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ABSTRACT 
 

A hybrid parallel/serial manipulator architecture was introduced in 
a companion paper where the translational freedoms are provided by a 
cable-direct-driven robot (CDDR) and the rotational freedoms are 
provided by a serial wrist mechanism.  While the companion paper 
presents kinematics and statics, the current paper presents a dynamics 
model and simulated control for planar CDDRs.  Examples are 
presented to compare the planar 3-cable CDDR with one degree of 
actuation redundancy and the 4-cable CDDR with two degrees of 
actuation redundancy.  It was found that the 4-cable tracking error was 
worse than for the 3-cable case, due to increased inertia with an 
additional actuator.  Also, the controller architecture considers 
including and not including a feedforward reference acceleration term 
with the overall mass matrix; the performance of the controller with 
the feedforward term is clearly preferable. 
 
 
1.  INTRODUCTION 
 

Cable-direct-driven robots (CDDRs) are a type of parallel 
manipulator wherein the end-effector link is supported in-parallel by n 
cables with n tensioning motors.  Several CDDRs and cable-direct-
driven haptic interfaces (CDDHIs) have been presented by other 
authors and are reviewed in the companion paper (Williams and 
Gallina, 2001).  Roberts et al. (1998), present the inverse kinematics, 
cable-tension-optimization, and fault tolerance of Charlotte-type 
(Campbell et al., 1995) CDDRs, but no dynamics modeling is 
presented.  Sklar and Tesar (1988) present the dynamics of hybrid 
serial manipulators consisting of parallel joints.  This manipulator 
architecture is significantly different from the currently-proposed 
hybrid parallel/serial manipulator architecture where the translational 
freedoms are provided by a CDDR and the rotational freedoms by a 
serial wrist mechanism. 

CDDRs are designed with actuation redundancy, i.e. with more 
actuated cables than wrench-exerting degrees-of-freedom in attempt to 
avoid configurations where certain wrenches require an impossible 
compression force in one or more cables.  Despite actuation 
redundancy, there exist subspaces in the potential workspace where 
some cables can lose tension.  This problem can be exacerbated by 

CDDR dynamics, hence the current paper studies dynamics and control 
of planar CDDRs. 

This paper reviews the two candidate planar CDDRs from the 
companion paper, presents dynamics modeling resulting in a nonlinear, 
coupled dynamics model, followed by Cartesian trajectory control 
simulation employing Cartesian PD control for planar CDDRs with one 
and two degrees actuation redundancy.  This paper focuses on 
translational motion and forces. 
 
 
2. CABLE-DIRECT-DRIVEN ROBOTS (CDDRs) 
 

A CDDR consists of a single end-effector point supported in 
parallel by n cables controlled by n tensioning actuators.  Figures 1 and 
2 show the planar 3-cable and 4-cable CDDR diagrams.  These figures 
are similar to the kinematics diagrams in the companion paper 
(Williams and Gallina, 2001), but we have added the end-effector point 
mass m and the lumped motor shaft/cable pulley rotational inertias for 
each actuator iJ  ( ni ,,1�� ).  The cable pulley radius for each 

actuator is ir  ( ni ,,1�� ; shown in Fig. 3).  We also include viscous 

damping coefficients ic  ( ni ,,1�� ) at each motor shaft to provide a 

linear model for the system friction. 
For 2-dof planar translations there must be at least two cables.  

