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ABSTRACT master (Kawamura and Ito, 1993), and the 8-cable haptic interface

(Williams, 1998). CDDRs and @DHIs can be made lighter, stiffer,
A hybrid parallel/serial manipulator architecture is introduced safer, and more economical than ttiathal serial robots and haptic
where the translational freedoms are provided by a cable-direct- interfaces since their primary structure consists of lightweight, high
driven robot (CDDR) and the rotational freedoms are provided by a load-bearing cables. On the other hand, one major disadvantage is
serial wrist mechanism. The motivation behind this work is to that cables can only exert tension and cannot push on the moving
improve the serious cable interference problem with existing CDDRs platform.
and to avoid configurations where negative cable tensions are All of the devices discussed above are designed with actuation
required to exert general forces on the environment. Only the redundancy, i.e. more cables than wrench-exerting degrees-of-
translational CDDR is considered in this paper; including kinematics freedom (except for thRobocrane where tensioning is provided by
and statics modeling, and determination of the statics workspace (thegravity) in attempt to avoid configurations where certain wrenches
space wherein all possible Cartesian forces may be exerted with onlyrequire an impossible compression force in one or more cables.
positive cable tensions). Examples are presented to compare theDespite actuation redundancy, there exist subspaces in the potential
planar 3-cable CDDR with one degree of actuation redundancy and workspace where some cables can lose tension. Roberts et al. (1998)
the 4-cable CDDR with two degrees of actuation redundancy. It was developed an algorithm for CDDRs to predict if all cables are under
found that the 4-cable case requires less cable tensions and thus les®nsion in a given configuration while supporting the robot weight
energy compared to the 3-cable case in performing the sameonly. The current authors have developed best CDDHI design with
simulated tasks. regard to wrenches with only positive cable tensions and with regard
to avoiding cable interference (Williams and Galligapo). It was
found that cable interference dominates.

1. INTRODUCTION Most proposed CDDRs andDDHIs involve both translational
and rotational motion of the end-effector link guided by cables.

Cable-direct-driven robots (CDDRs) are a type of parallel (The single exception is tH8PIDARby Ishii and Sato (1994) which
manipulator wherein the end-effector link is supported in-parallel by is a spatial 4-cable haptic interface reading translations only and
n cables withn tensioning motors. In addition to the well-known  providing three Cartesian forces to the human finger.) All CDDRs
advantages of parallel robots relative to serial robots, CDDRs also and CDDHIs with translational and rotational motion suffer from the
have very low mass and even better stiffness than other parallel potential of cable interference and reduced statics workspaces
robots. Several CDDRs and cable-direct-driven haptic interfaces wherein some negative cable tensions would be required, which is
(CDDHIs) have been studied in the past. An early CDDR is the infeasible. The basic idea behind this paper is to introduce a new
Robocranedeveloped by NIST for use in shipping ports (Albus, et. hybrid manipulator and haptic interface structure wherein the
al., 1993). This device is similar to an upside-down six-degrees-of- translational motion and forces are provided by cables and the
freedom (dof) Stewart platform, with six cables instead of hydraulic- rotational motion and moments by a serial wrist mechanism. Hybrid
cylinder legs. In this system, gravity is an implicit actuator that serial/parallel manipulators have been proposed (an early reference
ensures cable tension is maintained at all times. Another CDDR is is Sklar and Tesar, 1988). To the authors’ knowledge, this concept
Charlotte developed by McDonnell-Douglas (Campbell, et. al., has not been previously extended to CDDRs. Also, Sklar and Tesar
1992) for use on International Space StatiorCharlotte is a (1988) and many serial/parallel manipulators proposed since consist
rectangular box driven in-parallel by eight cables, with eight of serial manipulators with parallel joints. The current concept is a
tensioning motors mounted on-board (one on each corner). Fourparallel CDDR with a serial wrist mechanism mounted at the end-
CDDHlIs have been liti and tested, th&exas 9-stringLindemann point. The main objective of this work is to benefit from potential
and Tesar, 1989), th8PIDAR (Ishii and Sato, 1994), the 7-cable
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advantages of CDDRs without the cable interference and negative this problem can be minimized by design in the case of planar
cable tension problems. CDDRs.
This paper describes two candidate planar CDDRs, presents
kinematics modeling, followed by statics modeling, a method for
attempting to maintain positive cable tensions, and then examples for
planar CDDRs with one and two degrees actuation redundancy. This
paper focuses only on the translational motion and forces via cables. 3. CDDR KINEMATICS MODELING

