  are m/sec and rad/sec, for 

translational and rotational terms, respectively, in the overall velocity equation     X J   , one MUST 

use units of rad/sec for   , not deg/sec! 

 Further, the units and size mismatch between translational and rotational rows of the Jacobian 
matrix can cause numerical troubles, which is well-known for serial robots.  Using m rather than mm for 
length units will help this problem for the Baxter robots arms. 
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Cartesian Transformation of Translational and Rotational Velocities 
 
 The Jacobian matrix presented earlier relates the frame {7} translational and rotational velocities 
with respect to the {0} frame.  For real-world applications, it is more useful to command translational and 
rotational velocities at the end-effector frame {G} instead.  The same Jacobian may be used if the 
following velocity transformations are used first: 
 

       
   

7
7

7

G G G

G

V V P

 

  


 

 
That is, since link 7 is a rigid link containing both {7} and {G}, the rotational velocity vector is the same 
over the whole link.  However, the angular velocity crossed into the position vector must be added to the 
translational velocity in {7} to yield that of {G} (this statement must be reversed, i.e. subtracted, since we 
are given the velocities in {G}).  As always, a common basis frame, such as {0}, must be used above to 
ensure the coordinates of all vectors are expressed in a single frame. 
 
 
Cartesian Wrench / Joint Torques Statics Transformation 
 
 It is well-known (Craig, 2005) that the relationship between static Cartesian wrenches (forces / 
moments) applied to the environment by the robot end-effector and the required robot joint torques to do 
this are calculated as follows: 
 

     T
J W   

 

Where   1n    is the vector of n joint torques,   1W m   is the Cartesian wrench (m forces and 

moments), n is the joint space dimension, and m is the Cartesian space dimension.  The Jacobian matrix 
[J] and Cartesian wrench {W} must be expressed in the basis coordinates of the same frame {k}.  Just like 
the joint rates, {} has no dependence on frame, since these are relative joint torques about the n Z axes.   

The Jacobian matrix [J] for static torque calculations is the same as that for velocity analysis.  This 
statics transformation is a mapping from Cartesian space to joint space which does not require an inverse.  
That is indeed a rare and beautiful property.  It can never be singular and any number of joints is allowed.  
Very little computation is required compared to matrix inversion, since only matrix transposition and 
multiplication is required.  Further, this wrench/joint torques transformation equally applies to 
kinematically-redundant robots such as the 7-dof Baxter arms.  Note that the associated wrench is applied 
at the frame for which the Jacobian matrix was derived for velocities, {7} in our work.  Therefore, another 
transformation is required when the robot should apply the wrench at {G} (again using a common basis): 
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Analytical Jacobian Matrices for the Baxter Robot Arm 
 
 The Baxter Robot arm Jacobian matrix is given below, for the general 7-dof case with 5 0L  .  

This Jacobian matrix expresses the velocity of {7} with respect to {0}, expressed in {4} coordinates.  
Generally if the frame of expression is midway between {7} and {1} (i.e. {4}), the resulting analytical 
Jacobian matrix terms will be the simplest possible. 
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 The Baxter Robot arm Jacobian matrix is given below, for the 7-dof case with 5 0L  .  This 

Jacobian matrix expresses the velocity of {7} with respect to {0}, again expressed in {4} coordinates for 
simplest analytical terms. 
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 The Baxter Robot arm Jacobian matrix is given below, for the 6-dof case with 5 0L  .  This 

Jacobian matrix expresses the velocity of {7} with respect to {0}, expressed in {0} coordinates. 
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 The following Jacobian matrix is for the same 6-dof Baxter arm, with 5 0L  .  This Jacobian still 

expresses the velocity of {7} with respect to {0}, but expressed in {4} coordinates. 
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Baxter Arm Singularity Analysis (6-dof case, 5 0L  ) 

 
Both 0J    and 4J    yield the same determinant, since matrix determinant is invariant under 

coordinate rotation transformations (any basis frame k will yield the same matrix determinant): 
 

0 4
4 1 2 4 24 4 6( )k

h hJ J J L L L L c L c s s       

 
When this Jacobian matrix determinant is zero, the Baxter arm (6-dof case, 5 0L  ) is at a robot singularity.  