Since cables can only exert tension on the end-effector, there must be 
more cables to avoid configurations where the robot can be slack and 
lose control.  Figure 1 represents one degree of actuation redundancy, 
i.e. three cables to achieve the two Cartesian degrees-of-freedom 

� �Tyx�X ; the four-cable CDDR in Fig. 2 has two degrees of 

actuation redundancy.  Figures 1 and 2 show the inertially-fixed 
reference frame {0} whose origin is the centroid of the base polygon; 
the regular base polygon (triangle and square, respectively) has sides of 
fixed length BL ; each cable is attached to the ground link at 

� �Tiyixi AA�A ; the length of each cable is denoted as iL , and the 

cable angles are i�  ( ni ,,1�� ). 
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3.  CDDR DYNAMICS MODELING 
 

This section presents dynamics modeling for planar CDDRs.  
Dynamics modeling is required for improved control (compared to 
using kinematics and statics modeling only) when CDDRs are to 
provide high velocities and accelerations in translational motion.  
Dynamics modeling is concerned with relating the Cartesian 
translational motion of the moving CDDR point to the required active 
joint torques.  Due to the cable actuation, CDDR dynamics modeling is 
not very similar to in-parallel-actuated robot dynamics modeling (e.g. 
Tsai, 1999; Gosselin, 1996).  Another complicating factor is that with 
CDDRs the joint space is overconstrained with respect to the Cartesian 
space due to the redundant actuation. 
. 

1 2

3

B

3

1

2

1

2

3

L L

L
L

x,y

�

�

�

0X

Y0
m

J3c3

J2
c2J1

c1

A

A
A

 
Figure 1.  Planar 3-Cable CDDR Diagram 
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Figure 2.  Planar 4-Cable CDDR Diagram 

 
For the dynamics model derived in this section we assume that the 

CDDR cables are massless and perfectly stiff so we do not consider 
their inertias or spring stiffnesses.  We further ignore the Coulomb 
friction and instead model linear viscous friction to account for the 
frictional losses.  Despite these simplifications, the resulting model is 

coupled and nonlinear.  We now present the Cartesian, actuator, and 
overall system dynamics models. 
 
3.1  Cartesian Dynamics Model 

 
The free-body diagram for the moving end-effector point is very 

simple and hence not shown.  The 2-dof Cartesian dynamic model for 
the end-effector is given by: 
 

FXm ���        (1) 
 

where the Cartesian mass matrix is �
�

�
�
�

�
�

m

m

0

0
m , � �Tyx�X is the 

end-effector position and F is the resultant of all n cable forces acting 
on the end-effector. 
 
3.2  Actuator Dynamics Model 
 

We also take into consideration the dynamic behavior of the 
lumped motor shaft/cable pulley; the free-body diagram for the i th 
motor shaft/cable pulley subsystem is shown in Fig. 3.  The combined 
motor shaft/cable pulley dynamics equations are expressed by the 
relationship: 
 

T��C�J r��	 ���       (2) 
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are diagonal matrices with rotational inertia and rotational viscous 
damping coefficients on the diagonal, all cable pulley radii are 

identical ( rri � ; ni ,,1�� ), nR
� is the vector of torques exerted 

by the motors, nR�T is the vector of cable tensions ti, and nR
� is 

the vector of pulley angles.  Since the cables can only exert positive 
tensions (they cannot push), to express the cable tensions as a function 
of the motor torques and angular motion from (2), we obtain: 
 

� ��
�


�
�

�
��� �C�J�T ���

r
pos

1
    (3) 

 
where the symbol ()pos  means we take the value of each vector 

component that is positive and we set to zero those components that 
were originally negative.  Let us suppose that the torque on each motor 
is large enough to make all cables remain in tension at all times. Under 
this assumption: 
 

� ��C�J�T ��� 		�
r

1
    (4) 

 
 
3.3  System Dynamics Model 
 

We now derive the overall system dynamics model by combining 
the Cartesian and actuator dynamics equations of motion. From the 
companion paper (Williams and Gallina, 2001), the statics relationship 
between forces on the end-effector and cable tensions is given by: 
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STF �        (5) 

 
where the 2xn statics Jacobian matrix is: 
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where i�  ( ni ,,1�� ) are the cable angles (see Figs. 1 and 2). 