2. CABLE-DIRECT-DRIVEN ROBOTS (CDDRs) This section presents the inverse and forward translational
position and velocity kinematics analysis for planar CDDRs. Inverse
In this paper a CDDR consists of a single end-effector point kinematics is required for control, and forward kinematics is required
supported in parallel byn cables controlled byn tensioning for simulation and sensor-based control. Position kinematics is
actuators. Figures 1 and 2 show the planar 3-cable and 4-cableconcerned with relating the active joint variables and rates to the
CDDR kinematics diagrams. We are introducing the concept of Cartesian position and rate variables of the moving point. The cable
hybrid CDDRs, where the translational freedoms are provided by the angles and rates are also involved. Assuming all cables always
n cables and the rotational freedoms can be provided by a serialremain in tension, CDDR kinematics is similar to in-parallel-
wrist mechanism. We are considering only the translational portion actuated robot kinematics (e.g. Tsai, 1999; Gosselin, 1996);
of the problem here. however, with CDDRs the joint space is overconstrained with
For 2-dof planar translations there must be at least two cables. respect to the Cartesian space.
Since cables can only exert tension on the end-effector, there must

be more cables to avoid configurations where the robot can be slack A 63m
and lose control. Figure 1 represents one degree of actuation 4 3
redundancy, i.e. three cables to achieve the two Cartesian degrees- 0,4
of-freedom X = {x y}T; the CDDR in Fig. 2 has two degrees of Yo L

3
actuation redundancy. These scenarios represent actuation L,

redundancy but not kinematic redundancy. That is, there are extra
motor(s) which provides infinite choices for applying 2-dof
Cartesian force vectors, but the moving point has only two Cartesian X,y

degrees-of-freedom)(:{x y}T, the components of the vector
from the origin of P} to the moving point, expressed irD}. L,
Figures 1 and 2 show the reference frarip Whose origin is the 02

centroid of the base polygon; the regular base polygon (triangle and 01 }
square, respectively) has sides of fixed length; each cable is A, A,

attached to the ground link &; = {AX Ay}r ; the length of each
cable is denoted ak; , and the cable angles afe (i =12,---,n).

Figure 2. Planar 4-Cable CDDR Kinematics Diagram
3.1 Position Kinematics

The inverse position kinematics problem is stated: given the
Cartesian positiorX = {x y}' calculate the cable lengtis . The
solution is simply calculating the Euclidean norm between the
moving point X = {x y}T and each fixed ground link vertéx

L={x-AS+l-Af izl @
For use in velocity kinematics and statics, we require the cable
angles:
y-A .
-1 y
A1l Az 0 =tan | —— i=1-,n 2
I X_Aix

Figure 1. Planar 3-Cable CDDR Kinematics Diagram o ] )
The quadrant-specific inverse tangent function should be used in (2).

Theoretically the moving point can reach any point within the The forward position kinematics problem is stated: given the

base polygon, if cable lengths can go to zero. Also, the potential for cable lengthsL;, calculate the Cartesian positioX = {x y}T .
cable/cable and cable/end-point interference is non-existent for the This problem is overconstrained and assumes a consistent input of

CDDR deSignS of FlgS 1and 2. The potential Certainly exists for |_i i First we consider cables 1 and 2. This prob|em can be

interference between cables and workspace items and/or humans, bu%implified by shifting a new reference frame originAg whoseXY
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directions are identical to0f; in this new frameA; ={0 0} and
T
A,={g O} .

kinematics problem is the intersection of two circles, one centered at
A1 with radiusL, and the second centeredA} with radiusL,; the

result is:

Then the solution to the forward position

e Lg +L2-L3 @
2Lg
We choose the pisre solution fory in (3) to ensure the forward
position kinematics solution lies within the ground polygon.
Therefore, from the multiple possibilities (we could have used any
two cables to obtain the solution), there is a unique correct solution.
Note the value ok in (3) is unique due to the special geometry for
cables 1 and 2 (bothvalues have the samxevalue). To finish, this
solution (3) must be shifted back to th@ frame reference. This
solution applies to any planarcable CDDR.

