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ABSTRACT 
 

We present hardware results of a planar, translational cable-
direct-driven robot (CDDR). The motivation behind this work was to 
present kinematics and statics modeling of the CDDR along with the 
method to maintain positive cable tension and implement them on 
CDDR hardware for experimental verification. Only translational 
CDDR is considered in this article; we attempt to keep zero orientation 
by control. We ignore gravity here because the end-effector is 
supported on a base plate with negligible friction. Results are 
presented and analyzed for two linear profiles and one circular profile. 
 
1.  INTRODUCTION 
 

Cable-direct-driven robots (CDDRs) are a type of parallel 
manipulator wherein the end-effector link is supported in-parallel by n 
cables with n tensioning motors.  In addition to the well-known 
advantages of parallel robots relative to serial robots, CDDRs can have 
lower mass and better stiffness than other parallel robots.  Several 
CDDRs and cable-direct-driven haptic interfaces (CDDHIs) have been 
studied in the past.  An early CDDR is the Robocrane1 developed by 
NIST for use in shipping ports.  This device is similar to an upside-
down six-degrees-of-freedom (dof) Stewart platform, with six cables 
instead of hydraulic-cylinder legs. In this system, gravity ensures that 
cable tension is maintained at all times. Another CDDR is Charlotte, 
developed by McDonnell-Douglas2 for use on International Space 
Station.  Charlotte is a rectangular box driven in-parallel by eight 
cables, with eight tensioning motors mounted on-board (one on each 
corner).  Four CDDHIs have been built and tested, the Texas 9-string3, 
the SPIDAR4, the 7-cable master5, and the 8-cable haptic interface6.  
CDDRs and CDDHIs can be made lighter, stiffer, safer, and more 
economical than traditional serial robots and haptic interfaces since 
their primary structure consists of lightweight, high load-bearing 
cables.  On the other hand, one major disadvantage is that cables can 
only exert tension and cannot push on the end-effector.   

All of the devices discussed above are designed with 
actuation redundancy, i.e. more cables than wrench-exerting degrees-
of-freedom (except for the Robocrane1, where cable tensioning is 
provided by gravity) in attempt to avoid configurations where certain 
wrenches require an impossible compression force in one or more 
cables.  Despite actuation redundancy, there exist subspaces in the 
potential workspace where some cables can lose tension.  This 
problem can be exacerbated by CDDR dynamics7. Roberts et al.8 
developed an algorithm for CDDRs to predict if all cables are under 
tension in a given configuration while supporting the robot weight 
only.  They also present the inverse kinematics and fault tolerance of 

Charlotte-type2 CDDRs, but no dynamics modeling is presented.  R. L. 
Williams II et al.9 developed CDDHI design with regard to wrenches 
with only positive cable tensions and with regard to avoiding cable 
interference. They found that cable interference dominates. 

Choe et al.10 present stiffness analysis for wire-driven 
robots.  Wire driven robots must provide stiffness in all 6 Cartesian 
degrees of freedom even if motion is in a subspace of the general case.  
For the CDDR considered in the current article the planar end effector 
is supported on a plane; thus only the x, y, and rotation about z 
freedoms must provide stiffness from the cable drive systems.  Kock 
and Schumacher11 have implemented a parallel robot (not cable-
suspended) with actuation redundancy.  They use this actuation 
redundancy to avoid backdriving the gear boxes and also to allow 
torque optimization.  Barette and Gosselin12 present general velocity 
and force analysis for planar cable-actuated mechanisms.  They 
introduce and determine dynamic workspace, dependent on end-
effector accelerations. 

Most proposed CDDRs and CDDHIs involve both 
translational and rotational motion of the end-effector link guided by 
cables.  (An exception is the SPIDAR4, which is a spatial 4-cable 
haptic interface reading translations only and providing three Cartesian 
forces (no moments) to the human finger.)  All CDDRs and CDDHIs 
with translational and rotational motion suffer from the potential of 
cable interference and reduced statics workspaces wherein some 
negative cable tensions would be required, which is infeasible.  R. L. 
Williams II et al7 proposed a model to provide translational motion 
and forces by cables and the rotational motion and moments by a serial 
wrist mechanism mounted at the end-effector of the translational 
CDDR.  They proposed a cross cable configuration to ensure that the 
translational CDDR end-effector has sufficient stiffness in all 
directions to resist the rotational moments.   