We now need an inverse kinematics mapping relating the pulley 
angles i�  ( ni ,,1�� ) expressed as functions of the end-effector 

position � �Tyx�X .  Let us define all i�  to be zero when the end-

effector is located at the origin of frame {0}.  From this position, a 
right-handed positive angle i�  on one pulley will cause a negative 

change iL
  in cable length i: ii Lr 
	�� .  The change in cable length 

i is iii LLL 0	�
  where � � � �22
iyixi AyAxL �	��  is the general 

length for cable i from the inverse position solution (Williams and 

Gallina, 2001) and � � � �22
0 iyixi AAL 	�  is the initial length for cable 

i.  Therefore: 
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Successive time derivatives of (7) yield: 
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and � � � �22
iyixi AyAxL �	��  is the length of cable i, a function of 

� �Tyx�X .  By substituting (8) into (4) we obtain: 

 

��
�


��
�

�

�

�
��

�


�
�

�

�

�
	

�

�
�� X

X
�

CX
X
�

X
X
�

J�T ����

dt
d

r
1    (10) 

 
Finally, by combining  (1), (5), and (10), we obtain the overall 
dynamics equations of motion, expressed in a standard Cartesian form 
for robotic systems (Lewis et al., 1993): 
 

� � � � � ��XSXX,NXXM �	 ���

eq     (11) 

 
where: 
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X
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�� req      (11a) 
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Note the statics Jacobian matrix � �XSS�  from (6) is a function of 

Cartesian position � �Tyx�X  through the cable angles 
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Figure 3.  Free-Body Diagram for the ith Pulley/Shaft 

 
 
4.  CDDR CONTROLS SIMULATION 
 

This section presents our control architecture for planar CDDRs 
based on the overall system Cartesian dynamics equations of motion 
(11). The input to the plant is the vector of torques ��. Each component 
of �� has to be positive or zero at the minimum (in practice, a small 
positive value).  In order to avoid this problem, let us introduce a 
virtual Cartesian force input VF : 

 
� ��XSF �V       (12) 

 
Since the statics Jacobian matrix S(X) has dimension 2xn, this virtual 
force input VF  has the dimension of the Cartesian space, 2 in this 

paper.  The components of VF  are not restricted to be positive. If we 

can develop a control law for the virtual Cartesian force input VF , it is 

always possible to find a real controls torque input �� with all positive 
components that satisfies (12), if the CDDR position is within the 
statics workspace.  In Williams and Gallina (2001) we prove that the 
entire base polygon is within the statics workspace for planar CDDRs 
with regular convex base polygons. Therefore, for control law 
development, we can consider the new dynamic equation: 
 

� � � � Veq FXX,NXXM �	 ���     (13) 

 

 In this paper we ignore the nonlinear dynamics terms � �XX,N � , we 

use the commanded (reference) Cartesian acceleration RX��  in a 

feedforward term, and we implement a Cartesian PD controller to 
reduce the tracking error XXe 	� R .  The commanded (reference) 

Cartesian position is � �TRRR yx�X .  The control law for the virtual 

Cartesian force input VF  is: 
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� � eKeKXXMF �
��

DPRReqV 		�     (14) 

 
The control architecture (shown in the block diagram of Fig. 4) is 

made up of three different parts: the PD controller, the feedforward 
term, and the virtual-Cartesian-force-input-to-real-actuator-torque 
calculation.  In this paper the PD controller gains are determined via 
trial-and-error using a Matlab Simulink simulation to achieve 
reasonable performance.  The matrix gains DP,KK  are 2x2 diagonal 

matrices, which means that the PD control is accomplished 
independently for the x and y motions, even though the dynamics 

model is coupled.  The feedforward term � � RReq XXM ��  is composed of 

the overall position-dependent Cartesian mass matrix and the reference 
Cartesian acceleration components.  The virtual-to-real calculation has 
the problem to invert the matrix S(X) that is non-square and such that 
only positive cable tensions result.  This problem is solved in the 
companion paper (Williams and Gallina, 2001). 