Since 0hL   and 4 0L   for the Baxter robot arm, we have three singularity conditions: 

 

1 2 4 2 4

4

6

cos cos( ) 0

sin 0

sin 0

hL L L  




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The second two singularity conditions are easy to analyze, yielding workspace-boundary singularity 

4 0,180 ,    , and workspace-interior singularity 6 0,180 ,    .  The former is the well-known elbow-

out (or -folded) singularity at the edge of the workspace, and the latter is the well-known wrist-pitch 
singularity for a roll-pitch-roll wrist (only the 5 0L   case is this simple; including 5 0L   such as in 

Baxter moves this well-known singularity to an unknown place, even for small 5L ). 

 
 The first singularity condition 1 2 4 2 4cos cos( ) 0hL L L       leads to a workspace-interior 

singularity that is not so easy to analyze.  The practical Baxter shoulder and elbow joint angle limits are 

2123 60     and 43 150    .  For these limits the figure below shows the singularity surface 

1 2 4 2 4cos cos( )hL L L      as a function of 2  and 4 .  This singularity occurs whenever this surface 

crosses through zero. 
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Figure 12a.  1 2 4 2 4cos cos( )hL L L      Singularity Surface 

 
For an analytical solution for 1 2 4 2 4cos cos( ) 0hL L L      , let us specify 4  as the 

independent variable, vary it over the joint limits 4 4 4MIN MAX    , and calculate the (two) 2  values 

leading to a singularity for each 4 .  Expanding 2 4cos( )   using the sum-of-angles formula leads to 

the following equation to solve for 2 . 

 

2 2cos sin 0E F G     

 
where: 

4 4

4 4

1

hE L L c

F L s

G L

 

 


 

 
This equation form was encountered earlier in the analytical IPK solution; two values of 2  for each 4  

can be solved, in the same manner, for the updated E, F, G above.  This solution is overlaid as black 
topographic curves on the surface; this is shown in the figure below.  This is a top view of the same surface 
shown earlier, with the same color scheme. 
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Figure 12b.  1 2 4 2 4cos cos( )hL L L      Singularity Surface with Zero Curves 

 
At first these appear to be a straight-forward line and curve; however, as shown below ignoring joint limits 
( 2 4180 , 180     ), the singularity curves are very complicated (albeit symmetric). 
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Figure 12c. 

1 2 4 2 4cos cos( )hL L L      Singularity Surface with Zero Curves for 2 4180 , 180      
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 The following Jacobian matrix is for the 6-dof Baxter arm, again with the third joint angle locked 
to 3 0  , but this time with 5L  included, again expressed in {4} coordinates for simplest analytical terms. 
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Baxter Left Arm Singularity Analysis (6-dof case, 5L  included) 

 
With this one simple change, 5 0L  ,  the Jacobian matrix determinant and hence singularity 

analysis, becomes quite complicated: 
 

4 2
4 1 2 4 24 4 6 1 2 4 5 6 4 5 6 4 24 4 6 4 5 6 5 24 4 5 6 5{ ( ) [( )( ) ( ) ] }h h hJ L L L c L c s s L L c c c s s s c L c s c c c s L c c c c L L            

 
First, we see that substituting 5 0L   in the above expression yields the previous-case determinant 

4 1 2 4 24 4 6( )h hL L L L c L c s s   , providing at least partial validation of the new determinant. 

 
 The new 5 0L   determinant: 

 
 Is now a function of 4 variables instead of 2 in the previous complicated analytical analysis. 

 
 No longer has 4 6s s  factored out, so those easily-known elbow and wrist singularities have 

changed.  They did not disappear, they just moved to locations very difficult to determine. 
 

 Is essentially impossible to analyze analytically.  Screw Theory provides an elegant method 
to identify singularities, but when applied to a robot arm with offsets like Baxter, there is 
no magic bullet, i.e. Screw Theory will still yield a hyper-complicated analytical formula 
for singularity analysis. 
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7.2 Resolved-Rate Control Method for Kinematically-Redundant Arms 
 

A super-useful application for the Jacobian matrix is the Inverse Velocity Solution, which is the 
basis for the Resolved-Rate Control Algorithm (Whitney, 1969).  The Inverse Velocity Solution for non-
kinematically-redundant robots is: 
 

   1
( )k kJ X


    

   

 
where we calculate the required relative joint rates    to achieve the given desired Cartesian velocities  

 k X , using the inverse of the configuration-dependent Jacobian matrix ( )k J   .  This works for an m 

= n square matrix, assuming full rank, i.e. the Jacobian matrix determinant is not zero. 
 