This article describes a planar four-cable CDDR, followed by 
kinematics modeling, statics modeling, a method for attempting to 
maintain positive cable tensions, and a discussion of the statics 
workspace.  The article then presents hardware implementation of 
these theories using linear and circular trajectory generation examples. 
 
2. CABLE-DIRECT-DRIVEN ROBOTS (CDDRs) 
 

In this article a CDDR consists of a single end-effector rigid 
body supported in parallel by n cables controlled by n tensioning 
actuators.  Figure 1 shows the planar 4-cable CDDR kinematics 
diagram.  We are implementing the concept of hybrid CDDRs7, where 
the translational freedoms are provided by the n=4 cables and the 
rotational freedoms can be provided by a serial wrist mechanism 
mounted to the translational CDDR end-effector.  We are considering 
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only the translational portion of the problem here; we will attempt to 
keep zero orientation by control (φ= 0 for all motion; φ, not shown in 
Figure. 1, is the angle between the horizontal end-effector side a and 
the horizontal ground link LB).  If the end-effector is supported by a 
base plate in the XY plane, the cross-cable configuration of Figure. 1 is 
sufficient in general to resist moments about the Z axis from a serial 
wrist mechanism consisting of a single revolute joint rotating about the 
Z axis, mounted to the end-effector centroid. 

For 3-dof planar motions (2 translations XY and 1 rotation 
about Z) there must be at least three cables.  Since cables can only 
exert tension on the end-effector, there must be more cables to avoid 
configurations where the robot cables can be slack and lose control.  
Figure 1 represents one degree of actuation redundancy, i.e. four 
cables to achieve the three Cartesian degrees-of-freedom 

{ } T
0yx =φ=X .  This scenario represents actuation redundancy 

but not kinematic redundancy.  That is, there is an extra motor which 
provides infinite choices for applying 3-dof Cartesian wrench vectors, 
but the moving rigid body has only three Cartesian degrees-of-freedom 

{ } T
yx φ=X . 

 
Figure 1.  Planar 4-Cable CDDR Diagram 
 
Figure 1 shows the inertially-fixed reference frame {0} 

whose origin is the centroid of the base square.  The base square has 

sides of fixed length BL .  Each cable is passed through the ground 

link at the fixed points { }T

iyAixAi =A .  The length of each cable 

is denoted as iL , and the cable angles are iθ  ( 41i ,,L= ).  The 

moving end-effector frame {H} is also shown in Figure. 1.  Note 

vector { } Tyx  gives the position of {H} with respect to the {0} 

origin, expressed in {0} coordinates.  The cable pulley radius for each 

actuator is ir  ( 4,,1L=i ; not shown in Figure. 1). 

Theoretically the end-effector center can reach any xy point 
within the base square (reduced on all sides by half the end-effector 
dimension, a/2), if cable lengths can go to zero.  A singular condition 
exists when the edge of the square end-effector aligns with an edge of 
the base square.  In this case two adjacent cables align with the base 
plate edge; infinite force is required in the two adjacent cables to move 
the end-effector normal to the aligned cables.  The other two cables 
cannot push so motion is restricted to this reduced base square; large 
cable tensions will be required as this edge of motion is approached. 

Cable interference is a potential problem in CDDRs.  Using 
crossed cables as shown in Figure. 1, there will always be cable/cable 
contact for all motion; to avoid this problem either select low-friction 
cable materials to allow cables to slide freely over each other, or 
mount the cables in different planes, if the base plate sufficiently 
supports the end-effector.  In the design of Figure 1, cable/end-effector 
interference is non-existent in the useful motion range if we succeed in 
maintaining orientation φ = 0 by control.  In the singularities at the 
edge of the useful motion range, two cables will have just touched the 
square end-effector side, even with φ = 0.  The potential exists for 
interference between cables and workspace items and/or humans, but 
this problem can be minimized by design in the case of planar CDDRs 
 
3.  CDDR KINEMATICS MODELING 
 

Kinematics modeling is concerned with relating the active 
joint variables and rates to the Cartesian pose and rate variables of the 
end-effector.  The intermediate, passive cable angles and rates are also 
involved.  Assuming all cables always remain in tension, CDDR 
kinematics is similar to in-parallel-actuated robot kinematics (e.g.14,15); 
however, with CDDRs the joint space is overconstrained with respect 
to the Cartesian space. 