After employing (3) for the forward position kinematics solution,
it is a good idea to use the inverseipos kinematics solution (1)
for all remaining cablesi(= 3,---,n) to verify that theL; input was

consistent.
3.2 Velocity Kinematics

To derive the velocity kinematics equations we consideri'the
cable vector-loop-closure equation

x oyl = {AX +Lca Ay +Lso }r where c6; =codd;) and
s6; =sin(0; ). The time derivative yields:

v S Lso L
).( _ C9| |Sgl L.I |=L"',n (4)
y s6;  Lico; ||0;

We invert thisi'™ cable Jacobian matrix to yield:
L co; S0 X )
b= —SG; co; . I=1---,n (5)
Qi Li Li y

Since we are interested in relating active cable length rates to the
Cartesian rates, we can extract the first row of (5) to construct the
overall CDDR inverse velocity solution. For the 3- and 4-cable

cases.
. L 0'91 391
Lo | COL SOyl Ol oo, s, (%
Lyt=|co, s, {} 2lo| T2 e {} (6)
: y Ly| |Cfs SO3 |V
L3 C93 593 L 0 0
4 4 S04

Note that though we eliminateg4 from the velocity equations,
cable anglesg; from (2) are required in (6). The general form of
(6) is L =MX where L is the vector oh cable ratesM is the
CDDR inverse Jacobian matrix, and={x y}' is the Cartesian

velocity vector for the moving point, shared by all cables.
Considering the inverse velocity problem of conventional serial
robots, the result (6) is amazing: the inverse velocity problem is

4

solved directly (the inversion was handled symbolically from (4) to
(5)) with little computation and there is nagularity problem.
However, to solve the forward velocity kinematics problem we

must invert the form of (6)X =M 'L . Due to redundant actuation,

M is not square but is of dimensiox2 for the planar case;
therefore we cannot inverM but we have two choices for the
forward velocity solution: 1) choose only two cables to make a
reduced, square, inverse Jacobian matrix. For instance, as in the
forward position kinematics solution, choose cables 1 and 2. The
forward velocity solution for the 3-cable CDDR is then

X=My, L1, where M, is M with row 3 removed and., is
the vector containing the first two cable rates. This approach can
readily be extended to the 4-cabe CDDR. After forward velocity

solution, ensure that the inputs were consistent by evaluating the
neglected row(s) of (6). 2) The alternate forward velocity solution

approach, assuming consistent. inputs, is to use the
overconstrained Moore-Penrose pseudoinverse: M*L , where
-1
M#z(MTM) MT.
Via either solution approach, the forward velocity solution is

subject to singuldties. The siagularity condtions are derived from
the determinants of the three possible 2x2 square submatridés of

sin(@, -6,)=0 0y -0, =0,7,-
sin(@3 -0,)=0 03 -0, =07, (7)
sin(@, -65)=0 01-05 =01,

The singulaities only occur when two cables lieoah a straight
line; this is only possible at the edges of the theoretical kinematic
workspace, i.e. along the edges of the ground polygon. Equation (7)
gives the 3-cable CDDR singuites. The 4-cable CDDR
singulaities are similar.

4. CDDR STATICS MODELING

In this paper, the workspace wherein all cables are undiivpos
tension while exerting all possible Cartesian forces is called the
statics workspace. Statics modeling and attempting to maintain
positive cable tension are presented in this section. We use a simple
method to determine the extent of the statics workspace, i.e. the
workspace wherein all possible forces can be applied with positive
cable tensions.