 For an n > m kinematically-redundant robot arm such as Baxter, the plain matrix inverse will not 
work in the inverse velocity solution above, since the matrix inverse is not defined for non-square Jacobian 
matrices (6 x 7).  This case is underconstrained, i.e. more unknowns than equations, and so optimization 
may be accomplished in addition to satisfying Cartesian motions.  This is because there are infinite 
solutions to the kinematically-redundant inverse velocity problem. 
 
Again, a kinematically-redundant robot (KRR) has more joint freedoms than required for the Cartesian 
task.  That is, the dimension of the joint space n is greater than the dimension of Cartesian task space m. 
 

m < n     degree of redundancy = n – m 
 
The inverse velocity problem is underconstrained, that is, infinite valid solutions exist (actually, n – m 
infinities of solutions exist). 
 

Self-motion – additional task optimization takes place in joint rate combinations such that    0X  . 

 

Primary Task  Particular Solution  achieves required trajectory  X  

 
Secondary Task Homogeneous Solution optimization of some performance criteria 

in null space (self-motion)    0X   

 
Pseudoinverse-based Inverse Velocity Solution 
 
 Since the plain matrix inverse is undefined for a non-square Jacobian matrix, we will use the well-
known pseudoinverse of the Jacobian matrix.  This will be used in both the Particular and Homogeneous 
Solutions below. 
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Particular Solution 
 

The particular solution satisfies the Primary Task, i.e. it provides the commanded Cartesian 

trajectory  X .  The particular solution is obtained from the minimum joint rate problem, stated as 

follows.  That is, from the infinite possible solutions we will choose the unique solution with the minimum 
joint rates. 
 

  Minimize the scalar cost function     1

2

T
f      

 

  Subject to the rate equations       X J    

 
 
 
  The particular solution is:

 
 

   *
( )k k

P J X    
   

 

where  *J  is the underconstrained Moore-Penrose pseudoinverse of the Jacobian matrix: 

 

      
1* T T

J J J J


     

 
The dimensions of this pseudoinverse are n x m (7 x 6 for the Baxter robot arm).  One beautiful aspect of 
this formula is that, no matter how many joints beyond n = 7 exist in a KRR, the worst matrix inversion 
is for an m x m square matrix (6 x 6). 
 

The pseudoinverse  *J  can be calculated by the MATLAB function pinv.  Note that 

    *

mJ J I
 
but      *

nJ J I  so the underconstrained Moore-Penrose pseudoinverse is called 

the right inverse of  J .  As a matter of fact we do not want    *
J J  to be  nI , otherwise there would 

be no null space for additional task optimization (there would be no self-motion). 
 

Note that the left inverse of an overconstrained matrix may be used to find the least-squares 
solution, where there is no solution, but a solution with the smallest possible error is found (for data 
fitting).  This is opposite to the KRR problem we are considering. 
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Homogeneous Solution 
 

The homogeneous solution satisfies the Secondary Task, which can be used for optimization to 
avoid obstacles, avoid joint limits, and avoid singularities, among other secondary tasks.  The 

homogeneous solution doesn’t affect the Cartesian trajectory:  H  causes    0X  .  The 

homogeneous solution projects an arbitrary vector z into the null-space of the Jacobian matrix.  The 
homogeneous solution is: 
 

         *

H H nk I J J z    
  

 
where Hk  is a scalar gain, and {z} is an arbitrary n x 1 vector.  For optimization, choose    ( )z H   , 

where  ( )H   is an objective function of joint angles to be minimized or maximized.  Use 0Hk   for 

maximization and 0Hk   for minimization. 

  Joint Limit Avoidance     

2

1

( )
n

i ci
J

i i

H
 



 
    

  

 
 

  Singularity Avoidance (Manipulability Maximization)   ( )
T

MH J J   

 
Total Solution 
 

The total solution to the underconstrained KRR inverse velocity problem is the sum of the 
particular and homogeneous solutions (obtained via linear superposition): 
 

     P H        

 
Kinematically-Redundant Robot Singularities 
 
 The Moore-Penrose pseudoinverse is still subject to singularities.  Singular Value Decomposition 
(SVD), can be used in the vicinity of singularities to obtain a reliable numerical pseudoinverse to move 
through singularities, but it will not change the physical robot singularity (loss of motion). 
 
