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ABSTRACT CDDR dynamics, hence the current paper studies dynamics and control

of planar CDDRs.
A hybrid parallel/serial manipulator architecture was introduced in This paper reviews the two candidate planar CDDRs from the
a companion paper where the translational freedoms are provided ¢ymwanion paper, presents dynamics modeling resulting in a nonlinear,
cable-direct-driven robot (CDDR) and the rotational freedoms apeipled dynamics model, followed by Cartesian trajectory control
provided by a serial wrist mechanism. While the companion pagétulation employing Cartesian PD control for planar CDDRs with one
presents kinematics and statics, the current paper presents a dynafficswo degrees actuation redundancy. This paper focuses on
model and simulated control for planar CDDRs. Examples &i@nslational motion and forces.
presented to compare the planar 3-cable CDDR with one degree of
actuation redundancy and the 4-cable CDDR with two degrees of
actuation redundancy. It was found that the 4-cable tracking error &&SABLE-DIRECT-DRIVEN ROBOTS (CDDRYS)
worse than for the 3-cable case, due to increased inertia with an
additional actuator.  Also, the controller architecture considers A CDDR consists of a single end-effector point supported in
including and not including a feedforward reference acceleration t@@h@llel byn cables controlled by tensioning actuators. Figures 1 and
with the overall mass matrix; the performance of the controller wtghow the planar 3-cable and 4-cable CDDR diagrams. These figures
the feedforward term is clearly preferable. are similar to the kinematics diagrams in the companion paper
(Williams and Gallina2001), but we have added the end-effector point
massm and the lumped motor shaft/cable pulley rotational inertias for
1. INTRODUCTION each actuatorJ; (i=1---,n). The cable pulley radius for each
actuator isr; (i=1,---,n; shown in Fig. 3). We also include viscous
Cable-direct-driven robots (CDDRs) are a type of paral
manipulator wherein the end-effector link is supported in-parallel by o
cables withn tensioning motors. Several CDDRs and cable-diretifiar model for the system friction.
driven haptic interfaces @DHIs) have been presented by other For 2-dof planar translatlons_ there must be at least two cables.
authors and are reviewed in the companion paper (Williams SipRce cables can oply exe_rt ten§|on on the end-effector, there must be
Gallina, 2001). Roberts et al. (1998), present the inverse kinematie8/e cables to_av0|d configurations where the robot can be slack and
cable-tension-optimization, and fault tolerance of Charlotte-ty)9&€ control. Figure 1 represents one degree of actuation redundancy,
(Campbell et al., 1995) CDDRs, but no dynamics modeling & three cables to achieve the two Cartesian degrees-of-freedom
presented. Sklar and Tesar (1988) present the dynamics of hyliri:d{x y}T; the four-cable CDDR in Fig. 2 has two degrees of

serial manipulators consisting of parallel joints. This manipulai@ftyation redundancy. Figures 1 and 2 show the inertially-fixed
arch!tecture is S|lgn|f|can.tly different . from the currentIy-propo.sc?gferenCe frame@ whose origin is the centroid of the base polygon;
hybrid parallel/serial manipulator architecture where the translationgl regular base polygon (triangle and square, respectively) has sides of

freedoms are provided by a CDDR and the rotational freedoms &y |ength Lg; each cable is attached to the ground link at
serial wrist mechanism.

CDDRs are designed with actuation redundancy, i.e. with m(ﬁe={Ax Ay}T; the length of each cable is denotedlas and the
actuated cables than wrench-exerting degrees-of-freedom in attemgilife angles aré; (i=1,--,n).
avoid configurations where certain wrenches require an impossible
compression force in one or more cables. Despite actuation
redundancy, there exist subspaces in the potential workspace where
some cables can lose tension. This problem can be exacerbated by

l%mping coefficientsg; (i=1,---,n) at each motor shaft to provide a
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3. CDDR DYNAMICS MODELING coupled and nonlinear. We now present the Cartesian, actuator, and
overall system dynamics models.
This section presents dynamics modeling for planar CDDRs.
Dynamics modeling is required for improved control (compared3d Cartesian Dynamics Model
using kinematics and statics modeling only) when CDDRs are to
provide high velocities and accelerations in translational motion. The free-body diagram for the moving end-effector point is very
Dynamics modeling is concerned with relating the Cartessimple and hence not shown. Thel&-Cartesian dynamic model for
translational motion of the moving CDDR point to the required active end-effector is given by:
joint torques. Due to the cable actuation, CDDR dynamics modeling is
not very similar to in-parallel-actuated robot dynamics modeling (e.g. mX =F (1)
Tsai, 1999; Gosselin, 1996). Another complicating factor is that with
CDDRs the joint space is overconstrained with respect to the Cartesian m 0 -
space due to the redundant actuation. where the Cartesian mass matrin’fS=|:O m:|, X = {X y} is the

end-effector position anB is the resultant of al cable forces acting
on the end-effector.