4.1 Statics Modeling

This section presents statics modeling for planar CDDRs. For
static equilibrium the sum of forces exerted on the moving point by
the cables must equal the resultant external force exerted on the
environment. Figure 3 shows the statics free-body diagram for the
planar 4-cable CDDR.
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Figure 3. Planar 4-Cable CDDR Statics Diagram

The statics equations are:

D =—Zti|:i =Fr (8)
i-1

i=1

In this paper gravity is ignored because it is assumed to be
perpendicular to the CDDR plane; we assume the moving point is
supported on a plane. All vectors are expressedjirfsee Figs. 1
and 2). In (8),t; is the cable tension applied to tie cable

(opposite the cable length unit directi(fn :{c@i so, }T because

t; must be in tension).Fg :{fx fy}r is the resultant vector force
exerted on the environment by the moving point. Substituting terms
into (8) yields the formST = Fg, where S= r—lil —I:n] is the

2xn Statics Jacobian matrix anl = {; t,} is the vector of
scalar cable tensionts . For the 3- and 4-cable CDDRs:

—cO, -cO, -chy LIRNES
[—391 ~s0, —sej EZ :{fy} (%2)
ty
{—c@l -c, -cl, —ceq t, :{fx} (cb)
-sf; -S89, —sO; —sb,|[t3 fy
ty

Note that there is a special duality between force and inverse
velocity: these respective Jacobian matrices are related by
S=-MT; compare (6) and (9). The statics equations (9) can be
inverted in an attempt to exert general Cartesian forces while
maintaining positive cable tension. This work is presented in the
next subsection.

4.2 Maintaining Positive Cable Tension

For CDDRs with actuation redundancy, (9) is underconstrained
which means that there are infinite solutions to the cable tension
vector T to exert the given Cartesian ford&. To invert (9)

(solving the required cable tensioiis given the desired forc€g)

we adapt the well-known particular and homogeneous solution from
rate control of kinematically-redundant serial manipulators:

T=S*FR+(| n —S*S)z (10)

where |, is thenxn identity matrix,z is an arbitraryn-vector, and
-1

st=s' (SST) is the nx2 underconstrained Moore-Penrose
pseudoinverse 0. The first term of (10) is the particular solution

to achieve the desired force, and the second term is the homogeneous
solution that mapg to the null space d.

4.2.1 One Degree of Actuation Redundancy. For CDDRs
with only one degree of actuation redundancy (the planar 3-cable
case in this paper), the positive cable tensiorhotebf Shen et al.
(1994) is adapted to determine the extent of the statics workspace.
For actuation redundancy of degree one, an equivalent expression for
(10) is:

tpy m
T= tpz +o n2 (ll)
tpg ng

where the particular solutio§"Fg is the first term in (11) and the
homogeneous solution is expressed as the kernel vectds of
(N={y n, nJ") multiplied by arbitrary scalat.

The method we adapt from Shen et al. (1994) to determine if a
given point lies within the statics workspace for a given CDDR is
simple. To ensure positive tensidnsn all cables = 1,2,3,for all
possible exerted force#t is necessary and sufficient that all kernel
vector components( i = 1,2,3) have the same sign. That is, for a
given point to lie within the statics workspace, ajl>0 OR all

n<0 (i = 1,2,3).
regardless of the particular solution, we can find a scalsr (11)
which guarantees that all cable tensidnare positive by adding (or

subtracting) enough homogeneous solution. Note a strict iliggua
is required; if one or more; =0, the point in question does not lie

within the statics workspace. This method is simple but powerful
since we needn’t consider specific forces, but it works dtbr
possible forces It should also be noted that while we demonstrate
this method for the planar 3-cable CDDR, it is applicable to any
planar and spatial CDDR with one degree of actuation redundancy.
The method to calculate each kernel vector component is

(1) *Ys|, where|si| is the determinant of the 2x2 submatrix

of S with columni removed. Applying this to the 3-cable CDDR
yields:

If one of these two conditions is satisfied,

n =

n)  [sino5-6,)
N=1n, b =1sin(¢; - 03) (12)
ny sin(@z - 91)

Now,

120° <0, <180°, and 240° <@, <300°.

the allowable cable angle ranges a@<@, <60°,
Therefore, the three
possible delta angle ranges in (12) af®’ <0;-6, <180,