 A kinematically-redundant robot is singular when the following determinant is zero. 
 

   0
T

J J 
 

 

due to the previously-given definition of the underconstrained Moore-Penrose pseudoinverse  *J . 
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8. Baxter Robot Arm Kinematics Examples 
 
Left/Right Arms Zero Configuration FPK Example 
 
Given    1 2 3 4 5 6 7 0 0 0 0 0 0 0         for both left and right arms. 

 
For such a simple example (all zero joint angles) we can predict the answers, for validation of the 

MATLAB FPK implementation.  The active joints homogeneous transformation matrix 0
7T    is identical 

for the left and right arms, but the overall homogeneous transformation matrices Wo
GT    are different 

(though there is significant symmetry evident). 
 

1 2 4

0
7

3 5

0 0 1

0 1 0 0

1 0 0

0 0 0 1

L L L

T
L L

  
 
        
 
 

  0
7

0 0 1 0.808

0 1 0 0

1 0 0 0.079

0 0 0 1

T

 
 
       
 
 

 

 
0 0.707 0.707 1.110

0 0.707 0.707 0.896

1 0 0 1.295

0 0 0 1

Wo
GLT

 
        
 
 

  

0 0.707 0.707 1.110

0 0.707 0.707 0.896

1 0 0 1.295

0 0 0 1

Wo
GRT

  
         
 
 
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Figure 13a.  7-dof Zero Configuration FPK Example 
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Left/Right Arms Neutral Configuration FPK Example 
 
Given  1 2 3 4 5 6 7 0 31 0 43 0 72 0          

    for both left and right arms. 

 
Again, for this Neutral joint angles input example, the active joints homogeneous transformation 

matrix 0
7T    is identical for the left and right arms, but the overall homogeneous transformation matrices 

Wo
GT    are different (with significant symmetry). 

 

0
7

0.995 0 0.105 0.781

0 1 0 0

0.105 0 0.995 0.041

0 0 0 1

T

 
 
       
 
 

 

 
0.703 0.707 0.074 0.857

0.703 0.707 0.074 0.643

0.105 0 0.995 1.049

0 0 0 1

Wo
GLT

 
         
 
 

  

0.703 0.707 0.074 0.857

0.703 0.707 0.074 0.643

0.105 0 0.995 1.049

0 0 0 1

Wo
GRT

  
          
 
 
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Figure 13b.  7-dof Neutral Configuration FPK Example 
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Left/Right Arms General FPK Example 
 
Given  1 2 3 4 5 6 7 10 20 30 40 50 60 70          

        for both left and right 

arms. 
 

Again, the active joints homogeneous transformation matrix 0
7T    is identical for the left and right 

arms.  The matrices Wo
GT    are different (with some symmetry and identical terms). 

 

0
7

0.415 0.875 0.248 0.548

0.386 0.077 0.919 0.263

0.824 0.477 0.306 0.474

0 0 0 1

T

 
 
        
 
 

 

 
0.566 0.674 0.475 1.026

0.021 0.564 0.825 0.039

0.824 0.477 0.306 0.788

0 0 0 1

Wo
GLT

 
         
 
 

  0

0.021 0.564 0.825 0.175

0.566 0.674 0.475 0.812

0.824 0.477 0.306 0.788

0 0 0 1

W
GRT

   
           
 
 
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Figure 13c.  7-dof General Configuration FPK Example 
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Left Arm 6-dof FPK Example, Zero Configuration 
 
Given    1 2 4 5 6 7 0 0 0 0 0 0        and assuming 3 0  for the left arm ( 0

7T    is 

identical for the right arm), the FPK solution is given below. 
 

It is also validated using the standard 7-dof FPK solution, with modified 2  and 4  inputs, in order 

to align the two kinematics models.  For such a simple example (all zero joint angles) we can predict the 
answers, for validation of the MATLAB FPK implementation. 
 