We do not generally have access directly to Cartesian position X 
feedback via a sensor.  Instead, we must calculate this feedback using 
the encoder feedback for each cable pulley angle i�  to determine the 

cable lengths iL ; these lengths are then used as the inputs to the 

forward position kinematics solution (Williams and Gallina, 2001) to 
calculate Cartesian position X for feedback in the control architecture.  
This feedback scheme will work well only if sufficient tension is 
maintained on all cables at all times. 

�PD
Controller

�Virtual to Real
Calculation

Plant+

-

+

-

Feedforward
Term

Forward
Kinematics

Encoder
Mapping

+ F

X

X L

V

R

 
Figure 4.  Control Architecture for Planar CDDRs 

 
  
5.  EXAMPLES 
 
 This section presents controls simulation examples using the 
dynamics equations of motion for the planar 3-cable CDDR with one 
degree of actuation redundancy and for the planar 4-cable CDDR with 
two degrees of actuation redundancy.  The circle-tracing task is 
identical to that presented in the examples of the companion paper 
(Williams and Gallina, 2001), but now dynamics and control is 
considered.  The base equilateral triangle side is LB = 1 m and the base 
square side is LB = 0.6580 m. 

The simulated task is for the CDDR end-effector point 

� �Tyx�X  to trace a circle in the plane.  Unlike the kinematics and 

statics example task in the companion paper, the constant Cartesian 
force RF  on the environment will be set to zero.  The identical task 

will be performed by both 3-cable and 4-cable CDDRs, both without 
and with the feedforward term, and the results will be compared.  The 
circle is centered at the base polygon centroid (the origin of {0}) and 
the circle radius is arbitrarily chosen to be three-quarters of the shortest 
distance from the base triangle centroid to a triangle side: r = 0.2165 
m.  Figures 5 and 6 show the simulated task to scale for the 3- and 4-
cable cases, respectively, at the starting (and ending) point. 
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Figure 5.  Planar 3-Cable CDDR Example Task 
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Figure 6.  Planar 4-Cable CDDR Example Task 

 
We define polar angle � as the independent parameter for the 

circle; it is measured using the right-hand from the right horizontal to 

the current circle radius; � is shown as 0 (and �360 ) in Figs. 5 and 6.  
In the simulated task, one circle revolution is traced out in 1 sec.  We 
provide a constant acceleration for the first half of the circle and an 
equal constant deceleration for the second half of the circle; the motion 
starts and ends at zero velocity.  The kinematic task relationships for 

this desired reference motion are ���� 8��� ��
� , t��� �� � , and 

2/2t�� �  for the first half of the circle; the second half is symmetric 

to the first.  Figures 7a and 7b show the associated commanded 

(reference) Cartesian position RX  and Cartesian acceleration RX��  for 

use in the feedforward term. 
The parameters for the dynamics equations of motion (11) for both 

the 3- and 4-cable CDDRs are: point mass m = 1 kg;  rotational 
shaft/pulley inertias 0008.0�iJ  kgm2 (for all ni ,,1�� ); shaft 

rotational viscous damping coefficients 01.0�ic  Nms (for all 

ni ,,1�� ); and 5�� rri  cm (for all ni ,,1�� ).  The same Cartesian 

PD controller is used for both CDDRs, found by trial-and-error using 
the Simulink simulation: gain PK  is a 2x2 diagonal matrix with equal 

gains of 2000�PK  on the diagonal, and gain DK  is a 2x2 diagonal 

matrix with equal gains of 10�DK  on the diagonal. 
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Figure 7a.  Reference Position xR (solid) and yR (dash) (m) 
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Figure 7b.  Reference Acceleration Rx��  (solid) and Ry��  (dash) (m/s2) 

 
 Four control simulations of the dynamics model are presented in 
this section: the 3-cable and 4-cable CDDRs, both without and with the 
feedforward term in the block diagram of Fig. 4.  Figure 8 shows the 
circle trajectory tracking error XXe 	� R  for the 3-cable CDDR 

without the feedforward controller term.  Figure 9a shows the tracking 
error for the 3-cable CDDR with the feedforward controller term 
included. 
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Figure 8.  3-cable CDDR Tracking Error, without Feedforward 

ex (solid) and ey (dash) 
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Figure 9a.  3-cable CDDR Tracking Error, with Feedforward 

ex (solid) and ey (dash) 
 