3.2 Actuator Dynamics Model

We also take into consideration the dynamic behavior of the
lumped motor shaft/cable pulley; the free-body diagram forithe
motor shaft/cable pulley subsystem is shown in Fig. 3. The combined
motor shaft/cable pulley dynamics equations are expressed by the

relationship:
PB+Cp=1—rT )
J 0 o 0
where: J= and C=
@ 0 I 0 ¢

C
N
are diagonal matrices with rotational inertia and rotational viscous
damping coefficients on the diagonal, all cable pulley radii are

identical (f; =r; i=1,---,n), TeR"is the vector of torques exerted
0 m by the motors,T € R"is the vector of cable tensionsand pe R"is
3 C the vector of pulley angles. Since the cables can only exert positive
A3 tensions (they cannot push), to express the cable tensions as a function
3 of the motor torques and angular motion from (2), we obtain:
Y,
L T=pog L(c-Jp-cp) 3)
L, = pos
LB Xq where the symbolpog) means we take the value of each vector
Y component that is pdive and we set to zero those gooments that
m were originally negative. Let us suppose that the torque on each motor
L is large enough to make all cables remain in tension at all times. Under
this assumption:
Lo
\%2 1
A 01 § T=={e-3p-cp) @)
l o
J1 C, A, ‘]ZCZ

Figure 2. Planar 4-Cable CDDR Diagram 3.3 System Dynamics Model

For the dynamics model derived in this section we assume that theWe now derive the overall system dynamics model by combining
CDDR cables are massless and perfectly stiff so we do not CON§iB€ cartesian and actuator dynamics equations of motion. From the

their inertias or spring stiffnesses. We further ignore the Coulo panion paper (Williams and Gallir2Q01), the statics relationship

fr!ct!on and instead quel Ilnear_V|sc_qus _frlctlon to accqunt for Etween forces on the end-effector and cable tensions is given by:
frictional losses. Despite these simplifications, the resulting model is
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FosT 5) M gq =rm+S(X) £ (11a)

d 6B B\
i i i g X +C— X 11b
where the 2R statics Jacobian matrix is: ( ) S( )( dtox 8X] (11b)
S= —cgs@l _C(_)SQ” (6) Note the statics Jacobian matri=S(X) from (6) is a function of
-sing; --- —sind,

Cartesian positon X={x yl' through the cable angles

. (i=1--- i y—A )

whereg; (i=1---,n) are the cable angles (see Figs. 1 and 2). 0; = tanl[ Ay ] (see Figs. 1 and 2).
We now need an inverse kinematics mapping relating the pulley X= Ax

angles 5 (i=1---,n) expressed as functions of the end-effector

position X ={x y}'. Let us define allg, to be zero when the end-

effector is located at the origin of fram@}{ From this position, a
right-handed positive angles; on one pulley will cause a negative

changeAL; in cable length: gir =-AL;. The change in cable length

i is AL =L -Lg where L :\/(X—AX)Z+(y—Ay)2 is the general
length for cablei from the inverse position solution (Williams and
Gallina, 2001) andLg; =+/(A,)?+(Ay P is the initial length for cable
i. Therefore:

i erefore Ji

Figure 3. Free-Body Diagram for th& Pulley/Shaft
A R (T .
£ | Lon —\/(X_Anx)z +(y- Ay P 4. CDDR CONTROLS SIMULATION

=
]

This section presents our control architecture for planar CDDRs
Successive time derivatives of (7) yield: based on the overall system Cartesian dynamics equations of motion
(11). The input to the plant is the vector of torqueBach component