 
Figure 2.  Planar 4-Cable CDDR Kinematics Diagram 

 
The inverse position kinematics problem is stated:  given the 

Cartesian position { } TyxX φ=  calculate the cable lengths iL .  

The solution is simply calculating the Euclidean norm between the 
moving point { } TyxX φ=  and each fixed ground link vertex Ai. 

ih  is the position vector from the origin of {H} to the ith cable 

connection, expressed in {H} coordinates (only 3h  is shown in 

Figure. 2) 
 

( ) ( )22 φφφφ chshAyshchAxL iyixiyiyixixi ++−+−+−=       ni ,,1L=      (1)  

  
For use in velocity kinematics and statics, we require the cable angles: 
 

  











φ−φ+−
φ+φ+−

=θ −

shchAx

chshAy

iyixix

iyixiy1
i tan                    ni ,,1L=          (2) 

 
The quadrant-specific inverse tangent function must be used in Eq. 2. 

The forward pose kinematics problem requires the solution 
of overconstrained coupled nonlinear equations and is more difficult.  
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A Newton-Raphson numerical solution has been employed, where the 
overconstrained Moore-Penrose pseudoinverse is used in the iteration.  
The CDDR inverse velocity Jacobian matrix is closely related to the 
Newton-Raphson Jacobian matrix and the statics Jacobian matrix.  
These kinematics solutions are presented in6 and will not be repeated 
here. 

 
4.  CDDR STATICS MODELING 

 
In this article, the workspace wherein all cables are under 

positive tension while exerting all possible Cartesian wrenches is 
called the statics workspace.  Statics modeling and attempting to 
maintain positive cable tension for all wrenches are presented in this 
section.  We use a simple method to determine the extent of the statics 
workspace, i.e. the workspace wherein all possible end-effector 
wrenches can be resisted with only positive cable tensions. 

 
4.1 Statics Modeling  
  

This section presents statics modeling for planar CDDRs.  
For static equilibrium the sum of external forces and moments exerted 
on the end-effector by the cables must equal the resultant external 
wrench exerted on the environment (or, the wrench exerted by a serial 
wrist mechanism acting on the environment must react on the CDDR 
end-effector).  Figure 3 shows the statics free-body diagram for the 
planar 4-cable CDDR. 
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Figure 3.  Planar 4-Cable CDDR Statics Diagram 
 

The statics equations are: 
 

R
4

1i iit
4

1i i FLt =∑
=

−=∑
=

ˆ       ( ) R
4

1i ii
0
H

4

1i i MtRhm =∑
=

×=∑
=

            (3)   

 
   In this article gravity is ignored because it is assumed to be 
perpendicular to the CDDR plane; we assume the end-effector is 
supported on a base plate with negligible friction.  The definition of 

frames {0} and {H} are given in Figure. 3.  In (3), it  is the cable 

tension applied to the ith cable (in the negative cable length unit 

direction iL̂  because it  must be in tension); R
0
H  is the orthonormal 

rotation matrix relating the orientation of {H} to {0} (nominally, 

3
0
H IR =  since we are controlling for zero orientation, φ=0); ih  is 

the position vector from the origin of {H} to the ith cable connection, 

expressed in {H} coordinates (only 3h  is shown in Figure. 3); and 

RF and RM  are the resultant vector force and moment (taken 

together, wrench) exerted on the environment.  Substituting the above 
terms into (3) yields: 
 

RWST =    (4) 

 

{ } T
4t3t2t1t=T  is the vector of scalar cable forces, 

{ } { }T
RzMRyFRxF

T
RRR == MFW  is the resultant 

external end-effector wrench vector (expressed in {0} coordinates but 

felt at the origin of {H}), and the 3x4 Statics Jacobian matrix S  
(expressed in {0} coordinates) is: 









××××

−−−−
=

4Rh
0

H4L3Rh
0

H3L2Rh
0

H2L1Rh
0

H1L
4L3L2L1L

S
ˆˆˆˆ

ˆˆˆˆ
                   (5)