1 4

0
7

5

0 0 1

0 1 0 0

1 0 0

0 0 0 1

hL L L

T
L

  
 
       
 
 

  0
7

0 0 1 0.814

0 1 0 0

1 0 0 0.010

0 0 0 1

T

 
 
       
 
 

 

 
0 0.707 0.707 1.114

0 0.707 0.707 0.900

1 0 0 1.364

0 0 0 1

Wo
GLT

 
        
 
 

 

 
 
To validate this result using the standard 7-dof FPK solution, we must take into account the negative 2  

offset required to align joints 2 and 4 horizontally (see Figure 7): 
 

1 3
2off

2

tan
L

L
   

  
 

 

 
Given  1 2 3 4 5 6 7 0 10.73 0 10.73 0 0 0          

   
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Figure 14a.  6-dof Zero Configuration FPK Example 
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Left Arm 6-dof General FPK Example 
Given  1 2 4 5 6 7 10 20 40 50 60 70         

       for the left arm, assuming 

3 0  , the FPK solution is given below.  Note that this example also assumes 5 0L  , so that it can be 

used in a circular check with the 6-dof arm analytical IPK example presented later. 
 

0
6

0.247 0.906 0.344 0.595

0.790 0.018 0.613 0.105

0.562 0.423 0.711 0.451

0 0 0 1

T

 
 
        
 
 

  

0.733 0.653 0.190 0.843

0.384 0.628 0.677 0.162

0.562 0.423 0.711 0.661

0 0 0 1

Wo
GLT

 
         
 
 

 

 
Figure 14b.  6-dof General Configuration FPK Example 
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Left Arm 6-dof General IPK Example 
 
 This example corresponds with the general left-arm 6-dof FPK example given above.  It assumes 

3 0   and 5 0L  . 

 
Given: 

0.733 0.653 0.190 0.843

0.384 0.628 0.677 0.162

0.562 0.423 0.711 0.661

0 0 0 1

Wo
GLT

 
         
 
 

 

 

we first must use 
1 10 6

6 0
Wo Wo

GL GLT T T T
 

                to calculate the simpler IPK input 0
6T   : 

 

0
6

0.247 0.906 0.344 0.595

0.790 0.018 0.613 0.105

0.562 0.423 0.711 0.451

0 0 0 1

T

 
 
        
 
 

 

 
Applying the equations from the analytical 6-dof IPK solution presented earlier, the solutions are given in 
the table below (the units are degrees). 
 

Solution 1  2  4  5  6  7  

elbow up 10 20 40 50 60 70 
elbow down 10 60.2 –40 41.6 88.4 99.4 

 
 The first solution set was expected since that was the known FPK input for this example pose.  The 
second solution set was shown to be valid by using it as the input to the 6-dof FPK program and proving 
that the answer was the correct given Wo

GLT    (this is the circular check). 
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Left/Right 7-dof Arms General IPK Example 
 
 This example corresponds with the general left-/right-arm 7-dof FPK example given above. 
 

Given: 
0.566 0.674 0.475 1.026

0.021 0.564 0.825 0.039

0.824 0.477 0.306 0.788

0 0 0 1

Wo
GLT

 
         
 
 

 

 

we first must use 
1 10 7

7 0
Wo Wo

GL GLT T T T
 

                to calculate the simpler IPK input 0
7T   : 

 

0
7

0.415 0.875 0.248 0.548

0.386 0.077 0.919 0.263

0.824 0.477 0.306 0.474

0 0 0 1

T

 
 
        
 
 

 

 
Applying the numerical Newton-Raphson iterative solution method presented earlier, and using the 
following close initial guess: 
 

 1 2 3 4 5 6 7 15 15 25 55 55 65 75          
        

 
 the solutions are given in the table below (the units are degrees). 
 

Solution 1  2  3  4  5  6  7  

only one 12.5 18.4 24.5 40.5 57.4 61.5 68.5 
 
 Note the Newton-Raphson method yields only one solution set for joint angles, generally the one 
closest to the initial guess.  The above solution was obtained in 4 iterations to a tolerance of  = 0.001.  
This solution was not expected since it does not agree with the known FPK input for this example pose.  
However, for kinematically-redundant robots such as the 7-dof Baxter arm, there are infinite possible 
solution sets.  The solution reported above was used as the input to the FPK program and shown to be 
valid since it gave the correct Wo

GLT   .  Note no optimization was attempted in this solution. 
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7-dof Left Arm Resolved-Rate Example 
 
 Starting from the neutral configuration for the Baxter Left Arm: 
 