B_@X of 1 has to be positive or zero at the minimum (in practice, a small
B ax positive value). In order to avoid this problem, let usodtice a
i aB LB % (8) virtual Cartesian force inpus, :
d 8X oX
Fv =S(X)t (12)
where:
x—Ay  Y-Ay Since the statics Jacobian mat8{X) has dimension 2x this virtual
L L force input R, has the dimension of the Cartesian space, 2 in this
op__1 ;l ;l (9) Paper. The components &, are not restricted to be positive. If we

X ' XA y__Aﬂy can develop a control law for the virtual Cartesian force iruf it is

always possible to find a real controls torque inputith all positive
components that satisfies (12), if the CDDR ifios is within the

> > ) _ statics workspace. In Williams and GallinzZ0Q1) we prove that the
and L :\/(X_Ax) +(V—Ay) is the length of cablg a function of entire base polygon is within the statics workspace for planar CDDRs
with regular convex base polygons. Therefore, for control law
development, we can consider the new dynamic equation:

X= {x y}T . By substituting (8) into (4) we obtain:

- }/[ (d B @X]_Ca_ﬁx] (10) M eg(X)X +N(X, X)= R, (13)
dtox T ax ox

) o In this paper we ignore the nonlinear dynamics teM(bs ' ) we
Finally, by combining (1), (5), and (10), we obtain the overall

dynamics equations of motion, expressed in a standard Cartesian ffin e commanded (reference) Cartesian acceleratign in a
for robotic systems (Lewis et al., 1993): feedforward term, and we implement a Cartesian PD controller to
reduce the tracking erroe=Xr—-X. The commanded (reference)

M eq(X)X + N(X*X): S(X)e (1) cartesian position iXg ={Xz Yr) . The control law for the virtual

Cartesian force inpul, is:
where:
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0.6

Fv =M eg(XRr)XR +K pe+K pé (14)
04f - - - - - - - /) - SN - - - - - -
The control architecture (shown in the block diagram of Fig. 4) is ‘
made up of three different parts: the PD controller, the feedforward
term, and the virtual-Cartesian-force-input-to-real-actuator-torque 0.2r - - - -/~ TSN T
calculation. In this paper the PD controller gains are determined via > ‘ A\
trial-and-error using aMatlab Simulink simulation to achieve ob .. /. L Lo\

reasonable performance. The matrix gakg,Kp are 2x2 diagonal

matrices, which means that the PD control is accomplished \ S
independently for thex and y motions, even though the dynamics R e Y

model is coupled. The feedforward temheq(X )X R is composed of

the overall position-dependent Cartesian mass matrix and the reference 045 0 05
Cartesian acceleration components. The virtual-to-real calculation has X
the problem to invert the matr®(X) that is non-square and such that Figure 5. Planar 3-Cable CDDR Example Task
only positive cable tensions result. This problem is solved in the
companion paper (Williams and Gallir2zQ01). 0.6

We do not generally have access directly to Cartesian po3tion
feedback via a sensor. Instead, we must calculate this feedback using oal - oo
the encoder feedback for each cable pulley angleo determine the
cable lengthsL;; these lengths are then used as the inputs to the
forward position kinematics solution (Williams and Galli2801) to o VRN
calculate Cartesian positiok for feedback in the control architecture. > :
This feedback scheme will work well only if sufficient tension is e R S IR
maintained on all cables at all times. )

\\ ' /,/
0.2 - - - - he e e e - e
Feedforwar .
Term
045 0 0.5
— PD Virtual to Rea Plant e X ’
XR Controller Calculation )
Figure 6. Planar 4-Cable CDDR Example Task
Forward Encoger
Kinemati Mappin We define polar angles as the independent parameter for the

Figure 4. Control Architecture for Planar CDDRs circle; it is measured using the right-hand from the right horizontal to