The feedforward term has cut the tracking error nearly in half: 
without feedforward the peak errors were approximately 4�  cm, and 
with feedforward the peak errors were approximately 2�  cm.  For both 
cases, the peak errors occurred after the halfway point in the circle, 
when the velocity is the greatest.  This is expected since we ignore the 

nonlinear dynamics terms � �XXN �, for both cases.  The tracking error is 

small for the non-feedforward case at the end of the circle motion 
(when the velocity is supposed to go back to zero); the tracking error is 
better, nearly zero, for the feedforward case at the end of the circle 
motion. 

Since the tracking error with the feedforward term included is 
clearly preferable, we now show more control details for this case.  
Figure 9b shows the virtual Cartesian force input VF , Fig. 9c shows the 

three cable tensions, and Fig. 9d shows the three actuator torques for 
the prescribed dynamic circular motion. 

For the control we have specified a minimum cable tension of 1 N, 
rather than zero, in attempt to avoid conditions where one or more 
cables go slack.  Despite this, all three cable tensions dip below zero in 
Fig. 9c at different times, due to dynamics.  We are currently 
developing a method to avoid this problem by estimating the required 
minimum tensions on-line to avoid slack cables considering dynamics.  
Note that all simulated actuator torques remain positive, despite the 
small cable tension problem. 

The virtual Cartesian force inputs, cable tensions, and actuator 
torques of Figs. 9b-9d show these variables for the feedforward case.  
The equivalent plots for the non-feedforward case are not shown to 
save space.  However, the dependent axis ranges in Figs. 9b-9d were 
chosen such that the non-feedforward cases (not shown) just fit.  From 
this we can conclude that the virtual Cartesian force inputs, cable 
tensions, and actuator torques for the control with feedforward are 
significantly less than for the same variables in the non-feedforward 
case.  Therefore, due to better tracking error and reduced forces, 
tensions, and torques, the control architecture including the 
feedforward term is superior, despite the additional preparation and 
controller cost.  These two paragraphs of results discussion for the 3-
cable CDDR also extend to the four cable CDDR, as will be seen next. 

The tracking error in these examples is rather large (several cm).  
Our intent is to validate the theoretical work via experimental results, 
and then develop improved control to reduce this tracking error.  Thus, 
we need a sizable tracking error that we can measure in the lab. 
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Figure 9b.  3-cable CDDR Virtual Input, with Feedforward 

FVx (solid) and FVy (dash) 
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Figure 9c.  3-cable CDDR Cable Tensions, with Feedforward 

t1 (solid), t2 (long dash), and  t3 (short dash) 
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Figure 9d.  3-cable CDDR Actuator Torques, with Feedforward 

�1 (solid), �2 (long dash), and �3 (short dash) 
 
 For comparison purposes, the same types of results are now shown, 
for simulated control of the 4-cable CDDR.  Figure 10 shows the 
tracking error XXe 	� R  for the 4-cable CDDR without the 

feedforward controller term.  Figure 11a shows the tracking error for 
the 4-cable CDDR with the feedforward controller term included. 
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Figure 10.  4-cable CDDR Tracking Error, without Feedforward 

ex (solid) and ey (dash) 
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Figure 11a.  4-cable CDDR Tracking Error, with Feedforward 

ex (solid) and ey (dash) 
 

Again, the tracking error was cut nearly in half by using the 
feedforward term, so we now show more control details for this case.  
Figure 11b shows the virtual Cartesian force input VF , Fig. 11c shows 

the four cable tensions, and Fig. 11d shows the four actuator torques for 
the prescribed dynamic circular motion. 
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Figure 11b.  4-cable CDDR Virtual Input, with Feedforward 