    
The specific (5) expressions for the Figure. 1 CDDR are: 
 















θ−θθ−θθ−θθ−θ

θ−θ−θ−θ−

θ−θ−θ−θ−

=

x4h4sy4h4cx3h3sy3h3cx2h2sy2h2cx1h1sy1h1c

4s3s2s1s

4c3c2c1c

S

  (6) 
 

where { }T
iyhixhi =h , iic θ=θ cos , and iis θ=θ sin .  Equation 

(6) assumes that the orientation is 0=φ  for all pseudostatic motion; 
otherwise each third row term of (6) is: 

( ) ( )φ−φθ−φ+φθ siyhcixhisciyhsixhic .  The statics equations (4) 

can be inverted in an attempt to resist general (in this article, planar) 
Cartesian wrenches while maintaining positive cable tension.  This 
work is presented in the next subsection. 
 
4.2 Maintaining Positive Cable Tension  
 
 For CDDRs with actuation redundancy, (4) is 
underconstrained which means that there are infinite solutions to the 

cable tension vector T  to exert the required Cartesian wrench RW .  

To invert (4) (solving the required cable tensions T  given wrench 

RW ) we adapt the well-known particular and homogeneous solution 

from rate control of kinematically-redundant serial manipulators: 
 

( )zSSIWST
+−++= nR     (7) 

where nI  is the nxn identity matrix, z is an arbitrary n-vector, and 

( ) 1TT −
=+

SSSS  is the nx3 underconstrained Moore-Penrose 

pseudoinverse of S.  The first term of (7) is the particular solution to 
achieve the desired wrench, and the second term is the homogeneous 
solution that projects z into the null space of S. 

For CDDRs with one degree of actuation redundancy (the 
case in this article), the positive cable tension method of Shen et al.13 
is adapted to determine the extent of the statics workspace.  For 
actuation redundancy of degree one, an equivalent expression for (7) 
is: 

































α+=

4n
3n
2n
1n

4Pt
3Pt
2Pt
1Pt

T     (8) 
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where the particular solution RWS
+

 is the first term in (8) and the 

homogeneous solution is expressed as the kernel vector N of S 

( { } T
4n3n2n1n=N ) multiplied by arbitrary scalar α. 

 The method we adapt from Shen et al.13 to determine if a 
given point lies within the statics workspace for a given CDDR is 

simple.  To ensure positive tensions it  on all cables 4,,1L=i , for 

all possible exerted forces and moments, it is necessary and sufficient 

that all kernel vector components (ni, 4,,1L=i ) have the same 

sign.  That is, for a given point to lie within the statics workspace, all 

0>in  OR all 0<in  ( 4,,1L=i ).  If one of these two 

conditions is satisfied, regardless of the particular solution, we can 
find a scalar α in (8) which guarantees that all cable tensions T are 
positive by adding (or subtracting) enough homogeneous solution.  

Note a strict inequality is required; if one or more 0=in , the CDDR 

configuration in question does not lie within the statics workspace.  
This method is simple but powerful since we needn’t consider specific 
wrenches: it works for all possible wrenches.  It should also be noted 
that while we demonstrate this method for the planar 4-cable CDDR, it 
is applicable to any planar and spatial CDDR with one degree of 
actuation redundancy. 

A symbolic expression for the kernel vector (null space 
basis) of the 4-cable CDDR (with φ = 0) is:  

                                
















=

4n
3n
2n
1n

N                (9) 

where  
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 




















θ−θ−θ−θ+θ−θ−θ−θ+θ−θ+θ−θ
θ+θ−θ+θ−θ−θ+θ−θ−θ−θ−θ+θ
θ+θ−θ−θ−θ+θ+θ−θ+θ−θ−θ−θ
θ−θ+θ−θ+θ−θ+θ−θ−θ−θ+θ−θ
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n

n

sinsincoscos

sinsincoscos

sinsincoscos

sinsincoscos

Now, the allowable cable angle ranges are 
o

9010 <θ< , 

oo
180290 <θ< , 

oo
2703180 <θ< , and 

oo
3604270 <θ< . The 

analysis based on these allowable angles ranges, by careful 
consideration of sums/differences of the three distinct angle 
combinations in each row of (21) is shown in Table 1. By substitution 
of these results in (21), it can be proved easily that the sign of ALL  ni 
components is always the same   (negative in this case), 41i ,,L= . 