-300° <, -05<-180°, and 60° <4, -, <180°. Note all three
ranges are identical since the second itand is identical to
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60° <@, —05 <180°. Thesineof all these delta angles is always o ]
Case | Let us suppose that the end-effector point is in the first

positive asdng as60” <@; -0y <180 (thesineis zero when any  sector. A possible basis for the null space is:

delta angle is equal td80° ). Thereforethe entire allowable

kinematic workspace of the base triangle is also the statics sm(94—0%n(9 —0) SIn(HB_gZ)sin(@ _0)
workspacé So, there is no limitation due to considering only sin(01—94) 27 Siﬂ(91—93) 2
positive cable tensions! On the edge of the base trianglaoa® N = An 0, -0, M= An 0, _91)
and thus the triangle edges are not in the statics workspace. Recall 0 1

from the forward velocity solution presented in Section 3.2, the 1 0

triangle edges also correspond to kinematic singidar At all (15)

points outside of the base triangle, 2 components of the kernel vector

N have_the same sigr_l and the other component has Fhe opposite sigll"lf the end-effector lies within sector I,

SO outside the base triangle is also outside of th_e statics workspace. ranges are 0°<d, <45, 13F<6,<180, 225<d3<27¢, and
For on-line control of a planar CDDR with one degree of . .

actuation redundancy, the cable tensions for control are calculated by 277 <f4 <315 . Note that the sector triangle edges are included.

(11) and (12), choosing so that one component ®fis zero (or, a The possible delta angle ranges are® <o,-0, <135,

small positive value) and the remaining terms are positive. 9° <f, -6, <180, -27C <6, -03<-18C, -318<6f;-0,<-225,

and 45 <65 -6, <135 . Therefore all the sine functions in (15) are

the allowable cable angle

4.2.2 Two Degrees of Actuation Redundancy. For
CDDRs with two or more degrees of actuation redundancy (the
planar 4-cable case in this paper), determination of the statics
workspace and the method for maintainingifpes cable tensions
are more complicated. For actuation redundancy of degree two, an
equivalent expression for (10) is:

positive or null and any combination &f and M (with positive
coefficientsa and f) always has positive cqmnents as required in
(14). In conclusion, the first sector belongs to the statics workspace.
Case Il Let us suppose that the end-effector point is in the
second sector. We can choose a different basis for the null space:

tpy m m 0 1
_|te2 Ny m sin(@, —0;) sin(0; —05)
T= tog[ ng vh my (13) sin(6; -6,) An(es—ez)
3 N=1sin(g, -6,) M =1sin(9, -6;)
t n m 27V 2= 0)/
P4 4 4 An(% ~0,) An(% ~0,)
where the particular solutios"Fg is again the first term in (13) 1 0
and the homogeneous solution is expressed as the two kernel vectors (16)
_ T _ T
of S (N_{nl M2 Mg n4} and M _{ml Mo My m4} ) If the end-effector lies within sector Il, the allowable cable angle

multiplied by arbitrary scalars and 5. Given (13), the condition ranges are 0°<¢, <45, 90°<#,<13%, 225<@d;<27¢, and
for a CDDR configuration to lie within the statics workspace is:

0 315 <0, <360 . The possible delta angle ranges are
n
1 M 0 45 <0,-0,<13%, -228<0,-0,<-180, —270F <6, -0,<-18C,

n m .
a n2 +/5 21 0 (14) 45 <0, -6, <135, and 9 <65 - 0, <18C¢ . Therefore all the sine

3 M functions in (16) are positive or null and any combinatioiN afnd

n m 0 P Y

4 4 M (with positive coefficientsae and f) always has positive

components. In conclusion, the second sector also belongs to the
Divide the workspace into four sectors as in Fig. 4. We can statics workspace.
construct a different null space basis for each sector. This is required  The last two cases are similar. Choose:
to demonstrate that the entire workspace is within the statics

workspace. 0 1
y 1 0
o /// N = sin(92 _94)/ M = sin(@l —géy 17
\\\ 1] /// Sln(94 —93) sm(94 —93) ( )
N e sin(05 - 6,) sin(05 - 6,)
sin(0, —03) sin(@4 - 65)
v \X:/ 1 as a suitable basis for sector Ill and:
sin(05 - eéy sin(0, - @y
sin(@4 - 6,) sin(0, —0,)
| N= : M - . (18)
Z N\ sin(0, —65) sin(0,-6,)
sin(0, —6,) sin(0, —6,)