the current circle radiusj is shown as 0 (an@60° ) in Figs. 5 and 6.
In the simulated task, one circle revolution is traced outsed We
5. EXAMPLES provide a constant acceleration for the first half of the circle and an
equal constant deceleration for the second half of the circle; the motion
This section presents controls simulation examples using st&ts and ends at zero velocity. The kinematic task relationships for
dynamics equations of motion for the planar 3-cable CDDR with qh® desired reference motion awe=® :&:8;;, @ :¢' =at, and
?vsgr%(zgrfezztugpogc{jgt?ggapggu?gg:g;_theTﬂZniirré::‘ggr?gD?aRsk\%I%atz/2 for the first half of the circle; the second half is symmetric
identical to that presented in the examples of the companion pipehe first. Figures 7a and 7b show the associated commanded
(Williams and Gallina,2001), but now dynamics and control i¢reference) Cartesian positioig and Cartesian acceleratiofg for
considered. The base equilateral triangle sidg /s 1 mand the base se in the feedforward term.
square side ik, = 0.6580m. The parameters for the dynamics equations of motion (11) for both
The simulated task is for the CDDR end-effector poiffe 3- and 4-cable CDDRs are: point mass= 1 kg rotational
X ={x yJ' to trace a circle in the plane. Unlike the kinematics ashiaft/pulley inertias J; = 0.0008 kgni (for all i=1--,n); shaft

statics example task in the companion paper, the constant Cartgstational viscous damping coefficients; =0.01 Nms (for all
force Fr on the environment will be set to zero. The identical tagky ... n); andr, =r =5 cm(for all i=1---,n). The same Cartesian

will be performed by both 3-cable and 4-cable CDDRs, bothawit pp controller is used for both CDDRs, found by trial-and-error using

and with the feedforward term, and the results will be compared. fisimulinksimulation: gainK p is a 2x2 diagonal matrix with equal
circle is centered at the base polygon centroid (the origird}pfgnd

the circle radius is arbitrarily chosen to be three-quarters of the sho
distance from the base triangle centroid to a triangle side0.2165 Matrix with equal gains oKp =10 on the diagonal.
m. Figures 5 and 6 show the simulated task to scale for the 3- and 4-

cable cases, respectively, at the starting (and ending) point.

%ig_}s of Kp = 2000 on the diagonal, and gaiKk p is a 2x2 diagonal
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Figure 9a. 3-cable CDDR Tracking Error, with Feedforward
g (solid) and ¢ (dash)

The feedforward term has cut the tracking error nearly in half:
without feedforward the peak errors were approximatelycnd and
with feedforward the peak errors were approximatelycn® For both
cases, the peak errors occurred after the halfway point in the circle,
when the velocity is the greatest. This is expected since we ignore the

nonlinear dynamics termN(X,X)for both cases. The tracking error is

small for the non-feedforward case at the end of the circle motion
(when the velocity is supposed to go back to zero); the tracking error is
better, nearly zero, for the feedforward case at the end of the circle
motion.

Since the tracking error with the feedforward term included is
clearly preferable, we now show more control details for this case.
Figure 9b shows the virtual Cartesian force inpyt, Fig. 9c shows the
three cable tensions, and Fig. 9d shows the three actuator torques for
the prescribed dynamic circular motion.

For the control we have specified a minimum cable tensionNyf 1

~ Four control simulations of the dynamics model are presentegaiiher than zero, in attempt to avoid conditions where one or more
this section: the 3-cable and 4-cable CDDRs, both without and withdhgles go slack. Despite this, all three cable tensions dip below zero in

feedforward term in the block diagram of Fig. 4. Figure 8 shows thg oc at different times, due to dynamics.

We are currently

circle trajectory tracking errore=Xg—X for the 3-cable CDDR geveloping a method to avoid this problem by estimating the required
without the feedforward controller term. Figure 9a shows the trackingnimum tensions on-line to avoid slack cables considering dynamics.
error for the 3-cable CDDR with the feedforward controller terNpte that all simulated actuator torques remain positive, despite the

included.

0.05
0.04
0.03
0.02
0.01

Tracking Error (m)
o

-0.01
-0.02
-0.03

-0.04

0 0.2 0.4 0.6 0.8 1
t(sec)

Figure 8. 3-cable CDDR Tracking Error, without Feedforward
e (solid) and ¢ (dash)

small cable tension problem.

The virtual Cartesian force inputs, cable tensions, and actuator
torques of Figs. 9b-9d show these variables for the feedforward case.
The equivalent plots for the non-feedforward case are not shown to
save space. However, the dependent axis ranges in Figs. 9b-9d were
chosen such that the non-feedforward cases (not shown) just fit. From
this we can conclude that the virtual Cartesian force inputs, cable
tensions, and actuator torques for the control with feedforward are
significantly less than for the same variables in the non-feedforward
case. Therefore, due to better tracking error and reduced forces,
tensions, and torques, the control architecture including the
feedforward term is superior, despite the additional preparation and
controller cost. These two paragraphs of results discussion for the 3-
cable CDDR also extend to the four cable CDDR, as will be seen next.