Therefore, the entire allowable kinematic workspace of the 
base square is also the statics workspace! Now, when the edge of the 
end-effector square is aligned with an edge of the base square, two 

components 0in =  and thus the allowable statics workspace is the 

base square, reduced by a/2 (half the end-effector side) on all sides. 
This edge singularity condition was discussed earlier in Section 2. At 
all points outside of the base square, all components of the kernel 
vector N do not have the same sign so outside the useful region of the 
base square is also outside of the statics workspace. This statics 
workspace discussion holds only for φ = 0, the nominal case of the 
planar translational CDDR. In previous work by9, it was discovered 
that the statics workspace is extremely limited when considering 
general φ rotations. 
For real-time pseudostatic control of a planar CDDR with one degree 
of actuation redundancy, the cable tensions for control are calculated 
by (8) and (9), choosing α so that one component of T is zero (or, a 
small positive tension value) and the remaining terms are positive. 

n1 Cos Sin  
180 < θ2−θ3+θ4 <  270 -Ve -Ve 

0 < θ2+θ3−θ4 <  90 +Ve +Ve 

-360< θ2−θ3−θ4 <−450 +Ve -Ve 

   
n2 Cos Sin 

90 < θ1−θ3+θ4 < 180 -Ve +Ve 

-450 < θ1−θ3−θ4  < −540 -Ve -Ve 

-90 < θ1+θ3−θ4  <  0 +Ve -Ve 

   
n3 Cos Sin 

-360 < θ1−θ2−θ4  <  −450 +Ve -Ve 

180 < θ1−θ2+θ4  < 270 -Ve -Ve 

-180 < θ1+θ2−θ4  < −90 -Ve -Ve 

   
n4 Cos Sin 

90 < θ1−θ2+θ3 <    180 -Ve +Ve 

-270 < θ1−θ2−θ3 < −360 +Ve +Ve 

-90 < θ1+θ2−θ3  <   0 +Ve -Ve 

 
Table 1 : Kernel Vectors Analysis 

 
 

5.  Hardware Implementation 
 
 This section presents hardware implementation of the 
kinematics and statics modeling along with the method to maintain 
positive cable tensions, which we discussed in section 3 and 4. Figure 
4 shows the CDDR hardware used for experimentation. Hardware 
consists of an end-effector with ball transfers below to reduce friction, 
four pulleys, four DC servomotors with angle feedback mechanism, an 
aluminum base plate, a power supply and four amplifiers. The base 
square has side LB = 0.70 m and the end-effector square has side a = 
0.10 m. Hardware was interfaced with the computer using Quanser 
MultiQ PCI data acquisition boards. Matlab, Simulink and Wincon 3.2 
were used for real time control of the robot. Low friction nylon cables 
were used to allow cables to slide freely over each other. Four guides 
were placed on all four corners to keep all four cables at same height. 
 

 
 
     Figure 4. CDDR Hardware 
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5.1 Control Architecture  
 

The control architecture of the CDDR system is shown in 
Figure 5. X is commanded pose (x, y, φ), L is the commanded leg 
lengths,  is the vector of cable angles, N is kernel vector as given by 
equation 9 and α is a scalar quantity. In the control architecture, the 
inverse kinematics transforms the commanded pose into commanded 
leg lengths and cable angles using equation 1 and equation 2 
respectively. Kernel vectors can be found using equation-9.  The scalar 
α can be found by dividing the minimum allowable cable tension  (0.3 
N from our experiment) by the minimum kernel vector. Commanded 
cable lengths L and kernel vectors N are provided to the four 
independent length PD controllers. Cable lengths are calculated online 
using the encoder feedback for each cable pulley.  These lengths are 
also used offline as the inputs to the forward position kinematics 
solution to calculate Cartesian position X.    

 
Figure 5. Control Architecture 
 

5.2 Results 
  

The experiments aimed at generating two linear profiles: 
move the end-effector from the origin (center of the plate) to (0.10,0) 
and (0.10,0.10) and one circular profile: trace a circle of 0.15 meter 
radius starting from (0.15,0) keeping center of the base plate as origin. 