FVx (solid) and FVy (dash) 
 



 8 Copyright © 1998 by ASME 
 

0 0.2 0.4 0.6 0.8 1
-20

0

20

40

60

80

100

 t (sec)

 C
ab

le
 T

en
si

on
s 

(N
)

 
Figure 11c.  4-cable CDDR Cable Tensions, with Feedforward 

t1 (solid), t2 (long dash), t3 (short dash), and  t4 (asterisk) 
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Figure 11d.  4-cable CDDR Actuator Torques, with Feedforward 

�1 (solid), �2 (long dash), �3 (short dash), and �4 (asterisk) 
 
 The tracking errors for the 4-cable CDDR (without and with the 
feedforward term) are worse than those of the 3-cable CDDR.  This is 
due to the fact that, though we scaled the kinematics workspace so that 
both 3- and 4-cable CDDRs had the same area, we did not scale the 
actuator inertias, and the 4-cable CDDR has a fourth equal-sized shaft 
inertia which makes the tracking error larger.  Also, the 4-cable CDDR 
cable tensions and actuator torques are higher than those for the 3-
cable CDDR with the same type of control (with the feedforward term).  
The virtual Cartesian force input for both CDDRs are similar since it is 
a Cartesian controller. 
 Remember that no external force was specified to exert on the 
environment during the dynamic circular motion.  From the companion 
paper (Williams and Gallina, 2001), it was found that for pseudostatic 
motion conditions, the required 4-cable CDDR cable tensions were 
significantly lower than those required by the 3-cable CDDR for 
exerting forces on the environment, so the 4-cable dynamics results 
will not be as bad when considering a static load to exert. 
 Like the 3-cable CDDR results shown in Figs. 9 above, Figs. 11 
also display the following: due to dynamics, some cable tensions dip 
below zero, even though we specify a minimum cable tension of 1 N on 
all cables at all times.  Again, this does not occur for the simulated 
actuator torques.  Also, the magnitude of the virtual Cartesian force 
inputs, cable tensions, and actuator torques of Figs. 11b-11d, 
representing the feedforward case, are less than those without the 
feedforward term (not shown).  However, the peak values for cable 

tensions and actuator torques approach more nearly the cases without 
the feedforward term (as seen by the scale on the independent axes, 
which were set for the non-feedforward cases) than the 3-cable CDDR 
did.  It is still clear that the controller including the feedforward term is 
superior to the controller without the feedforward term. 
 
 
6.  CONCLUSION 
 
 This paper performs dynamics modeling and control simulation for 
a proposed hybrid parallel/serial manipulator architecture wherein the 
translational freedoms are provided by a parallel cable-direct-driven 
robot (CDDR) and the rotational freedoms are provided by a serial 
wrist mechanism.  The motivation behind this work is to improve the 
serious cable interference and negative cable tensions possible with 
existing CDDRs that guide both translational and rotational freedoms.  
Dynamics modeling is required to achieve high velocities and 
accelerations in translational motion.  A controls simulation example is 
presented comparing the dynamics of planar 3- and 4-cable CDDRs 
performing the same task.   
 Only the translational motion is considered in this paper.  It was 
found that the tracking error of the 4-cable CDDR was higher than that 
of the 3-cable CDDR, due to the added inertia of an extra actuator 
shaft/cable pulley.  In both CDDRs, the cable tensions became negative 
(slack) due to dynamics in small ranges of the motion despite the 
prescribed controller minimum of 1 N tension on each cable.  From 
comparing simulated performance, the controller with the feedforward 
term proved to be superior to the controller without the feedforward 
term for both 3- and 4-cable CDDRs. 
 Our future work plans include more complete dynamics modeling 
(cable inertia and stiffness, Coulomb friction, among others), 
development of a method to avoid slack cables based on dynamics, 
improved nonlinear controller development, hardware implementation, 
and experimental validation of our results. 
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