Figure 4. Planar 4-Cable CDDR Workspace Sectors
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as a suitable basis for sector IV. The conclusion for each case is 0.6
identical, i.e. the third and fourth sectors also belong to the statics
workspace, including all internal triangle edges. The only point we
did not take into account is the center of the square, but in this case 04f - - - - - - - /) - SAN
the basis of the null space is made up by only one vector

N={l 1 1 17 because the rank &degenerates to one. Clearly 02l -/ A

this special case is within the statics workspace since it easily > ‘ \
satisfies (14). ‘

Therefore, we have shown thtdte entire allowable kinematic
workspace of the base square is also the statics workisp@be ‘ y
edge of the base square (which correspond to kinematic 02F f - -~ - - S T N\
singulaities) and all points outside of the base square are outside of ‘
the statics workspace. This result makes sense given the 3-cable

results since the addition of another cable can only help the statics 05 0 0.5
workspace. X
In the future we intend to develop a general method for on-line Figure 5. Planar 3-Cable CDDR Example Task
control of a planar CDDR with two degrees of actuation redundancy
(i.e. find optimala and g for (13)). In this paper we take a simple Figure 7a shows the required 3-cable CDDR lengths to complete

approach: given the current CDDR configuration and the the circle task and Fig. 7b shows the required 3-cable CDDR
commanded Cartesian fordez, we determine which two cables  tensions to exert a constant Cartesian forcé gk {0 1}T N. To

align most nearly with the Cartesian force direction. Then we set the compare, Fig. 8a shows the required 4-cable CDDR lengths to
remaining two cables tensions to zero (or, small positive values) and complete the circle task and Fig. 8b shows the required 4-cable

calculate the '[WQ active cable tensions Wlth_ a reduced, square ZXZCDDR tensions to exert a constant Cartesian forc&rok {0 1}T
system of equations from (9b). Proper choice of the active cables

can always result in strictly positive cable tensions. In the examples N.

0.6

of the following section, two cables were always set to zero tension

for the 4-cable CDDR (the choice of which cables are active changes

with configuration andFg ); in practice these tensions should be set 04f - - - - - - - - - S

to small positive values and aemted for by bringing the known !

portion to the right-hand-side of (9b) while constructing the reduced o2l |

square 2x2 system of equations. . /- : N\

5. EXAMPLES U R EEIEEES I R
This section presents position kinematics and statics examples o2 - :\7\‘ - / ]

for the planar 3-cable CDDR with one degree of actuation '

redundancy and for the planar 4-cable CDDR with two degrees of

actuation redundancy. The base polygons are regular (equilateral 04 o o5

triangle and square as shown in Figs. 1 and 2); the triangle digle is ' X '

=1m. For a fair comparison between these CDDRs the square side Figure 6. Planar 4-Cable CDDR Example Task

length for the 4-cable case was chosen so that both base polygons
encompass the same area: for the sqigre,0.6580m. Note this is
different than the cases shown in Figs. 1 and 2 where both triangle
and square sidds;, are shown equal.

The simulated task is for the CDDR end-effector point

X ={x yJ' to trace a circle in the plane while exerting a given

constant Cartesian forcez on the environment. The identical task

will be performed by both 3-cable and 4-cable CDDRs and the
results will be compared. The circle is centered at the baggguol
centroid (the origin of @}) and the circle radius is arbitrarily chosen

to be three-quarters of the shortest distance from the base triangle
centroid to a triangle side:= 0.2165m. Figures 5 and 6 show the

simulated task to scale for the 3- and 4-cable cases, respectively, at 0BF - = m s e e e ]
the starting (and ending) point. We define polar angjlas the ‘

independent parameter for the circle; it is measured using the right- 0.2 ‘ ‘ ‘ ‘ ‘ ‘ ‘
hand from the right horizontal to the circle radigsis shown as 0 0 50 100 15°¢ (deg)oo 25 300 350
(and 360° ) in Figs. 5 and 6. All results below are plotted against Figure 7a. L (solid), L, (long dash)L, (short dashjor Circle
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2.5