The tracking error in these examples is rather large (sevejal
Our intent is to validate the theoretical work via experimental results,
and then develop improved control to reduce this tracking error. Thus,
we need a sizable tracking error that we can measure in the lab.

Copyright © 1998 by ASME
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Figure 9c. 3-cable CDDR Cable Tensions, with Feedforward . . .
’ F 1la. 4-cable CDDR Tracking E th Feedf d
t. (solid), t. (long dash), and, (short dash) igure 11a. 4-cable racking Error, with Feedforwar

g (solid) and ¢ (dash)

Again, the tracking error was cut nearly in half by using the
] T feedforward term, so we now show more control details for this case.
Figure 11b shows the virtual Cartesian force inpyt, Fig. 11c shows
’2§4 *********************** the four cable tensions, and Fig. 11d shows the four actuator torques for
o the prescribed dynamic circular motion.
3]
B3 - - -
Qo
= 00F - - - - - S R
S ‘ ‘ ‘ ‘
S2
Q
<
[ i =
<
— ‘ 5
. Q
0 ——— D s
0 0.2 0.4 0.6 0.8 1 =
t(sec) ‘E
S

Figure 9d. 3-cable CDDR Actuator Torques, with Feedforward
7, (solid), z, (long dash), and, (short dash)

For comparison purposes, the same types of results are now showr ‘ ‘ ‘ ‘
for simulated control of the 4-cable CDDR. Figure 10 shows the -100; : : : 1

X . 0.2 0.4 0.6 0.8 1
tracking error e=Xg-X for the 4-cable CDDR without the t (sec)

feedforward controller term. Figure 11a shows the tracking error for Figure 11b. 4-cable CDDR Virtual Input, with Feedforward
the 4-cable CDDR with the feedforward controller term included. F,, (solid) and F, (dash)
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100 tensions and actuator torques approach more nearly the cases without
1 1 1 1 the feedforward term (as seen by the scale on the independent axes,
80k - - - - - e . which were set for the non-feedforward cases) than the 3-cable CDDR
‘ - j j did. It is still clear that the controller including the feedforward term is
superior to the controller without the feedforward term.

o2}
o

6. CONCLUSION

Cable Tensions (N)

This paper performs dynamics modeling and control simulation for
a proposed hybrid parallel/serial manipulator architecture wherein the
translational freedoms are provided by a parallel cable-direct-driven
robot (CDDR) and the rotational freedoms are provided by a serial

20 . . . .
0

0.2 0.4 0.6 0.8 1 wrist mechanism. The motivation behind this work is to improve the

t(sec) serious cable interference and negative cable tensions possible with
Figure 11c. 4-cable CDDR Cable Tensions, with Feedforward existing CDDRs that guide both translational and rotational freedoms.
t, (solid), t, (long dash)t, (short dash), and, (asterisk) Dynamics modeling is required to achieve high velocities and

accelerations in translational motion. A controls simulation example is
‘ ‘ ‘ ‘ presented comparing the dynamics of planar 3- and 4-cable CDDRs
Sp T T e T T T performing the same task.

‘ ‘ ‘ ‘ Only the translational motion is considered in this paper. It was
found that the tracking error of the 4-cable CDDR was higher than that
of the 3-cable CDDR, due to the added inertia of an extra actuator
shaft/cable pulley. In both CDDRSs, the cable tensions became negative
(slack) due to dynamics in small ranges of the motion despite the
prescribed controller minimum of Ml tension on each cable. From
comparing simulated performance, the controller with the feedforward
term proved to be superior to the controller without the feedforward
term for both 3- and 4-cable CDDRs.

Our future work plans include more complete dynamics modeling
(cable inertia and stiffness, Coulomb friction, among others),
development of a method to avoid slack cables based on dynamics,
improved nonlinear controller development, hardware implementation,
and experimental validation of our results.

Actuator Torques (Nm)
N w EN

[y

% 02 o4 “os " 08 1
t(sec)
Figure 11d. 4-cable CDDR Actuator Torques, with Feedforward
7, (solid), z, (long dash)z, (short dash), and, (asterisk)
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