 
     5.2.1 Linear Trajectory Generation.  The end-effector was 
commanded to move from: The origin (center of the base plate) to 
(0.10, 0) and (0.10,0.10) in one second while attempting to maintain 
φ = 0  for all motion. As commanded motion was symmetrical to the 
x-axis for the first case, desired cable lengths L1 and L4   as well as L2 
and L3 were the same. Therefore in the Figure 6 desired lengths for 
cables L3 and L4 covers those of cables L2 and L1. Cables L2 and L3 
were required to pull the cables while cables L1 and L4 were required 
to release the cables but keep minimum tension to avoid slack and 
hence maintain control of the robot. Figure 6 shows the commanded 
and actual length control of the robot. Cables L1 and L4 were required 
to release the cables and therefore increase in lengths of the cable L1 
and L4, which can be observed in the Figure 6. Cables L2 and L3 were 
required to pull the cables and therefore decrease in lengths of the 
cables L2 and L3, which can also be observed in the Figure 6.  

For the second case, commanded motion was symmetrical to 
the xy-axis therefore all desired lengths were different unlike the first 
case. L1 and L2 were required to release the cables but keep minimum 
tension to avoid slack and hence maintain control of the robot. Cables 
L3 and L4 were required to pull the cables. L1 and L2 were required to 
release the cables therefore increase in their lengths can be observed in 
Figure 7.  Cables L3 and L4 were required to pull the cables therefore 
decrease in their lengths can be observed. Desired cable length L4 is 
covered by the actual value in Figure 7 for most of the part. Figure 8 
shows the commanded and actual Cartesian control of the robot for the 
linear trajectory (0,0) to (0.10,0). As desired motion in y-direction as 
well as commanded rotational angle phi is zero phi-desired in Figure 8 
covers the y-desired. Figure 9 shows the commanded and actual 
Cartesian control of the robot for the linear trajectory (0,0) to 
(0.10,0.10). As desired motion is symmetrical to x-y axis, desired x 
and y motion are overlapping. There is a significant error in phi 
initially, which reduces gradually. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Time

L1-actual
L1-desired
L2-actual
L2-desired
L3-actual
L3-desired
L4-actual
L4-desired

 
Figure 6: Length Control for the Linear Trajectory (0,0) to (0.10,0) 
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Figure 7: Length Control for Linear Trajectory (0,0,) to (0.10,0.10) 
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     Figure 8: Cartesian Control for Linear Trajectory (0,0) to (0.10,0)  
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Figure 9:Cartesian Control for Linear Trajectory (0,0) to (0.10,0.10) 

 
The errors in the Cartesian control of the robot for both cases 

are shown in the Figure 10 and Figure 11. The errors in x and y are in 
meters while the Phi error is in radians. Figure 12 and Figure 13 shows 
the trajectory achieved by the CDDR hardware in real time compared 
to the desired trajectory. 

 As it can be seen in the Figure, the end-effector could not 
reach to the exact commanded x coordinate which explains the 
positive error (Xcommanded-Xactual) in Figure 10. As the end-effector 
moved towards the workspace boundary it approached to singularity. 
The cables needed infinite force to pull the end-effector towards the 
boundary of the workspace.  The end-effector moves in y direction 
while commanded trajectory in y-direction is zero for this trajectory, 
which explains the negative error (Ycommanded -Yactual) for y coordinate 
in Figure 10. Figure 10 also shows the positive error for the rotational 
angle phi, which means that the end-effector rotated clockwise about 
the z-axis while attempting the linear trajectory. The error in phi can 
be reduced if the Cartesian controller could be implemented instead of 
independent length controller. Cartesian controller needs online 
Cartesian feedback from the CDDR, which can be achieved by 
introducing vision system in future. 