 1 2 3 4 5 6 7 0 31 0 43 0 72 0          
    

 
the following Cartesian velocities and wrench are applied at {7}, in the basis frame of {0}: 
 

 
 
 

0 0
0 0

7 0 0

0.060

0.050

0.040

0.3

0.1

0.2

N

N

V
X



 
 
         

      
 
 

       
 

0 70
7

7

1

2

3

0.4

0.5

0.6

F
W

M

 
 
 
       

    
 
 
 

 

(m/sec and rad/sec)     (N and Nm) 
 
Assuming the input velocity and wrench are constant, the resolved-rate simulation in MATLAB yielded 
the following plots, running from 0 to 3 sec, using time steps of 0.05 sec.  No optimization was attempted, 
i.e. this example is for the particular solution only. 
 

 
Figure 15a.  Resolved-Rate Simulation, Final Left-Arm Configuration 

 

Z X

Z Z



63 
 
 

   

 
Figure 15b.  Resolved-Rate Simulation, Joint Rates 

 

 
Figure 15c.  Resolved-Rate Simulation, Joint Angles 
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Figure 15d.  Resolved-Rate Simulation, Cartesian Displacements 

 

 
Figure 15e.  Resolved-Rate Simulation,   TJ J  Determinant 
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Figure 15f.  Resolved-Rate Simulation, Pseudostatic Joint Torques 

 
 The first figure shows the Baxter left arm configuration after the simulated motion; the initial 
configuration was shown earlier, in the ‘neutral’ configuration snapshot example.  The next plots show the 
required joint rates to achieve the commanded Cartesian rates, followed by the associate joint angles, 
integrated from the joint rates.  The next plots show the 6-dof Cartesian displacements, calculated via the 
FPK solution; these demonstrate correct motion in the resolved-rate simulation since the constant slope 
of each Cartesian variable plot is the given constant Cartesian velocity.  The next plot shows this 

simulation is not near singularities, since   TJ J  never crosses through zero.  The final plot shows the 

required joint torques to exert the given constant Cartesian wrench, ignoring dynamics, at frame {7} onto 
the environment. 
 
  

 (N
m

)
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7-dof Left Arm Resolved-Rate Self-Motion Example 
 
 Starting from the neutral configuration for the Baxter Left Arm: 
 

 1 2 3 4 5 6 7 0 31 0 43 0 72 0          
    

 
zero Cartesian velocities were commanded at {7}, in the basis frame of {0}: 
 

 
 
 

0 0
0 0

7 0 0

0
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The purpose of this example is to exercise the homogeneous solution, to demonstrate self-motion (i.e. 
joint angle motion with zero Cartesian motion at {7}).  Using a homogeneous constant 2Hk  , running 

from 0 to 3 sec, using time steps of 0.05 sec, the resolved-rate simulation in MATLAB yielded the 
following plots.  Again, no optimization was attempted, i.e. this example is for simply demonstrating self-
motion via the homogeneous solution only. 
 

 
Figure 16a.  Self-Motion Simulation, Joint Rates 
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Figure 16b.  Self-Motion Simulation, Joint Angles 

 

 
Figure 16c.  Self-Motion Simulation, Cartesian Displacements 

 
 The first figure shows the required joint rates to achieve the commanded zero Cartesian rates, 
followed by the associate joint angles, integrated from the joint rates.  The last plots show the 6-dof 
Cartesian displacements, calculated via the FPK solution.  These demonstrate correct self-motion in the 
resolved-rate simulation since each Cartesian variable is constant (with constant slopes, i.e. the no motion 
zero rates commanded). 
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9.  Conclusion 
 

This paper has presented detailed kinematic analysis for the two 7-dof Baxter Humanoid Robot 
arms.  The Craig (modified) Denavit-Hartenberg Parameters for each serial chain, specific length 
parameters, and joint angle limits were given.  The general 7-dof and reduced 6-dof (locking joint three 
to zero) forward pose kinematics FPK solutions were developed, with analytical results.  The analytical 
inverse pose kinematics IPK solution was given, for the 6-dof case.  A numerical approach was given for 
the general 7-dof IPK solution.  The Jacobian matrix was presented, along with resolved-rate control 
simulations, and limited singularity analysis.  MATLAB Examples were given for all kinematics 
developments. 
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