L)

-0.5 !
0 50

Il Il Il Il
200 250 300 350
¢ (deg)

Figure 7b. (solid),t, (long dash)t, (short dashjor Fr={0 1}’

Il Il
100 150

0.8

0.6

L, (m)

0.4

03f
02 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 350
¢ (deg)
Figure 8a. L (solid),L, (long dash)L, (short dash)l., (asterisk)or
Circle
2.5
2F - - - - - - T S .
I5F - - mm - @ - s e 8
L,
g 1t ?; ,,,,,, s T i
- * **HMNH,N
£ o e -
I THeg
Lo - - - o oo s oo oo oL, LT Fhg, - - - - -
0.5 “ﬁ* MNN*NNH«
0
05 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 350
¢ (deg)
Figure 8b. f(zero),t, (zero),t, (short dash)t, (asterisk)or
Fr={0 17

Comparing Figs. 7a and 8a, it is seen that the cable lengths are
cyclical functions for the circle task when plotted agaifistEach
has its own special symmetry, but the 4-cable lengths are generally
shorter than those required for the 3-cable CDDR. Comparing Figs.
7b and 8b, it is seen that the cable tensions are generally lower for
the 4-cable case than for the 3-cable case. For the 3-cable CDDR of

Fig. 7b, the zero-tension cable alternates between cables 1 and 2
(Figs. 1 and 2 give the cable numbering for the 3- and 4-cable cases,
respectively), switching atp=90" and ¢ =270°. For the 4-cable
CDDR of Fig. 8b, the zero-tension cables are always cables 1 and 2
due to the given constant Cartesian forge={0 1} .

To compare the 3- and 4-cable CDDRs in the same task with
different constant Cartesian forces, Figs. 9a, 9b, and 9c compare the
norms of cable tensions for the two CDDRs, for Cartesian forces
Frr=0 17, Fr={707 0707, Fr={ O,

respectively. In this paper we use the one-norm definition:
n

ITl, = Z|ti| , where the absolute value of each tension component is
i=1

and

summed and=3 or 4 for the 3- and 4-cable CDDRs, respectively.
Note that, despite the fact that the norms involve 3 tensions in the
first CDDR and 4 tensions in the second, the required tensions are
lower for the 4-cable CDDR than the 3-cable CDDR. This tension
norm measure is proportional to the required energy, so the 4-cable
CDDR is more energy-efficient in performing the same task than the
3-cable CDDR. Of course, the tradeoff is the addition of an extra
actuator, with its additional hardware and decreased reliability.
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Figure 9a. Tension Norm Comparison for the 3- (solid) and 4-cable

(long dash) CDDRs foFg ={0 1}
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Figure 9b. Tension Norm Comparison for the 3- (solid) and 4-cable

(long dash) CDDRs foFg = {0.707 0.707}
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Figure 9c. Tension Norm Comparison for the 3- (solid) and 4-cable
(long dash) CDDRs foFg =l O}

6. CONCLUSION

This paper introduces the concept of hybrid parallel/serial
manipulators where the translational freedoms are guided by an in-
parallel-over-actuated cable-direct-driven robot (CDDR) and the
rotational freedoms are provided by a serial wrist mechanism. The
motivation behind this work is to improve the serious cable
interference and negative cable tensions possible with existing
CDDRs that guide both translational and rotational freedoms. Only
the translational portion is considered in this paper; kinematics and
statics modeling is presented, followed by determination of the

statics workspace (the space wherein all possible Cartesian forces

may be exerted with only positive cable tensionsdn@lwith an

example comparing the planar 3- and 4-cable cases in the same task.
It was found that the 4-cable case was more energy-efficient than the
3-cable case in performing the same task. The cost is a potentially

more complex cable tension algorithm (a simple approach is used in
this paper) and the overhead and reduced reliability of an extra
actuator.

Our future work plans include stiffness modeling, dynamics
modeling (our early results are presented in a companion paper,
Gallina and Williams,2001) and controller development, hardware
implementation, and experimental validation of our results.
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