For the second case, the end-effector is commanded to move 
from the origin to (0.10,0.10) .The end-effector movement in x-y 
direction is very close to the commanded motion, it can be seen in the 
Figure 13.  During this motion the end-effector was approaching the 
corner of the workspace but it was not approaching to singularity 
because cable in that corner could pull the end-effector in the same 
direction. 
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Figure 10: Cartesian Control Errors for Linear Trajectory (0,0) to 

(0.10,0) 
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Figure 11:Cartesian Control Errors for Linear Trajectory (0,0) to 

(0.10,0.10) 
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Figure 12:Linear Trajectory Generation: (0,0) to (0.1,0) 
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Figure 13:Linear Trajectory Generation: (0,0) to (0.10,0.10) 

 
       5.2.2 Circular Trajectory Generation.  In this experiment the 
end-effector was commanded to trace a circle of r = 0.15 meter radius 
and centered at the origin (center of the base plate) while attempting to 
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maintain φ = 0 for all motion in 10 seconds. Angle γ   was defined as 
the polar angle for the circle; it was measured using the right-hand 
from the right horizontal to the circle radius.  For ‘smooth’ motion 
starting and ending at rest, trajectory generation techniques were 

adopted17: We required that angle γ starts at zero and ends at 
o

360  
during the 10 sec motion; also, we required that 0=γ=γ &&&  at the start 
and end of motion, for ‘smoothness’.  These conditions yielded a 5th 
order polynomial for angle γ: 

( ) 3
t518

4
t5027

5
t125027t )/()/()/( +−=γ  (deg).  The 

associated commanded (reference) Cartesian pose for use in the 
controller architecture were x = r.cos(γ)  and y = r.sin(γ) . The 
commanded Cartesian angular value was 0=φ  for all motion. Figure 
14 shows the commanded and actual length control for the circular 
trajectory. Figure 15 shows the commanded and actual Cartesian 
control of the circular trajectory. Figure 16 shows the Cartesian control 
errors and Figure 17 shows the simulation of the actual trajectory 
generated by the end-effector compared to the desired circle 
Commanded trajectory is very close to the singularity region, so it can 
be observed easily that during most of the motion the actual trajectory 
is inside the desired trajectory, as cables needed very high force to 
move the end-effector close to the workspace boundary. Implementing 
dynamics controller can reduce errors. Introducing Cartesian controller 
can also reduce the errors in phi as already discussed in 5.2.1. 
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Figure 14: Length Control for Circular Trajectory 
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Figure 15: Cartesian Control for Circular Trajectory 
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Figure 16: Cartesian Control Errors for Circular Trajectory 
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Figure 17: Circular Trajectory Generation  

 
5.2.3 Repeatability  
 
 Repeatability is the ability of the robot to repeatedly position 
itself when asked to perform a task multiple times. Repeatability of the 
CDDR was measured by generating a circular trajectory repeatedly 
(seven times here) keeping all parameters like gain, time for trajectory 
generation, minimum cable tensions unchanged. The end-effector was 
commanded to trace a circle of r = 0.15 meter radius and centered at 
the origin (center of the base plate) while attempting to maintain φ = 0 
for all motion in 10 seconds. Figure 18 shows the commanded 
trajectory (circle) with solid black line and actual trajectories 
generated by the CDDR shown with different colors.  
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Figure 18: Repeatability of the CDDR 

 
 It can be seen that repeatability of the CDDR is good. The 
major source of error in repeatability could be the initial position and 
orientation of the end-effector as end-effector was placed manually at 
its initial position. 
 
 
6 Conclusion 
   
  Hardware results were presented for the planar translational 
cable direct driven robot with three degree of freedom (x,y,φ 
commanded to 0) and one degree of actuation redundancy (4 cables 
but 3 Cartesian dof). Kinematics and statics modeling were 
implemented along with the method to maintain positive cable 
tensions successfully. Only translational CDDR is considered; attempt 
has been made to keep zero orientation by control. Results were 
presented for two linear trajectories and one circular trajectory. It was 
found that the whole theoretical statics workspace could not be used in 
hardware as it was difficult to move the end-effector in the region 
close to the edges of the statics workspace as it was approaching to 
singularity on the edges of the workspace where cable needs infinite 
force to move the end-effector, which can be major source of error in 
trajectory generation. It was also found that repeatability of the CDDR 
is quite good and a possible source of error could be the initial position 
and orientation of the end-effector as the end-effector was placed 
manually at its initial position. The future CDDRs should be designed 
taking into account the reduction in workspace due to singularity. The 
results revealed the need to implement the dynamics of the robot in the 
future for better performance. It was also found that there is a further 
scope of improvement in the performance of the robot, if the 
coordinated Cartesian controller could be used, by introducing vision 
system for online feedback of the Cartesian coordinates instead of 
independent length controller. 
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